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Abstract 

Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor problems for 

people with a detrimental effect on the functioning of the nervous system. In order to diagnose MS, 

multiple screening methods have been proposed so far; among them, magnetic resonance imaging 

(MRI) has received considerable attention among physicians. MRI modalities provide physicians with 

fundamental information about the structure and function of the brain, which is crucial for the rapid 

diagnosis of MS lesions. Diagnosing MS using MRI is time-consuming, tedious, and prone to manual 

errors. Research on the implementation of computer aided diagnosis system (CADS) based on artificial 

intelligence (AI) to diagnose MS involves conventional machine learning and deep learning (DL) 

methods. In conventional machine learning, feature extraction, feature selection, and classification  

steps are carried out by using trial and error; on the contrary, these steps in DL are based on deep layers 

whose values are automatically learn. In this paper, a complete review of automated MS diagnosis 

methods performed using DL techniques with MRI neuroimaging modalities is provided. Initially, the 

steps involved in various CADS proposed using MRI modalities and DL techniques for MS diagnosis 

are investigated. The important preprocessing techniques employed in various works are analyzed. Most 

of the published papers on MS diagnosis using MRI modalities and DL are presented. The most 

significant challenges facing and future direction of automated diagnosis of MS using MRI modalities 

and DL techniques are also provided.   
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1. Introduction  

Multiple sclerosis (MS) is a chronic autoimmune disease wherein the immune system wrongly targets 

the central nervous system including the brain and spinal cord [1]. In MS, the nervous system, including 

the myelin sheath, nerve fibers, and even the cells that produce the myelin, is usually damaged [2]. 

These injuries go away after few days to few weeks if they are not very severe, but may cause permanent 



changes in the spinal cord if they are severe [3, 4]. These permanent changes are called sclerosis, and 

because these lesions occur in multiple and different areas, the disease is called multiple sclerosis [5, 

6]. Due to this disease, the body immune system responds abnormally, causing inflammation and 

damage to parts of the body [7-8].  

Many people around the world suffer from this disease. It is estimated worldwide that the number of 

people suffering from this disease has increased to 2.3 million from 2013 [9-10]. Figure (1) shows the 

number of people with MS worldwide [11]. As shown in Figure (1), North America, Europe, and 

Australia have most of the MS patients [11].  

There are four categories in MS: (i) clinically isolated syndrome (CIS) [12-13], (ii) relapsing-remitting 

MS (RRMS) [14-15], (iii) primary progressive MS (PPMS) [16-17], and (iv) secondary progressive MS 

(SPMS) [18, 19]. The CIS refers to the first episode of neurological symptoms that lasts at least 24 

hours and is caused by inflammation or demyelination of the central nervous system (CNS) [12-13] 

[20]. CIS can be either mono-focal or multi-focal [12-13] [20]. The RRMS is the most common type of 

MS disease, characterized by clearly defined attacks, also known as relapses or exacerbations of new 

or growing neurological symptoms, with intervals of remission in between [14-15], [21]. During 

remission, all symptoms may disappear, or some of them may continue and become permanent. 

However, there is no apparent progression of the disease during these periods. RRMS can be active or 

inactive, worsening or not worsening [14-15], [21-22]. Around 85% of people with MS are initially 

diagnosed with RRMS type of disease [14-15], [21-22]. PPMS type of MS disease is characterized by 

worsening of neurological function (i.e., increased disability) since the onset of symptoms, with no 

early recurrence or recovery [1617], [23]. PPMS can be described as active or inactive, with or without 

progression [16-17], [23]. SPMS is followed by an early relapse period. Few people with RRMS 

eventually switch to SPMS, wherein there is a gradual deterioration of nerve function over time [18-

19], [24]. It can be also be characterized as either active or inactive, with or without progression [18-

19], [24]. 

 
Fig. 1. Number of MS patients worldwide. 

Common symptoms of MS include fatigue, difficulty in walking, spasticity, weakness, vision problems, 

dizziness, cognitive changes, emotional changes, depression, and more [25-27]. There are no known 

causes of MS disease [28-29]. Scientists believe that a combination of environmental and genetic factors 

play a role in MS [30-31]. Environmental factors such as geography, vitamin D deficiency, obesity, and 

smoking may have some correlation with MS [32-33]. 



Unfortunately, there are currently no symptoms, physical findings, or laboratory tests to accurately 

diagnose MS [34-35]. For this reason, several methods are used to diagnose MS that include reviewing 

the patient's medical history [36-37], medical imaging techniques such as MRI [38-40], spinal fluid 

analysis [41-42], and blood tests [43-44]. Currently, MRI modalities are the best non-invasive method 

used for the diagnosis of MS [45-47]. The myelin sheath, which protects nerve cell fibers, contains fat 

and repels water. In areas where MS damages myelin sheath, fat is stripped away. As fat is lost, this 

area keeps more water, and depending on the type of MRI scan, it is seen as a light white spot or lesions 

[48-49]. Figure (2) displayed different structural MRI (sMRI) modalities for different subjects with the 

MS disease [79-80]. 

   

   

   
(a)                                        (b)                                          (c)  

Fig. 2. Diagnosis of MS for different subjects using sMRI neuroimaging modalities [79-80]. 

