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N-12, W-7, Kita-ku, Sapporo, 060-0812, Japan

bFaculty of Information Science and Technology, Hokkaido University,
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Abstract

Aim: The aim of this study was to determine whether our deep convolutional neural network-based anomaly detection model can
distinguish differences in esophagus images and stomach images obtained from gastric X-ray examinations.

Methods: A total of 6,012 subjects were analyzed as our study subjects. Since the number of esophagus X-ray images is much
smaller than the number of gastric X-ray images taken in X-ray examinations, we took an anomaly detection approach to realize
the task of organ classification. We constructed a deep autoencoding gaussian mixture model (DAGMM) with a convolutional
autoencoder architecture. The trained model can produce an anomaly score for a given test X-ray image. For comparison, the
original DAGMM, AnoGAN, and a One-Class Support Vector Machine (OCSVM) that were trained with features obtained by a
pre-trained Inception-v3 network were used.

Results: Sensitivity, specificity, and the calculated harmonic mean of the proposed method were 0.956, 0.980, and 0.968,
respectively. Those of the original DAGMM were 0.932, 0.883, and 0.907, respectively. Those of AnoGAN were 0.835, 0.833, and
0.834, respectively, and those of OCSVM were 0.932, 0.935, and 0.934, respectively. Experimental results showed the effectiveness
of the proposed method for an organ classification task.

Conclusion: Our deep convolutional neural network-based anomaly detection model has shown the potential for clinical use in
organ classification.

Keywords: Deep learning; medical image analysis; gastric X-ray examination; esophagus; stomach; anomaly detection;
autoencoder.

1. Introduction

In medical fields, diagnostic imaging techniques using such
as X-ray and endoscopy have become popular. Medical images
are used for the early detection of serious diseases. However,
interpretation of the images requires much effort and special-
ized knowledge. Hence, to support doctors’ diagnostic work,
diagnostic supporting systems based on artificial intelligence
(AI) technologies have been studied [1, 2, 3, 4]. Deep convolu-
tional neural networks (DCNNs) [5] have been attracting much
attention since their recognition performance is better than that
of other conventional machine learning techniques using man-
ually designed features [6, 7, 8, 9].

The main focuses of AI-based medical image analyses
are disease classification, disease detection, and segmentation
tasks. The disease classification task is a technique to classify
medical images into a positive class if there is a disease in the
target data or a negative class. The disease detection task is a
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technique to detect a region where a disease has occurred in a
medical image. Generally, this is a complicated task since the
differences in the target disease and non-related regions in an
image should be recognized. The segmentation task is a tech-
nique to divide medical images into regions of organs or tissues.
Nowadays, pixel-level segmentation can be realized on the ba-
sis of well-annotated large-scale medical image datasets.

The quantity and quality of data in the dataset are important
factors for performing the above tasks with high level of accu-
racy [10, 11]. If the dataset contains images other than those
of the target for the task, it can cause significant degradation
of performance. For example, when building a dataset for con-
structing a model to perform a segmentation task for a given
organ, it is difficult for the model to accurately learn the region
of the target organ if the training data include data for organs
other than the target organ. Therefore, when introducing data-
driven approaches such as deep learning, we need to pay at-
tention to dataset construction. Many of the currently available
medical image datasets are manually modified and annotated,
and it takes a lot of effort to construct a large dataset with good
quality. However, there have been very few studies that focused
on the construction of datasets.

Preprint submitted to Elsevier September 15, 2020
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Figure 1: Examples of images taken in gastric X-ray examinations. (a) - (c) are esophagus X-ray images and (d) - (k) are gastric X-ray images.

Our previous works revealed that deep learning-based ap-
proaches are useful for the task of chronic atrophic gastritis
classification using gastric X-ray images [12, 13]. The symp-
toms of chronic atrophic gastritis are shown in gastric X-ray im-
ages as subtle changes only in the inside of the stomach. There-
fore, we divided an X-ray image into small patches and esti-
mated the presence of gastritis for each patch in our previously
proposed method. Our previous analysis using a total of 6,520
gastric X-ray images for 815 subjects has already achieved high
performance (The sensitivity, specificity, and harmonic mean
were 0.962, 0.983, and 0.972, respectively.).

