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Abstract

Intestinal parasites are responsible for several diseases in human be-
ings. In order to eliminate the error-prone visual analysis of optical mi-
croscopy slides, we have investigated automated, fast, and low-cost sys-
tems for the diagnosis of human intestinal parasites. In this work, we
present a hybrid approach that combines the opinion of two decision-
making systems with complementary properties: (DS1) a simpler system
based on very fast handcrafted image feature extraction and support vec-
tor machine classification and (DS2) a more complex system based on a
deep neural network, Vgg-16, for image feature extraction and classifica-
tion. DS1 is much faster than DS2, but it is less accurate than DS2. Fortu-
nately, the errors of DS1 are not the same of DS2. During training, we use a
validation set to learn the probabilities of misclassification by DS1 on each
class based on its confidence values. When DS1 quickly classifies all im-
ages from a microscopy slide, the method selects a number of images with
higher chances of misclassification for characterization and reclassification
by DS2. Our hybrid system can improve the overall effectiveness without
compromising efficiency, being suitable for the clinical routine — a strategy
that might be suitable for other real applications. As demonstrated on large
datasets, the proposed system can achieve, on average, 94.9%, 87.8%, and
92.5% of Cohen’s Kappa on helminth eggs, helminth larvae, and protozoa
cysts, respectively.

Keywords— Image classification,Microscopy image analysis, Automated diagnosis
of intestinal parasites, Support vector machines, Deep neural networks
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1 Introduction
A recent report by the World Health Organization indicates that approximately 1.5 bil-
lion people are infected with intestinal parasites [1]. These parasitic diseases are most
common in tropical countries due to climate, precarious health services, poor sanitary
conditions, among several other factors. The problem can cause mental and physical
disorders (e.g., the difficulty of concentration, diarrhea, abdominal pain) or, in the ex-
treme case, death, especially in infants and immunodeficient individuals.

The diagnostic procedure of the causative agent for parasitic infections still relies on
the visual analysis of optical microscopy slides — an error-prone procedure that usually
results in low to moderate diagnostic sensitivity [2]. In order to circumvent the problem,
we have developed the first automated system for the diagnosis (the DAPI system) of
the 15 most common species of human intestinal parasites in Brazil [3,4]. Examples are
presented in Figures 1 and 2.

(a) (b) (c) (d) (e) (f)

Figure 1: Examples of protozoan. (a) Entamoeba histolytica/E. dispar; (b) Giar-
dia duodenalis; (c) Entamoeba coli; (d) Endolimax nana; (e) Iodamoeba bütschlii; (f)
Blastocystis hominis.

The DAPI system can produce about 2,000 images per microscopy slide, with 4M
pixels each and 12 bits per color channel. These images are acquired on a compromise
focus plane 1 and processed in less than 4 minutes on a modern PC (Core i7 CPU with
16 threads) — a time acceptable for the clinical routine. Our system can successfully
segment objects (parasites and similar impurities), separate them into three groups,
and align them for feature extraction and classification. These groups are: (a) helminth
eggs, (b) protozoa cysts and vacuolar form of protozoa (Blastocystis hominis), and (c)
helminth larvae, all of them with similar fecal impurities which are not eliminated dur-
ing object segmentation.

The main question we seek to answer here is: can we benefit from the higher effec-
tiveness of deep neural networks without compromising the efficiency and cost of the
DAPI system? Although machines have become faster, digital cameras can also gener-
ate higher resolution images, and the DAPI system can also improve and produce more
images from multiple microscopy slides and with different focus depth. Therefore, we
believe that it will be always desirable to improve effectiveness without compromising
the efficiency and cost of image analysis systems. Such a constraint is crucial to make
the DAPI system viable for the public health system.

In this work, we present a hybrid approach that combines the opinion of two
decision-making systems with complementary properties and validate it for the diag-
nosis of those 15 most common species of human intestinal parasites in Brazil. The

1The parasites might appear at different focus depth, but it is impractical to find the optimum
focus for each position of a microscopy slide.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Figure 2: Examples of helminths: (a) Enterobius vermicularis; (b) Trichuris
trichiura; (c) Hymenolepis nana; (d) Taenia spp.; (e) Ascaris lumbricoides; (f) Ancy-
lostomatidae; (g) Hymenolepis diminuta; (h) Schistosoma mansoni; (i) Strongyloides
stercoralis larvae.

first system (DS1) is based on very fast handcrafted image feature extraction [4] and
support vector machine (the probabilistic p-SVM [5]) classification. The time to extract
those handcrafted features is negligible and the p-SVM classifier takes time equivalent
to a decision layer of a deep neural network since both can benefit from parallel matrix
multiplication. As we demonstrate in our experiments, among several SVM and deep
neural network models, we found p-SVM and Vgg-16 [6] the best options for DS1 and
DS2, respectively. Vgg-16 uses 15 extra neuronal layers with a total number of neurons
much higher than its decision layer, which makes DS1 about 30 times faster than DS2
when using a same GPU board (GeForce GTX 1060 6GB/PCIe/SSE2). On the other
hand, DS2 can be considerably more accurate than DS1. Fortunately, the errors of DS1
and DS2 are not the same, given that they are statistically independent.