Figure (2), illustrates  various sMRI modalities used for the diagnosis of MS which were recorded by a 

3T scanner [79-80]. Figure (2a) shows the T1-weighted images of MS patients. The T2-weighted 

images of different MS patients are displayed in Figure (2b). Figure (2c) shows the T2-weighted FLAIR 

images of MS patients.  

Diagnosis of MS based on MRI neuroimaging modalities are time-consuming and challenging for 

physicians. Therefore, researchers are proposing novel methods to accurately identify these fields. 

Nowadays, AI techniques have emerged as an important tool for various disease diagnoses with the 

help of physicians [50-54]. AI techniques for medical diagnosis can be mainly split into (i) conventional 

machine learning methods and (ii) DL techniques [55-58].  

In preliminary research, the conventional machine learning methods were used for diagnosis of MS 

using MRI modalities [27-29]. Use of these methods for the diagnosis of MS are highly time-consuming 

and requires significant amount of expertise in various AI fields. Also, several deficiencies related to 

conventional machine learning CADS include high computational cost due to multiple algorithms, 

inefficient performance with large amount of MRI input data, and so on. 

On the other hand, the DL methods are one of the latest fields of AI which has gained considerable 

popularity to diagnose a variety of diseases using medical data [59-61]. One of the prominent features 

of DL networks is their ability to infer and derive inherent and latent feature representations in MRI 

data [55]. Another advantage of DL is that it does not require any manual management of the feature 



extraction stage; this allows the integration of feature extraction and classification steps in CADS using 

DL [90-93]. Research in the field of MS diagnosis using MRI modalities and DL architectures has been 

initiated since 2016. The research in this field comprised of the utilization of DL models for 

segmentation and classification applications. 

This paper provides a review of studies conducted on the diagnosis of MS using MRI modalities and 

DL techniques. DL techniques are used to segment the MS lesions, and to detect MS automatically 

using MRI modalities. These techniques are discussed in detail in the following sections. 

Figure (3) shows the number of papers published in various journals on MS diagnosis using MRI 

modalities and DL techniques. The keywords "MS", "MRI", "sMRI", "Multiple sclerosis", and "Deep 

Learning" have been used to search the papers in various scientific databases. Google Scholar has also 

been used for search. It can be noted from the Figure that research into the diagnosis of MS using MRI 

modalities and DL techniques started in 2016, and most of the papers are published in IEEE journals. 

 
Fig. 3.  Number of papers published on MS diagnosis yearly.  

The organization of the rest of the paper is as follows. In the second section, CADS for MS detection 

using MRI neuroimaging modalities and DL networks are described. Discussion on the various works 

done is provided in Section 3. The challenges in the accurate diagnosis of MS using MRI modalities 

and DL are presented in Section 4. In section 5, future directions for the automated MS diagnosis using 

DL techniques are expressed. Finally, conclusions are presented in Section 6. 

2. CADS for MS detection in MRI modalities  

Today, CADS based on AI techniques are exploited in various medical applications [62-65]. The CADS 

in medicine can be implemented using conventional machine learning and DL methods [66-68]. 

Generally, a CADS construction comprises of dataset, preprocessing, feature extraction, feature 

selection, classification, and model evaluation steps [69-70]. One of the significant applications of 

CADS is the diagnosis of MS using MRI neuroimaging modalities. So far, numerous works have been 

accomplished on the implementation of CADS based on conventional machine learning [27-29] and 

DL [168-170] techniques for MS detection.   

The main difference in CADS based on conventional machine learning and DL is in the feature 

extraction and feature selection steps [71-72]. CADS utilizing conventional machine learning involve 

feature extraction and feature selection algorithms using trial and error methods, requiring prior 

knowledge of image processing and AI techniques [73-74]. Low performance is obtained with large 

amount of MRI is another limitation of conventional machine learning-based CADS. Another 

disadvantage of these methods in dealing with high artifacts and low contrast of MR images. 

However, in CADS based on DL, these two steps are performed intelligently by deep layers [75-76]. 

One advantage of DL is augmentation of input data does not diminish the performance of CADS [55]. 

Additionally, DL models are robust to noisy MRI data [55]. Therefore, in conclusion, it can be 

concluded that DL-based CADS have yielded higher performances in detecting MS using MRI 

modalities compared to conventional machine learning. Figure (4) shows the CADS block diagram for 

MS detection using DL techniques and MRI modalities. First, the datasets available are fed to the MS 



diagnosis system. Then, a variety preprocessing techniques are performed on MRI modalities. Finally, 

a robust and accurate DL architecture is obtained to detect the MS automatically. 

 
Fig. 4. Block diagram of CAD system using DL architecture for MS detection. 

2.1. Datasets  

In this section, the most important available datasets used to diagnose MS using MRI neuroimaging 

modalities are discussed. There are several datasets available for researchers to diagnose MS, including 

MICCAI 2008 [77], MICCAI 2016 [78], ISBI 2015 [79-80], and eHealth Lab [81]. In the following, 

the details for available MS datasets based on MRI neuroimaging modalities are presented. Also, a 

summary information of these datasets are provided in Table (1). 

