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Abstract

Objectives: Develop an effective and intuitive Graphical User Interface (GUI) for a Brain-Computer
Interface (BCI) system, that achieves high classification accuracy and Information Transfer Rates
(ITRs), while using a simple classification technique. Objectives also include the development of
an output device, that is capable of real time execution of the selected commands. Methods: A
region based T9 BCI system with familiar face presentation cues capable of eliciting strong P300
responses was developed. Electroencephalogram (EEG) signals were collected from the Oz, POz,
CPz and Cz electrode locations on the scalp and subsequently filtered, averaged and used to ex-
tract two features. These feature sets were classified using the Nearest Neighbour Approach (NNA).
To complement the developed BCI system, a ‘drone prototype’ capable of simulating six different
movements, each over a range of eight distinct selectable distances, was also developed. This was
achieved through the construction of a body with 4 movable legs, capable of tilting the main body
forward, backward, up and down, as well as a pointer capable of turning left and right. Results:
From ten participants, with normal or corrected to normal vision, an average accuracy of 91.344.8%
and an ITR of 2.241.1 commands/minute (12.246.0 bits/minute) was achieved. Conclusion: The
proposed system was shown to elicit strong P300 responses. When compared to similar P300 BCI
systems, which utilise a variety of more complex classifiers, competitive accuracy and ITR, results
were achieved, implying the superiority of the proposed GUI. Significance: This study supports
the hypothesis that more research, time and care should be taken when developing GUIs for BCI
systems.

Keywords: Graphical User Interface (GUI), P300 speller, Brain-Computer Interface (BCI),
Electroencephalogram (EEG), Event Related Potential (ERP), Nearest Neighbour Approach
(NNA).
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1. Introduction

Brain-Computer Interface (BCI) systems are the implementation of an artificial communication
link between an individual’s brain and an external device via the processing and classification of
detectable brain signals, such as the electroencephalogram (EEG) signals [I][2]. BCI systems are
presented throughout the literature as viable approaches to improving the quality of life of people
suffering from neuromuscular diseases [3][4]. Farwell and Donchin [5] were the first to develop a
BCI speller, a device capable of aiding in communication for those suffering from neuromuscular
disorders. It utilised P300 Event Related Potentials (ERPs) which express time-locked relations
with their stimuli [6]. The most robust feature of the P300 ERP is a large positive peak located
around 300ms following stimulus presentation [7]. These ERPs are shown to be highly stable
responses that require no initial training to produce, allowing P300 based BCI systems to achieve
reasonably high Information Transfer Rates (ITRs) [2]. Repeated P300 stimulation can be used
to find an averaged response to a particular cue presentation. Averaging is used to improve the
Signal-to-Noise Ratio (SNR) of a system [§] by minimising the background noise in the recording,
keeping only the time-locked P300 signal.

The performance of BCI systems, the speed at which they can output information and aid with
tasks, are measured by calculating their accuracies and ITRs [9]. There are two defining charac-
teristics of a BCI system that determine its performance: the Graphical User Interface (GUI) and
the classifier (the mathematical method(s) used to categorise incoming brain signals for command
selection) [9]. The majority of BCI research publications focus predominantly on the development
of the system'’s classifier [9], with competitions being held aiming to increase the classification accu-
racy of a set of offline data through the use of classifier variation and development alone [10]. This
paper aims to enhance the performance of a BCI system by modifying and optimising the GUI. The
impact of the developed GUI is illustrated by combining it with a simple classification technique,
Nearest Neighbour Approach (NNA) [I1], and comparing it with existing BCI systems, which em-
ploy more complex classifiers. Using this, and the competitive accuracies and I'TRs achieved, the

effectiveness of the developed GUI is inferred.



2. State-of-the Art Review on GUIs

Throughout the BCI literature, there exists numerous modifications to the original GUI devel-
oped by Farwell and Donchin in [5]. For example, Pan et al. [12] and Fazel-Rexai and Abhari
[13], both in their respective publications have showed an increase in spelling accuracy for a region
based speller when compared to a single display speller as in [5]. Furthermore, Miao et al. [I4]
compared two GUIs and reported that the peripheral matrix paradigm achieved comparable results
to the conventional matrix paradigm. Lu et al.[I5] analysed the effects of stimulus duration and
inter-stimulus-interval (IST) on BCI accuracy and ITR. They reported that a stimulus duration
of 31.25ms coupled with an ISI of 125ms was the best compromise between elicited P300 signal
strength and time taken to produce the response.