We then propose a hybrid approach that relies on a validation set to learn the prob-
abilities of misclassification by DS1 on each class based on its confidence values. Note
that, as we will show, the confidence values of p-SVM are not inversely proportional to
its chances of error. When DS1 quickly classifies all images from a microscopy slide, the
method selects the images with higher chances to have been misclassified by DS1 and
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allows those images to be characterized and reclassified by DS2. By that, our method
can improve the overall effectiveness of the DAPI system without compromising its
efficiency and cost — a strategy that can be used in other real applications involving
image analysis. Our experiments demonstrate this result for large datasets by first com-
paring DS1, DS2, and our hybrid approach. We then show a comparison among several
deep neural networks, that justifies our choice for Vgg-16, and comparison among SVM
models and the previous Optimum-Path Forest classifier used in [4], that justifies our
choice for p-SVM.

The remaining sections are organized as follows. Section 2 presents the related
works on image classification of intestinal parasites and our previous version of the
automated system for the diagnosis of intestinal parasites. Sections 3 and 4 present the
materials and the proposed hybrid approach based on DS1 and DS2. The experimental
results with discussion and the conclusions are presented in Sections 5 and 6, respec-
tively.

2 Related works
In Computer Vision, several works have presented methods to process and classify im-
ages of parasites from different means (e.g., blood, intestine, water, and skin). Most
works rely on classical image processing and machine learning techniques [3,7–12]. Re-
cent efforts have also been made towards the automated diagnosis of human intestinal
parasites [13–16]. However, it is difficult to compare them with our work. They do not
usually mention the parasitological protocol adopted to create the microscopy slides,
which is crucial to make the automated image analysis feasible — e.g., a considerable
reduction in fecal impurities may facilitate the image analysis, but at the cost of los-
ing some species of parasites in the microscopy slide. The DAPI system is a complete
solution, from the collection, storage, transportation, and processing of fecal samples
to create microscopy slides for automated image acquisition and analysis using a com-
promise focus plane. In those works, fecal impurities are not usually present and the
images are acquired with manual focus. We then compare the methods in this paper
with 13 deep neural networks and previous works [3, 4, 17], all based on the DAPI sys-
tem.

The DAPI system [3] is composed of one optical microscope with a motorized stage,
focus driver, and digital camera, all controlled by a computer. In [4], one can find im-
provements and details about the image processing and machine learning techniques
adopted to find a common focus plane for image acquisition, to segment objects (par-
asites and similar impurities) from the images, to align the objects based on principal
component analysis, to characterize each object based on handcrafted (texture, color,
and shape) features, and to classify them into one out of 16 classes (15 species of para-
sites and fecal impurity). In this work, we will use the same preprocessing operations
that separate the segmented objects into three groups: (i) helminth eggs, (ii) protozoa
cysts and vacuolar form of protozoa, and (iii) helminth larvae, each with their similar
fecal impurities, for subsequent characterization and classification. Figure 3 illustrates
how similar can be these impurity objects to the real parasites and Figure 4 shows that
even examples of the same class might be different among them, due to different living
stages of the parasite.

Our preliminary works used a dataset with less than 8,000 images while the present
work uses a dataset with almost 52,000 images. A higher number of images called our
attention to the importance of using more effective characterization and classification
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(a) (b)

Figure 3: (a) The 15 most common species of human intestinal parasites in
Brazil and (b) similar impurity objects [17].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Intra-class differences. (a-b) Hymenolepis nana, (c-d) Ascaris lumbri-
coides, (e-f) Entamoeba coli, and (g-h) Iodamoeba bütschlii.

techniques — a pair of operations that we call a decision system. In [3], for instance, the
experiments showed that the Optimum-Path Forest (OPF) classifier [18] was the best
choice for classification. In this work, we show that p-SVM is a better choice than OPF
for our first decision system, DS1.

In the meantime, we have investigated parasitological techniques to create mi-
croscopy slides richer in parasites and with less impurities [2] (see Figure 5), and we
have also observed on a dataset with 16,437 images that convolutional neural networks
can considerably improve characterization and classification of human intestinal para-
sites [17]. Given that, we decided to further investigate deep neural networks and came
to the current proposal of combining DS1 with a decision system DS2 based on Vgg-16.
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Figure 5: The input for object segmentation: field image from a microscopy
slide showing a Taenia spp. egg (Arrow 1) and an A. lumbricoides fertile egg
(Arrow 2).

