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Abstract

Parkinson’s disease (PD) is a degenerative and progressive neurological condition. Early diagnosis can improve
treatment for patients and is performed through dopaminergic imaging techniques like the SPECT DaTscan.
In this study, we propose a machine learning model that accurately classifies any given DaTscan as having
Parkinson’s disease or not, in addition to providing a plausible reason for the prediction. This is kind of
reasoning is done through the use of visual indicators generated using Local Interpretable Model-Agnostic
Explainer (LIME) methods. DaTscans were drawn from the Parkinson’s Progression Markers Initiative
database and trained on a CNN (VGG16) using transfer learning, yielding an accuracy of 95.2%, a sensitivity
of 97.5%, and a specificity of 90.9%. Keeping model interpretability of paramount importance, especially
in the healthcare field, this study utilises LIME explanations to distinguish PD from non-PD, using visual
superpixels on the DaTscans. It could be concluded that the proposed system, in union with its measured
interpretability and accuracy may effectively aid medical workers in the early diagnosis of Parkinson’s Disease.

Keywords: Parkinson’s Disease, Convolutional Neural Network, Computer-aided Diagnosis,
Interpretability, Explainable AI

1. Introduction

Parkinson’s disease (PD) is a brain and nervous system dysfunction which is neurodegenerative in nature.
This means that the malady results in, or is characterized by the degeneration of the nervous system, especially
the neurons in the brain. Parkinson’s disease exists as one of the most common neurodegenerative diseases,
exceeded only by that of Alzheimer’s. It predominately affects dopamine-producing dopaminergic neurons
in a particular region of the brain (Figure 1) called the substantia nigra [1]. In Parkinson’s disease, a
patient loses the ability to retain these dopamine-producing neurons which causes a loss of control over
any voluntary actions. This disease may lead to motor and non-motor symptoms such as tremors, slowed
movement, sleep disorders, posture imbalance, depression and other subtle symptoms [2]. There exists a
variety of medical scans such as Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging
(fMRI), Positron Emission Tomography (PET), etc. but the Single-photon Emission Computed Tomography
(SPECT) functional imaging technique is most widely used in European clinics for the premature diagnosis of
Parkinson’s disease [3]. The SPECT image technique utilises 123I-FP-CIT also known as123I-Ioflupane. This
is a ligand that binds to the dopamine transporters (Hence, also called SPECT DaTscan) in the striatum
region of the brain, namely putamen and caudate, very efficiently and with high affinity [4]. PD patients are
marked with significantly smaller putamen and caudate regions due to the lack of dopaminergic neurons as
can be seen in Figure 2.

The healthcare industry is a major and critical branch of the general service industry, where a bulk of the
analysis of diagnostic data is performed by medical experts. The exposition of medical images is, therefore,
quite limited to specific experts having a profound knowledge of the subject and also due to the intricacy
or variation of parameters amongst the data being handled. A neuro-image based diagnosis for Parkinson’s
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Figure 1: Substania Nigra region of the brain

(a) Healthy Control (b) Parkinson’s Disease

Figure 2: SPECT DaTscan with putamen and caudate regions marked by high contrast

may be appropriate considering that a symptomatic based treatment may come off as late and not be a
time-conscious solution. Also, SPECT scan images are interpreted manually in clinics where the diagnosis
result may be subject to the risk of human error. A previous clinical study found that the validity of diagnosis
for PD, performed by movement disorder experts, was found initially to be 79.6% and then rose to 83.9%
after follow-up checks which used DaTscans instead [5].

Deep learning has widely been used for diagnosis of various diseases and conditions, often with results
exceeding standard benchmarks [6]. Through the use of deep learning we can efficiently and accurately classify
patients as to whether they have PD or not by detecting patterns in their SPECT scans, mainly around the
putamen and caudate regions as they are relatively smaller as compared to non-PD specimens. Our work
aims to provide an interpretable solution (using LIME - Local Interpretable Model-Agnostic Explanations)
in addition to the binary classification result (PD or non-PD) of the developed black-box neural network so
that medical experts may understand as to why the machine thinks this way, providing crucial insights for
the decision making process. An overview of the experiment can be understood from Figure 3.

The main contributions of this paper are as follows:

• Development of an accurate deep learning model for the early diagnosis of Parkinson’s Disease using
SPECT DaTscans.

• Convey a comprehensive performance analysis of the VGG16 CNN model used for this medical imaging
task.

