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Abstract

Objectives: Develop an effective and intuitive Graphical User Interface (GUI) for a Brain-Computer

Interface (BCI) system, that achieves high classification accuracy and Information Transfer Rates

(ITRs), while using a simple classification technique. Objectives also include the development of

an output device, that is capable of real time execution of the selected commands. Methods: A

region based T9 BCI system with familiar face presentation cues capable of eliciting strong P300

responses was developed. Electroencephalogram (EEG) signals were collected from the Oz, POz,

CPz and Cz electrode locations on the scalp and subsequently filtered, averaged and used to ex-

tract two features. These feature sets were classified using the Nearest Neighbour Approach (NNA).

To complement the developed BCI system, a ‘drone prototype’ capable of simulating six different

movements, each over a range of eight distinct selectable distances, was also developed. This was

achieved through the construction of a body with 4 movable legs, capable of tilting the main body

forward, backward, up and down, as well as a pointer capable of turning left and right. Results:

From ten participants, with normal or corrected to normal vision, an average accuracy of 91.3±4.8%

and an ITR of 2.2±1.1 commands/minute (12.2±6.0 bits/minute) was achieved. Conclusion: The

proposed system was shown to elicit strong P300 responses. When compared to similar P300 BCI

systems, which utilise a variety of more complex classifiers, competitive accuracy and ITR results

were achieved, implying the superiority of the proposed GUI. Significance: This study supports

the hypothesis that more research, time and care should be taken when developing GUIs for BCI

systems.

Keywords: Graphical User Interface (GUI), P300 speller, Brain-Computer Interface (BCI),
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1. Introduction

Brain-Computer Interface (BCI) systems are the implementation of an artificial communication

link between an individual’s brain and an external device via the processing and classification of

detectable brain signals, such as the electroencephalogram (EEG) signals [1][2]. BCI systems are

presented throughout the literature as viable approaches to improving the quality of life of people

suffering from neuromuscular diseases [3][4]. Farwell and Donchin [5] were the first to develop a

BCI speller, a device capable of aiding in communication for those suffering from neuromuscular

disorders. It utilised P300 Event Related Potentials (ERPs) which express time-locked relations

with their stimuli [6]. The most robust feature of the P300 ERP is a large positive peak located

around 300ms following stimulus presentation [7]. These ERPs are shown to be highly stable

responses that require no initial training to produce, allowing P300 based BCI systems to achieve

reasonably high Information Transfer Rates (ITRs) [2]. Repeated P300 stimulation can be used

to find an averaged response to a particular cue presentation. Averaging is used to improve the

Signal-to-Noise Ratio (SNR) of a system [8] by minimising the background noise in the recording,

keeping only the time-locked P300 signal.

The performance of BCI systems, the speed at which they can output information and aid with

tasks, are measured by calculating their accuracies and ITRs [9]. There are two defining charac-

teristics of a BCI system that determine its performance: the Graphical User Interface (GUI) and

the classifier (the mathematical method(s) used to categorise incoming brain signals for command

selection) [9]. The majority of BCI research publications focus predominantly on the development

of the system’s classifier [9], with competitions being held aiming to increase the classification accu-

racy of a set of offline data through the use of classifier variation and development alone [10]. This

paper aims to enhance the performance of a BCI system by modifying and optimising the GUI. The

impact of the developed GUI is illustrated by combining it with a simple classification technique,

Nearest Neighbour Approach (NNA) [11], and comparing it with existing BCI systems, which em-

ploy more complex classifiers. Using this, and the competitive accuracies and ITRs achieved, the

effectiveness of the developed GUI is inferred.
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2. State-of-the Art Review on GUIs

Throughout the BCI literature, there exists numerous modifications to the original GUI devel-

oped by Farwell and Donchin in [5]. For example, Pan et al. [12] and Fazel-Rexai and Abhari

[13], both in their respective publications have showed an increase in spelling accuracy for a region

based speller when compared to a single display speller as in [5]. Furthermore, Miao et al. [14]

compared two GUIs and reported that the peripheral matrix paradigm achieved comparable results

to the conventional matrix paradigm. Lu et al.[15] analysed the effects of stimulus duration and

inter-stimulus-interval (ISI) on BCI accuracy and ITR. They reported that a stimulus duration

of 31.25ms coupled with an ISI of 125ms was the best compromise between elicited P300 signal

strength and time taken to produce the response.