3 Materials
In this section, we describe the datasets used for the experiments, which contain a to-
tal of 51,919 images with the 15 most common species of human intestinal parasites in
Brazil and similar fecal impurities. Stool samples have been obtained from the regions
of Campinas and Araçatuba, São Paulo, Brazil, and processed in our lab (Laboratory
of Image Data Science/LIDS) in Campinas, São Paulo, Brazil by using a parasitolog-
ical technique called TF-Test Modified [2] — a technique based on the centrifugation-
sedimentation principle to concentrate parasites and reduce the amount of fecal impu-
rities in optical microscopy slides. After parasitological processing, microscopy slides
were prepared and used in our system for automated image acquisition. The ob-
jects in those images were automatically segmented, aligned, and separated into three
groups [4], being the class of each one identified by experts in Parasitology (or con-
firmed by the experts after their automated recognition in our system). These groups
and classes are as follows.

(i) Helminth eggs: H. nana, H. diminuta, Ancylostomatidae , E. vermicularis, A. lumbri-
coides, T. trichiura, S. mansoni, Taenia spp. and impurities of similar size and shape,
named EGG-9;

(ii) Cysts and vacuolar form of protozoa: E. coli, E. histolytica / E. dispar, E. nana, Giar-
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dia, I. bütschlii, B. hominis and impurities of similar size and shape, named PRO-7;

(iii) Helminth larvae: S. stercoralis and impurities with similar size and shape, named
LAR-2;

Table 1 presents the number of images in our database per group and class in each
group. One can notice that each group represents one seriously unbalanced dataset
with considerably more fecal impurities than parasites. Indeed, this reflects what is
likely found in regular exams. Given that unbalanced datasets can critically affect the
performance of classification systems and the impurities are numerous with similar ex-
amples to any other category, this can be considered a challenging problem.

Parasites Database
Database Groups Number Category Class ID

LAR-2
501 Strongyloides stercoralis 1
1351 Impurities 2
1852 Total

EGG-9

501 Hymenolepis nana 1
83 Hymenolepis diminuta 2
286 Ancylostomatidae 3
103 Enterobius vermicularis 4
835 Ascaris lumbricoides 5
435 Trichuris trichiura 6
254 Schistosoma mansoni 7
379 Taenia spp. 8
9815 Impurities 9
12691 Total

PRO-7

869 Entamoeba coli 1
659 Entamoeba histolytica / E. dispar 2
1783 Endolimax nana 3
1931 Giardia duodenalis 4
3297 Iodamoeba bütschlii 5
309 Blastocystis hominis 6
28528 Impurities 7
37376 Total

Table 1: Most common species of human intestinal parasites in Brazil: number
of images per group and category in each group.

The experiments use a PC with the following specifications: Intel (R) Core (TM) i7-
7700 - 3.60 GHz (8 CPU), RAM - 64 GiB, LINUX operating system (Ubuntu - 16:04 LTS
- 64 bit) and GeForce GTX 1060 6GB/PCIe/SSE2.

As we will see next, our methodology requires a validation set. Therefore, each
group, EGG-9, PRO-7, and LAR-2, is divided into training, validation, and testing sets
for the experiments (as described in Section 5) and this process is also repeated 10 times
to obtain reliable statistical results.

4 Methods
Figure 6 shows a flow chart of the DAPI system. Fecal samples are collected, stored,
transported by using the TF-Test kit and processed in our laboratory by using the TF-
Test Modified protocol [2], creating an optical microscopy slide for automated image
acquisition by following a single compromise plane of focus [3, 4]. Each slide gener-
ates about 2,000 images (e.g., Figure 5), which might be out of focus for some objects.
Image segmentation involves a sequence of IFT-based image processing operations [19]
suitable to separate parasites and impurities, in some situations that they appear con-
nected, as illustrated in Figure 7. The segmentation mask is used for image alignment
by principal component analysis — i.e., to align an image of a region of interest (ROI)
around each object (Figure 4), which is used as input to the proposed hybrid decision
system.
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Figure 6: Data flow of the DAPI system.

Figure 7: At the top, each slide field image is preprocessed by enhancing, au-
tomatic thresholding, IFT-based connected operators, and an area filter in or-
der to estimate internal (blue) and external (red) seed pixels, as shown on a
gradient image. Object delineation uses the IFT-watershed operator — seeds
compete among themselves and the object is defined by the pixels conquered
by minimum-cost paths from the internal seeds, where the cost of a path is the
maximum gradient value along it. At the bottom, it shows three other exam-
ples of segmentation (cyan) in the presence of impurities: S. mansoni (left), T.
trichiura (center), and A. lumbricoides (right).