In our previous method, a dataset including only gastric X-
ray images was used for the chronic atrophic gastritis classifi-
cation task [12, 13]. However, in a gastric X-ray examination,
organs and tissues other than the stomach can be targeted for the
imaging simultaneously. The images of these organs are treated
as a series of the same examination results. In other words, a
gastric X-ray examination always includes images of other or-
gans that are not necessary for the training of a chronic atrophic
gastritis classification model. In the case of constructing an AI-
based disease classification model, images of other organs or
tissues can become noise that can cause deterioration of classi-
fication performance. Therefore, when constructing the dataset
for chronic atrophic gastritis classification, X-ray images of or-
gans and tissues other than the stomach need to be removed. In
our previous studies, the clinical application issue was not con-
sidered; images of other organs were manually excluded from
the dataset, a task that took a significant amount of time and
labor. Construction of high-quality datasets is thus the next
challenging task for realizing fully automated AI-based sup-
porting systems. Our previous chronic atrophic gastritis clas-
sification deep learning model can distinguish the presence of
gastritis, non-gastritis, and regions outside the stomach at the
patch level. Although this method was able to recognize subtle
differences in the presence or absence of gastritis at the patch
level, it was difficult to apply it directly to organ classification
tasks that require an understanding of the overall features in the
image. Hence, new methods that can automatically recognize
the stomach and other organs are desired.

In this study, we aimed to realize a high-quality dataset con-

struction method, namely, an automated organ classification
method. Images taken in a gastric X-ray examination include
esophagus images, duodenum images, and images of regions
other than stomach regions. These images are not necessary for
the chronic atrophic gastritis classification task. Besides, since
the number of these images is much smaller than the number
of stomach images, it is difficult to obtain data on such organs
for model training. Hence, we take an anomaly detection ap-
proach [14] that is effective when using an unbalanced dataset.
We introduce a deep learning-based anomaly detection model
as our organ classification task and expand it to recognize the
characteristics of gastric X-ray images as normal images. In our
method, a large number of gastric X-ray images are used as nor-
mal images for the classifier training, and the small number of
esophagus images are detected as abnormal images. We show
the effectiveness of our method through several experiments.

Contributions of this paper are summarized as follows:

• We propose a new automated organ classification method
based on an anomaly detection approach and show its ef-
fectiveness through several experiments.

• This approach can contribute to enhancing the efficiency
of dataset construction, which is necessary for training and
evaluating AI models in medical image analysis.

2. Methods

X-ray images of our study subjects are shown in section 2.1.
An anomaly detection model for organ classification is pre-
sented in section 2.2. Finally, statistical analyses and compar-
ative methods are explained in section 2.3. This study was re-
viewed and approved by the institutional review board of The
University of Tokyo. Data were completely anonymized prior
to analysis.

2.1. Study subjects

Our target was X-ray images taken in gastric X-ray examina-
tions for the diagnosis of chronic atrophic gastritis. All of the
X-ray images were 16-bit gray-scale and 2,048 × 2,048 pixels.
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Figure 2: Overview of our anomaly detection method for organ classification.

The images always include small numbers of esophagus images
that are not used for the diagnosis of chronic atrophic gastritis.

An example of stomach and esophagus X-ray images ob-
tained by X-ray examination of a patient for whom images were
used in this study is shown in Fig. 1. Figures 1 (a) - (c) show
esophagus X-ray images taken in the gastric X-ray examina-
tion to investigate the condition of the esophagus. These im-
ages were taken in early stage of the examination. Figures 1
(d) - (k) show gastric X-ray images taken from different an-
gles. Gastric X-ray images taken in the following eight imag-
ing positions were used in this study: double-contrast frontal
view in the supine (Fig. 1 (d)), double-contrast right anterior
oblique view in the near-supine (Fig. 1 (e)), double-contrast left
anterior oblique view in the near-supine (Fig. 1 (f)), double-
contrast frontal view in the prone (Fig. 1 (g)), double-contrast
frontal view in the prone (Fig. 1 (h)), double-contrast left lateral
view in the horizontal (Fig. 1 (i)), double-contrast left anterior
oblique view in the near-supine (Fig. 1 (j)), and double-contrast
right anterior oblique view in the near-supine (Fig. 1 (k)).