2.1.1. The MICCAI 2008 MS Lesion Segmentation Challenge Dataset 

This dataset contains MR images of research subjects from the University of North Carolina (UNC) 

and Boston Children's Hospital (CHB) [77]. All dataset images were segmented by one CHB expert 

and 2 UNC experts. The training database has 20 samples, of which 10 CHB samples and 10 UNC 

samples were manually segmented from the CHB expert [77]. The test dataset includes 25 samples (15 

CHB samples and 10 UNC samples) without any segmentation [77]. In the dataset, all the modalities 

of T1WI, T2WI, FLAIR, DTI-derived FA, and MD images are presented. Also, several pre-processing 

steps have been performed on this database. More information is provided in [77]. 

2.1.2. The MICCAI 2016 MS Lesion Segmentation Challenge Dataset 

The 2016 MICCAI dataset includes MR images of 53 people with MS [78]. The images in this dataset 

were recorded from three different centers in France with four MRI scanners (Siemens, Philips, and 

GE) and include three 3T magnets and one 1.5T magnet [78]. In this dataset, MR images have also been 

manually segmented by seven experts [78]. This dataset is divided into training and testing. The training 

and testing set includes 15 and 38 patients, respectively [78]. Modalities of 3D FLAIR sequence, T1 

weighted sequence pre, and post-Gadolinium injection, axial dual PD-T2 weighted sequence are 

provided for each patient. This challenge provided raw and preprocessed data for each patient [78]. 

2.1.3. ISBI 2015 Longitudinal MS Lesion Segmentation Challenge Dataset 

The ISBI 2015 dataset includes MR images of 19 MS patients with a training and two test packages 

[79-80]. The training set has five subjects, four subjects with four-time points and one subject with five-

time points [79-80]. The test set A consists of 10 subjects, eight of them with four-time points, one with 

five-time points, and one with six-time points [79-80]. Test set B has four subjects, three with four-time 

points and two with five-time points. All subjects have T1-w MPRAGE, T2-w & PD-w DSE, and T2-

w FLAIR modalities. In this dataset, the original images, as well as the pre-processed images, are 

available. Also, manual segmentation has been conducted by two experts [79-80]. 

2.1.4. eHealth Lab 

This dataset provides MRI modalities of 38 patients (17 males, 21 females) with a mean age of 34.1 ± 

10.5 years with CIS of MS and MRI brain lesions, recorded twice with an interval of 6-12 months and 

with 1.5 T protocol [81].  

 



Table 1. Details of public datasets available for MS diagnosis  

Ref Dataset 
Number of 

Cases 
Modalities Description Link 

[77] 
MICCAI 

2008 

Train 20 T1WI, T2WI, FLAIR, 

DTI-derived FA and MD 
Preprocessed https://www.nitrc.org/projects/msseg 

Test 25 

[78] 
MICCAI 

2016 

Train 15 T1-w weighted, T1-w 

gadolinium enhanced (T1-

w Gd), T2-w, T2-FLAIR 

and PD-w images 

Preprocessed http://www.miccai2016.org/en/ 
Test 38 

[79-80] ISBI 2015 

Train 5 

T1-w MPRAGE, T2-w & 

PD-w DSE, T2-w FLAIR 
Preprocessed https://smart-stats-tools.org/lesion-challenge-2015 Test A 10 

Test B 4 

[81] 
eHealth 

Lab 
38 MRI -- 

http://www.medinfo.cs.ucy.ac.cy/index.php/facilities/32-

software/218-datasets 
 

2.2. Preprocessing  

Diagnosis of brain lesions using MRI modalities are clinically important for the diagnosis of MS. 

Segmentation and classification of brain lesions from MRI modalities are extremely problematic for 

physicians and are prone to misdiagnosis. Various factors such as artifacts, intensity heterogeneity, etc. 

have a destructive effect on the quality of MR image, which often can lead to misdiagnosis of the 

disease. In the following, the low level and high level preprocessing methods in MRI neuroimaging 

modalities for diagnosis of MS are discussed. Expressing these items prevents additional explanations 

of common preprocessing methods in Table (2). 

2.2.1. Low level preprocessing  

In this section, the most important low level preprocessing methods for sMRI modalities are introduced, 

which include denoising, inhomogeneity correction, skull-stripping, registration, intensity 

standardization, de-oblique, re-orientation and segmentation. These preprocessing methods are 

consistent for all sMRI modalities. 

 (1). Denoising 

During the MRI recording process, images are usually corrupted by various random noises [82]. Hence, 

several approaches are utilized to remove noise from MRI modalities. Some of those methods are low-

pass filters [83], Fourier filters [84], and wavelets [85]. 

(2). Inhomogeneity correction 

When the magnetic fields of MRI scanner strike the brain tissue, their intensity decline, creating an 

artifact in the images [82] [86]. This artifact is observed as a low-frequency variation in signal intensity 

of MRI images and should therefore be modified in the preprocessing step [82] [86]. Two important 

methods are applied for inhomogeneity correction [82] [86]. The first category is the expectation-

maximization (EM) algorithm that models the bias field during the segmentation process [87] and the 

second category uses image properties [88]. 