People’s reactions to face stimuli vary considerably from other stimuli, and neuroimaging has
identified occipito-temporal areas in humans that produce a much stronger response to stimuli
consisting of faces [16]. Kaufman et al. [I7] made use of this when designing their GUI and showed
that using facial based cues increased both the induced magnitude of the ERP as well as the overall
performance of the speller, due to the resulting higher SNR. Further, two publications by Li et al.
[18][19] compared the evoked ERPs of three spelling paradigms; the standard white square stimulus,
a familiar face stimulus and a green familiar face stimulus. These works showed that the standard
paradigm was out-preformed by the familiar face paradigm which was in turn out-preformed by the
green familiar face paradigm. Inverted facial image cues have been used in another study and have
displayed promising results for visual stimulus based BCIs [20].

Acqualagna et al. [21] utilised six different colours to stimulate six rows of the interface matrix.
Another T9 GUI similar to that in [22] was developed by Ron-Angevin et al [23]. To mitigate
the problems with double flashes and proximity-distraction, Postelnicu and Talaba [24] employed
a checkerboard paradigm. A gaze-independent GUI, flashing groups on letters on the screen one
after another, was developed in [25]. Pires et al. [26] showed the potential of a Gaze-Independent
Block Speller (GIBS), placing letters in four blocks located in the screen corners, bringing them
into the centre for further selection. The same authors proposed a lateral single-character speller to
increase the spacing between letters reducing user distractions [27]. Treder et al. [28] experimented
with three, two-stage Hex-O-Spell variations. Aqualagna and Blankertz [29] also proposed a gaze-
independent system by using Rapid Serial Visual Presentation (RSVP). In 2016, Yin et al. [30]

developed a saccade-independent auditory and tactile P300 BCI system aimed at improving gaze



shift-independent BCIs. Table [I| provides a summary of the range of BCI GUI’s that are available
in the literature to-date.

Table 1: Summary of the range of different GUIs found in the literature for BCI applications.

Speller Year # of # of Accuracy Speed
Type channels subjects (%) (bits/min)
Region-based Spellers [12] 2013 8 12 93.47 22.2
[13] 2008 5 10 92 i
4] 2019 16 18 83.5 39.0
Stimulus Timings Variation [I5] 2013 32 6 - -
Face Stimuli [I7] 2011 12 21 up to 100 -
18] 2015 14 17 - -
[19] 2015 14 17 96.7 48.2
[20] 2012 16 7 88.7 38.7
Chroma Speller [21] 2013 64 9 88.4 11.2
T9 [23] 2015 8 11 93.75 13.9
2] 2015 8 10 - 26.7
Checkerboard Paradigm [24] 2013 4 10 90.625 21.74
Giospell [25] 2011 6 8 94.4 — 96.3 11.0
Gaze-Independent Block [26] 2011 12 4 96.02 16.67
Lateral Single-Character [27] 2012 12 24 89.9 26.11
Hex-O-Spell with ERP [28] 2011 64 13 91.3 9.8
RSVP [29] 2013 63 12 94.8 11.4
Auditory and Tactile [20] 2016 8 12 88.7 10.8
Proposed work 2019 4 10 91.3 12.2

All of the works listed in Table [I] aim to optimise BCI performance through modifications of
parameters related to the GUI styling. In our work, we modify a range of parameters to optimise

the GUI so that the elicited P300 responses are easily detectable.

2.1. Take-Aways

Several modifications to the original GUI developed by Farwell and Donchin in [5] are suggested
in this work. First was the change in the output type, from letters used for communication to
directional movements used for locomotion. The developed GUI has a total of 50 outputs. These
include six directional commands; ‘up’, ‘down’, ‘left’, ‘right’, ‘forward’, and ‘backward’, plus the
two commands for ‘pause’ and ‘repeat’. Each of the directional commands has eight distance/speed
variations. The developed GUI subsequently allows for the control of a drone prototype over
both short and long distances, using small, accurate movements and gross, continual movements,

respectively. It is anticipated that in the future, possible integration of the design into a wheelchair



could enable disabled/elderly users to control and utilise the system both for short (indoor), as
well as long (outdoor), navigation — a protocol that has been well documented in the literature
[31, 321 33 [34].