• Provide an interpretable solution using LIME for the above classification problem.
• Aid medical practitioners in early diagnosis through the use of visual markings generated by the model

on the predictions.
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The remaining parts of the paper are assembled as follows - Section 2 discusses the Related Work performed
in the field. The proposed system approach for the early detection of PD is explained in Section 3 and discusses
the Dataset, Image Preprocessing, Dataset Splitting, Neural Network Architecture, Transfer Learning, and
Results as subsections. Section 4 elaborates on the Explainability of the Proposed Model using LIME and
discusses the Need for Interpretability, the LIME model, and the Interpretations of DaTscans as subsections.
Section 5 finally discusses the Conclusions for this study.

Figure 3: Experiment Overview (PD = Parkinson’s Disease, HC = Healthy Control, PPMI = Parkinson’s Progression Marker’s
Initiative

2. Related Work

SPECT DaTscans are popularly utilised for the premature diagnosis of PD and have even been warranted
by the Food and Drug Administration (FDA) in the United States. One of the earliest works to attempt
to classify DaTscans as PD or non-PD was done by Towey et al. [7], where Naive-Bayes was used with
Principal Component Analysis (PCA) for the decomposition of voxels in the striatum region of the brain.
Following this study Support Vector Machines (SVM) were utilised as the primary classifier mechanism with
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voxels as features (image voxel intensities). Such studies were conducted by Oliveira et al. [8]. High accuracy
classification was obtained by Prashanth et al. [9] who used shape-surface based fitting and striatal binding
ratio features along with SVMs. Apart from SPECT DaTscans, 3D MRI images were used by Cigdem et al.
to classify PD using SVMs by comparing the morphological differences in the grey and white matter regions
of the brain [10].

More recently deep learning based methods are being used in various fields of medical imaging as studied
by Sheng et al. [11]. The use of Artificial Neural Networks (ANN) has been used to detect complex patterns
in data and outperform classical statistical methods. Martinez-Murzia et al. [12] and Rumman et al. [13]
proposed the use of Convolutional Neural Networks (CNN) to detect patterns in DaTscan images associated
with PD. Often 3D brain scans contain large amounts of details which can result in complex CNN architec-
tures. Ortiz et al. [14] proposed the utilisation of iso-surfaces as a method to condense this consignment of
data, simultaneously keeping the apposite details needed for classification. Limitations in compute capability
prompted researchers like Quan et al. [15] and Sivaranjini et al. [16] to use transfer learning methods where
weights and classification capabilities are transferred from existing popular CNN architectures [17, 18, 19] to
the model being developed for faster learning.

The question of explainability in healthcare has been long unanswered as most studies only attempt to
achieve the highest accuracy metrics at their tasks, however, progress has been made to make these systems
more interpretable and has been extensively studied by Ahmad et al. Furthermore [20]. Petsiuk et al.,
Lundberg et al. and Ribeiro et al. have proposed different frameworks [21, 22, 23] for the interpretability
of image classification problems that can be applied to medical images as well. Interpretable models for
classification of other neurodegenerative diseases, such as Alzheimer’s have been developed by Das et al. [24]
but none exist for Parkinson’s Disease. This study attempts to close that gap by developing an explainable
model for the same.

3. Early Parkinson’s Disease Detection CNN Model

3.1. Dataset

The particulars utilised in this experiment were obtained from the Parkinson’s Progression Markers Ini-
tiative (PPMI) database [25]. The PPMI is a surveying clinical study, whose inception resulted in the
establishment of biomarker-defined cohorts used to identify genetic, clinical, imaging, and bio-specific pro-
gression markers. The study is funded by The Michael J. Fox Foundation for Parkinson’s Research and is
taking place in Europe, the United States, Australia, and Israel.

The dataset comprises of 642 DaTscan SPECT images divided into two classes namely PD (N = 430)
and non-PD (N = 212). The data used was only from the initial screening of unique patients and no follow
up scans of the same patient were used. This was done in accordance with the study’s aim at early detection,
and also to maintain the uniqueness of the dataset. Another reason was to prevent any over-fitting while
training the model, possibly caused due to any similarity between scans from the same patient. Scans without
evidence for dopaminergic deficit (SWEDD) patients were also not included to maintain the integrity of the
dataset. The demographics of the collected patient data is described in Table 1.

Table 1: Patient Demographics

Category Healthy Control Parkinson’s Disease

Number of patients 212 430

Sex (Male) 128 278

Sex (Female) 84 152

Age (Minimum) 31 33

Age (Maximum) 84 85
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3.2. Image Preprocessing

The raw SPECT DaTscan images taken at PPMI affiliated medical clinics had undergone some prepro-
cessing before they were added to the online database. Firstly, they went through attenuation correction
procedures. This was achieved using phantoms procured from the same time the subject was imaged. Fur-
thermore, they had been reconstructed and spatially normalized to eliminate any differences in shape or
size against several unique subjects. This alignment was done in accordance with the Montreal Neurological
Institute (MNI) accepted, standard coordinate system for medical imaging.