People’s reactions to face stimuli vary considerably from other stimuli, and neuroimaging has

identified occipito-temporal areas in humans that produce a much stronger response to stimuli

consisting of faces [16]. Kaufman et al. [17] made use of this when designing their GUI and showed

that using facial based cues increased both the induced magnitude of the ERP as well as the overall

performance of the speller, due to the resulting higher SNR. Further, two publications by Li et al.

[18][19] compared the evoked ERPs of three spelling paradigms; the standard white square stimulus,

a familiar face stimulus and a green familiar face stimulus. These works showed that the standard

paradigm was out-preformed by the familiar face paradigm which was in turn out-preformed by the

green familiar face paradigm. Inverted facial image cues have been used in another study and have

displayed promising results for visual stimulus based BCIs [20].

Acqualagna et al. [21] utilised six different colours to stimulate six rows of the interface matrix.

Another T9 GUI similar to that in [22] was developed by Ron-Angevin et al [23]. To mitigate

the problems with double flashes and proximity-distraction, Postelnicu and Talaba [24] employed

a checkerboard paradigm. A gaze-independent GUI, flashing groups on letters on the screen one

after another, was developed in [25]. Pires et al. [26] showed the potential of a Gaze-Independent

Block Speller (GIBS), placing letters in four blocks located in the screen corners, bringing them

into the centre for further selection. The same authors proposed a lateral single-character speller to

increase the spacing between letters reducing user distractions [27]. Treder et al. [28] experimented

with three, two-stage Hex-O-Spell variations. Aqualagna and Blankertz [29] also proposed a gaze-

independent system by using Rapid Serial Visual Presentation (RSVP). In 2016, Yin et al. [30]

developed a saccade-independent auditory and tactile P300 BCI system aimed at improving gaze

3



shift-independent BCIs. Table 1 provides a summary of the range of BCI GUI’s that are available

in the literature to-date.

Table 1: Summary of the range of different GUIs found in the literature for BCI applications.

Speller Year # of # of Accuracy Speed
Type channels subjects (%) (bits/min)
Region-based Spellers [12] 2013 8 12 93.47 22.2
[13] 2008 5 10 92 -
[14] 2019 16 18 83.5 39.0
Stimulus Timings Variation [15] 2013 32 6 - -
Face Stimuli [17] 2011 12 21 up to 100 -
[18] 2015 14 17 - -
[19] 2015 14 17 96.7 48.2
[20] 2012 16 7 88.7 38.7
Chroma Speller [21] 2013 64 9 88.4 11.2
T9 [23] 2015 8 11 93.75 13.9
[22] 2015 8 10 - 26.7
Checkerboard Paradigm [24] 2013 4 10 90.625 21.74
Giospell [25] 2011 6 8 94.4 − 96.3 11.0
Gaze-Independent Block [26] 2011 12 4 96.02 16.67
Lateral Single-Character [27] 2012 12 24 89.9 26.11
Hex-O-Spell with ERP [28] 2011 64 13 91.3 9.8
RSVP [29] 2013 63 12 94.8 11.4
Auditory and Tactile [20] 2016 8 12 88.7 10.8
Proposed work 2019 4 10 91.3 12.2

All of the works listed in Table 1 aim to optimise BCI performance through modifications of

parameters related to the GUI styling. In our work, we modify a range of parameters to optimise

the GUI so that the elicited P300 responses are easily detectable.

2.1. Take-Aways

Several modifications to the original GUI developed by Farwell and Donchin in [5] are suggested

in this work. First was the change in the output type, from letters used for communication to

directional movements used for locomotion. The developed GUI has a total of 50 outputs. These

include six directional commands; ‘up’, ‘down’, ‘left’, ‘right’, ‘forward’, and ‘backward’, plus the

two commands for ‘pause’ and ‘repeat’. Each of the directional commands has eight distance/speed

variations. The developed GUI subsequently allows for the control of a drone prototype over

both short and long distances, using small, accurate movements and gross, continual movements,

respectively. It is anticipated that in the future, possible integration of the design into a wheelchair
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could enable disabled/elderly users to control and utilise the system both for short (indoor), as

well as long (outdoor), navigation – a protocol that has been well documented in the literature

[31, 32, 33, 34].