2.2. Anomaly detection model for organ classification

Figure 2 shows an overview of our proposed method. An
anomaly detection approach is used to automatically exclude
esophagus X-ray images from the obtained data. Our method
consists of two procedures, training phase and test phase. Each
procedure is explained in detail in the following subsections.

2.2.1. Training phase
The proposed method consists of a state-of-the-art anomaly

detection method, deep autoencoding gaussian mixture model
(DAGMM) [15]. DAGMM has two deep neural networks, a
compression network and an estimation network. The com-
pression network performs dimensionality reduction and recon-
struction of input samples with an autoencoder. The estimation
network obtains a membership probability in the gaussian mix-
ture model (GMM) using low-dimensional representations. In

the original DAGMM [15], a deep autoencoder [16] model is
used in the compression network. The deep autoencoder was
intended for low-dimensional datasets such as the KDDCUP
dataset [17], Thyroid dataset [17], and Arrhythmia dataset [17].
However, since X-ray images are high-dimensional data, an
approach that differs from the original DAGMM model is
needed. Therefore, we newly introduce a convolutional autoen-
coder [18] model for obtaining high-dimensional representation
of X-ray images.

Formally, let xn (n = 1, 2, · · ·,N; N being the number of train-
ing images) represent gastric X-ray images for training. Our
anomaly detection model’s goal is to learn the characteristics
of xn and provide an anomaly score to an input test image. A
compression network for dimension reduction is used to obtain
sophisticated features for xn. The compressed features and the
reconstruction error features are combined as low-dimensional
representations, and they are treated as input vectors of the esti-
mation network. The compression network calculates a dimen-
sionality reduction vector zcomp

n from the convolutional autoen-
coder architecture and errors between a reconstruction image
x′n and an input sample xn with a convolutional autoencoder.
The images are resized to 224 × 224 pixels when they are in-
putted into the convolutional autoencoder. From the reconstruc-
tion image x′n, we obtain a reconstruction error vector zrecon

n as
follows:

zrecon
n =

[
||xn − x′n||2
||xn||2

,
x>n x′n

||xn||2||x′n||2

]>
. (1)

The compressed vector zcomp
n and the reconstruction error vector

zrecon
n are combined as a low-dimensional compressed feature

representation zn as follows:

zn =
[
zcomp>

n , zrecon>
n

]>
. (2)

By coupling two feature vectors, the low-dimensional represen-
tation zn can be considered to have valuable information of xn.
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Next, the extracted low-dimensional representation zn is used
as an input vector for the estimation network constructed with
a deep neural network (DNN), and we obtain a membership
probability γn under the framework of the GMM as follows:

pn = D(zn), (3)
γn = softmax(pn), (4)

where D is a DNN, pn is the output vector of a DNN, and γn

is the output value of a softmax function. Given a batch of N
and its membership predictions ∀1 ≤ k ≤ K, the parameters of
GMM are as follows:

φ̂k =

N∑
n=1

γ̂nk

N
, (5)

µ̂k =

∑N
n=1 γ̂nk zn∑N

n=1 γ̂nk
, (6)

Σ̂k =

∑N
n=1 γ̂nk(zn − µ̂k)(zn − µ̂k)>∑N

n=1 γ̂nk
, (7)

where φ̂k, µ̂k, and Σ̂k are respectively mixture probability, mean
value, and co-variance value for the component k of GMM re-
spectively, and γ̂n is the membership probability for the low-
dimensional representation zn. From the above, the sample’s
energy can be calculated as follows:

E(zn) = − log

 K∑
k=1

φ̂k
exp(− 1

2 (zn − µ̂k)>
∑̂−1

k (zn − µ̂k))

2π
√
|Σ̂k |

 , (8)

where | · | donates the determinant of a matrix. In the test phase,
if the calculated sample energy is high, this image is classified
as another organ group.

