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Abbreviations 

SCGRNs: single-cell gene regulatory networks  
T2D: type 2 diabetes 
DL: deep learning  
DGRN: dynamic gene regulatory networks  
VGG: visual geometry group 
Xception: extreme inception 
ResNet: residual network  
DenseNet: dense convolutional network  
ACC: accuracy 
AUC: area under curve 
MCC: Matthews correlation coefficient 
 

Abstract 

Analyzing single-cell pancreatic data would play an important role in understanding 
various metabolic diseases and health conditions. Due to the sparsity and noise present 
in such single-cell gene expression data, analyzing various functions related to the 
inference of gene regulatory networks, derived from single-cell data, remains difficult, 
thereby posing a barrier to the deepening of understanding of cellular metabolism. Since 
recent studies have led to the reliable inference of single-cell gene regulatory networks 
(SCGRNs), the challenge of discriminating between SCGRNs has now arisen. By 
accurately discriminating between SCGRNs (e.g., distinguishing SCGRNs of healthy 
pancreas from those of T2D pancreas), biologists would be able to annotate, organize, 
visualize, and identify common patterns of SCGRNs for metabolic diseases. Such 
annotated SCGRNs could play an important role in speeding up the process of building 
large data repositories. In this study, we aimed to contribute to the development of a 
novel deep learning (DL) application. First, we generated a dataset consisting of 224 
SCGRNs belonging to both T2D and healthy pancreas and made it freely available. 
Next, we chose seven DL architectures, including VGG16, VGG19, Xception, 
ResNet50, ResNet101, DenseNet121, and DenseNet169, trained each of them on the 
dataset, and checked prediction based on a test set. We evaluated the DL architectures 
on an HP workstation platform with a single NVIDIA GeForce RTX 2080Ti GPU. 
Experimental results on the whole dataset, using several performance measures, 
demonstrated the superiority of VGG19 DL model in the automatic classification of 
SCGRNs, derived from the single-cell pancreatic data. 
 
Keywords: single-cell analysis; gene regulatory networks; cell biological processes; 
pancreatic islets; deep learning; applications in biology and medicine 
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1. Introduction 

Recent advances in single-cell technologies have led to the generation of single-cell 
gene expression data, which help advanced computational methods to study the single-
cell-derived gene regulatory networks (GRNs) [1-9]. By inferring GRNs, biologists 
would be able to get deeper insight into the working mechanism of cells, thereby 
improving their understanding of the mechanism underlying the regulation of cellular 
functions in various biological processes [10-12].  

Zheng et al. [13] had proposed a computational learning approach, named 
scPADGRN, to infer dynamic gene regulatory networks (DGRN) consisting of several 
GRNs that change over time, using time-series single-cell data, as follows. First, N 
single-cell data (genes spanning over the rows and cells spanning over the columns) 
were provided, each associated with a different time point, followed by a cell-clustering 
step, to yield N cluster-specific data. The learning process aimed to infer DGRN by 
utilizing preconditioned ADMM for solving the optimization problem, where the 
objective function aimed to guarantee network precision, network sparsity, and network 
continuity of the DGRN. Next, subnetworks were extracted from DGRN, based on 
genes existing in the same specific pathways or biological processes. They proposed 
quantitative index, named DGIE, to predict regulatory relationships across the GRNs. 
Inferred GRNs were then compared against the ground truth of GRNs from 
Transcription Factor Regulatory Network database. Reported results for inferring 
DGRNs indicated scPADGRN to possibly help in the understanding of cell 
differentiation in different biological processes.  

Prataba et al. [14] had evaluated the performance of 12 existing algorithms for 
inferring gene regulatory networks from different single-cell data, including simulated 
data from curated models and synthetic networks. Evaluation of algorithms was 
performed to assess the accuracy, stability, as well as network motifs and their stability. 
Aibar et al. had presented SCENIC to identify transcription factors regulating target 
genes for regulon identification and inference of gene regulatory networks. Van de 
Sande et al. [15] had presented a scalable version of SCENIC, to speed up the process 
of inferring GRNs.  