Each nth SPECT DaTscan was finally presented as a 3D volume space, (xni , y
n
i , z

n
i ) in DICOM and NIFTI

format where i represents the ith pixel on the x and y axes respectively. The z axis represents the number
of slices of the volume. Each nth volume can be represented as three sets of pixels on the x, y, and z axes.

X(n) = {x(n)1 , x
(n)
2 , ...., x

(n)
91 }

Y (n) = {y(n)1 , y
(n)
2 , ...., y

(n)
109}

Z(n) = {z(n)1 , z
(n)
2 , ...., z

(n)
91 }

This indicates that each volume had dimensions of 91 x 109 x 91, representing 91 slices with each slice
being 109 x 91 pixels.

After visual analysis of the slices, keeping the putamen and caudate regions of the brain as the regions of
interest (ROI), as well as referring to previous studies [13, 15], it was decided to use slice 41 i.e. (xni , y

n
i , z

n
41)

for development as it depicted the ROI with the highest prominence. Hence the 41st slice of the DICOM
image was extracted from all collected subject’s data and converted to jpeg format. Due to the varying sizes
of male and female brain scans all images underwent cropping to eliminate the black corners present for
smaller brains, a characteristic observed mainly for female subjects. This process brought uniformity in size
to all the scan images through the detection of the major contours and edges in the DaTscan. Due to the
small dataset size, certain augmentations were applied to the training data to prevent over-fitting. These
include height and width shifts, flips across the horizontal axis and brightness and intensity variations. The
images were finally resized into 224 x 224 to be compatible with the VGG16 neural network architecture
which we would be using.

3.3. Dataset Splitting

The dataset consisting of 642 images was divided into training, validation, and test sets in an 80:10:10
ratio respectively with each category being further divided into Healthy control and Parkinson’s Disease
(PD). The number of images in each set is summarised in Table 2.

Table 2: Dataset Split

Category Healthy Control Parkinson’s Disease

Training 170 346

Validation 21 42

Test 21 42

Total 212 430

3.4. Neural Network Architecture

Deep learning is furnishing inspiring solutions for medical image analysis issues and is seen as a leading
method for ensuing applications in the field [26]. Deep Learning models utilise several layers of neural nodes
to process its input. Each neuron collects a set of x-values (vector) as input and quantifies the anticipated
y-values. Vector X holds the worth of the features in one of the m examples from the training set. Each
of the units has their own assortment of parameters, usually referred to as w (weights) and b (bias) which
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undergoes changes during the learning or computation process. In every iteration, the neuron quantifies a
weighted average of the values of the vector X, which is based on its present weight vector W and then adds
bias. Finally, the outcome of this estimation is passed through a non-linear activation function fact as shown
in Figure 4.

These deep learning models, in tasks like binary classification, often have performance exceeding even
those of humans. In this study, we utilise Convolutional Neural Networks (CNN) that takes 2-dimensional or
3-dimensional shaped (i.e. structured) values as input. A CNN is a typical example of an Artificial Neural
Network (ANN) positioned on conserving dimensional relationships among data. The inputs to a CNN are
organized in a grid-like composition and further passed through layers that conserve these correspondences,
each layer function working on a miniature zone of the previous layer. A CNN usually possesses several layers
of activations and convolutions, distributed amongst pooling layers, and is trained by employing algorithms
such as backpropagation and gradient descent. CNNs are generally structured such that in the end, they
possess fully connected layers. Such layers are responsible for quantifying the final classes. All these layers
constitute the basic building blocks of a CNN and can be visualised in Figure 5. Due to the systemic attributes
of images, namely the configural features among bordering voxels or pixels, CNNs have achieved substantial
popularity in medical image analysis [11].

Figure 4: Neural Network pipeline over each iteration

Figure 5: Building Blocks of a typical CNN

The CNN used in this study is VGG16 [17] which won the 2014 version of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). The model achieves a respectable 92.7% test accuracy on ImageNet, which
is a gigantic dataset of more than 1.2 million images attributed to 1000 classes. This was implemented using
Keras, which is one of the leading high-level neural network APIs running on a Tensorflow backend. The
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model’s layers consist of convolutional, max-pooling, activation and fully connected layers as shown in Figure
6.