For any group, EGG-9, PRO-7, or LAR-2, let Z1, Z2, and Z3 be its corresponding
training, validation, and testing sets, Z1 ∩ Z2 ∩ Z3 = ∅. Each image (after image
segmentation and alignment) s ∈ Z1 ∪ Z2 ∪ Z3 may come from one of m classes wj,
j = 1, 2, . . . , m. The proposed hybrid system relies on two decision-making systems
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with complementary properties:

• DS1 is based on very fast handcrafted feature extraction [4] and p-SVM classifi-
cation [5].

• DS2 is based on Vgg-16 [6] for feature extraction and classification.

For characterization in DS1, the method uses the aligned segmentation mask and
combines the BIC color descriptor from [20] with the object area, perimeter, symmetry,
major and minor axes of the best fit ellipse within the object, the difference between the
ellipse and the object, energy, entropy, variance, and homogeneity of a co-occurrence
matrix. These features are used with different weights in a single feature vector. The
Multi-Scale Parameter Search algorithm (MSPS) [21] is applied to find the weight of
each feature that maximizes classification accuracy in the training set. The final weights
modify the Euclidean distance between the feature vectors of two objects during clas-
sification. In DS2, characterization is obtained at the output of the last convolutional
layer of Vgg-16 (similarly to any other CNN, before the layers of a MLP classifier) and
its parameters are learned by backpropagation. Note that, DS1 depends on the success
of segmentation more than DS2. For DS2, segmentation only affects the alignment of
the input ROI image.

While DS1 is about 30 times faster than DS2, the latter is considerably more accu-
rate than the former. The main idea is that DS1 should assign a class wj, j ∈ [1, m], to
an image s, with a confidence value that s comes from wj. The hybrid method uses that
confidence value to select the most likely misclassified images by DS1 to be processed
by DS2. However, in order to improve effectiveness without compromising efficiency
and cost, a limited number of images must be selected from the 2,000 images of a mi-
croscopy slide.

Let c be a random variable that represents the confidence values assigned to images
by DS1. The probability of error Perror(c\wj), when DS1 assigns an image s to a class wj
with confidence value c, should be inversely proportional to c, but we have observed
that this is not usually the case with p-SVM. In order to circumvent the problem, we
use a validation set to estimate probability distributions Perror(ci\wj), j = 1, 2, . . . , m, as
normalized histograms with n intervals (bins) ci, i = 1, 2, . . . , n. When DS1 classifies the
objects extracted from images of a microscopy slide, the object images with confidence
values that fall in bins with higher probability of error Perror(ci\wj) have higher priority
to be selected for characterization and reclassification by DS2.

The proposed training and testing phases of DS1 and DS2 for the hybrid method
are described next.

4.1 Training our hybrid decision system
Figure 8a illustrates the training processes of DS1 and DS2 using images from Z1. While
Vgg-16 is trained by backpropagation from pre-aligned ROI images [6], p-SVM [5] is
trained from the handcrafted features extracted from pre-segmented and aligned ob-
jects, as proposed in [4]. The implementation details about both training processes are
given in Section 5.1.

In Figure 8b, we estimate Perror(ci\wj) by dividing the confidence values of DS1 into
n > 1 intervals ci (bins), i = 1, 2, . . . , n, and computing for each bin the percentage of
images from a validation set Z2 that are misclassified by DS1 as belonging to each class
wj, j = 1, 2, . . . , m. This results into m histograms Perror(ci\wj), as illustrated in Figure 9
for three classes and n = 20 bins. Note that they are not inversely proportional to the
confidence values for any class.

9



(a) (b)

Figure 8: (a) Training of the decision systems DS1 and DS2. (b) After training,
DS1 is used on a validation set to estimate Perror(ci\wj) for each class wj, j =
1, 2, . . . , m, and interval (bin) ci, i = 1, 2, . . . , n.

4.2 Testing our hybrid decision system
A test set Z3 contains objects that are segmented for image alignment and feature ex-
traction. DS1 is used to classify those objects in one of the classes wj, j ∈ [1, m], with
a confidence value c that falls in one of the bins ci, i ∈ [1, n]. A selector sorts the im-
ages of those objects by their decreasing order of Perror(ci\wj). For a given number
M of selected images for characterization and reclassification by DS2, the selector ran-
domly picks Mj = M × Perror(ci\wj) images per class wj, j = 1, 2, . . . , m, and bin ci,
i = 1, 2, . . . , n, by following their decreasing order of Perror(ci\wj), until the total num-
ber of selected images is M. The selected images might be reassigned to a class wk 6= wj,
k ∈ [1, m], by DS2, otherwise wj is the assigned class (Figure 10).

