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ARTICLE INFO ABSTRACT

Keywords: Adolescent Idiopathic Scoliosis (AIS) is a deformation of the spine and it is routinely diagnosed
Risser sign using posteroanterior and lateral radiographs. The Risser sign used in skeletal maturity assessment
Skeletal maturity is commonly accepted in AIS patient’s management. However, the Risser sign is subject to
Bone aging inter-observer variability and it relies mainly on the observation of ossification on the iliac crests. This
Convolutional neural networks study proposes a new machine-learning-based approach for Risser sign skeletal maturity assessment
Scoliosis using EOS radiographs. Regions of interest including right and left humeral heads; left and right

femoral heads; and pelvis are extracted from the radiographs. First, a total of 24 image features
is extracted from EOS radiographs using a ResNet101-type convolutional neural network (CNN),
pre-trained from the ImageNet database. Then, a support vector machine (SVM) algorithm is used for
the final Risser sign classification. The experimental results demonstrate an overall accuracy of 84%,
78%, and 80% respectively for iliac crests, humeral heads, and femoral heads. Class activation maps
using Grad-CAM were also investigated to understand the features of our model. In conclusion, our
machine learning approach is promising to incorporate a large number of image features for different
regions of interest to improve Risser grading for skeletal maturity. Automatic classification could
contribute to the management of AIS patients.

1. Introduction The one which is the most common in AIS treatment is
the Risser sign [11]. The Risser sign is determined by
observation of the growing ossification plates/cartilages of
iliac crests. Two classifications American and French have
been defined [17]. The American version is divided into 6
stages as shown in figure 1, namely:

Adolescent idiopathic scoliosis (AIS) is a 3D
deformation of the spine that affects 1 to 3% of the
at-risk population aged 10-16 years [45]. It is caused
by various factors including genetic, biochemical, and
morphological [12]. The deformation can worsen over time.

AIS is treated by prescribing a brace, and in severe cases, o Risser 0 where no illiac apophysis visible (ossification
the patient must undergo corrective surgery. Spine surgeons is absent),

rely mostly on the monitoring of the scoliotic curve using

posteroanterior and lateral radiographs. The severity of o Risser 1 where initial appearance of ossification of the
deformation is measured using the Cobb angle. The Cobb illiac apophysis (ossification is 25%),

angle is determined on the posteroanterior radiograph by
selecting the most tilted vertebra at the top and bottom of
the curve [3]. The summation of the angles of these two

e Risser 2 where migration halfway across the top of
the illiac wing (ossification is at 50%),

vertebrae relative to the horizontal is the Cobb angle [3]. e Risser 3 where ossification is 75% of the distance,
1.1. Bone maturity assessment in AIS o Risser 4 where the ossification is crossing the iliac
Bone maturity assessment is another important wing, but not fused to the illum and

component of the management of AIS. Several authors
have attempted to estimate bone age in different ways by
comparing patients to reference X-rays. In general, the most
used method is that of Greulich and Pyle performed on Given the subjective nature of the Risser sign, several
the left hand and wrist [16]. Another method, the Sanders  studies have reported inter and intra-variability. Lack of
maturity scale, based on a left hand radiograph, appears to consensus among clinicians affects the accuracy of the
be strongly prognostic of future scoliosis curve behavior measurement. Some studies on measurement variability
[36]. Particularly, the thumb ossification composite index  have shown acceptable results [15, 14]. However, the latest
(TOCI) based on ossification of the thumb has demonstrated  studies are less optimistic and consider agreement moderate
simplicity and high accuracy for predicting skeletal maturity, [37, 23]. While the formal definition of the Risser sign
comparable with the Sanders maturity scale [22]. For its  relies on the observation of the iliac crests, other centers
part, the method of Pyle and Hoerr targets the knee [2].  of ossification can be explored for proper grading. Thus,

e Risser 5 where complete ossification of the iliac
apophysis with fusion with the illum.

Magnide et al.: Preprint submitted to Elsevier Page 1 of 8



Figure 1: Visual illustration of iliac crest progression and
corresponding Risser stages for American version [23] (At
stage 0, there is no ossification until stage 6 when ossification
becomes complete.)