Figure 6: VGG16 Architecture

The image is fed through a stack of convolutional layers. The filters were utilised with a minute responsive
field of dimensions 3x3 units. This allows it to capture the smallest size conception in 4-way perpendicular
directions. In a part of the organisation, the architecture also employs 1x1 convolutional filters. This can be
perceived as a rectilinear transmutation of the input channels, and is trailed by non-rectilinear transforma-
tions. Spatial or dimensional pooling is executed by 5 max-pooling layers, that trail the convolutional layers.
Thereafter, three fully connected layers trail a stack of convolutional layers that possesses varied depths. The
initial two fully connected layers possess 4096 channels each while the last one conducts 1000-way ILSVRC
classification and therefore has 1000 channels (specific only to the ImageNet classification task). The ultimate
layer is the soft-max layer utilized for determining probabilities amongst several classes and uses the softmax
function as shown in Equation 1.

P (y = j|zi) = φsoftmax(zi) =
ez

i∑k
j=0 e

zi
k

(1)

where we define the net input z as

z = w0x0 + w1x1 + ....+ wmxm =

m∑
l=0

wlxl = wTx (2)

w and x are the weight and feature vectors of a single training example, and where the bias unit is denoted
as w0. The softmax function quantifies the expectation that the training example xi is a member of the class
j on the basis of the weight and cumulative input zi, and hence computes the probability p for each class
label in j = 1,2,...,k.

This base model was partially modified to accommodate the needs of our study and the details are
described in the next section.

3.5. Transfer Learning

In practice, it is unconventional to train a complete convolutional neural net from ground zero, especially
with random values, since it is often infrequent to possess a dataset of substantial size or even the necessary
computational resources to process it. To overcome this barrier, it is quite customary to pre-train a CNN on
a sizeable dataset such as ImageNet, which as mentioned earlier, contains over a million images with 1000
classes [27]. After this initial large scale training, the CNN can be used either as an initialization model or a
fixed feature extractor. This method is known as Transfer Learning [28].

A set of more formal definitions for understanding Transfer Learning was given by Pan et al. [29] as seen
below:
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Table 3: VGG16 Layers Table. Convolution layer is shortened to ’Conv.’ its description includes: number of channels, kernel
size; padding ’p’; and stride ’st’. Pooling layer is shortened to ’Pool’. Fully connected layer is shortened to ’FC’. Dropout layer
is shortened to ’Drop’.

Definition 1 (Domain) ”A domain D = {X,P(X)} is defined by two components: A feature space X and
a marginal probability distribution P(X) where X = x1, x2, ..., xn” [28].

Definition 2 (Task) ”Given a specific domain D, a task {Y, f(·)} consists of two parts: A label space
Y and a predictive function f(·), which is not observed but can be learned from training data {(xi, yi)|i ∈
{1, 2, 3......, N}, where xi ∈ X and yi ∈ Y }” [28].

Definition 3 (Transfer Learning) ”Given a source domain DS and learning task TS , a target domain DT

and learning task TT , transfer learning aims to help improve the learning of the target predictive function
fT (·) in DT using the knowledge in DS and TS , where DS 6= DT or TS 6= TT ” [28].

Deep neural network models are prevalently layered systems that assimilate various features at different
layers. Such layers are then ultimately connected to an end layer which is commonly fully connected, to
retrieve the concluding output. Such layered systems permit us to make use of a prematurely trained network
such as VGG16, short of its ultimate layer, as a fixed feature selector applicable to other recognition tasks.

In our study, however, we utilise a slightly more intricate methodology. Here, we not only replace the
ultimate layer for task classification, but also particularly retrain a handful of the foregoing layers. As
mentioned earlier, the inceptive layers have been observed to capture collective or non-specific features, while
the later ones emphasise extensively on the particular task at hand. Utilising this discernment, we may freeze
(fix weights) particular layers while re-training, or fine-tune the remaining to accommodate our requirements.
The two last CNN layers of the stock VGG16 model were not frozen which allowed their weights to be trained
specifically to the task at hand. In addition, two dropout layers and a single dense layer using a sigmoid
activation function were added to the end. The sigmoid activation function, also called the logistic function
transforms the input to the function into a value between 0.0 and 1.0. This is especially helpful when we
have to predict the probability as an output.

Sigmoid Function φ(x) =
1

1 + e−x
(3)

The simplicity in finding the derivative of the sigmoid function also helps in preparing the non-linear
model of classification.

d

dx
φ(x) = φ(x) · φ(1− φ(x)) (4)
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As a general summary, we make use of the knowledge or weights in terms of the comprehensive architecture
of the neural net and hence utilise its states as inception points for our retraining steps. This, as a result,
helps us achieve superior execution through an improved rate of convergence resulting in smaller training
times while requiring lesser memory for computation.