The second modification was the integration of a two stage interface each consisting of eight

regions according to the suggestions by Pan et al. [12] and Fazal-Rexai and Abhari [13]. Here,

the stage one interface (interface 1) was designed to select movement direction, while stage two

interface (interface 2) was designed to select the distance to be moved in the previously selected

direction. These movements were either in metres or degrees depending on the selection in interface

1. The interfaces were arranged in a text on 9 keys (T9) layout, similar to the keypad of an old

mobile phone [22]. As only eight options were available on each interface, the centre of the interface

was left blank, providing space capable of displaying live user feedback via video in potential future

developments [14].

Finally, as a third modification, a psychologically salient image of Albert Einstein was used as

a stimulus, justified by [17], [18] and [19].

3. Proposed GUI

The proposed interface was developed with two sub-interfaces, each with different selection

options. Interface 1, as shown in Fig. 1, allows the user to select a directional command. Upon

selection of a command, one of the four different outcomes (listed below) can occur:

1. The ‘repeat’ command is selected, and interface 1 is shown again for another selection. The

previously selected movement continues,

2. The ‘up’, ‘down’, ‘forward’ or ‘backward’ command is selected and variation 1 of the inter-

face 2 (Fig. 2) is displayed for the next selection. Variation 1 allows for the selection of

distance/speed control in the direction selected from interface 1,

3. The ‘left’ or ‘right’ command is selected and variation 2 of interface 2 is displayed for the next

selection. Variation 2 allows for the selection of rotational distances/speeds in the direction

already selected in interface 1, ranging from 22.5◦ to 180◦ in steps of 22.5◦, or

4. The ‘pause’ command is selected and the system pauses. Pressing the space bar restarts the

system, returning to interface 1. Following both variations of interface 2, the system returns

to interface 1 allowing for the next directional selection.
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Figure 1: A screen shot of interface 1 mid-cycle. It is seen that the current stimulated command is ‘repeat’.

A snap-shot of interface 2, following an ‘up’ selection from interface 1 (Fig. 1), can be seen in

Fig. 2.

Figure 2: A screen shot of interface 2, variation 1. Currently the stimulated command is ‘0.5m’ which, if selected,
represents a translational movement of 0.5 meters in the direction selected in interface 1.

As the system takes the same time to select each new command, unless the ‘repeat’ or ‘pause’

command is selected, the outputs of distance also represent variations in speed. As a movement of

4m and a movement of 0.5m both occur over the same time frame, the speed of the 4m movement is

eight times greater than the movement of the 0.5m movement. These are represented in the drone

model accordingly. Figure 3 depicts a flow graph of all possible selections and the resulting next
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interface each selection prompts.

Figure 3: A flow graph of the progression of the GUIs following certain selections made. Following the list above; 1
- ‘repeat’ command is selected and interface 1 is shown again; 2 - ‘up’, ‘down’, ‘forwards’ or ‘backwards’ command
is selected and variation 1 of interface 2 is displayed. Following a selection, interface 1 is displayed again; 3 - the
‘left’ or ‘right’ command is selected and variation 2 of interface 2 is displayed. Following a selection, interface 1 is
displayed again; 4 - the ‘pause’ command is selected (here interface 1 is only displayed following the pressing of the
space bar).

4. Materials and Methods

4.1. Data Collection and Experimental Paradigm

The GUI was displayed on the 15.6-inch FHD (1920 x 1080) anti-glare LED backlight IPS

display of the Dell Inspiron 15 and was coded using the MATLAB extension, Psychtoolbox. The

interface was split into eight regions, which flashed one at a time in a randomised order. Each flash

lasted 31.25ms and was separated from the next flash by a delay of 93.75ms, resulting in an ISI of

125ms. Eight flashes were needed to illuminate each region once, resulting in a total time of one

second. Multiplying this by the number of times each region flashed per trial (denoted as R), gave

the total time needed to make a selection. For example, when R = 10, the total time taken for a

selection was 10 seconds.

7



All participants in the study were provided with written informed consent prior to their par-

ticipation in the experiment, which were approved by the Regional Committee on Health Research

Ethics for the Capital Region of Denmark (reference H-3-2013-004) and carried out in accordance

with the corresponding guidelines and relevant regulations on the use of human participants for

health-related scientific research. A post experiment questionnaire was also presented for partici-

pants to fill out upon completion of the trials.