(3). Non-brain Tissue Removal (skull-stripping) 

In neuroimaging studies, the regions of interest (ROI) are located in the brain tissue. Therefore, non-

brain tissues such as skull, neck, eyes, nose, and mouth are not important and should be eliminated [82] 

[86]. This enhances the accuracy of CADS for MS detection [82] [86]. 

 (4). Registration 

In MRI preprocessing, image registration is a prevalent step used to combine different types of image 

modalities or sequences (T1- and T2-weighted images of the same subject) or to place images in a 

standard space such as MNI [82] [86]. 

https://www.nitrc.org/projects/msseg
http://www.miccai2016.org/en/
https://smart-stats-tools.org/lesion-challenge-2015
http://www.medinfo.cs.ucy.ac.cy/index.php/facilities/32-software/218-datasets
http://www.medinfo.cs.ucy.ac.cy/index.php/facilities/32-software/218-datasets


(5). Intensity standardization 

Typically, MR images acquired with the same protocol do not contain the same intensity among 

scanners. Even in a scanner with the same settings, in various sessions, the image intensity patterns vary 

[82] [86]. Intensity standardization techniques in MRI modalities attempt to correct these scanner-

dependent intensity variations [82] [86]. The most popular procedures used for intensity standardization 

in MRI modalities are histogram matching techniques [82] [86]. 

(6). De-Oblique 

The oblique scanning is used to cover the whole brain while avoiding the artifacts caused by air and 

humidity in the eyes and nose. However, the oblique scanning makes registration of two different MR 

images challenging. So, a de-oblique preprocessing step should be done before registration [82] [86]. 

(7). Re-orientation 

The direction of the image depends on the settings of image registration process. Differences in 

direction may lead to misregistration, so all images must have identical directions. Hence, re-orientation 

techniques are employed [82] [86]. 

(8). Segmentation 

The aim of segmentation is to map the image into a set of meaningful areas containing identical 

characteristics in terms of intensity, depth, color, or structure [82] [86] [89]. In MRI modalities, the 

purpose of segmentation is to isolate three types of tissues: white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF) [89]. 

2.2.2. High level preprocessing (Others Preprocessing) 

High level preprocessing techniques along with low level preprocessing methods help to improve the 

performance of CADS. These methods include data augmentation (DA) [135], patch extraction [168], 

ROIs extraction [182], and so on. Detailed preprocessing information employed by each group (paper) 

for the diagnosis of MS using DL methods and MRI modalities are summarized in Table (2). 

2.3. Deep Leaning Methods used for MS detection  

Nowadays, DL techniques are used in various medical fields attracting lot of attention from many 

researchers [90-93]. One of these areas is the diagnosis of brain diseases such as MS using MRI 

modalities. Table (2) shows the types of DL networks used in MS diagnostic research using MRI 

modalities. It can be noted from after table (2), the most popular DL architectures used for MS detection 

use convolutional neural networks (CNNs) [94-96], Autoencoders (AEs) [94-96], generative 

adversarial networks (GANs) [97-99], and CNN-RNN models [100]. CNNs are the first class of DL 

techniques used in the supervised learning methods category. It can be noted from Table (2), that most 

of the researchers used various 2D-CNN and 3D-CNN models for segmentation and classification of 

MRI modalities for MS detection. AEs are a group of DL networks that are based on unsupervised 

learning. GAN architectures are the recently developed DL models used for the MS diagnosis using 

MRI modalities. In the following sections, we have briefly discussed these various DL networks that 

have been used for the diagnosis of MS. Also, details of DL networks are provided in the appendix table 

A. 

2.3.1. Convolutional Neural Networks 

An advantage of CNN models is that they do not need manual feature extraction. In these models, as 

the network becomes deeper, the higher level features are extracted [94-96]. Although CNNs have 

exhibited an acceptable performance, this performance promotion has been attained at the expense of 

increased computational complexities and, therefore, there is a need for more powerful processing 

hardware such as Graphical Processing Unit (GPU) and Tensor Processing Unit (TPU) [94-96]. In this 

section, the most significant CNN architectures used for automatic segmentation and classification of 



MS using MRI neuroimaging modalities are presented. First, different 2D and 3D CNNs models 

developed for MS classification are presented. Then, CNN architectures namely U-Net [101] and FCN 

[102] developed for MR images segmentation are discussed.  

(1). 2D and 3D-CNNs  
CNNs are one of the most popular DL techniques, with a variety of applications, including image 

segmentation [103-104], image classification [105, 106], and more [107-108]. These networks have a 

better compatibility with 2D and 3D images due to the reduction of parameter numbers and ability to 

reuse weights [94-96]. The most important components of a CNN architecture are convolutional, 

pooling, batch normalization, and fully connected layers [94-96]. By properly selecting layers on CNN, 

it is possible to learn the spatial and temporal dependencies of an image [94-96]. Figure (5) shows a 

2D-CNN architecture for classification of MR images. 

 

Fig. 5. Block diagram of 2D-CNN used for automated MS detection. 