3.6. Results

The model was trained using an image sequence Xt, where M = 516 (PD = 346, non-PD = 170) and
validated using an image sequence Xv, where N = 64 (PD = 42, non-PD = 21).

Xt = {x(1)t , x
(2)
t , ...., x

(M)
t }

Xv = {x(1)v , x(2)v , ...., x(N)
v }

These sets used the corresponding class label sequences Yt and Yv respectively,

Yt = {y(1)t , y
(2)
t , ...., y

(M)
t }

Yv = {y(1)v , y(2)v , ...., y(N)
v }

to effectively fit the distribution p(y) by curtailing the cross-entropy using the loss function:

LE = − 1

N

N∑
i=1

log(p(yi)) (5)

where N represents the number of instances and yi depicts the classes being either a positive class (y1)
or a negative class (y0). Mathematically speaking:

yi = 1 =⇒ log(p(yi)) (6)

yi = 0 =⇒ log(1− p(yi)) (7)

This yields the formula for the binary cross-entropy loss function as:

LE = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (8)

The training images underwent augmentations on the fly through the ImageDataGenerator class with a
training batch size of 32 and a validation batch size of 16. The model was trained over 300 epochs with a
training step size of 32. The step size was decided using the general rule of thumb where the number of units
in the dataset is divided by the batch size and the result obtained is multiplied by a positive integer greater
than one, usually to account for augmentations. The validation step size was declared as 4 and estimated
in a similar fashion. The optimizer in use was the Adam optimizer of the Keras optimizers library and the
learning rate was initialized at 10−3. The exponential decay rate, specifically for the first moment (beta 1)
was set at 0.9 while that of the second-moment (beta 2) was set at 0.999 which must be near 1.0 for problems
characterised by a sparse gradient, as in the case of computer vision. The total time taken for training on a
cloud-based Tensor Processing Unit (TPU) device took 5460 seconds or roughly 1.5 hours.

Specificity =
No. of True Negatives

No. of True Negatives+No. of False Positives
(9)

Sensitivity =
No. of True Positives

No. of True Positives+No. of False Negatives
(10)

Precision =
No. of True Positives

No. of True Positives+No. of False Positives
(11)

The predictions on 64 test images (PD = 42, non-PD = 21) resulted in an accuracy of 92.0%, a specificity
of 81.8%, a sensitivity of 97.5% and a precision of 90.9% estimated using the above formulae. A Cohen’s
Kappa score of 0.81 and F1 score of 0.94 were also obtained. The misclassified samples, which include 4 false
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Table 4: Hyperparameters

Hyperparameter Parameter Type Value

Epochs - 300

Batch Size
Training 32

Validation 16

Step Size
Training 32

Validation 4

Learning Rate - 10−3

β1 First Moment 0.9

β2 Second Moment 0.999

Total Time Seconds 5460

(a) False Positive (b) False Positive (c) False Positive (d) False Positive (e) False Negative

Figure 7: Misclassifications

Table 5: Performance Results

Category Result Metric Result

True Positives 40 Accuracy 92.0%

True Negatives 18 Specificity 81.8%

False Positives 4 Sensitivity 97.5%

False Negatives 1 Precision 90.9%

positives and 1 false negative, can be seen in Figure 7. Important performance metrics are summarised in
Table 5.

The progression of loss and accuracy over the number of epochs for the training and validation sets can
be visualised in Figure 8(a) and Figure 8(b) respectively, and the confusion matrices for the model on the
validation and test sets are shown in Figure 9(a) and Figure 9(b) respectively.

In this study the classification between PD and non-PD was obtained by normalizing the predicted
probabilities by a parameter referred to as threshold which was set at a value of 0.5, thus the values below the
threshold of 0.5 are delegated to class 0 or non-PD and values above or equal to 0.5 are delegated to class 1
or PD. However, the default threshold may not be the ideal interpretation of the probabilities that have been
predicted. Thus, the ROC (Receiver Operating Characteristic) curve is plotted to address these concerns as
seen in Figure 10(b). The False Positive Rate, also abbreviated as FPR, is plotted on the horizontal axis
while the True Positive Rate, also abbreviated as TPR, is plotted on the vertical axis. The dotted orange
diagonal line on the plot which spans from the bottom-left to top-right of the figure indicates the curve for
a no-skill classifier. The area under ROC (AUC) was found to be 0.89.