5 Experimental results and discussion
For the experiments, each dataset, EGG-9, PRO-7, and LAR-2, is divided into 40% for
training (Z1), 30% for validation (Z2), and 30% for testing (Z3) by using stratified ran-
dom sampling. This process is also repeated 10 times to obtain reliable statistical results.

First, we evaluate the dependence of our approach with respect to the number n of
bins and select the best values for each group: n = 20 bins for EGG-9 and n = 10 bins
for LAR-2 and PRO-7 (Section 5.1). We then show in the same section that our approach
can be considerably more accurate than DS1 and almost so accurate as DS2 in most
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Figure 9: The histograms Perror(ci\wj) for three classes of helminth eggs and
n = 20 bins.

cases, being considerably faster than DS2 and almost so fast as DS1 . We also show that
a random choice of object images for reclassification by DS2 rather than a choice based
on Perror(ci\wj) is not a good option, which reinforces the importance of our approach.
Second, we justify our choice for p-SVM in DS1 by comparing different SVM models
and the OPF classifier in Section 5.2. Finally, we justify our choice for Vgg-16 in DS2 by
comparing it with several other deep neural networks in Section 5.3.

5.1 Hybrid approach versus DS1 and DS2

In DS1, we optimize the parameters of p-SVM by using Z1 for training and Z2 for eval-
uation, with parameter optimization based on grid search [22]. In DS2, we started from
Vgg-16 pre-trained on the Imagenet dataset and fine tuned it with the training set Z1.
For fine tuning, we fixed the learning rate at 1e−5, momentum at 0.9, minibatch size at
16, and the number of epochs at 150. As recommended for neural networks pre-trained
with the ImageNet dataset, the images were subtracted from the mean values of each
band and interpolated to 224× 224 pixels and 3 bands.

Given that the hybrid approach depends on the number n of bins for Perror(ci\wj),
we first show its performance on Z3 using Vgg-16 in DS2 and p-SVM in DS1 with n
equal to 10, 20, and 30 bins (Table 2). One can see that the best number of bins varies
with the group: 10 bins for LAR-2 and PRO-7, and 20 bins for EGG-9. Therefore, these
values are fixed for those groups in the next experiment.

Dataset Technique 10 bins 20 bins 30 bins
EGG-9 proposed hybrid 0.947 ± 0.005 0.949 ± 0.007 0.948 ± 0.005
LAR-2 proposed hybrid 0.894 ± 0.020 0.878 ± 0.031 0.869 ± 0.020
PRO-7 proposed hybrid 0.926 ± 0.004 0.925 ± 0.004 0.925 ± 0.005

Table 2: Mean Cohen’s Kappa and the respective standard deviation over each
group of parasites using n equal to 10, 20 and 30 bins to build Perror(ci\wj),
i ∈ [1, n] and wj ∈ [1, m].

Tables 3, 4, and 5 show the accuracy of each decision system on Z3 in each group,
EGG-9, LAR-2, and PRO-7, respectively. We have also added a variant of the hybrid
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Figure 10: For each object in Z3, DS1 assigns a class wj, j ∈ [1, m], with confi-
dence value c that falls in a bin ci, i ∈ [1, n]. Based on Perror(ci\wj), the selector
decides which object images will be processed by DS2. It randomly picks im-
ages in their decreasing order of Perror(ci\wj), until the total number of selected
images is M. The selected images might be reassigned to a class wk 6= wj,
k ∈ [1, m], by DS2, otherwise wj is the assigned class.

system with random selection (RS) of object images for characterization and reclassifi-
cation by DS2. The hybrid approaches selected M equal to 10% of the images in Z3 for
DS2. This number was chosen to make the hybrid approaches acceptable for clinical
routine (e.g., 4 minutes per microscopy slide in the current computer configuration).

One can see that the proposed hybrid approach can achieve competitive perfor-
mance with DS2 in most cases (small differences of 1% or less, the exception is I.bütschlii
with about 3% of difference in accuracy). The comparison with the variant of the hybrid
approach with random object image selection also reveals that our method is indeed
able to select the images with higher chances of error by DS1 for characterization and
reclassification by DS2.