According to our DAGMM-based anomaly detection model,
the parameters of the two networks can be trained by minimiz-
ing the following objective function:

J =
1
N

N∑
n=1

L(xn, x′n) +
λ1

N

N∑
n=1

E(zn) + λ2P(Σ̂), (9)

where L(xn, x′n) is a reconstruction error that can be used by
the convolutional autoencoder in the compression network. If
the calculated reconstruction error L becomes low, it means that
low-dimensional representation can preserve the key informa-
tion of input samples. Therefore, the reconstruction error L is
expected to be always low. In this study, L2-norm is used as the
reconstruction error. Next, according to the second term E(zn),
the learned model produces low energy for the input sample of
gastric X-ray images. On the other hand, the model produces
high energy for the input sample of esophagus X-ray images.
The third term P is a penalty term to avoid the singularity prob-
lem in the GMM. We penalize small values on the diagonal
entries by P.

2.2.2. Test phase
The trained model can calculate the energy that represents

anomaly scores to test X-ray images. Since this model is trained
with data for gastric X-ray images, if a given image is a gastric
X-ray image, the anomaly score becomes low. If the given im-
age is an esophagus X-ray image, the anomaly score becomes
high. In the test phase, all of the X-ray images that are resized
to 224×224 pixels are inputted into the trained model, and each
image’s energy is calculated. By defining the degree of abnor-
mality using a specific threshold value ξ, we can classify the
test X-ray images into stomach images and images of other or-
gans. Specifically, we determine the classification of images as
follows:

E(z) =

stomach (if E < ξ)
other organs (otherwise)

, (10)

where z is a low-dimensional representation of a test image.
In this way, it becomes possible to classify X-ray images into
images of the stomach and images of other organs.

2.3. Statistical analyses and comparative methods

From the data for 6,012 subjects, a training dataset contain-
ing data for 5,912 subjects, a validation dataset containing data
for 50 subjects, and a test dataset containing data for 50 subjects
were constructed as shown in Fig. 3. Note that the validation
and test datasets were constructed from subjects that included a
complete set of images for the standard eight imaging positions
as shown in Fig. 1. The imaging positions of the validation
and test datasets were reviewed by a clinician who has special-
ized knowledge of gastritis diagnosis. The training dataset had
47,212 gastric X-ray images, the validation dataset had 400 gas-
tric and 197 esophagus X-ray images, and the test dataset had
400 gastric and 206 esophagus X-ray images. We trained our
anomaly detection model with the training dataset and decided
the threshold value ξ by the validation dataset. We classified
the test dataset based on the threshold value ξ and evaluated our
model. Sensitivity (Sen), specificity (Spe), and the harmonic
mean of sensitivity and specificity (HM) were calculated for
our evaluation. These criteria are defined as follows:

Sen =
True Positive

True Positive + False Negative
, (11)

Spe =
True Negative

True Negative + False Positive
, (12)

HM =
2 × Sen × Spe

Sen + Spe
, (13)

For comparison, the following three comparative methods
were used. One-Class Support Vector Machine (OCSVM) [19]
is one of the popular anomaly detection models. We extracted
features using a pre-trained Inception-v3 network model [20],
and we trained the OCSVM-based classifier with extracted fea-
tures. Moreover, to confirm the effectiveness of using the con-
volutional autoencoder, we also used a method with extracted
features as input vectors of the DAGMM as a comparison
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A total of analyzed subjects

Gastric X-ray image: 48,012

Esophagus X-ray image: 26,167
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The training data The test dataThe validation data

Figure 3: Dataset construction flowchart in this study.

Table 1: Hyper-parameters of our model used in the experiment.

Parameter Value
Learning rate 0.0001
λ1 0.1
λ2 0.01
Batch size 128
Epoch 200
Encoded dimensions 300
GMM mixtures 7

method. Finally, a deep learning model, AnoGAN [21], was
used as a comparative method. AnoGAN is a popular deep
learning-based anomaly detection models for medical image
classification tasks.

3. Results

Experiments were conducted on a Linux operating system
(Ubuntu 18.04; Canonical, London, England) with the Keras
framework and a single NVIDIA GeForce RTX 2080 Ti GPU.
Hyper-parameters of our model used in this experiment are
shown in Table 1. These hyper-parameters were determined by
the validation dataset. Also, the threshold of normal/abnormal
was determined to be ξ = −13.9 by the validation dataset.