Analysing the curve gives insight to understanding the trade-off between the TPR and FPR for differing
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(a) Model Loss (b) Model Accuracy

Figure 8: Loss and Accuracy Progression

(a) Validation Set (b) Test Set

Figure 9: Confusion Matrices

thresholds. The ROC Table (Table 6) shows the Geometric mean (G-mean) values, where the higher values
positively correlate to the better threshold values. The G-mean value is given by:

Gmean =
√
Sensitivity ∗ Specificity (12)

Where sensitivity is the True Positive Rate (TPR) and specificity is the True Negative Rate (TNR).
The threshold value of 0.8335 was found to provide the best performance (indicated by the black dot

present on the ROC curve). The Youden’s J statistic also known as the Youden index, is a statistic that
captures the performance of a binary class diagnostic test and further verifies the threshold value. The
Youden statistic is given by:

Y = Sensitivity + Specificity − 1 (13)

Coupled with the G-mean and Youden Index is the positive Likelihood Ratio (LR+) which is used in
medical testing to interpret diagnostic tests and indicates how probable a patient possesses a disease. The
positive LR depicts how much to multiply the probability of possessing a disease, given a positive test result.
This ratio is given by:

11



LR+ =
True Positive Rate (TPR)

False Positive Rate (FPR)
(14)

A Similar well-known statistic used to determine the optimal threshold is the Precision-Recall (PR)
curve as seen in Figure 10(a), which focuses on the performance of the model on the positive class, essentially
indicating its’ ability at predicting the positive class accurately. A no-skill model is represented by a horizontal
line. The F-measure is calculated to further strike the best balance between precision and recall. It is given
by:

Fmeasure =
2 ∗ Precision ∗Recall
Precision+Recall

(15)

The PR Table (Table 7) shows the F-scores for corresponding precision and recall values. Similar to G-
mean, higher values of F-measure is a direct indication of the best threshold value corresponding to it, which
in this case was observed as 0.8334. Thus, both ROC and PR analysis indicate that the optimal threshold
value is 0.833.

(a) PR Curve (b) ROC Curve

Figure 10: Metric Curves

Table 6: ROC Table

No. Threshold TPR (Sensitivity) FPR (Fall-out) Specificity LR+ Youden Index G-mean

1 2 0 0 1 - 0 0

2 1 0.7805 0.04545 0.9545 17.17 0.735 0.8631

3 1 0.8049 0.04545 0.9545 17.71 0.7594 0.8765

4 1 0.8537 0.04545 0.9545 18.78 0.8082 0.9027

5 1 0.878 0.04545 0.9545 19.32 0.8326 0.9155

6 1 0.878 0.09091 0.9091 9.659 0.7871 0.8934

7 0.8335 0.9756 0.09091 0.9091 10.73 0.8847 0.9418

8 8.815e-08 0.9756 0.6818 0.3182 1.431 0.2938 0.5572

9 3.193e-08 1 0.6818 0.3182 1.467 0.3182 0.5641

10 2.918e-10 1 1 0 1 0 0
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Table 7: PR Table

No. Threshold Precision Recall F-measure

1 3.193e-08 0.7321 1 0.8453

2 8.814e-08 0.7272 0.9756 0.8333

3 1.865e-07 0.7407 0.9756 0.8421

4 4.164e-07 0.7547 0.9756 0.8510

5 5.929e-07 0.7692 0.9756 0.8602

6 1.611e-06 0.7843 0.9756 0.8695

7 1.130e-05 0.8000 0.9756 0.8791

8 1.851e-05 0.8163 0.9756 0.8888

9 0.0003 0.8333 0.9756 0.8988

10 0.0019 0.8510 0.9756 0.9090

11 0.0051 0.8695 0.9756 0.9195

12 0.0617 0.8888 0.9756 0.9302

13 0.6687 0.9090 0.9756 0.9411

14 0.8135 0.9302 0.9756 0.9523

15 0.8334 0.9523 0.9756 0.9638

16 0.9985 0.9512 0.9512 0.9512

17 0.9992 0.9500 0.9268 0.9382

18 0.9999 0.9487 0.9024 0.9250

19 0.9999 0.9473 0.8780 0.9113

20 0.9999 0.9729 0.8780 0.9230

21 1 0.9722 0.8536 0.9090

22 1 0.9705 0.8048 0.8800

23 1 0.9696 0.7804 0.8648

Using the optimal threshold leads to the following conclusions:

• False Positives reduced from 4 to 2.
• Accuracy improved from 92.0% to 95.2%.
• Specificity improved from 81.8% to 90.9%.
• Precision improved from 90.9% to 95.2%.
• Area under ROC improved from 0.89 to 0.94.
• Cohen’s Kappa score improved from 0.81 to 0.89.
• F1 score improved from 0.94 to 0.96.