Kaddioui et al. [23] demonstrated that the entire pelvic
region could be used to better determine the Risser sign.
Besides, several metrics make it possible to estimate bone
age by observing other regions of the body [2].

1.2. Deep learning for classification of bone
maturity

Recently, machine learning, especially deep learning
methods were found to be successful at classifying
automatically bone structures from radiographs and 3D
models. Features extraction is performed using transfer
learning based on a convolutional neuronal network (CNN).
The wide availability of pre-trained models on natural
images complexifies the choice of a proper model for bone
aging classification. So far, the following models have been
popularized: AlexNet, VGG, Inception, or U-Net.

Inception-ResNet model made it possible to detect
and locate radius and ulna fractures on X-ray wrist with
high sensitivity and specificity [42]. Pan et al. have
shown that an automatic CNN-based approach using hand
X-ray could facilitate the assessment of bone age [32].
Also, Rayan proposed to efficiently classify pediatric elbow
abnormalities using CNN for diagnosis [33]. CNNs are
now very useful for automating bone aging classification
[43, 34, 25, 31, 18]. Tong et al. propose a model which
consists of two modules: one is for feature extraction
by CNNs (VGG architecture) and the other is for bone
age estimation by support vector regression (SVR) using
multiple kernel learning (MKL) [43]. In the same way, Ren
et al. propose a fully automated deep learning solution to
process X-ray images of the hand for bone age assessment
using a CNN based on Inception-V3 architecture [34]. Lee
et al. exploit transfer learning with a pre-trained CNN based

on GooglLeNet to automatically extract important features
from all bones on an ROI that was automatically segmented
by a detection CNN [25]. Another study demonstrated
the benefits of a customized neural network algorithm
carefully calibrated to the evaluation of bone age utilizing
a relatively large dataset [31]. Finally, an approach based
on Inception-V3 architecture using images augmented and
concatenated with the sex information won first place in a
machine learning challenge [18]. These are all methods that
have demonstrated the utility of CNNs in determining bone
age.

CNN models have gained wide popularity in digital
radiology. This approach often targets a clinical question
related to anomaly detection or clinical classification [47].
To achieve this, Soffer et al [39] propose a methodology
in 7 steps. After having formulated the problem, it is then
necessary to carry out computer vision tasks which consist
of classifying, detecting, segmenting, or optimizing input
images [39]. Then data must be separated into training,
validation, and test data. Preprocessing step is sometimes
necessary to augment data and thus avoid overfitting [39]. At
the implementation step, we must choose the most suitable
hardware (GPU), software platform, and CNN architecture.
Finally, the validation step is important to demonstrate the
effectiveness of the model.

CNNs require a lot of images as input. = CNNs
demands an extensively large amount of data to achieve
a well-behaved performance model [4]. However, it is
sometimes very complicated to obtain clinical data given
cost and confidentiality. To remedy this, two solutions
are available to us: data augmentation or transfer learning
[47]. Data augmentation is used to modify training data
by transforming it randomly so that model does not see the
same inputs during training iterations [49]. However, data
augmentation includes artificially manipulated data, which
can introduce bias in the training process. Transfer learning
is another strategy to train a model on a small dataset. The
idea is to harness the capabilities of the pre-trained model to
extract the most important information from input images.
Many models pre-trained are open to the public such as
AlexNet [24], VGG [38], ResNet [19], Inception [41], and
DenseNet [20].

The texture feature extraction methods are divided into
seven classes: statistical approaches, structural approaches,
transform-based approaches, model-based approaches,
graph-based approaches, learning-based approaches, and
entropy-based approaches [21]. Among extraction methods,
the statistical approach GLCM (grey level co-occurrence
matrix) is largely used [21]. It has been shown that, the
GLCM-based approach has good performance in terms of
processing time and complexity but for images with a large
amount of noise, the GLCM features are not appropriate
[30]. In the last few years, learning-based approaches in
particular CNN-based have significantly been used [21].
If the textures have very large within-class appearance
variations, CNN-based methods clearly perform the best,
however at a cost of high computational complexity [28].
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This study presents a new approach for bone maturity
grading using different ossification centers. Our approach
is validated on a large cohort of patients acquired at a
different stage of their bone maturity. This work is organized
as follows: Section 2 presents the methodology and the
database used to validate our work, Sections 3 presents the
results and Section 4 the discussion. Finally, in Section 5, a
conclusion is provided.