3.1. Performance evaluation

The classification performances of our anomaly detection
model and the comparative methods are shown in Table 2. Sen,
Spe, and HM of our method were 0.956, 0.980, and 0.968, re-
spectively. For comparative methods, Sen, Spe, and HM of
the baseline DAGMM-based anomaly detection method were
0.932, 0.883, and 0.907, respectively, and those of the OCSVM-
based anomaly detection method were 0.932, 0.935, and 0.934,
respectively. By comparing the classification performances of
our method and the OCSVM-based method, we confirmed that
deep learning-based anomaly detection showed better perfor-
mance than that of the classical anomaly detection model. Also,
by comparing the classification performances of our method
and the DAGMM-based method, our new network architecture,
including convolutional architectures, was shown to be useful
for improving the classification performance. The popular deep

Table 2: Classification performances of our method and comparative methods.

Sen Spe HM
Our method 0.956 0.980 0.968
DAGMM [15] 0.932 0.883 0.907
AnoGAN [21] 0.835 0.833 0.834
OCSVM [19] 0.932 0.935 0.934

Positive Negative
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Negative
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e
d
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te
d

c
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s
s

Actual class

397

198

9

8

Figure 4: Confusion matrix obtained by our method.

learning model AnoGAN had the lowest classification perfor-
mance among the methods used in this experiment.

Next, we show the results of the confusion matrix of our
method. The confusion matrix represents information about ac-
tual and predicted classification results obtained by the classi-
fication model. In 606 test images, the number of true posi-
tive, true negative, false positive, and false negative images for
our method were 391, 198, 9 and 8, respectively, as shown in
Fig. 4. From the results, we can see that our model can cor-
rectly recognize the differences between gastric X-ray images
and esophagus X-ray images for almost all of the test images.

More specific evaluation results focusing on an individual ex-
amination are shown in Fig. 5. Figure 5 shows calculated en-
ergies from a series of gastric X-ray examinations of a patient.
Sample energies of (a) - (k) correspond to the images of (a) -
(k) in Fig. 1. Therefore, images (a) - (c) represent esophagus
X-ray images and the others represent gastric X-ray images. As
described above, the threshold of normal/abnormal was deter-
mined to be ξ = −13.9 by the validation dataset. From the
results, we can see that anomaly scores of esophagus X-ray im-
ages are higher than those of gastric X-ray images.

Finally, we show samples that were correctly and incorrectly
classified by our method in Fig. 6. As shown in the Figure 6,
true positive and true negative samples were images that clearly
showed organ characteristics. Although our method achieved
high classification performance, there were some incorrectly
classified samples. Most of the false positive samples (gas-
tric X-ray images that had high anomaly scores) were images
of the double-contrast frontal view of the stomach in the prone
position with the head down. Moreover, some of false negative
samples (esophagus X-ray images that had low anomaly scores)
were images in which the esophagus was magnified.

Overall, our method achieved better performance than that of
other benchmark anomaly detection methods. The effectiveness
of our method was confirmed by the test dataset that included
606 images of 50 subjects.

3.2. Additional evaluation with different dataset division

Dataset bias affects the evaluation of performance of mod-

5



-20

-15

-10

-5

0

5

10

15

20

25

30

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

E
(z

)

Esophagus Stomach

Threshold ξ = 13.9

Figure 5: Energies of the images in Fig. 1 calculated by our model.

true positive samples

true negative samples

false positive samples

false negative samples

Figure 6: Examples of images classified correctly and incorrectly by our
method.

els. Therefore, we divided the dataset into different proportions
than those used in the main experiment described above to ver-
ify the classification performance of the model. From the data
for 6,012 subjects, a training dataset containing data for 5012
subjects, a validation dataset containing data for 200 subjects,
and a test dataset containing data for 800 subjects were ran-
domly sampled. It should be noted that the test data in this
experiment did not include test data used in the main experi-
ment. As a result, the training dataset had 39,999 gastric X-ray

Table 3: Classification performances of our method and comparative methods
for different dataset division.