The important measurements using the optimal threshold are tabulated in Table 8, and so are the confu-
sion matrices in Figure 12. A comparison of our results with similar works is depicted in Table 9.
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(a) ROC Table Representation

(b) PR Table Representation

Figure 11: Bar Graphs Determining Optimal Threshold - Highest values correspond to Optimal Threshold

Table 8: Performance Results with Optimal Threshold

Category Result Metric Result

True Positives 40 Accuracy 95.2%

True Negatives 20 Specificity 90.9%

False Positives 2 Sensitivity 97.5%

False Negatives 1 Precision 95.2%
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(a) Validation Set (b) Test Set

Figure 12: Optimal Threshold Confusion Matrices

Table 9: Comparison of proposed study with similar works

Study Method Accuracy (%) Sensitivity (%) Specificity (%)

Proposed Study VGG16
with
Transfer
Learning

95.2 97.5 90.9

Prashanth et al. [9] SVM with
Striatal
Binding
Ratio values

96.14 95.74 77.35

Brahim et al. [30] PCA and
SVM

92.6 91.2 93.1

Rumman et al. [13] Custom
ANN

94 100 88

Quan et al. [15] InceptionV3
with Trans-
fer Learning

98.4 98.8 97.6

Ortiz et al. [14] LeNet-based 95±0.3 94±0.4 95±0.4

Ortiz et al. [14] AlexNet-
based

95±0.3 95±0.5 95±0.4

4. Explainability of the Proposed Model using LIME

4.1. Need for Interpretability

Artificial Intelligence solutions in the health care industry are mainly faced with the problem of explain-
ability. Questions such as ”Why should I trust the outcome of this prediction?” or ”How did this program
arrive at this diagnostic conclusion?” need to be answered for medical workers to completely embrace the use
of machine learning techniques in assisting them with early diagnosis. No matter how accurate a model is,
it needs to be able to produce an argument explaining why the algorithm came up with a certain prediction
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or suggestion. While some models like decision trees are transparent, the current state-of-the-art models in
the vast majority of AI applications in healthcare are neural networks that are black box in nature and lack
any kind of explanations for their predictions. This poses as a potential risk in situations where the stakes
are high, such as a patient’s re-admission to a hospital or determining the end of life care support for a
patient. Recent efforts to develop the explainability of these black box models come under the research area
of Explainable AI and include works such as DeepLIFT [31], RISE [21], SHAP [22] and finally LIME [23],
which this study uses to interpret its results.

Figure 13: An illustration of patient diagnosis by an expert using model predictions and their corresponding LIME explanations

In a previous experiment [32] where Fisher Vector classifiers were used for the task of image recognition
[33] and an interpretability technique called ’Layer-wise Relevance Propagation’ (LRP) [34] was applied to
decrypt the model’s predictions, a peculiar observation was made. It was found that in specific cases where
the input image consisted of a ”horse” the model was weighing its decision primarily not on any of the horse’s
physical features, but on a certain copyright tag present on the bottom left of the image which turned out
to be a characteristic of all the horse images used in training. This was certainly an egregious error on the
part of the model and such an example certainly depicts the need for interpretability of deep learning models
especially in the medical field where such mistakes cannot be allowed to happen.

4.2. Local Interpretable Model-Agnostic Explanations (LIME)

The LIME framework is essentially a local surrogate model which is an interpretable framework, utilised
to explain independent predictions of ’black box’ (i.e. underlying working is hidden) machine learning models
[35]. LIME conducts tests on what would happen to the predictions of the model when the user provides
alterations of their data into the model. LIME, in this principle, engenders a novel dataset comprising
of permuted specimens and the analogous predictions of the black box model. On this novel dataset, the
framework then trains an interpretable model (e.g linear regression model, decision tree, etc.), that is weighted
by the closeness of the sampled instances, to the instance of concern which is required to be explained. The
learned model must be a plausible estimate of the machine learning model’s predictions locally. Arithmetically,
local surrogate models with the interpretability constraint can be depicted as follows in equation(4):

interpretation(x) = arg minv∈V L(u, v, πx) + ω(v) (16)