2. Materials and Methods

2.1. Database description

A research protocol was submitted to the ethics
review board and approval was obtained before the
experimentation. A cohort of 53 AIS patients (88% of
female, age = 13,65 + 1,23 years), spanning over 5
visits at different Risser sign was recruited for this study
at Sainte-Justine Hospital. The EOS radiographs were
collected for each visit. EOS radiographs are acquired using
two semi-simultaneous low-dose detectors to acquire a full
or mid-body X-ray image of the patient while limiting the
amount of patient irradiation [46]. EOS radiography is
generated using the principle of the multi-wire proportional
chamber developed by Charpak [9]. From the EOS
radiographs, 6 regions of interest (the 2 left and right iliac
crests, the 2 left and right femoral heads then the 2 left and
right humeral heads) were extracted manually. Each sample
is associated with:

e 6 regions of interest of size 600x600 pixels,
e the date of the visit,
e and the Risser sign labeled by the clinician.

Figure 2 illustrates images available for each sample. The
modeling is done region of interest by region of interest.
Left and right images will be considered as separate entries.
Images are saved in a file structure organized by patient and
by date while the annotations are recorded in a spreadsheet.
Once the data is well structured and labeled, the next step
will be to clean and balance it.

2.2. Data pre-processing

Before starting the modeling, a review of input data
available allowed us to fill in the missing values with a
regrading of the patient and, in some cases, to exclude
missing data. After examination, 16 inconsistent examples
were deleted while 4 missing annotations were re-estimated
using the definition of the Risser sign (Figure 1). The
size of the corpus went from 530 to 514 segmented
images.  Risser 0 dominates while Risser 2 and 5
present fewer samples (see figure 3A). To reduce this
imbalance, there are 2 basic methods: sub-sampling by
eliminating examples of majority classes or over-sampling
by duplicating examples of minority classes. In the two
methods, either one loses information which could have
been useful, or one creates an over-fitting. On the other
hand, the SMOTE-Tomek technique, for its part, combines

6 PNG 600x600
Humeral Tliac Femoral

. . head crests head

Figure 2: Raw data per visit per patient. (Each frontal EOS
radiography is segmented into 6 sub-regions: right and left
iliac crests, right and left humeral heads, and right and left
femoral heads. Each image has a size of 600x600 pixels with
gray-scale values.)
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Figure 3: Distribution of Risser classes before and after the
SMOTE-Tomek technique ((In figure 3A, we observe a large
imbalance within the Risser classes using the 514 segmented
and preprocessed images. SMOTE-Tomek technique reduced
imbalance as can be seen in figure 3B. We present here the
example of iliac crests with features extracted using transfer
learning.)

over-sampling and under-sampling to find an acceptable
compromise and reduce the possible errors linked to these
two basic methods [5]. This is the main argument that
motivated the choice of SMOTE-Tomek technique. After
having applied this strategy, the data is better distributed (see
figure 3B). At the end of this step, the pre-processed images
are used to extract the features in 2 ways: first using transfer
learning and then using the GLCM technique.

2.3. Feature extraction: transfer learning

Transfer learning is convenient to adapt an existing
model, learned from a large amount of data to a specific
learning task. The parameters of the already trained
CNN model are used to extract image features. The
pre-trained CNN chosen is based on the ResNetlOl
architecture [27](Figure 4A). Pre-training is performed
using the ImageNet database which contains millions of
images [13]. As illustrated in figure 4B, the implemented
CNN is composed of 4 groupings of Conv layers: res2,
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image image
7x7 conv, 64, /2 7x7 conv, 64, /2
3x3 max pool, /2 3x3 max pool, /2

res2 res2

res3 res3

resd 3x3 conv, 256 resd

resS resS

reshape 1D

ffu
(A) (B)

Figure 4: Architectures of ResNet101 (A) and pre-trained CNN
are used to extract features (B) [27]. (In figure 4A, the original
architecture of ResNetl101. In figure 4B, pre-trained CNN is
used for extraction after modification of the last 2 layers.)

res3, res4, and res5. Then, the last 2 layers of ResNet101
(Pool and FC) are replaced to generate 24 features as output.
The software was developed in Python 3.7.4 using the Keras
library with the TensorFlow library for deep learning [1] on
an NVIDIA Quadro P2200 GPU.