(2). Pre-Trained CNN Networks  
DL architectures have numerous training parameters; hence, when small datasets are used to train DL 

networks from scratch, they do not yield good classification results. Therefore, transfer learning with 

pre-trained models can be used to address these issues.  Pre-trained models are first trained on a large 

dataset, such as ImageNet, and then their classification layer is replaced with a new layer specific for 

the problem at hand [110-111]. Subsequently, by feeding new data as input to the pre-trained models, 

their weights are updated, enabling them to classify the data [112]. The disadvantage of these models 

is the use of ImageNet data for initial training, while MRI images are of gray-scale type. The most 

popular pre-trained models for classifying MRI modalities for MS diagnosis include LeNet, AlexNet, 

GoogleNet, VGGNet, ResNet, etc. [109-112]. 

 (3). FCN Network 

This network was introduced by Long et al., which has taken advantage of available CNNs that learn 

hierarchies of features [102]. In this model, popular networks have transformed entirely convolutional 

models by replacing FC layers with convolution layers to capture output as a local map. These maps 

are up-sampled using the introduced method. The deconvolution method is as follows: to simulate up-

sampling with size f, backward convolution method with stride size f is employed on the output. These 

layers are also capable of learning. At the end of the network, there is a 1x1 convolution layer that yields 

the corresponding pixel label as the output. The exiting stride in the deconvolution stage constraints the 

output detail quantity of this layer. To address this issue and enhance the quality of results, several skip 

connections have been added to the network from the lower layers to the end layer [102]. The main 

advantage of FCN is that it receives the input data with an arbitrary size, and produces a corresponding-

sized output with efficient inference and learning [102]. The upsampling results are relatively fuzzy and 

insensitive to image details; segmentation results are not good enough, which is the main disadvantage 

of this network. Figure (6) shows the general fully convolutional network (FCN) block diagram used 

for automated brain MR images segmentation. 



 
Fig. 6. Block diagram of FCN used for automated MS detection 

(4). U-Net 
U-Net is a well-known CNN architecture used for image segmentation that was first introduced by 

Ronneberger et al. [101]. This network possesses two parts: an encoder and a decoder, by which image 

segmentation operations are carried out [101]. In U-Net, the encoder section consists of several down-

sampling and convolutional layers [101]. The decoder section also comprises a number of up-sampling 

and convolution layers. In this network, skip connections relations are placed between the 

corresponding up-sampling and down-sampling layers [101]. An advantage of U-Net models is that, 

they can be trained with a limited number of data. The main difference between U-Net and FCN is that 

the former is symmetrical and uses skip connections between two upsampling and down-sampling paths 

[101]. Figure (7) shows the general U-Net block diagram used for brain MR images segmentation. 

 
Fig. 7. Block diagram of U-Net used for automated MS detection. 

(5). Generative adversarial network (GAN) 

GAN architectures are a novel class of DL models applied to a wide variety of applications in various 

fields [98-99]. In general, GAN networks consist of two neural networks called the generator, G, and 

the discriminator, D, [98-99]. The role of generator is to estimate the probability distribution of the 

original data to generate samples similar to the original data [98-99]. The Discriminator, on the other 

hand, is trained to determine by likelihood estimation whether the sample is from original data or 

artificial data generated by the generator [98-99]. The term GAN is used because the generator and 

discriminator are trained to compete with each other. In this way, the generator tries to mislead the 

discriminator, whereas the discriminator attempts to identify better-generated samples [98-99]. The 

advantage of GAN models is that they do not require prior assumptions about the dataset, and are aimed 

to function with all data distributions [98-99]. The limitation of these models are the gradient vanishing 

problem and training complexity, which can be resolved to some extent by performing mathematical 



calculations in the network training phase. Figure (8) displays a GAN model used for the brain MR 

images classification. 

 
Fig. 8. Block diagram of GAN used for automated MS detection. 

2.3.2. Autoencoder 
Autoencoders (AEs) are a particular type of DL network aimed to find a low-dimensional representation 

of input data [95-96]. These models consist of two parts, an encoder and a decoder. The encoder 

compresses high-dimensional input data into lower-dimensional displays, known as latent space or 

bottleneck representation [95, 96]. The decoder returns the data to the original dimensions of the input. 

Denoising AE, Sparse AE, and Stacked AE are the most significant types of AE [95, 96]. 

2.3.3. CNN-RNN 

Hybrid CNN-RNN architecture have become popular among AI professionals. This is due to the ability 

of CNN networks to learn spatial features and the ability of Recurrent Neural Network (RNN) 

architectures to learn temporal features [100]. In CNN-RNN architectures, data is often first fed to the 

CNN network input, and after passing through several layers of convolution, feature maps that are the 

output of the CNN network are applied to an RNN network [100]. The results reveal that adopting 

hybrid models such as CNN-RNN has been extremely successful in increasing the accuracy of CADS 

in brain disease diagnosis. Figure (9) shows the CNN-RNN architecture for MR images classification. 

 

Fig. 9. Block diagram of CNN-RNN used for automated MS detection. 



Table 2. Summary of CADS developed for MS using MRI neuroimaging modalities and DL methods.  