We consider an explainable model v (e.g. decision tree) for the sample x which will reduce a loss L (e.g.
binary cross entropy), and meters how near the interpretation is, relative to the predicted value of the initial
model u (e.g. a neural network model). This process is done all while keeping the model intricacy ω(g)
minimum. Here, V is the collection of realizable explanations, for which in a hypothetical case, may be
feasible decision tree models. The closeness measure πx defines the extent of the locality around sample x,
and is what we consider for the explanation.
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Figure 14: Block diagram of how LIME works

For explaining images, permutations of the images are developed by segregating the image into superpixels
and switching these superpixels on or off. Superpixels are interlinked pixels with analogous colors and can
be switched off by replacing every pixel with a user-specified one. The user may also specify a numerical
likelihood for switching off a superpixel in each variation sample so that they may observe only the highest
contributing factors. The use of these superpixels for explaining the decisions on the DaTscan images are
discussed in the next section.

4.3. Interpretation of DaTscans

The region of interest (ROI) in our data are the putamen and caudate regions of the brain and hence the
LIME explainer instance attributes the superpixels relating to these regions as the portions of the image with
the highest weights or influence in determining the outcome of the prediction. The application of LIME as
seen on the samples in Figure 15 and Figure 16 allows the visual tracing of the ROI which makes it easier
for non-experts in the field to determine the diagnosis of the patient.

(a) Patient-1 (HC) (b) Patient-2 (HC) (c) Patient-3 (HC) (d) Patient-4 (HC) (e) Patient-5 (HC) (f) Patient-6 (HC)

Figure 15: Samples of HC classified interpretations

As seen in the two examples from Figure 17, the LIME explainer emphasised the healthy putamen and
caudate regions of a non-PD patient to be the influencing regions in classifying the data as healthy control.
Figure 17(a) and 17(c) depict the SPECT scans (after preprocessing) and Figure 17(b) and 17(d) depict the
corresponding output after applying LIME.

Similarly seen in the two examples from Figure 18, the LIME explainer emphasised the abnormal or
reduced features of the putamen and caudate regions of a non-PD patient to be the influencing regions
in classifying the data as PD. Figure 18(a) and 18(c) depict the SPECT scans (after preprocessing) and
Figure 18(b) and 18(d) depict the corresponding output after applying LIME. We may see that in the
explanations of a few samples like (c) and (d) of Figure 16, the emphasized superpixels are more distorted.
This explanation could be the result of an anomalous increased dopamine activity in nearby areas of the ROI,
a characteristic feature of late-stage PD. Smaller ROIs have most probably prompted the model to learn PD
relevant features surrounding the putamen and caudate regions as well and hence we observe non-uniform
superpixel distribution among such PD classification explanations.
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(a) Patient-1 (PD) (b) Patient-2 (PD) (c) Patient-3 (PD) (d) Patient-4 (PD) (e) Patient-5 (PD) (f) Patient-6 (PD)

Figure 16: Samples PD classified interpretations

(a) Raw Image (b) With LIME

(c) Raw Image (d) With LIME

Figure 17: Healthy Control

5. Conclusion

The purpose of this study was to classify SPECT DaTscan images as having Parkinson’s disease or not
while providing meaningful insights into the decisions generated by the model. Using the VGG16 CNN
architecture along with transfer learning, the model was able to achieve an accuracy of 95.2%. This study
aimed at making an early diagnosis for Parkinson’s disease faster, more intuitive, and is proposed to be
applied in real-world scenarios.

These results lay the groundwork for future studies where a larger dataset may be available and the
extent of the class imbalance may be smaller. Model accuracy has scope for improvement, thereby reducing
the number of false positives and negatives, through possible tuning of hyper-parameters or using different
network architectures. Improvements in neural network input limitations may allow an entire 3D volume
image (as is the case with most brain scans) to be trained on a model, and not just a single slice of the
volume, hence preserving relationships amongst any possibly important adjacent slices. Another possible
shortcoming is the authenticity of the labelling of the obtained data before training the model. Lack of
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(a) Raw Image (b) With LIME

(c) Raw Image (d) With LIME

Figure 18: Parkinson’s Disease

a definitive diagnostic test for Parkinson’s disease means that the data labelling is still of questionable
accuracy being subjective to the assessment of human evaluations. The model may also need to undergo
clinical validation and tested in real-time with novel data.

Finally, we can conclude that a model with reliable accuracy was developed on a sample size that was
sufficiently large and diverse. It utilises an effective approach, saving valuable time and resources for health-
care workers. The study assists in the early diagnosis of Parkinson’s disease through explanations, thereby
developing confidence in the use of computer-aided diagnosis for medical purposes.
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