Table 6 also shows the mean execution time in milliseconds to characterize and clas-
sify a single image. From these tables, one can see that the proposed hybrid approach

Class Technique
DS1 DS2 Hybrid with RS Prop. hybrid

H.nana 0.901 ± 0.020 0.995 ± 0.005 0.913 ± 0.016 0.987 ± 0.011
H.diminuta 0.736 ± 0.080 0.960 ± 0.018 0.780 ± 0.063 0.952 ± 0.025
Ancylostomatidae 0.915 ± 0.030 0.986 ± 0.012 0.921 ± 0.030 0.984 ± 0.014
E.vermicularis 0.742 ± 0.106 0.984 ± 0.022 0.758 ± 0.093 0.981 ± 0.022
A.lumbricoides 0.739 ± 0.043 0.970 ± 0.018 0.753 ± 0.036 0.960 ± 0.014
T.trichiura 0.902 ± 0.024 0.993 ± 0.007 0.909 ± 0.020 0.979 ± 0.007
S.mansoni 0.649 ± 0.047 0.962 ± 0.022 0.670 ± 0.054 0.960 ± 0.021
Taenia spp. 0.803 ± 0.021 0.978 ± 0.014 0.821 ± 0.026 0.961 ± 0.018
Impurities 0.978 ± 0.003 0.994 ± 0.001 0.981 ± 0.002 0.982 ± 0.002

Table 3: Mean accuracy per class and the respective standard deviation over
EGG-9 dataset, using n = 20 bins in the proposed hybrid approach.
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Class Technique
DS1 DS2 Hybrid with RS Prop. hybrid

S.stercoralis 0.771 ± 0.055 0.895 ± 0.040 0.776 ± 0.044 0.909 ± 0.035
Impurities 0.979 ± 0.007 0.989 ± 0.005 0.979 ± 0.007 0.984 ± 0.005

Table 4: Mean accuracy per class and the respective standard deviation over
LAR-2 dataset, using n = 10 bins in the proposed hybrid approach.

Class Technique
DS1 DS2 Hybrid with RS Prop. hybrid

E.coli 0.897 ± 0.013 0.970 ± 0.010 0.907 ± 0.012 0.967 ± 0.013
E.histolytica / E. dispar 0.721 ± 0.030 0.878 ± 0.026 0.728 ± 0.032 0.871 ± 0.018
E.nana 0.847 ± 0.014 0.956 ± 0.018 0.857 ± 0.016 0.952 ± 0.016
Giardia 0.858 ± 0.017 0.965 ± 0.012 0.871 ± 0.012 0.963 ± 0.011
I.bütschlii 0.810 ± 0.018 0.957 ± 0.016 0.829 ± 0.014 0.921 ± 0.006
B.hominis 0.462 ± 0.040 0.723 ± 0.079 0.472 ± 0.049 0.715 ± 0.049
Impurities 0.977 ± 0.001 0.991 ± 0.002 0.980 ± 0.001 0.982 ± 0.001

Table 5: Mean accuracy per class and the respective standard deviation over
PRO-7 dataset, using n = 10 bins in the proposed hybrid approach.

can considerably improve effectiveness with respect to DS1 without compromising ef-
ficiency and cost.

5.2 Why have we chosen p-SVM for DS1?
In principle, classifiers such as the Optimum-Path Forest (OPF) classifier [18], previ-
ously proposed for the diagnosis of parasites in [3], and the SVM models [5], p-SVM,
SVM-OVA (one-versus-all), and SVM-OVO (one-versus-one), can be modified to output
a confidence measure c. Therefore, any of them could have been used in DS1. However,
p-SVM is the only one that directly outputs a confidence measure c. OPF does not have
parameters and the parameters of the SVM models were optimized by grid search, as
described for p-SVM in Section 5.1. All classifiers were trained on Z1 and tested on Z3.

Table 7 presents the mean Cohen’s Kappa among SVM-OVA, SVM-OVO, p-SVM,
and OPF on each group, EGG-9, LAR-2, and PRO-7. As one can see, the SVM models
are significantly more effective than OPF on the current large datasets and, among the
SVM models, p-SVM is the most reasonable choice for DS1 given its effectiveness and
direct confidence measure c.

5.3 Why have we chosen Vgg-16 for DS2?
We have compared 13 deep neural networks (DNNs) pre-trained on the Imagenet
dataset and fine tuned with the pre-aligned training object images in Z1 in order to
choose Vgg-16 for DS2. These networks have been trained as described in Section 5.1
for Vgg-16. However, the training process of these networks takes over one month. In
order to save time for the comparison among them, we have adopted a different dataset
partitioning here. We partitioned each dataset such that 20% of the images are used for

Dataset DS1 DS2 Prop. hybrid
EGG-9 1.09 ± 0.009 16.77 ± 0.047 2.52 ± 0.011
LAR-2 0.22 ± 0.019 35.45 ± 0.307 3.43 ± 0.029
PRO-7 2.04 ± 0.018 14.55 ± 0.079 3.18 ± 0.017