Works  Application Dataset Modalities Number of 

Cases 

Preprocessing 

Toolbox 

Others 

Preprocessing 

DNN Toolbox K Fold Performance 

Criteria (%) 

Marzullo [149] EDSS Estimation Clinical MRI 83 MS -- Brain Structural 

Connectivity 

Generation 

2D-CNN -- 5 RMSE= 0.09 

Siar [154] Diagnosing and 

Classification 

Clinical MRI 320 MS, 791 

HC 

-- -- 2D-CNN -- -- Acc=96. 88 

Sen=94.64 

Spec=100 

Aslani [155] Segmentation ISBI 2015 MRI 19 MS -- Data 

Augmentation 

(DA) 

2D-CNN Keras -- DSC=69.80 

Eitel [158] Harnessing Spatial 

MRI Normalization 

Clinical MRI 76 MS, 71 HC -- DA 2D-CNN -- -- Acc=80.92 

Afzal [159] Classification John Hunter 

Hospital’s Dataset 

MRI 21 Patients -- DA 2D-CNN Keras -- Acc=100 

Roy [172] Lesion Segmentation ISBI 2015 MRI 19 MS -- -- 2D-CNN TensorFlow, 

Keras 

-- DSC=52.4 

Clinical 128 MS 

Aslani [184] Lesion Segmentation NRU Dataset MRI 37 MS FSL Decomposing 

3D Data Into 

2D Images 

2D-CNN Keras, 

TensorFlow 

4 DSC= 66.55 

Alijamaat [190] Identification eHealth Laboratory MRI 38 MS, 20 HC -- DA, Histogram 

Stretching, 

DWT 

2D-CNN Keras, 

TensorFlow 

-- Acc=99.05 

Sen=99.14 

Spec=98.89 

Prec=98.43 

Shrwan [223] Classification Clinical MRI 38 MS -- -- 2D-CNN MATLAB 

R2020a 

-- Acc=99.55 

Pre=99.15 

F1-S= 99.15 

Afzal [225] Segmentation MICCAI 2016 MRI 45 Scans FSL Patch Extraction Two 2D-CNN Keras, 

TensorFlow 

-- DSC=67 

Sen=48 

Pre=90 
ISBI 2015 82 Scans 

Wang [181] MS Identification eHealth Laboratory 

and Private Data 

MRI 38 MS, 26 HC -- HS, DA 2D-CNN -- -- Acc=98.77 

Sen=98.77 

Spec=98.76 

Ulloa [135] Segmentation ISBI 2015 MRI 19 MS -- ICBM452 Atlas, 

Patch 

Extraction, DA 

V-Net CNN Keras, 

TensorFlow 

5 DSC=68.77 

Birenbaum 

[179] 

Lesion Segmentation ISBI 2015 MRI 19 MS -- Lesion 

Extraction, DA 

4 CNN Models Keras, 

Theano 

5 Score=91.267 

DSC=62.7 v 

Birenbaum 

[165] 

Lesion Segmentation ISBI 2015 MRI 19 MS -- Candidate 

Extraction, DA 

4 CNN Models Keras, 

Theano 

5 DSC=62.7 



SALEM [156] Generating Synthetic 

MS Lesions 

Clinical MRI 65 MS, 15 HC Nifty Reg 

Tools, 

ROBEX Tool, 

ITK Library 

WMH Mask 

and the Intensity 

Level Masks, 

WMH 

FILLING, DA 

Encoder-Decoder U-

NET 

Python, 

Keras, 

TensorFlow 

-- DSC=63 

Sen=55 

Pre=79 ISBI 2015 19 MS Cascaded 3D CNNs 

Roca [127] Predict EDSS Score 

of MS Patients 

OFSEP Cohort MRI DS1: 480 -- DA 3D-CNN TensorFlow -- MSE=3 

DS2: 491 

DS3: 475 

Nair [129] Uncertainty Estimates Clinical MRI 1064 MS -- -- 3D-CNN -- -- -- 

Brown [132] Segmentation and 

Calibration 

CPDDS MRI 256 

Participants 

-- -- 3D-CNN Theano -- Mean J=74 

Sepahvand 

[152] 

Future Disease 

Activity Prediction 

Clinical MRI 1068 MS -- -- 3D CNN -- -- Acc=80.21 

Sen=80.11 

Spec=79.16 

Prec=91.82 
Segmentation Modified U-Net 

Rosa [153] Segmentation Clinical MRI 105 MS FSL Manual 

Segmentation, 

LeMan-PV 

Cascade of Two 3D 

Patch-Wise CNNs 

-- -- DSC=60 

VD=40 

Tousignant 

[162] 

Prediction of 

Disability Progression 

of MS Patients 

Clinical MRI 465 MS -- 2 Lesion Masks 3D-CNN -- 4 AUC=70.1 

Yoo [163] Predicting Future 

Disease Activity in 

Patients with Early 

Symptoms Of MS 

Clinical MRI 140 Subjects -- DA 3D-CNN Theano, 

cuDNN 

7 Acc=72.9 

Sen=78.6 

Spec=65.1 

AUC=71.8 

Kazancli [168] Lesion Segmentation 

and Classification 

Clinical MRI 59 MS FreeSurfer Patch Extraction Two 3D-CNNs in a 

Cascade Fashion 

TensorFlow -- DSC=57.5 

Gros [169] Segmentation of The 

Spinal Cord and 

Lesions 

Clinical MRI 459 HC, 471 

MS, 112 With 

Other Spinal 

Pathologies 

FSL Manual 

Segmentation 

Sequence of Two 

CNNs 

Keras, 

TensorFlow 

-- MSE=1 

DSC=94.6 

DSC=60.4 

Valverde [173] Lesion Segmentation MICCAI 2008 MRI 60 Patients FSL -- 3D-CNN Keras, 