The second modification was the integration of a two stage interface each consisting of eight
regions according to the suggestions by Pan et al. [I2] and Fazal-Rexai and Abhari [I3]. Here,
the stage one interface (interface 1) was designed to select movement direction, while stage two
interface (interface 2) was designed to select the distance to be moved in the previously selected
direction. These movements were either in metres or degrees depending on the selection in interface
1. The interfaces were arranged in a text on 9 keys (T9) layout, similar to the keypad of an old
mobile phone [22]. As only eight options were available on each interface, the centre of the interface
was left blank, providing space capable of displaying live user feedback via video in potential future
developments [14].

Finally, as a third modification, a psychologically salient image of Albert Einstein was used as

a stimulus, justified by [17], [I8] and [19].

3. Proposed GUI

The proposed interface was developed with two sub-interfaces, each with different selection
options. Interface 1, as shown in Fig. allows the user to select a directional command. Upon

selection of a command, one of the four different outcomes (listed below) can occur:

1. The ‘repeat’ command is selected, and interface 1 is shown again for another selection. The
previously selected movement continues,

2. The ‘up’, ‘down’, ‘forward’ or ‘backward’ command is selected and variation 1 of the inter-
face 2 (Fig. [2) is displayed for the next selection. Variation 1 allows for the selection of
distance/speed control in the direction selected from interface 1,

3. The ‘left’ or ‘right’ command is selected and variation 2 of interface 2 is displayed for the next
selection. Variation 2 allows for the selection of rotational distances/speeds in the direction
already selected in interface 1, ranging from 22.5° to 180° in steps of 22.5°, or

4. The ‘pause’ command is selected and the system pauses. Pressing the space bar restarts the
system, returning to interface 1. Following both variations of interface 2, the system returns

to interface 1 allowing for the next directional selection.



forward

backward

Figure 1: A screen shot of interface 1 mid-cycle. It is seen that the current stimulated command is ‘repeat’.

A snap-shot of interface 2, following an ‘up’ selection from interface 1 (Fig. , can be seen in

Fig.

Figure 2: A screen shot of interface 2, variation 1. Currently the stimulated command is ‘0.5m’ which, if selected,
represents a translational movement of 0.5 meters in the direction selected in interface 1.

As the system takes the same time to select each new command, unless the ‘repeat’ or ‘pause’
command is selected, the outputs of distance also represent variations in speed. As a movement of
4m and a movement of 0.5m both occur over the same time frame, the speed of the 4m movement is
eight times greater than the movement of the 0.5m movement. These are represented in the drone

model accordingly. Figure [3| depicts a flow graph of all possible selections and the resulting next



interface each selection prompts.

1.0m

backward

Figure 3: A flow graph of the progression of the GUIs following certain selections made. Following the list above; 1
- ‘repeat’ command is selected and interface 1 is shown again; 2 - ‘up’, ‘down’, ‘forwards’ or ‘backwards’ command
is selected and variation 1 of interface 2 is displayed. Following a selection, interface 1 is displayed again; 3 - the
‘left” or ‘right’ command is selected and variation 2 of interface 2 is displayed. Following a selection, interface 1 is
displayed again; 4 - the ‘pause’ command is selected (here interface 1 is only displayed following the pressing of the
space bar).

4. Materials and Methods
4.1. Data Collection and Ezxperimental Paradigm

The GUI was displayed on the 15.6-inch FHD (1920 x 1080) anti-glare LED backlight IPS
display of the Dell Inspiron 15 and was coded using the MATLAB extension, Psychtoolbox. The
interface was split into eight regions, which flashed one at a time in a randomised order. Each flash
lasted 31.25ms and was separated from the next flash by a delay of 93.75ms, resulting in an ISI of
125ms. Eight flashes were needed to illuminate each region once, resulting in a total time of one
second. Multiplying this by the number of times each region flashed per trial (denoted as R), gave
the total time needed to make a selection. For example, when R = 10, the total time taken for a

selection was 10 seconds.