Ten healthy participants (24±3 years old, six males and four females) with normal or corrected

to normal vision took part in the experiments. For each participant, two initial training trials were

conducted to calibrate the system and classifier for distinguishing between two states: the brain’s

responses to a visual stimulus, and no stimulus. The EEG signals were recorded at a sampling

rate of 256Hz using four active surface electrodes placed above the parieto-occipital region of the

brain at the Oz, POz, CPz and Cz electrode locations, according to the international 10-20 system

[35]. These 4 channels were selected following the unsuccessful initial testing of the system with

only one channel (Pz). The ground and reference electrodes were placed at Fpz and the left

earlobe, respectively. The electrodes used were from the g.GAMMAbundle of the g.tec pack, used

in conjunction with Nuprep skin prep gel, alcohol wipes and Signa electrode gel. The g.USBamp

amplifier was used to collect the data for further processing.

During the experiment, the participant was sat on a chair 60cm away from the computer screen,

with the top of the GUI at the participant’s eye level. Instructions for the task were given ahead

of the experiment. For the first run, the value of R was set to 10. This resulted in 80 flashes per

trial, ten for each of the eight regions of the GUI, lasting 10 seconds in total. Care was taken to

make sure that no region was flashed twice in succession and that the flash order was randomised

each time.

Each set of trials involved 34 selection phases consisting of two calibration phases and 32 online

selection phases. At the start of each set of trials, two calibration trials were performed, where the

participant was instructed to concentrate on the ‘up’ command for both trials. These two trials were

averaged to detect the participant’s average response to both stimulus and no stimulus. The next

32 trials were then split into four sets of eight trials, so that each of the eight commands – ‘repeat’,

‘up’, ‘forward’, ‘left’, ‘right’, ‘backwards’, ‘down’, and ‘pause’ were selected four times. Between

each of these trials, a 4.1 second period of relaxation was provided for selection feedback, blinking

and adjusting gaze for the next command. This 4.1 seconds period consists of two components: (i)
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1.1 seconds for a buffer to allow for the last 1 second of EEG data to enter the classifier following

the last cue presentation, and (ii) 3 seconds to display the chosen command to the participant

and allow them some time to blink as well as to prepare for the next selection. It should also be

noted that by reducing this time, say to 2.1 seconds, an increase in the corresponding ITR would be

achieved. After the first eight trials, 60 seconds break was given to the participant to rest. This was

repeated four times. From this, an accuracy was calculated, and the value of R was adjusted to find

the best compromise between speed and accuracy for a particular participant. That is, its value

was decreased if the participant’s accuracy was above 90%, speeding up the system but reducing

accuracy, and increased if the participant’s accuracy was below 90%, slowing down the system but

increasing the accuracy. For each participant, the lowest value of R that maintained an accuracy

of over 90% was used in the final results.

4.2. Signal Processing

The signals from the electrode locations Oz, POz, CPz and Cz were filtered using a 4th-order

Butterworth 50Hz notch filter to minimise the power-line interference followed by a 0.1 Hz 4th-order

Butterworth high pass filter and a 30 Hz 4th-order Butterworth low pass filter to reduce the out

of band noise. The responses to cue presentation for each of the eight regions were then averaged,

resulting in eight averaged responses corresponding to eight regions. Each of these eight averaged

responses in turn consisted of four sets of data, one for each of the four electrode locations. An

example response from participant 1 is illustrated in Fig. 4.

Signals from these four channels were then combined for each region using the following formula:

Ozi + POzi − CPzi − Czi, (1)

where, i is the sample index. Eq. (1) was derived (empirically) from our observations of the recorded

signals during the development. As can be seen in Fig. 4, 0.5 seconds after the cue presentation,

variations in signal (averaged) amplitudes were fairly consistent for all four channels over time. The

only significant separation of the signal amplitudes was seen in an interval of about 0.2-0.3 seconds

after cue presentation. Figure 5 shows the result of combining (using Eq.(1)) the four responses seen

in Fig. 4. From this signal, two features were extracted, the location and value of the maximum

amplitude of the resulting signal. This can be seen in Fig. 5 where the only region of significant

separation occurs again between 0.2 and 0.3 seconds following cue presentation. Similar plots were
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Figure 4: Example of one second (averaged) responses from participant 1 at four electrode locations following the
presentation of the stimulus.

found for all eight regions for each trial and used for NNA, comparing each of these feature pairs

with that of the average from the two trial runs.