TensorFlow 

-- DSC= 63 

Sen= 55 

Pre= 79 

Score= 91.33 

MICCAI 2016 

ISBI 2015 

Clinical 

Zhang [176] MS Identification eHealth Laboratory 

and Private Data 

MRI 38 MS, 26 HC -- HS, DA 3D-CNN -- -- Acc=98.23 

Sen=98.22 

Spec=98.24 

Yoo [178] Predicting Conversion 

to MS from CIS 

Clinical MRI 140 Subjects -- DA 3D-CNN Theano 7 Acc=75 

Sen=78.7 

Spec=70.4 



Eitel [188] Classification Clinical MRI 76 MS, 71 HC FSL DA 3D-CNN Keras, 

TensorFlow 

-- Acc=87.04 

AUC=96.08 

Valverde [192] Lesion Detection and 

Segmentation 

MICCAI 2016 MRI 53 MS -- 3D Patch 

Extraction 

3D-CNN Theano -- -- 

Valverde [175] White Matter Lesion 

Segmentation 

MICCAI 2008 MRI 45 MS FSL, SPM Patch 

Extraction, DA 

Cascade of Two 3D 

Patch-Wise CNNs 

Theano -- VD=40.8 

TPR=68.7 

FPR=46 Clinical 60 MS 

Gessert [170] Lesion Segmentation Clinical MRI 89 MS -- Lesions 

Extraction 

Attention-Guided 

Two-Path CNNs 

-- 3 LFPR=26.4 

LTPR=74.2 

DSC=62.2 
33 MS 

Sepahvand 

[116] 

Segmentation and 

Detection 

Clinical MRI 886 MS -- -- NE SubNet -- 5 Sen=97.74 

Spec=69.26 

AUC=90.83 

McKinley [121] Lesion Quantification Bern MRI 26 MS FreeSurfer -- DeepSCAN -- -- Acc=85 

AUC =99.9 Zurich 8 MS 

Munich -- 

Ackaouy [122] Segmentation MICCAI 2016 MRI 53 Images of 

MS Patients 

-- -- Seg-JDOT Keras -- -- 

Maggi [128] CVS Assessment in 

White Matter MS 

Lesions 

Multicenter Cohort MRI 42 MS, 33 

MS Mimics, 5 

Uncertain 

Diagnosis 

-- DA CVSnet Keras, 

TensorFlow 

10 Lesion-Wise 

Median Balanced 

Acc=81 

Subject-Wise 

Balanced Acc= 89 

McKinley [227] Simultaneous Lesion 

and Brain 

Segmentation 

MSSEG 2016 MRI 15 Datasets FSL -- DeepSCAN -- -- DSC=60 

F1-S=57 
Insel90 90 Datasets 

Insel32 32 Patients 

HASHEMI 

[189] 

Data Imbalance MICCAI 2016 MRI 53 MS -- Patch Extraction 3D Patch-Wise FC-

Dense-Net 

-- 5 DSC=69.9 

ISBI 2015 19 MS DSC=65.74 

McKinley [171] Lesion Segmentation Insel90 MRI 90 Datasets Freesurfer, 

FSL 

Manual 

Segmentation 

Weak Label 

DeepSCAN -- -- DSC=59 

Sen=50 

Pre=68 Insel32 32 MS 

Vincent [114] Segmentation Clinical MRI 642 MS -- -- FiLMed-Unet PyTorch -- DSC=72 

Vang [130] Segmentation Clinical MRI 261 Patients LST -- Synergy-Net -- -- DSC=61.52 

Prec=42.27 

Sen=59.11 
ISBI 2015 5 Patients 

Calimeri [193] Classification of MS 

into 4 Clinical 

Profiles CIS, RR, SP, 

PP 

Clinical MRI 90 MS -- Brain Structural 

Connectivity 

Graph 

Graph Based Neural 

Networks 

-- 10 Prec=82 

Recall=79 

F1-S=80 



Marzullo [186] Classification into 4 

Clinical Profiles 

Clinical MRI, DTI 90 MS (12 

CIS, 30 

RRMS, 28 

SPMS, 20 

PPMS), 24 

HC 

-- Brain Structural 

Connectivity 

Graph, Graph 

Local Features 

Graph Convolutional 

Neural Network 

(GCNN) 