All participants in the study were provided with written informed consent prior to their par-
ticipation in the experiment, which were approved by the Regional Committee on Health Research
Ethics for the Capital Region of Denmark (reference H-3-2013-004) and carried out in accordance
with the corresponding guidelines and relevant regulations on the use of human participants for
health-related scientific research. A post experiment questionnaire was also presented for partici-
pants to fill out upon completion of the trials.

Ten healthy participants (2443 years old, six males and four females) with normal or corrected
to normal vision took part in the experiments. For each participant, two initial training trials were
conducted to calibrate the system and classifier for distinguishing between two states: the brain’s
responses to a visual stimulus, and no stimulus. The EEG signals were recorded at a sampling
rate of 256Hz using four active surface electrodes placed above the parieto-occipital region of the
brain at the Oz, POz, CPz and Cz electrode locations, according to the international 10-20 system
[35]. These 4 channels were selected following the unsuccessful initial testing of the system with
only one channel (Pz). The ground and reference electrodes were placed at Fpz and the left
earlobe, respectively. The electrodes used were from the g. GAMMADbundle of the g.tec pack, used
in conjunction with Nuprep skin prep gel, alcohol wipes and Signa electrode gel. The g.USBamp
amplifier was used to collect the data for further processing.

During the experiment, the participant was sat on a chair 60cm away from the computer screen,
with the top of the GUI at the participant’s eye level. Instructions for the task were given ahead
of the experiment. For the first run, the value of R was set to 10. This resulted in 80 flashes per
trial, ten for each of the eight regions of the GUI, lasting 10 seconds in total. Care was taken to
make sure that no region was flashed twice in succession and that the flash order was randomised
each time.

Each set of trials involved 34 selection phases consisting of two calibration phases and 32 online
selection phases. At the start of each set of trials, two calibration trials were performed, where the
participant was instructed to concentrate on the ‘up’ command for both trials. These two trials were
averaged to detect the participant’s average response to both stimulus and no stimulus. The next
32 trials were then split into four sets of eight trials, so that each of the eight commands — ‘repeat’,
‘up’, ‘forward’, ‘left’, ‘right’, ‘backwards’, ‘down’, and ‘pause’ were selected four times. Between
each of these trials, a 4.1 second period of relaxation was provided for selection feedback, blinking

and adjusting gaze for the next command. This 4.1 seconds period consists of two components: (i)



1.1 seconds for a buffer to allow for the last 1 second of EEG data to enter the classifier following
the last cue presentation, and (ii) 3 seconds to display the chosen command to the participant
and allow them some time to blink as well as to prepare for the next selection. It should also be
noted that by reducing this time, say to 2.1 seconds, an increase in the corresponding ITR would be
achieved. After the first eight trials, 60 seconds break was given to the participant to rest. This was
repeated four times. From this, an accuracy was calculated, and the value of R was adjusted to find
the best compromise between speed and accuracy for a particular participant. That is, its value
was decreased if the participant’s accuracy was above 90%, speeding up the system but reducing
accuracy, and increased if the participant’s accuracy was below 90%, slowing down the system but
increasing the accuracy. For each participant, the lowest value of R that maintained an accuracy

of over 90% was used in the final results.

4.2. Signal Processing

The signals from the electrode locations Oz, POz, CPz and Cz were filtered using a 4th-order
Butterworth 50Hz notch filter to minimise the power-line interference followed by a 0.1 Hz 4th-order
Butterworth high pass filter and a 30 Hz 4th-order Butterworth low pass filter to reduce the out
of band noise. The responses to cue presentation for each of the eight regions were then averaged,
resulting in eight averaged responses corresponding to eight regions. Each of these eight averaged
responses in turn consisted of four sets of data, one for each of the four electrode locations. An
example response from participant 1 is illustrated in Fig.

Signals from these four channels were then combined for each region using the following formula:

where, 7 is the sample index. Eq. was derived (empirically) from our observations of the recorded
signals during the development. As can be seen in Fig. 0.5 seconds after the cue presentation,
variations in signal (averaged) amplitudes were fairly consistent for all four channels over time. The
only significant separation of the signal amplitudes was seen in an interval of about 0.2-0.3 seconds
after cue presentation. Figureshows the result of combining (using Eq.) the four responses seen
in Fig. From this signal, two features were extracted, the location and value of the maximum
amplitude of the resulting signal. This can be seen in Fig. [5| where the only region of significant

separation occurs again between 0.2 and 0.3 seconds following cue presentation. Similar plots were
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Figure 4: Example of one second (averaged) responses from participant 1 at four electrode locations following the
presentation of the stimulus.

found for all eight regions for each trial and used for NNA, comparing each of these feature pairs

with that of the average from the two trial runs.