4.3. Nearest Neighbour Approach (NNA)

It is one of the simplest and best-known classification algorithms [11]. For a given test pattern,

the NNA assigns the class label of its nearest neighbour.

Here, we have eight training patterns corresponding to eight regions (classes). Let us denote

them as, (xi, ci), i = 1, 2, . . . , 8, where xi = (f i
1, f

i
2) are the two features corresponding to the ith

region/class (ci). Let us also denote the target feature pair as Tf = (tf1, tf2). The NNA then

estimates Di = ‖xi − Tf‖, i = 1, 2, . . . , 8, the Euclidean distance between Tf and xi and chooses

the class (ci) which has the lowest distance estimate.

An example scatter plot containing all 34 trials is provided in Fig. 6. Here, the two red crosses

are the feature pairs from the training trials for participant 1, which were averaged and used as

the target for NNA (tf1 and tf2). The blue crosses show the resulting feature pairs acquired from

the recorded brain signals following cue presentation within the region of interest. Finally, the

green crosses represent the resulting feature pairs from the recorded brain signals following cue

10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-30

-20

-10

0

10

20

30

40

50

60

M
a
n
g
it
u
d
e
 

V

Vector sum of Oz + POz - CPz - Cz

Figure 5: Result of performing the operation in Eq.(1) to the signals in Fig. 4. Two dotted lines show the values of
feature 1 and feature 2. This feature set was one of the two calibration trials used for participant 1.

presentation at the other seven regions (regions of non-interest). Note here that some of the blue

crosses are located far away from the training sets. This is a result in errors in eliciting the P300

response resulting in a <100% classification accuracy.

Figure 7 illustrates the feature pair scatter plots for all the ten participants. The caption states

the corresponding values of R used for each participant. These values are consistent with those

used in the results section of this paper.

4.4. Information Transfer Rate (ITR)

As explained in [36], the optimal measure of a communication system’s performance is its ITR,

accounting for both number of selections and the accuracy of these selections [37]. Due to the two

stage GUI developed in this work, every selection error resulted in the additional two selections

before a successful command selection. Therefore, as in [38], a practical ITR has been used to

better estimate the speed of communication. The practical ITR (in bits per minute) was calculated

using the following equations [37][38][39]:

B = log2 N + P log2 P + (1− P ) log2

(
1− P

N − 1

)
, (2)

ITRBits =
B

T
, (3)
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Figure 6: The resulting feature scatter plot from participant 1 over three averaged stimuli (R = 3), showing two
‘Training Set Targets’ which were averaged for Tf, 32 ‘User Targets’ depicting the brains response to stimulus
presentation, and 224 ‘Non-Targets’ depicting the brains response to no stimulus presentation.

where, B is the number of bits transmitted per trial, N (= 50) is the number of possible selections,

P is the classification accuracy for that user and T is the average selection time in minutes and is

calculated using the following formula:

T =
2T1 + 6T2

8× 60
(4)

Here, T1 and T2 are the two selection times corresponding to the selections made using interface 1

alone and both interfaces, respectively. T1 = R + 4.1 and T2 = 2T1 = 2R + 8.2, where 4.1 and 8.2

are the times needed for selection feedback. Assuming random selection, T1 (‘repeat’ and ‘pause’

commands) is used as the selection time 2/8 times.

A second measure of ITR is in commands per minute. To calculate it for each participant, first

it is required to find the total number of selections (S) each participant would need in order to

successfully make the N(= 50) selections. According to [38], S is given by,

S =
N

1− 2P
. (5)

The product
(
S
N

)
T is the average time required to select a correct command and hence the com-
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(f) Participant #6
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Figure 7: Feature pair scatter plots of all 10 participants, as a reflection of the results displayed in Table 2. These
results attained the highest ITR for each participant while maintaining a sufficiently high accuracy: (a) R = 3, (b)
R = 15, (c) R = 12, (d) R = 10, (e) R = 5, (f) R = 20, (g) R = 15, (h) R = 20, (i) R = 6, (j) R = 12.