2.4. Feature extraction: GLCM

To demonstrate the usefulness of our approach based on
transfer learning, we will extract features using the GLCM or
the grayscale co-occurrence matrix method technique. The
goal is to then compare the results from the two approaches.
The GLCM technique is a simple algorithm generally used
to extract features from an image and will be used for
baseline comparison with the deep features. GLCM is
texture characteristics indicating the number of times that
different combinations of gray levels are repeated in an
image at a defined distance and angle. Four values are
extracted for each of the 6 following properties: contrast,
energy, homogeneity, correlation, dissimilarity, and second
angular momentum (ASM). In total, we obtained a 1D vector
of 24 features that represent the image. The implementation
is done in Python 3.7.4 using Scikit-Image library [44].
To predict the Risser sign, the 24 features extracted for

each region of interest are then entered into a classification
algorithm.

2.5. Feature classification: SVM

Support Vector Machines (SVM) are supervised
learning techniques that transform original space into
higher dimensional space based on a kernel function.
Then, the algorithm finds support vectors to maximize
the separation between the classes. To train an SVM, 2
parameters must be adjusted:

e the kernel function which can be a linear function, a
polynomial function with a given degree n, a Radial
Basis Function (RBF) with a given gamma or a
sigmoid function

e and the margin C which defines the separation
distance between the classes.

After sampling with the SMOTE-Tomek technique,
data are then separated at random with 80% for
training-validation and 20% for testing. = The Radial
Basis Function (RBF) kernel was used given its ability to
handle nonlinear boundaries between classes. This function
is characterized by its gamma parameter which defines the
shape of the curvature of the decision boundary. Thus, for
our training, the value of gamma parameter varies between
0.0325 and 100 while the margin parameter C rather varies
between 0.1 and 100. These two parameters were optimized
using grid-search method that searches exhaustively through
a manually specified subset of the parameter space [6].

The optimization is based on 10-fold cross validation
[35]. The training-validation data set is divided into 10
folds : 9-folds for training and 1-fold for validation. The
final error is estimated by averaging the errors committed in
each fold [35]. After finding the optimal parameters for the
SVM classifier, the testing data was used to evaluate both
models. The evaluation is performed for each of the regions
of interest using confusion matrix, precision, and recall. To
go further in the analysis, the visualization of the data in the
light of the classification will be carried out.

2.6. Data visualization: Grad-CAM

Gradient-weighted  Class  Activation = Mapping
(Grad-CAM) was introduced to further understand the
classification results. Grad-CAM offers a mathematical
derivation that uses a weighted combination of the positive
partial derivatives of the last convolutional layer feature
maps [10]. The purpose of Grad-CAM is to find regions
in an image that contributes the most to classification.
Visualization of these could reveal new regions of interest.
To generate Grad-CAM, we use a pre-trained CNN based
on ResNet101 architecture [27] as shown in figure 4A. The
target is the last layer convolution (res5).

3. Results

After data pre-processing, the ResNet101-SVM model
is trained using features extracted for each region of interest.
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Our model completes the training after 15 minutes per region
of interest. Atthe end of the training, when the optimal C and
gamma parameters are found, we evaluated and compared
the ResNet101-SVM model to the GLCM-SVM model.
Tables 1 and 2 illustrate the results of evaluation and
comparison. The accuracy (Acc.) refers to overall accuracy
for all Risser stages. The precision (Prec.) refers to precision
for each Risser stage.

For two regions of interest, overall accuracy is higher
each time when using the ResNet101-SVM. Precision goes
from 80% to 84% for iliac crests and from 69% to 78% for
humeral heads. About femoral heads, precision is equivalent
and evaluate at 80%. When we consider all regions of
interest together, we obtain a precision of 79% and 76%
respectively for ResNet101-SVM and GLCM-SVM. For
most classes, precision and recall values are higher for
ResNet101-SVM.

Graphical representations of confusion matrices are
useful for checking the agreement between predicted values
of amodel and values annotated by the expert (ground truth).
As illustrated in figure 5, we noticed a higher agreement for
the ResNet101-SVM model from the confusion matrices.