Turki et al. [12] had proposed three machine learning-based approaches for the 
inference of singe-cell gene regulatory network (SCGRN) of T2D pancreas and healthy 
pancreas. The proposed ML approaches work under the supervised setting described as 
follows. The first ML approach (named FSL) provides a training set, consisting of 
positive and negative examples. Positive examples correspond to transcription factors 
(TFs) regulating target genes while negative examples correspond to the target genes 
that are not regulated by TFs. Feature vectors of the examples are constructed by the 
concatenation of expression of TFs and target genes. The training set is then provided to 
a machine learning algorithm, to induce a model. Feature vectors for test examples are 
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constructed by considering concatenation of expression of TFs and target genes. Test 
examples are provided to the obtained model to perform prediction; the latter 
corresponds to +1 if a TF regulates a target gene, or -1 if a TF does not regulate a target 
gene. The second ML approach (named SSL) works similar to the FSL approach; the 
only difference is in the training and testing feature vector representations, in which a 
stacked autoencoder (SA) is applied to training and testing, to generate different feature 
vector representations. The resultant reduced training feature vectors from SA is 
concatenated with training feature vectors, and then provided to a machine learning 
algorithm to generate a model. The reduced testing feature vectors, obtained from 
applying SA to the test set, are concatenated with testing feature vectors. The trained 
model is then applied to the new testing feature vectors, to generate predictions. The 
third ML approach (named TSL) performs similar computations as in the SSL approach. 
However, instead of applying SA to the training and testing feature vectors, to get new 
feature representation concatenated with training feature vectors, the TSL applies SA to 
the extracted topological features, in order to be concatenated with training and testing 
feature vectors. Following similar steps as in the SSL approach, Iacono et al. [16] had 
proposed a computational approach for the inference of GRNs from single-cell T2D and 
healthy pancreas as well as from single-cell data of Alzheimer’s disease. Other methods 
have also been proposed to study the inference of GRNs [17, 18].  

Compared to the recent approaches for inference of GRNs [12-16, 19], the current 
study is unique in several ways: (1) Previous methods had not taken full advantage of 
deep learning (DL) to improve the understanding of biological processes pertaining to 
cells. Since DL techniques have been successfully applied to solve many biological and 
medical problems, including image classification problems [20-29], we have presented a 
DL application for discriminating between GRNs, obtained from human pancreas islets, 
in a single-cell data. (2) We have generated an image dataset consisting of 224 GRNs 
from single-cell healthy and T2D pancreas; it has been made freely available in the 
supplementary dataset. (3) We have formulated the discrimination task as a binary 
classification problem to aid biologists in improving the visual experience while 
identifying healthy and disease-related GRNs. (4) We have utilized several DL 
architectures, such as VGG16 [30], VGG19 [30], Xception [31], ResNet50 [32], 
ResNet101[32], DenseNet121 [33], and DenseNet169 [33]. (5) We have performed 
extensive experimental evaluation to assess the feasibility of DL in tackling the 
proposed problem. (6) We have reported results that demonstrate the potential of DL in 
successfully tackling the problem of discriminating across SCGRNs. To the best of our 
knowledge, this work would set the foundation for advancing the biological 
understanding of various diseases and cellular mechanisms. 
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2. Material and Methods 

2.1. Datasets of Healthy and T2D Pancreas  
A chart showing the computational approach for generating an image dataset consisting 
of 224 single-cell-derived gene regulatory networks, pertaining to healthy and T2D 
pancreas, was prepared as follows (Figure 1). First, the human pancreas dataset was 
obtained from Segerstolpe et al. [34], and single-cell data were obtained from Iacono et 
al. [16, 19]. Single-cell gene regulatory networks were inferred for both healthy and 
T2D pancreas, as reported by Iacono et al. [16, 19]. Finally, we visualized gene 
regulatory networks using NetBioV package [35] in R, as reported previously [12]. 
Different layout styles were utilized in NetBioV, yielding 112 SCGRNs of healthy 
pancreas and 112 SCGRNs of T2D pancreas. Some SCGRN image samples are shown 
in Figure 2. The first row corresponds to 3 SCGRNs of healthy pancreas donors with 
distinct parameters while the second row corresponds to 3 SCGRNs of T2D pancreas 
donors with distinct parameters. All 224 image data generated are available in the 
supplementary dataset. 
 