4.3. Nearest Neighbour Approach (NNA)

It is one of the simplest and best-known classification algorithms [T1]. For a given test pattern,
the NNA assigns the class label of its nearest neighbour.

Here, we have eight training patterns corresponding to eight regions (classes). Let us denote
them as, (x;,¢;), i =1,2,...,8, where x; = (f}, f3) are the two features corresponding to the i
region/class (¢;). Let us also denote the target feature pair as Ty = (tf1,tf2). The NNA then
estimates D; = ||x; — T¢||, i = 1,2,...,8, the Euclidean distance between T¢ and x; and chooses
the class (¢;) which has the lowest distance estimate.

An example scatter plot containing all 34 trials is provided in Fig. [0} Here, the two red crosses
are the feature pairs from the training trials for participant 1, which were averaged and used as
the target for NNA (¢f; and tf2). The blue crosses show the resulting feature pairs acquired from
the recorded brain signals following cue presentation within the region of interest. Finally, the

green crosses represent the resulting feature pairs from the recorded brain signals following cue
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Figure 5: Result of performing the operation in Eq. to the signals in Fig. Two dotted lines show the values of
feature 1 and feature 2. This feature set was one of the two calibration trials used for participant 1.

presentation at the other seven regions (regions of non-interest). Note here that some of the blue
crosses are located far away from the training sets. This is a result in errors in eliciting the P300
response resulting in a <100% classification accuracy.

Figure [7]illustrates the feature pair scatter plots for all the ten participants. The caption states
the corresponding values of R used for each participant. These values are consistent with those

used in the results section of this paper.

4.4. Information Transfer Rate (ITR)

As explained in [36], the optimal measure of a communication system’s performance is its ITR,
accounting for both number of selections and the accuracy of these selections [37]. Due to the two
stage GUI developed in this work, every selection error resulted in the additional two selections
before a successful command selection. Therefore, as in [38], a practical ITR has been used to

better estimate the speed of communication. The practical ITR (in bits per minute) was calculated

using the following equations [37][38][39):
1-P
B = logy N + Plog, P+ (1 — P)log, <Nl> ) (2)
B

ITRpits T

3)
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Figure 6: The resulting feature scatter plot from participant 1 over three averaged stimuli (R = 3), showing two
‘Training Set Targets’ which were averaged for Tg¢, 32 ‘User Targets’ depicting the brains response to stimulus
presentation, and 224 ‘Non-Targets’ depicting the brains response to no stimulus presentation.

where, B is the number of bits transmitted per trial, N (= 50) is the number of possible selections,
P is the classification accuracy for that user and T is the average selection time in minutes and is
calculated using the following formula:

2Ty + 6T
T 8x60

(4)
Here, T7 and T3 are the two selection times corresponding to the selections made using interface 1
alone and both interfaces, respectively. 71 = R + 4.1 and Ty = 27T} = 2R + 8.2, where 4.1 and 8.2
are the times needed for selection feedback. Assuming random selection, 77 (‘repeat’ and ‘pause’
commands) is used as the selection time 2/8 times.

A second measure of ITR is in commands per minute. To calculate it for each participant, first

it is required to find the total number of selections (S) each participant would need in order to

successfully make the N (= 50) selections. According to [38], S is given by,

N

§=r—55 (5)

The product (%) T is the average time required to select a correct command and hence the com-

12
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Figure 7: Feature pair scatter plots of all 10 participants, as a reflection of the results displayed in Table These
results attained the highest ITR for each participant while maintaining a sufficiently high accuracy: (a) R = 3, (b)
R=15,(c) R=12,(d) R=10, () R=5, (f) R=20, (g) R=15, (h) R=20, (i) R=6, (j) R=12.
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mands per minute can be calculated as,

60 60N
ITR ommands = ¢, T o 6
¢ s ST (©)

5. Results and Discussion
5.1. Classification Accuracies and ITRs for the Proposed System

The classification accuracies and ITRs of the online simulation for all ten participants are re-
ported in Table The P300 classification remained highly accurate for all participants, barring
participant 8, with a mean accuracy of 91.3 + 4.8%. Due to the varying values of R used by each
participant, the resulting I'TR rates varied significantly, with an average speed of 2.24+1.1 commands
per minute / 12.2+6.0 bits per minute.