Sen Spe HM
Our method 0.937 0.941 0.939
DAGMM [15] 0.881 0.875 0.878
AnoGAN [21] 0.452 0.480 0.466
OCSVM [19] 0.945 0.904 0.924

images, the validation dataset had 1,599 gastric and 897 esoph-
agus X-ray images, and the test dataset had 6,398 gastric and
3,484 esophagus X-ray images.

Classification performances of our method and comparative
methods for the different dataset divisions are shown in Ta-
ble 3. Following the primary evaluation of the main dataset
division, our method outperformed the comparative methods in
this evaluation. We confirmed that the performance of the re-
cently proposed AnoGAN significantly dcreased for the differ-
ent dataset division. On the other hand, other methods including
our method showed robustness for the different dataset division.

4. Discussion

We discuss our contributions to technical and clinical fields
in the following subsections.

4.1. Contributions to technical fields
We have proposed a method for organ classification in im-

ages taken in gastric X-ray examinations using an anomaly de-
tection approach as the first step in the construction of a high-
quality dataset for realizing accurate classification of gastritis.
Unsupervised anomaly detection is useful when using unbal-
anced datasets such as images of X-ray examinations because
abnormal samples can be detected by the classifier trained with
only normal samples. Unsupervised anomaly detection has
been actively researched [14]. Previously reported unsuper-
vised anomaly detection methods can be grouped into three cat-
egories: reconstruction-based approaches, clustering analysis,
and one-class classification.

Reconstruction-based approaches perform dimensionality re-
duction and reconstruction of samples and detect an anomaly
sample from the reconstruction error. Conventional meth-
ods in this category often use principal component analysis
(PCA) [22], kernel PCA [23] and robust PCA [24]. Moreover,
recent studies have shown that analysis of the reconstruction
error induced by a deep autoencoder is useful [25, 26].

Clustering analysis is another popular anomaly detection ap-
proach based on multivariate gaussian models, gaussian mix-
ture models, and k-means [27, 28, 29, 30]. Because of the curse
of dimensionality, it is difficult to apply such methods directly
to high-resolution image data. Conventional methods consist of
two steps [14]: dimensionality reduction and clustering anal-
ysis. Training is conducted separately in the two steps. In
other words, dimensionality reduction is trained without guid-
ance from the subsequent clustering analysis. Therefore, key
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information for clustering analysis might be lost during dimen-
sionality reduction.

One-class classification approaches are also often used for
anomaly detection. These approaches use a discriminative
boundary surrounding the normal instances that are trained by
algorithms such as OCSVM [19, 31, 32]. When targeting high-
resolution images, high performance of these techniques usu-
ally cannot be expected because of the curse of dimensionality.

The recently proposed deep learning-based anomaly detec-
tion model DAGMM can detect anomaly samples based on re-
construction errors using compressed features. A DAGMM-
based model solves the problem of key information being lost
in conventional clustering analysis by training dimensionality
reduction and clustering analysis at the same time. DAGMM
also estimates data density in a low-dimensional representation
for more robust anomaly detection of high-dimensional data,
unlike one-class classification approaches. However, although
anomaly detection approaches have attracted attention in the
medical field [33], this work is, to the best of our knowledge,
the first work in which high performance for organ classifica-
tion based on a DAGMM-based architecture was realized. Our
experimental results showed that the DAGMM-based model is
useful for organ classification in a gastric X-ray examination.

4.2. Contributions to clinical fields

Although there are several methods used for assessment of
stomach conditions such as blood tests, biopsy, and endoscopy,
a gastric X-ray examination is still the most widely used and
most effective method for evaluation of stomach conditions
since it enables direct observation of the stomach [34]. Many
gastric X-ray examinations can be performed in one day, and
they are therefore suitable for mass screening in East Asian
countries [35]. However, the number of clinicians who are
specialized in the diagnosis of chronic atrophic gastritis from
gastric X-ray images has decreased due to the diversification
of inspection approaches. Hence, the introduction of AI-based
supporting systems is crucial in this field [36].