 

Figure 1: An overview of the computational approach for SCGRN image generation. 
Figure created with Biorender.com. 
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2.2. DL Framework  
The computational framework of utilizing DL for discriminating between SCGRNs of 
healthy and T2D pancreas is shown in Figure 3. Suppose we are given a training set 

1{( )}m
i i iS x , y ==  consisting of m labeled SCGRN images, along with a testing example of 

an unseen SCGRN image. The class label (1 or 0) of each training example is known, 1 
representing an SCGRN pertaining to healthy pancreas and 0 representing an SCGRN 
corresponding to T2D pancreas. In this study, we utilized seven deep convolutional 
neural network architectures, including VGG16, VGG19, Xception, ResNet59, 
ResNet101, DenseNet121, and DenseNet169. The only difference was that we replaced 
the densely connected classifier in each pre-trained architecture by a densely connected 
classifier consisting of two dense layers. The first dense layer used ReLu activation, 

  
 

  

Figure 2: Samples of generated SCGRN image data. The top row corresponds to three 
SCGRNs of healthy pancreas while the bottom row corresponds to SCGRNs of T2D pancreas. 
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followed by a dropout. Since we aimed to perform binary classification, the second 
dense layer had 1 unit and a sigmoidal activation. Details for each architecture are 
provided in supplementary models file. For each architecture, we trained DL model on a 
training set of SCGRN images. Then, we applied the trained model to test examples 
consisting of images pertaining to SCGRNs of both healthy and T2D pancreas, in order 
to generate predictions corresponding to probabilities mapped to 1 (i.e., healthy 
pancreas), if the predicted probability is greater than 0.5; otherwise, it was mapped to 0 
(i.e., T2D pancreas). 
 

 

Figure 3: An illustration of the deep learning framework utilized in this study for 
distinguishing between SCGRNs of human pancreatic islets in healthy individuals and 
patients with T2D. 

3. Experimental Study 

 

3.1. Classification Methodology 
 
We explored the behavior of seven DL architectures—VGG16, VGG19, Xception, 
ResNet50, ResNet101, DenseNet121, and DenseNet169—for inferring SCGRNs of 
single-cell pancreatic data of healthy and T2D pancreas. All architectures worked under 
supervised setting, where a training set was provided to train each DL model. The 
trained DL models were next applied to the test set to generate predictions mapped to 1 
(healthy pancreas) or 0 (T2D pancreas). We utilized four different performance 
measures: Accuracy (ACC), F1, Matthews correlation coefficient (MCC), and area 
under curve (AUC). These measures were calculated based on the confusion matrix in 
Table 1 as follows: 
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Table 1: Two-class confusion matrix. 

 PREDICTED CLASS 
 
ACTUAL CLASS 

 Class = H (1) Class = T2D (0) 
Class = H (1) TP (True Positive) FN (False Negative) 
Class = T2D (0) FP (False Positive) TN (True Negative) 

 
 
 
 
 

ACC = 
TP TN

TP FP FN TN

+
+ + +

                                                                                   (1) 

Precision Recall
F1 = 2

Precision+ Recall
××                                                                                      (2) 

 

MCC = 
( )( )( )( )TN FN TN FP P

TP TN F

P

P FN

T F TP FN

× −
+ + + +

×
                                           (3) 

 
AUC = 0.5×(Sensitivity+Specificity)                                                                      (4) 
 
 

For validation, we utilized 5-fold cross-validation mode as follows. We partitioned 
the SCGRN image datasets into 5 splits. In fold-1, we assigned 4 splits to training set, in 
order to train DL models. Then, we performed a prediction on 1 test split. Such a 
process was repeated for the other 4 folds. As can be seen from Figure 4, splits colored 
in black covered the whole dataset. Therefore, such validation showed the performance 
of DL models on the whole dataset. 
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Figure 4: Five-fold cross-validation was performed on the whole SCGRN image 
dataset. Testing splits are colored in black; training splits are colored in blue.  

 
 
 
 

3.2. Implementation Details 
The DL experiments were performed using Jupyter Notebook 6.0.1, which was 
available with the Anaconda 4.8.1 in Python 3.7.4 [36]. To run DL architecture, we 
utilized Keras library. Data preprocessing and handling were performed using NumPy 
and Pandas libraries. Since training DL models was time-consuming and required 
extensive computational resources [37, 38], we ran the DL architectures on an HP 
workstation with a single Nvidia RTX 2080Ti GPU of 4352 CUDA cores with 11GB 
Memory. For evaluating all the models, we utilized Sklearn library. As per Iacono et al, 
we used bigSCale package in R to generate an SCGRN for healthy and T2D pancreas 
[19]. For reporting statistical tests using Friedman post-hoc test with Bergmann-
Hommel’s procedure, we used scmamp in R [39].  
 