The value of R varied (between 3 and 20) largely between participants. Its value was limited,
on the low end, when the accuracy for the participant fell below 90%, and on the high end, by the
value of 20. Anything higher was deemed too lengthy for sufficient maintenance of concentration.
These two extremes can be seen in the results obtained by participant 1 (R = 3) and participant 8

(R = 20).

Table 2: Online classification accuracies and I'TRs for the developed P300 speller.

Participant Accuracy ITR ITR
No. (%) (commands/minute)  (bits/minute)
1 93.8 4.3 24.0
2 90.6 1.5 8.4
3 96.6 2.0 11.2
4 90.6 2.0 11.3
5 93.6 3.3 18.6
6 87.5 1.1 6.3
7 87.5 14 7.9
8 81.3 1.0 5.5
9 96.9 3.2 17.9
10 93.8 1.9 10.6
Average 91.3 2.2 12.2
Std 4.8 1.1 6.0

Figure [§shows a scatter plot of the mean accuracies and ITRs from all of the comparable P300-
based spellers discussed in [9]. A least-squares regression line was added to illustrate the trend

of these results. It also depicts the universal trade-off between increasing ITR and the resulting
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decrease in accuracy of the system. The average results from this paper, represented by the red
cross, falls above the line of least squares, suggesting competitive accuracy and ITR among existing
P300 BCI systems of recent years. A summary of all the articles used in our comparison can be

seen in Table B

100 X
XX x  Systems from [9]
95 Xx x * Least-Squares regression
x X X Average

90 x Participant 1
85
B X
g X
> 80
©
g 751 “
<
S 70 x X
o}
=
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60 [ X

55

50 1 1 1 1 1 1 1 I}

0 10 20 30 40 50 60 70 80

Mean Information Transfer Rate (bits per minute)

Figure 8: A scatter plot of the mean accuracies and mean ITRs from the P300 spellers discussed in [9], with the
addition of the average results and the results achieved by participant 1 from this paper. The black line in the graph
represents the least-squares regression line.

The results from participant 1, the best performing participant, are also included on the graph
(green cross). It is hypothesised that with the addition of a more complex classifier, similar results
could be achieved for all participants, further improving the performance of the developed BCI.
Such classifiers include Shrinkage Linear Discriminant Analysis (SLDA) [567], sparse Bayesian [58],
Spatial-Temporal Discriminant Analysis (STDA) [59] and Step-Wise Linear Discriminant Analysis
(SWLDA). These are variations of LDA classifiers which are used to maximise the separability
among the known categories. Looking at the the NNA plots in Fig. [7] separation of the two
categories could be vastly improved through the use of higher dimensionality analysis coupled with
better features for separation. This would maintain separation between the two categories for lower
values of R for each user, increasing the ITR of the system. These improvements are predicted to

be largest for participants that achieved lower ITRs in the NNA results.
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Table 3: A summary of all the comparable P300-based spellers ITRs and accuracies used in Fig.

Speller Reference Mean ITR Mean Accuracy
Type (bits/min) (%)
Matrix 5] 12.0 95.0
[40] 66.3 64.7
[41] 13.7 93.3
Stimuli Variation Egj 322 8999976
44 14.8 92.9
[45] 23.82 84.0
i) 39.0 86.1
Familiar Faces and Symbols Ei% 39, 8N_8053.7 8 4.51;2590.7
43 15.5 — 16.2 94 — 96
Variation of Letters Arrangement F;g} 27?5;3229.9 93.??7;1?)4.8
Matrix Speller with Prediction E;} 17257 1 81%3 8
53l 145 60
Other Languages [54] 4.23 82.8
[55] 39.2 92.6
Checkerboard Paradigm [24] 21.74 90.63
Gibs [26] 16.67 96.02
LSC Speller 127] 26.11 89.9
RSVD 56] 2 =51 70.3 — 74.4
Region T9 speller (familiar face cues) Proposed work 12.2 91.3

5.2. Drone Prototype

To complement the BCI system, a drone prototype was made utilising an Arduino, several

The prototype was made with the aim to intuitively model the movements of an actual drone

17

accessory components, Solidworks and a laser cutter. The prototype developed was used to display
the BCIs ability for real time control of a device capable of movement in a 3D environment. It
was designed to react in real time to commands selected by the user, and execute these commands
while the next command selection was being made. A schematic of this setup can be seen in Fig.