Assessment of activation maps was performed by
arranging side-by-side each radiograph in a single image per
patient, to outline the bone maturity progression between
each visit. Information of anonymized ID, sex, age,
menarche, and Risser sign is marked along with regions
of interest to be studied. Figures 6 and 7 shows
examples of activation maps for two patients. Regions of
interest previously identified (iliac crests, humeral heads,
and femoral heads) present stronger activation. Apart from
these three regions, we also notice the cranial bones and rib
cage that have stronger activation.

4. Discussion

First, the results obtained show a significant
improvement of our ResNet101-SVM compared against the
GLCM-SVM and the VGG16 model [23]. The previous
study using VGG16 model is built with 1830 pelvic
radiographs and trained in 8 hours [23]. Comparatively,
ResNet101-SVM is built with 257 EOS radiographs
and trained in one quarter of hour. Moreover, we have
demonstrated that different ossification centers, not only
the pelvic region contributes to the classification results,
and may provide additional information valuable for bone
maturity assessment.  Particularly, another study has
demonstrated that the humeral heads can be used to gain
additional insight into skeletal maturity of patients with
scoliosis [26]. Regions of interest such as the cranial bones
and rib cage that have demonstrated stronger activation
(figures 6 and 7) can be explored and segmented for future
work. In addition, the segmentation of regions of interest
reduces the impact of artifacts due to implants.

Second, the ResNetlOI-SVM model for extracting
features from the image demonstrated better performance
in precision compared to the GLCM algorithm. The same

Table 1
Comparison between GLCM-SVM
models for each region of interest

and ResNetl101-SVM

GLCM-SVM
Risser 0 1 2 3 4 5
Support 25 34 36 37 32 41
Recall 0.40 074 086 0.81 0.88 0.95
o F1score | 044 0.75 086 082 0.82 0.92
< | Prec. 050 076 0.86 0.83 0.78 0.89
2 | Acc. 0.80
5 ResNet101-SVM
g Risser 0 1 2 3 4 5
= | Support 25 38 39 36 34 48
Recall 0.76 095 097 0.78 0.59 0.90
F1 score | 0.58 0.92 093 0.82 0.73 0.93
Prec. 0.47 090 0.88 0.88 0.95 0.98
Acc. 0.84
GLCM-SVM
Risser 0 1 2 3 4 5
Support 26 38 25 38 29 45
T Recall 0.38 076 0.88 0.61 0.66 0.80
I | Flscore | 043 0.72 0.71 064 069 0.85
E Prec. 0.48 0.76 0.86 0.83 0.78 0.89
8 | Acc. 0.69
= ResNet101-SVM
g Risser 0 1 2 3 4 5
g Support 32 31 45 40 28 42
I | Recall 069 081 087 075 0.82 0.74
F1score | 0.52 0.77 091 0.85 0.81 0.85
Prec. 042 074 095 097 0.79 1.00
Acc. 0.78
GLCM-SVM
Risser 0 1 2 3 4 5
Support 26 36 34 30 35 43
~ | Recall 062 069 0388 0.80 0.71 1.00
& | Flscore | 056 077 0.87 076 077 097
T_g’ Prec. 0.52 086 0.86 0.73 0.83 0.93
s Acc. 0.80
= ResNet101-SVM
g Risser 0 1 2 3 4 5
g Support 25 38 43 35 38 34
L | Recall 060 074 093 0.80 0.66 1.00
F1 score | 0.48 0.81 089 0.8 0.70 1.00
Prec. 0.41 090 0385 0.90 0.76 1.00
Acc. 0.80

is true in 2 other studies where the authors compared these
approaches. Lopes and Valiati demonstrated the relevance of
pre-trained CNNSs in automatically determining tuberculosis
from chest X-ray [29]. For their part, Byra et al. showed that
the use of a pre-trained CNN for feature extraction improved
results compared to the use of GLCM for the diagnosis of the
amount of fat in the liver [8]. Therefore, these two studies
support our conclusions even if the CNN architecture differs.