14



mands per minute can be calculated as,

ITRCommands =
60
S
N T

=
60N

ST
(6)

5. Results and Discussion

5.1. Classification Accuracies and ITRs for the Proposed System

The classification accuracies and ITRs of the online simulation for all ten participants are re-

ported in Table 2. The P300 classification remained highly accurate for all participants, barring

participant 8, with a mean accuracy of 91.3 ± 4.8%. Due to the varying values of R used by each

participant, the resulting ITR rates varied significantly, with an average speed of 2.2±1.1 commands

per minute / 12.2±6.0 bits per minute.

The value of R varied (between 3 and 20) largely between participants. Its value was limited,

on the low end, when the accuracy for the participant fell below 90%, and on the high end, by the

value of 20. Anything higher was deemed too lengthy for sufficient maintenance of concentration.

These two extremes can be seen in the results obtained by participant 1 (R = 3) and participant 8

(R = 20).

Table 2: Online classification accuracies and ITRs for the developed P300 speller.

Participant Accuracy ITR ITR
No. (%) (commands/minute) (bits/minute)

1 93.8 4.3 24.0
2 90.6 1.5 8.4
3 96.6 2.0 11.2
4 90.6 2.0 11.3
5 93.6 3.3 18.6
6 87.5 1.1 6.3
7 87.5 1.4 7.9
8 81.3 1.0 5.5
9 96.9 3.2 17.9
10 93.8 1.9 10.6

Average 91.3 2.2 12.2
Std 4.8 1.1 6.0

Figure 8 shows a scatter plot of the mean accuracies and ITRs from all of the comparable P300-

based spellers discussed in [9]. A least-squares regression line was added to illustrate the trend

of these results. It also depicts the universal trade-off between increasing ITR and the resulting
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decrease in accuracy of the system. The average results from this paper, represented by the red

cross, falls above the line of least squares, suggesting competitive accuracy and ITR among existing

P300 BCI systems of recent years. A summary of all the articles used in our comparison can be

seen in Table 3.
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Figure 8: A scatter plot of the mean accuracies and mean ITRs from the P300 spellers discussed in [9], with the
addition of the average results and the results achieved by participant 1 from this paper. The black line in the graph
represents the least-squares regression line.

The results from participant 1, the best performing participant, are also included on the graph

(green cross). It is hypothesised that with the addition of a more complex classifier, similar results

could be achieved for all participants, further improving the performance of the developed BCI.

Such classifiers include Shrinkage Linear Discriminant Analysis (SLDA) [57], sparse Bayesian [58],

Spatial-Temporal Discriminant Analysis (STDA) [59] and Step-Wise Linear Discriminant Analysis

(SWLDA). These are variations of LDA classifiers which are used to maximise the separability

among the known categories. Looking at the the NNA plots in Fig. 7, separation of the two

categories could be vastly improved through the use of higher dimensionality analysis coupled with

better features for separation. This would maintain separation between the two categories for lower

values of R for each user, increasing the ITR of the system. These improvements are predicted to

be largest for participants that achieved lower ITRs in the NNA results.
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Table 3: A summary of all the comparable P300-based spellers ITRs and accuracies used in Fig. 8

Speller Reference Mean ITR Mean Accuracy
Type (bits/min) (%)
Matrix [5] 12.0 95.0

Stimuli Variation

[40] 66.3 64.7
[41] 13.7 93.3
[42] 35.8 89.06
[43] 26.8 99.7
[44] 14.8 92.9
[45] 23.82 84.0

Familiar Faces and Symbols

[18] 39.0 86.1
[46] ∼80 81.25
[47] 32.8 − 53.7 84.0 − 90.7
[48] 15.5 − 16.2 94 − 96

Variation of Letters Arrangement
[49] 55.32 87.14
[50] 27.1 − 29.9 93.3 − 94.8

Matrix Speller with Prediction
[51] 17.71 84.88
[52] 25 70

Other Languages
[53] 14.5 60
[54] 4.23 82.8
[55] 39.2 92.6

Checkerboard Paradigm [24] 21.74 90.63
Gibs [26] 16.67 96.02
LSC Speller [27] 26.11 89.9
RSVP [56] 42 − 51 70.3 − 74.4
Region T9 speller (familiar face cues) Proposed work 12.2 91.3

5.2. Drone Prototype

To complement the BCI system, a drone prototype was made utilising an Arduino, several

accessory components, Solidworks and a laser cutter. The prototype developed was used to display

the BCIs ability for real time control of a device capable of movement in a 3D environment. It

was designed to react in real time to commands selected by the user, and execute these commands

while the next command selection was being made. A schematic of this setup can be seen in Fig.