Table 6: Mean execution time in milliseconds and its standard deviation to
characterize and classify one object image.
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Dataset SVM-based OPF
OVA OVO Probability

EGG-9 0.841 ± 0.012 0.840 ± 0.014 0.840 ± 0.013 0.699 ± 0.013
LAR-2 0.772 ± 0.038 0.772 ± 0.038 0.786 ± 0.041 0.580 ± 0.033
PRO-7 0.858 ± 0.006 0.847 ± 0.006 0.847 ± 0.005 0.635 ± 0.009

Table 7: Mean Cohen’s Kappa obtained over each group using the SVM-based
and OPF approaches.

the training set Z1 and 80% of them are used for the testing set Z3 (Z2 = ∅), by strat-
ified random sampling. We also repeated this partitioning 10 times to obtain reliable
statistical results.

Additionally, we have evaluated two options of training sets, with and without a
balanced number of images per class. In the balanced case, we removed images such
that the largest classes were represented by a number of training samples equal to the
size of the smallest class in each group. This created almost balanced training sets to
evaluate their negative impact in classification. The test sets, however, remained unbal-
anced in both cases.

Tables 8- 10 present the average results of accuracy and Cohen’s Kappa on the test-
ing sets Z3 of EGG-9, LAR-2, and PRO-7, respectively, using balanced and unbalanced
training sets. Clearly, the removal of training samples to force balanced classes impairs
the performances of the DNNs. One may conclude that networks trained on balanced
sets are not competitive with those trained on unbalanced sets and this should be ex-
pected, due to the fact that the test sets are unbalanced by nature. One may also con-
clude that Vgg-16 is among the best models in all groups, which justifies its choice for
DS2. Even in PRO-7 with unbalanced training sets, where Densenet-161 performed
slightly better than Vgg-16, their difference of 0.001 in kappa, with a standard devia-
tion 0.003, is not statistically significant. For the sake of efficiency and cost, it is also
important to select the simplest model with the best overall effectiveness.

Model balanced unbalanced
acc kappa acc kappa

AlexNet 0.514 ±0.043 0.308 ±0.029 0.936 ±0.004 0.824 ±0.012

Caffenet 0.536 ±0.055 0.346 ±0.039 0.973 ±0.002 0.931 ±0.006

Densenet-121 0.484 ±0.047 0.293 ±0.34 0.980 ±0.003 0.951 ±0.004

Densenet-161 0.528 ±0.045 0.338 ±0.035 0.987 ±0.001 0.966 ±0.003

Densenet-169 0.493 ±0.039 0.307 ±0.027 0.984 ±0.002 0.958 ±0.004

GoogLenet 0.613 ±0.052 0.560 ±0.055 0.982 ±0.001 0.960 ±0.004

Inception-V3 0.316 ±0.121 0.083 ±0.027 0.804 ±0.013 0.432 ±0.044

Resnet-50 0.431 ±0.060 0.265 ±0.041 0.976 ±0.010 0.946 ±0.004

Resnet101 0.432 ±0.041 0.254 ±0.022 0.977 ±0.001 0.942 ±0.002

Resnet-152 0.503 ±0.037 0.306 ±0.028 0.983 ±0.002 0.955 ±0.005

Squeezenet 0.547 ±0.083 0.341 ±0.064 0.968 ±0.004 0.908 ±0.032

Vgg-16 0.791 ±0.032 0.610 ±0.042 0.989 ±0.001 0.972 ±0.003

Vgg-19 0.765 ±0.039 0.577 ±0.048 0.988 ±0.001 0.969 ±0.004

Table 8: Comparison among DNNs over EGG-9 using balanced and unbal-
anced (stratified) training sets.

In summary, the justification for our hybrid approach is related to two cases, when
images are selected for reclassification by DS2:

1. For images that have been correctly classified by DS1, the percentage of misclas-
sifications by DS2 should be low.

2. For images that have been misclassified by DS1, the percentage of correct classi-
fications by DS2 should be high.
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Model balanced unbalanced
acc kappa acc kappa