Third, we have demonstrated the ResNetl01-SVM
model is computationally efficient and it allow intuitive
interpretation of the decision using activation maps. This
visualization technique has already been used in several
studies on bone maturity [7, 48, 40]. Interpretability
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Table 2
Comparison between GLCM-SVM
models using all regions of interest

and ResNetl101-SVM

GLCM-SVM
Risser 0 1 2 3 4 5
Support 98 93 107 115 99 114
Recall 0.54 085 087 0.75 0.68 0.8
E F1 score | 0.56 0.83 0.83 0.74 0.70 0.87
Prec. 0.58 081 080 0.72 0.72 0.89
+
T Acc. 0.76
T ResNet101-SVM
+ | Risser 0 1 2 3 4 5
O | Support | 106 119 94 100 126 111
Recall 068 076 091 0.78 0.70 0.93
F1 score | 0.57 0.79 090 0.78 0.80 0.94
Prec. 0.49 0.83 0.89 0.79 0.93 0.94
Acc. 0.79

of the final prediction is very important in any clinical
classification task. Our approach is appealling for a clinical
use since the final decision is carried out in the final
stage using SVMs, a well-established classification method
offering good interpretability of the final results.

Despite the advantages of the proposed model, compared
to the other two approaches, the limited amount of data
available for training is a major issue. The use of the
SMOTE-Tomek technique to compensate for the small
amount of available examples is promising, but not perfect.
Indeed, unlike the VGG16 approach [23], our modeling is
based on resampled data. Also, the number of samples used
is 7 times less than the number of samples used to implement
the VGG16 model. VGGI16 model achieved an overall
accuracy of 78% [23] less or equal to ResNetl01-SVM
accuracies (84%, 78%, 80% and 79%). A comparable
number of samples could have allowed a better comparison
of the ResNet101-SVM and the VGG16. However, these
two models were computed on two different datasets which
may not be fairly compared.

Finally, for some Risser signs, GLCM-SVM performs
better in precision than ResNet101-SVM. This is a weakness
of our model, especially at low Risser signs. In fact,
the ResNet101 CNN used is pre-trained with images from
the ImageNet database. These images are classified into
1000 categories of real-life objects. The use of transfer
learning allows us to look for interesting features in EOS
radiographs. However, feature extraction is dependent on
visible structures. The less useful information there is, the
less precise the extraction. This is probably the reason why
for low Risser signs our approach is less precise due to the
lack of cartilage. On the contrary, the higher Risser signs,
the more the precision increases because we have many more
structures of ossification.

5. Conclusion

We proposed a new classification approach based on
the ResNet101-SVM architecture. The results demonstrated
an improvement in precision compared to the GLCM-SVM

GLCM-SVM ResNet101-SVM

0 015 0083 0083 0083 0023 [y

1 ERN 0.76 0 056 0 jE 0.025

PR 01 0061 0028 0 o B
ER 005 0 UUSEE 0028 0068 B 012
0.023 [
BB © 0 0 0056 5
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jE 026 QKGN 0029 0.061 0 0 1
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between the GLCM-SVM and

Comparison
ResNet101-SVM models with the standardized confusion
matrices. (The agreement between the predicted values and
those annotated by the expert is much more important in the
case of ResNet101-SVM.)

Figure 5:

approach, but also a reduction in computation time
compared to the VGG16 approach [23]. In addition, this
study demonstrated that other ossification centers such as
the humeral heads and the femoral heads could contribute
to the final prediction in our model. Our approach has a
major advantage over previous studies, which is the ability
to learn from the features extracted at different ossification
centers and provide a decision based on these features, which
is highly appealing for evaluating the final decision. Other
bone maturity techniques, such Sanders maturity scale and
TOCI will be investigated in future work. Also, given
the availability of retrospective, longitudinal data, training
of machine learning models adapted for time series, such

Magnide et al.: Preprint submitted to Elsevier

Page 6 of 8



Figure 6: Grad-CAM maps for patient ID 40 over the 5 visits

(The Risser sign variation : 0-1-3-4. Several regions in the
images become redder, which translates to higher activation.)

0

Figure 7: Grad-CAM maps for patient ID 06 over the 5 visits
(The Risser sign variation : 0-1-2-5. Several regions in the
images become redder, which translates to higher activation.)

as recurrent neural network (RNN) will be investigated in
future work. Such models might be highly relevant to study
bone progression directly from X-ray images, and it could
provide a better estimate of bone maturity of AIS patients.
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