[0l The assembly of the set-up with the laser-cut components can be seen in Fig.

capable of six movements selectable within the interface. This was possible using the four legs as
seen in Fig. [I0] and Fig. The 6050 MPU accelerometer was used to detect the tilt, velocity and

acceleration of the main body. Forward and backward movements were simulated by the forward



Figure 9: A schematic of the drone prototype.

Figure 10: A screen caption of the assembly made using Solidworks. Consisting of the main body, four legs, one
pointer, five servos [60], one mini breadboard [61], one 6050 MPU [62] and one Arduino Uno [63].
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and backward tilting of the main body. This was achieved by increasing or decreasing the angles
of the front two legs while decreasing or increasing the angles of the back two legs. In order to
represent different speeds and distances selected by interface 2, different tilt angles were used. It was
decided that larger tilt angles would be used to represent larger forward and backward movements.
The amount of tilt on the main body was detected by the MPU. Up and down movements were
simulated by the vertical movements of the prototype. Here, change in body height away from
the resting state, represented the velocity in the upward or downward direction. Again, greater
increases/decreases in height represented greater speeds in that direction. Finally, left and right
movements were represented by the rotating pointer. Similar principles apply as up and down
movements, with the angular displacement of the pointer representing the angular velocity of the
prototype. An illustration of the final design can be seen in Fig. This has been imaged in the
resting position, representing a hovering drone with no translational or rotational movements. A

full video of the developed P300 BCI system working alongside the prototype can be found in El

Figure 11: The final model used to simulate the drone movements for an online proof-of-concept for directional
control.

Thttps://www.youtube.com /watch?v=cHSuR3ZGllo
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6. Conclusion

In this work, the elicitation of sufficiently strong P300 ERPs was achieved using the proposed
region based T9 GUI with familiar face presentation cues. These P300 responses have subse-
quently been classified using NNA and the system performance achieved a classification accuracy
of 91.3+4.8% and an ITR of 2.24+1.1 (commands/minute) / 12.246.0 (bits/minute). The resulting
competitive performance within the existing BCI field (see Fig. further illustrates the GUI’s
ability to elicit strong and easily classifiable ERPs. Finally, the supporting material of the drone
prototype illustrates the real time capabilities of the developed BCI, providing the proof-of-concept
for future use in locomotive control for wheelchair users with only minor modifications to the GUI
and the supporting code. This implementation, coupled with a more complex classifier, could prove

highly beneficial for the potential users.

6.1. Future Directions

Three main areas of future development have been recognised following the completion of this

study, which are listed below:

e Further comparison of the GUI with other BCI paradigms: Alterations to the detected EEG
signals, such as Steady-State Visual Evoked Potentials (SSVEPs) or Motor Imagery (MI)
signals, would allow for further GUI comparison. Modifications required for SSVEP-based
BCI include: (i) the stimuli - a range of distinguishable frequencies to stimulate different
regions of the GUI, and (ii) the classifier - features in the frequency domain for detection. For
MI-based BCIs, the modifications include: (i) the interface - a selection feedback system to
be included allowing users to concentrate on different bodily movements to select commands,
(ii) the classifier - detecting MI induced signals from EEG, and (iii) training - users must be
MI literate before using the device. Combinations of these two paradigms would also allow

for further comparisons.

e Further improvements to the GUI styling: Brought about by testing altercations to any
parameter of the existing GUI. Examples include: (i) using the inverse face presentation
(visual stimuli) as in [20], (ii) varying the number of electrodes and their placements, (iii)
implementation of ErrP detection (to detect the selection errors), and (iv) variations in stimuli

locations and spacing.
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e Improvements to the BCI through classifier variation testing: Examples include SLDA, sparse

Bayesian, STDA, and SWLDA.

Finally, additional online testing of the GUI alongside the developed drone prototype is needed
to further the understanding of the GUT’s real world capabilities.
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