3.3. Classification Results 
Based on the 224 images of SCGRNs in healthy and T2D pancreas, obtained from 
human pancreatic islets, we evaluated all the DL models, thereby reporting performance 
on training and testing by utilizing 5-fold cross-validation. 
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3.3.1. Training Results 
Figure 5 reports the DL performance of four performance measures on the training sets 
during 5-fold cross-validation. Boxplots showed Xception, DenseNet121, and 
DenseNet169 to generate the best performance results. Specifically, they generated the 
highest performance of 1 or all performance measures (ACC, AUC, F1, and MCC); 
ResNet101 generated the lowest performance results. 
 
 
 

 

 

Figure 5: Training performance results during 5-fold cross-validation using ACC, 
AUC, F1, and MCC performance measures. Boxplot is used to display the performance 
measures of seven deep learning models. 

3.3.2. Testing Results 
Figures 6–10 display the confusion matrices for 5 folds of test sets during cross-
validation. For each DL model, adding the numbers of all 5 confusion matrices yielded 
224, which corresponded to the whole SCGRN dataset. Based on the confusion matrices 
in Figures 6–10, we reported in Figure 11 the performance results of DL models on the 
test sets during 5-fold cross-validation. Figure 11 clearly indicated VGG19 to 
outperform all DL models, according to ACC, AUC, F1, and MCC performance 
measures. For folds during cross-validation, VGG19 generated high average 
performance results (72–86%) based on ACC, AUC, F1, and MCC (Table 2). 
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ResNet101 was the worst among all models, generating only average performance 
results (48–74%) of ACC, AUC, F1, and MCC. According to Table 2, VGG19 
generated the most reliable performance results, considering all performance measures.  
 
 
 

 

Figure 6: Confusion matrices for deep learning models on the test sets during Fold-1. 

 

 

Figure 7: Confusion matrices for deep learning models on the test sets during Fold-2. 
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Figure 8: Confusion matrices for deep learning models on the test sets during Fold-3. 

 

 

Figure 9: Confusion matrices for deep learning models on the test sets during Fold-4. 
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Figure 10: Confusion matrices for deep learning models on the test sets during Fold-5. 

 
 

 

 

Figure 11: Test performance results during 5-fold cross-validation using ACC, AUC, 
F1, and MCC performance measures. Boxplots display the performance measures of 
seven deep learning models on whole datasets, consisting of 224 image data of 
SCGRNs. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.30.273839doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.30.273839


 

14 

 

Table 2: Standard deviation (SD) of deep learning (DL) models during the 5-fold cross-
validation on test sets for ACC, AUC, F1, and MCC. MACC is Mean ACC, MAUC is 
Mean AUC, MF1 is Mean F1, MMCC is Mean MCC. SD stands for standard deviation. 
Dl with the highest mean performance measure is shown in bold. 

 VGG16 VGG19 Xception ResNet50 ResNet101 DenseNet121 DenseNet169 
SD (MACC) 0.029(0.830) 0.041(0.861) 0.046(0.777) 0.057(0.759) 0.029(0.740) 0.051(0.847) 0.050(0.839) 
SD (MAUC) 0.029(0.830) 0.041(0.861) 0.046(0.777) 0.025(0.759) 0.029(0.740) 0.051(0.847) 0.050(0.839) 
SD (MF1) 0.023(0.837) 0.035(0.861) 0.052(0.771) 0.072(0.751) 0.027(0.738) 0.056(0.842) 0.044(0.843) 
SD (MMCC) 0.057(0.665) 0.081(0.727) 0.089(0.560) 0.114(0.524) 0.058(0.487) 0.102(0.699) 0.101(0.682) 

 
 
 
 