As found in our previous works, we revealed that deep
learning-based chronic atrophic gastritis classification ap-
proaches can achieve high classification performance at the
clinical level. However, these techniques still cannot be used
in clinical applications. One of the main reasons for this ob-
stacle is dataset construction. Our organ classification model,
based on an anomaly detection approach, tackled this challeng-
ing problem and achieved high classification performance for
dataset construction. This approach can reduce the labor re-
quired for dataset preparation.

In medical image analysis for clinical applications, anomaly
detection approaches are more suitable than supervised learn-
ing approaches in many cases. Unlike general images, med-
ical images have confidential information, and annotation for
them requires specialized knowledge. Therefore, methods for
the construction of datasets to train AI-based methods with as
little effort as possible are needed. Anomaly detection does
not require annotations for abnormal images since it can learn
the characteristics of normal images. The effectiveness of an

anomaly detection approach for organ classification was shown
in this paper.

Our approach will also be useful unbalanced data classifica-
tion problems and rare disease detection problems. Each medi-
cal facility has various types of data, such as examination equip-
ment, number of examinations, and number of cases, and it may
be difficult to obtain uniform data for supervised learning. In
the field of medical screening, most test results are often nega-
tive, and positive data are often overwhelmingly less than neg-
ative data. Although it is difficult to apply general supervised
learning in such a situation, the anomaly detection approach
makes it possible to construct a diagnostic support system using
only negative data. In addition, for rare diseases, an abnormal-
ity detection-based diagnostic support system can be applied to
mitigate the risk of overlooking by clinicians without collecting
their data.

Our study has several limitations. The proposed method was
evaluated on the gastric X-ray images reviewed by clinicians.
However, in actual gastric X-ray examinations, a small number
of stomach images with leakage of barium, which are not useful
for gastritis detection, are also included. For clinical applica-
tions, such images should also be removed when constructing
the dataset for gastritis detection. Therefore, we classified im-
ages that are useful for detecting gastritis from all gastric X-ray
images taken during gastric X-ray examinations. This is one of
the issues that need to be addressed in the future.

5. Conclusion

We have presented a deep convolutional neural network-
based anomaly detection method for organ classification in im-
ages taken in gastric X-ray examinations. We have proposed
a new anomaly detection architecture inspired by DAGMM for
the realization of automated classification of gastric and esoph-
agus X-ray images. Experiments using data for 6,012 subjects
showed the effectiveness of our method. Our approach will con-
tribute to database formatting for supervised machine learning
in medical image analysis.
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[30] L. Xiong, B. Póczos, J. Schneider, Group anomaly detection using flex-
ible genre models, in: Proceedings of the International Conference on
Neural Information Processing Systems (NeurIPS), 2011, pp. 1071–1079
(2011).

[31] Qing Song, Wenjie Hu, Wenfang Xie, Robust support vector machine
with bullet hole image classification, IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 32 (4) (2002)
440–448 (2002).

[32] G. Williams, R. Baxter, Hongxing He, S. Hawkins, Lifang Gu, A com-
parative study of rnn for outlier detection in data mining, in: Proceedings
of the IEEE International Conference on Data Mining (ICDM), 2002, pp.
709–712 (2002).

[33] K. Gupta, A. Bhavsar, A. K. Sao, Detecting mitotic cells in hep-2 images
as anomalies via one class classifier, Computers in Biology and Medicine
111 (2019) 103328 (2019).

[34] N. Yamamichi, C. Hirano, Y. Takahashi, C. Minatsuki, C. Nakayama,
R. Matsuda, T. Shimamoto, C. Takeuchi, S. Kodashima, S. Ono,
et al., Comparative analysis of upper gastrointestinal endoscopy, double-
contrast upper gastrointestinal barium x-ray radiography, and the titer of
serum anti-helicobacter pylori igg focusing on the diagnosis of atrophic
gastritis, Gastric Cancer 19 (2) (2016) 670–675 (2016).

[35] K. Sugano, Screening of gastric cancer in asia, Best Practice & Research
Clinical Gastroenterology 29 (6) (2015) 895–905 (2015).
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dos Santos, G. S. de Araújo, Deep learning in gastric tissue diseases:
a systematic review, BMJ Open Gastroenterology 7 (1) (2020) e000371
(2020).

8