9. The assembly of the set-up with the laser-cut components can be seen in Fig. 10.

The prototype was made with the aim to intuitively model the movements of an actual drone

capable of six movements selectable within the interface. This was possible using the four legs as

seen in Fig. 10 and Fig. 11. The 6050 MPU accelerometer was used to detect the tilt, velocity and

acceleration of the main body. Forward and backward movements were simulated by the forward
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Figure 9: A schematic of the drone prototype.

Figure 10: A screen caption of the assembly made using Solidworks. Consisting of the main body, four legs, one
pointer, five servos [60], one mini breadboard [61], one 6050 MPU [62] and one Arduino Uno [63].
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and backward tilting of the main body. This was achieved by increasing or decreasing the angles

of the front two legs while decreasing or increasing the angles of the back two legs. In order to

represent different speeds and distances selected by interface 2, different tilt angles were used. It was

decided that larger tilt angles would be used to represent larger forward and backward movements.

The amount of tilt on the main body was detected by the MPU. Up and down movements were

simulated by the vertical movements of the prototype. Here, change in body height away from

the resting state, represented the velocity in the upward or downward direction. Again, greater

increases/decreases in height represented greater speeds in that direction. Finally, left and right

movements were represented by the rotating pointer. Similar principles apply as up and down

movements, with the angular displacement of the pointer representing the angular velocity of the

prototype. An illustration of the final design can be seen in Fig. 11. This has been imaged in the

resting position, representing a hovering drone with no translational or rotational movements. A

full video of the developed P300 BCI system working alongside the prototype can be found in 1.

Figure 11: The final model used to simulate the drone movements for an online proof-of-concept for directional
control.

1https://www.youtube.com/watch?v=cHSuR3ZGlIo
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6. Conclusion

In this work, the elicitation of sufficiently strong P300 ERPs was achieved using the proposed

region based T9 GUI with familiar face presentation cues. These P300 responses have subse-

quently been classified using NNA and the system performance achieved a classification accuracy

of 91.3±4.8% and an ITR of 2.2±1.1 (commands/minute) / 12.2±6.0 (bits/minute). The resulting

competitive performance within the existing BCI field (see Fig. 8) further illustrates the GUI’s

ability to elicit strong and easily classifiable ERPs. Finally, the supporting material of the drone

prototype illustrates the real time capabilities of the developed BCI, providing the proof-of-concept

for future use in locomotive control for wheelchair users with only minor modifications to the GUI

and the supporting code. This implementation, coupled with a more complex classifier, could prove

highly beneficial for the potential users.

6.1. Future Directions

Three main areas of future development have been recognised following the completion of this

study, which are listed below:

• Further comparison of the GUI with other BCI paradigms: Alterations to the detected EEG

signals, such as Steady-State Visual Evoked Potentials (SSVEPs) or Motor Imagery (MI)

signals, would allow for further GUI comparison. Modifications required for SSVEP-based

BCI include: (i) the stimuli - a range of distinguishable frequencies to stimulate different

regions of the GUI, and (ii) the classifier - features in the frequency domain for detection. For

MI-based BCIs, the modifications include: (i) the interface - a selection feedback system to

be included allowing users to concentrate on different bodily movements to select commands,

(ii) the classifier - detecting MI induced signals from EEG, and (iii) training - users must be

MI literate before using the device. Combinations of these two paradigms would also allow

for further comparisons.

• Further improvements to the GUI styling: Brought about by testing altercations to any

parameter of the existing GUI. Examples include: (i) using the inverse face presentation

(visual stimuli) as in [20], (ii) varying the number of electrodes and their placements, (iii)

implementation of ErrP detection (to detect the selection errors), and (iv) variations in stimuli

locations and spacing.
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• Improvements to the BCI through classifier variation testing: Examples include SLDA, sparse

Bayesian, STDA, and SWLDA.

Finally, additional online testing of the GUI alongside the developed drone prototype is needed

to further the understanding of the GUI’s real world capabilities.
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