In Figures 12a–d, we utilized Friedman post-hoc test with Bergmann and Hommel’s 

correction, reporting pairwise p-values and average performance ranking of each DL 
model. According to Friedman post-hoc test, applied to the results obtained from ACC 
and F1 (see Fig. 12a,c), VGG19 had the best average performance ranking. The 
Bergmann and Hommel’s corrected p-values showed VGG19 to significantly 
outperform ResNet101. However, the average performance ranking of the other DL 
models (i.e., VGG16, Xception, ResNet50, DenseNet121, and DenseNet169) was not 
significantly different from that of VGG19. The second-best average ranking was for 
DenseNet121. However, it was not statistically different from the other DL models. 
When Friedman post-hoc test was applied to results obtained from AUC and MCC 
performance measures, the p-values showed the average performance ranking of 
VGG19 and DenseNet121 to be statistically different from that of ResNet101. On the 
other hand, average ranking of VGG16, Xception, ResNet50, and DenseNet169 was not 
statistically different from that of VGG19 and DenseNet121 (see Fig. 12b,d).  
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Figure 12: Reported P-values and related average rankings of all pairwise deep learning 
(DL) models on the test sets, based on the Friedman test with Bergmann and Hommel’s 
correction. Highest rank of a DL model indicated its performance to be better than that 
of others (shown in bold). DL models generated statistically significant results if the 
difference between the two models in a pair had p < 0.05 (shown in asterisk). Results 
obtained after applying the statistical test to performance results measured according to 
(a) ACC, (b) AUC, (c) F1, and (d) MCC. 
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4. Discussion 

Our DL application consisted of three parts: (1) Generation of SCGRN image dataset 
from single-cell human pancreatic data, (2) formulation of the problem as a binary 
classification problem, where we aimed to distinguish between the SCGRNs of human 
pancreas with good health and with T2D, and (3) utilization and evaluation of the 
feasibility of several DL architectures for the image classification task. After generating 
our SCGRN image dataset, including 112 SCGRNs of healthy pancreas and 112 
SCGRNs of T2D pancreas, we provided the image dataset to DL architecture utilizing 
5-fold cross-validation. For each fold, we trained DL models on training splits and 
evaluated their performance on the test split.  

The highly accurate predictions indicated the feasibility of using DL as an artificial 
intelligence tool for identifying disease differences in network biology. Utilizing such a 
tool, biologists would be able to (1) visualize and distinguish biological networks of 
complex diseases from healthy ones; and (2) improve personal experience, when facing 
new biological networks, by looking into similar patterns of already existing networks. 
 In this study, several DL models generated different performance results; to show the 
prediction reliability across DL models during the 5-fold cross-validation, we reported 
standard deviation (SD) results of all models; results indicated the stability of VGG19 
prediction results. Moreover, we performed a statistical test using Friedman post-hoc 
test with Bergmann and Hommel’s correction; the results demonstrated VGG19 to 
significantly outperform ResNet101 as a DL model. 

To determine the factors for configuring the optimization process during the training 
of DL models, we use the RMSprop optimizer, setting the learning rate to 1e-5, as in a 
previous report [36]. The loss function used was binary_crossentropy; accuracy metric 
was also used. Details about loss and accuracy plots are provided in supplementary 
Fold1, Fold2, Fold3, Fold4, and Fold5. 

In order to run computational experiments, we utilized the existing DL architectures 
(VGG16, VGG19, Xception, ResNet50, ResNet101, DenseNet121, and DenseNet168) 
for feature extraction. We provided features into a different densely connected 
classifier, consisting of two dense layers, as in a previous report [36]. It would be worth 
noting that we fine-tuned the top layers of all architectures with densely connected 
classifier, as described in Section 2.3. However, they did not generate good performance 
results. Hence, results have been placed in supplementary Fold files (See results within 
VGG16_FT,VGG19_FT, Xception_FT, ResNet50, ResNet101, DenseNet121, and 
DensNet169_FT). 
 

5. Conclusion 

We have presented a novel DL application for single-cell data analysis. First, we 
generated 224 images of single-cell gene regulatory networks, derived from single-cell 
pancreatic data, pertaining to pancreas of healthy individuals and of patients with T2D. 
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We, then, utilized several DL architectures (VGG16, VGG19, Xception, ResNet50, 
ResNet101, DenseNet121, and DenseNet169) for discriminating between the SCGRNs 
of healthy pancreas and T2D pancreas. Each DL architecture was then trained on 
SCGRN images and utilized thereafter for predicting test examples. For evaluation, we 
utilized 5-fold cross-validation and several performance measures, including accuracy, 
AUC, F1, and Matthews correlation coefficient. Experimental results indicated VGG19 
to generate the highest performance results. Moreover, VGG19 performed significantly 
better than ResNet101. We have made the 224 SCGRN image dataset freely available in 
supplementary dataset. 

Future studies would be directed at: (1) Using the image dataset to devise DL models 
under different scenarios, such as unsupervised learning, semi-supervised learning, 
active learning, transfer learning, and domain adaptation, and (2) incorporating the 
dataset into generative adversarial networks to improve prediction performance under 
the transfer learning scenario [22, 40, 41]. 
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