AlexNet 0.874 ±0.025 0.618 ±0.055 0.941 ±0.005 0.759 ±0.026

Caffenet 0.844 ±0.029 0.549 ±0.049 0.925 ±0.006 0.708 ±0.020

Densenet-121 0.837 ±0.036 0.526 ±0.076 0.944 ±0.010 0.759 ±0.045

Densenet-161 0.869 ±0.039 0.605 ±0.076 0.951 ±0.008 0.792 ±0.039

Densenet-169 0.831 ±0.046 0.521 ±0.085 0.945 ±0.006 0.766 ±0.029

Googlenet 0.875 ±0.028 0.702 ±0.049 0.948 ±0.004 0.827 ±0.024

Inception-V3 0.771 ±0.041 0.153 ±0.104 0.498 ±0.166 0.136 ±0.063

Resnet-50 0.800 ±0.031 0.457 ±0.053 0.944 ±0.008 0.763 ±0.039

Resnet101 0.806 ±0.052 0.444 ±0.072 0.931 ±0.006 0.702 ±0.031

Resnet-152 0.831 ±0.047 0.509 ±0.071 0.940 ±0.005 0.746 ±0.023

Squeezenet 0.869 ±0.031 0.595 ±0.063 0.937 ±0.008 0.745 ±0.032

Vgg-16 0.898 ±0.029 0.683 ±0.065 0.962 ±0.005 0.848 ±0.020

Vgg-19 0.896 ±0.018 0.671 ±0.038 0.956 ±0.006 0.830 ±0.022

Table 9: Comparison among DNNs over LAR-2 using balanced and unbal-
anced training sets.

Model balanced unbalanced
acc kappa acc kappa

AlexNet 0.584 ±0.023 0.356 ±0.018 0.942 ±0.002 0.852 ±0.007

Caffenet 0.636 ±0.018 0.421 ±0.016 0.966 ±0.002 0.916 ±0.005

Densenet-121 0.479 ±0.027 0.271 ±0.017 0.961 ±0.001 0.903 ±0.004

Densenet-161 0.542 ±0.035 0.327 ±0.029 0.971 ±0.001 0.927 ±0.003

Densenet-169 0.515 ±0.045 0.304 ±0.032 0.966 ±0.001 0.916 ±0.002

Googlenet 0.561 ±0.025 0.393 ±0.019 0.965 ±0.001 0.918 ±0.004

Inception-V3 0.248 ±0.031 0.102 ±0.014 0.901 ±0.009 0.748 ±0.022

Resnet-50 0.500 ±0.037 0.288 ±0.026 0.958 ±0.017 0.909 ±0.002

Resnet101 0.480 ±0.034 0.273 ±0.024 0.960 ±0.001 0.899 ±0.003

Resnet-152 0.576 ±0.039 0.351 ±0.034 0.970 ±0.002 0.924 ±0.005

Squeezenet 0.520 ±0.032 0.302 ±0.025 0.947 ±0.003 0.868 ±0.008

Vgg-16 0.666 ±0.035 0.451 ±0.033 0.970 ±0.001 0.926 ±0.003

Vgg-19 0.698 ±0.029 0.485 ±0.030 0.970 ±0.002 0.925 ±0.005

Table 10: Comparison among DNNs over PRO-7 using balanced and unbal-
anced training sets.

Indeed, we have observed that, for the images that fall in case 1, the percentage of
misclassifications by DS2 is only 0.43% in EGG-9, 3.4% in PRO-7, and 3.22% in LAR-
2. For the images that fall in case 2, the percentage of correct classifications by DS2 is
98.65% in EGG-9, 95.06% in PRO-7, and 77.77% in LAR-2. Examples of both cases are
presented in Figure 11.

6 Conclusion
We presented a hybrid approach to combine two decision-making systems with com-
plementary properties — a faster and less accurate decision system DS1 with a slower
and more accurate decision system DS2 — in order to improve overall effectiveness
without compromising efficiency and cost in image analysis. We have successfully
demonstrated this approach for the diagnosis of the 15 most common species of human
intestinal parasites in Brazil. In this application, after exhaustive experiments, the best
choices of classifiers for DS1 and DS2 were p-SVM and Vgg-16. The resulting hybrid
system also represents a low-cost solution viable for the clinical routine, which makes
our contribution relevant for the Public Health system in Brazil.

Our main technical contribution is a method that learns the probability distributions
of error per class, given the confidence values of DS1 on a validation set during train-
ing, to select test samples with higher chances of error for a final characterization and
reclassification by DS2. We believe this hybrid approach can be useful in several other
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(a) H. Nana (b) Ancylostomatidae (c)S. stercoralis

(d) S. stercoralis (e) E. coli (f) E. nana

(g) A. lumbricoides (h) Taenia spp. (i) S. stercoralis

(j) S. stercoralis (k)E. coli (l) G. duodenalis

Figure 11: Examples of images (a-f) misclassified by DS1, selected, and cor-
rectly classified by DS2, (g-l) correctly classified by DS1, selected, and misclas-
sified by DS2.

real applications.
As future work, we intend to investigate methods that can simplify a deep neural

network without losing effectiveness, or design a lightweight deep neural network with
higher effectiveness. By that, we aim at increasing the number of samples selected for
DS2, further improving the capability of our hybrid system to process more images per
time.
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