-- 3 Pre=92 

Recall=92 

F1-S=92 

Dai [187] Compressed Sensing 

MRI 

eHealth Laboratory MRI 500 Images MATLAB 3 Sampling 

Masks 

MDN Caffe, 

PyTorch, 

TensorFlow 

-- PSNR= 38.73 

SSIM=98.6 

Dewey [183] Contrast 

Harmonization Across 

Scanner Changes 

Clinical MRI 10 MS 

2 HC 

45 MS 

-- Super-Resolved 

and Anti-

Aliased, Gain-

Correction 

DeepHarmony Keras, 

TensorFlow 

6 -- 

Yoo [161] Distinguishing 

NMOSD from MS 

Clinical MRI, DWI 82 NMOSD, 

52 MS 

-- -- Hierarchical 

Multimodal Fusion 

(HMF) Model 

-- 7 Acc= 81.3 

Sen= 85.3 

Spec= 75 

AUC= 80.1 

Essa [134] Segmentation MICCAI 2008 MRI 45 Scans -- 3D Patches 

Extraction 

2 Parallel R-CNN -- -- Sen=61.8 

Hou [148] Segmentation ISBI 2015 MRI 19 MS -- DA Cross Attention 

Densely-Connected 

Network (CA-DCN) 

Keras, 

TensorFlow 

-- DSC=64.3 

LFPR=10.5 

LTPR=441 

Ulloa [150] Segmentation ISBI 2015 MRI 19 MS -- Circular Non-

Uniform 

Sampling Patch, 

DA 

Single-View Multi-

Channel (SVMC) 

Keras, 

TensorFlow 

5 DSC=67.10 

Zhang [151] Segmentation Clinical MRI 43 MS FSL -- Recurrent Slice-Wise 

Attention Network 

(RSANet) 

PyTorch -- Sample avg. dice= 

66.011 

Voxel avg. dice= 

71.054 

Sample avg. IoU= 

50.917 

Voxel avg. IoU= 

55.201 

Narayana [117] Classification Clinical MRI 1008 MS -- DA VGG16+FCN Keras, 

TensorFlow 

5 Acc=70 

Sen=72 

Spec=70 

Barquero [133] Classification of 

rim+/rim- Lesions 

Clinical MRI 124 MS FreeSurfer, 

FSL 

Different 

Methods, DA 

RimNet (two parallel 

CNNs inspired by 

VGGNet) 

-- 4 Acc= 93.8 

Sen= 75.8 

Spec= 95.1 

F1-S= 62.3 

Ye [140] Classification Clinical MRI 38 MS -- DTI and DBSI 

Analyses 

DNN MATLAB, 

TensorFlow 

-- Acc= 93.4 

Sen= 99.1 



Spec= 97.3 

F1-S= 97.3 

AUC=99.8 

Fenneteau [167] Lesions Segmentation Different Datasets MRI Different 

Cases 

FSL Patch Extraction 3D U-net Keras, 

TensorFlow 

-- DSC=67.63 

Sen=61.47 

Pre=79.30 

Coronado [119] Segmentation and 

Detection 

CombiRx MRI 1006 MS -- MRIAP 

Pipeline 

3D U-Net -- -- DSC=77 

Narayana [120] Segmentation CombiRx MRI 1008 MS -- MRIAP 

Pipeline 

Multiclass U-Net Keras, 

TensorFlow 

-- GM-DSC=94 

WM-DSC=94 

CSF-DSC=96 

Lesion-DSC= 86 

Rosa [123] Segmentation and 

Detection 

Clinical MRI 60 MS -- DA Multi-task 3D U-Net 

+ ICD 

TensorFlow 6 Acc=86 

Rosa [124] Segmentation Basel University 

Hospital 

MRI 54 MS NiftyNet DA 3D U-Net TensorFlow 6 Detection 

Rate=76 

DSC=60 Lausanne 

University Hospital 

36 MS 

Narayana [126] Segmentation CombiRx MRI 1008 MS -- MRIAP 

Pipeline, DA 

2D U-Net Keras, 

TensorFlow 

-- DSC= 90 

TPR= 81 

FPR= 28 

Abolvardi [141] Registration Based 

Data Augmentation 

Longitudinal MS 

lesion Dataset 

MRI 19 MS -- -- 3D U-Net -- 5 DSC=61.4 

Falvo [142] Accelerating MRI Public Dataset MRI 30 MS -- -- Multimodal Dense U-

Net (MDU) 

MATLAB, 

Keras 

-- Acc=97 

Ghosal [143] Segmentation MICCAI 2016 MRI 15 MS -- -- Light Weighted U-

Net 

Keras, 

TensorFlow 

5 Acc=96.79 

Sen=65 

Spec=86 

DSC=76 

Kumar [144] Segmentation MICCAI 2016 MRI 15 MS -- DA Modified Dense U-

Net 

Keras 5 DSC=86.6 

Sen=85.6 

Kats [146] Segmentation ISBI 2015 MRI 19 MS -- Soft Labeled 

Mask 

2D U-Net Based 

FCNN 

-- 5 DSC=57.8 

Prec=83.8 

Recall=46.6 

Feng [147] Segmentation ISBI 2015 MRI 19 MS -- Different 

Methods 

3D U-Net -- -- DSC=68.4 

Narayana [157] Tissue Classification CombiRx MRI 1008 MS -- MRIAP 

Pipeline, DA 

Multi-Class U-Net Keras, 

TensorFlow 

-- WM-DSC=94 

GM-DSC=94 

CSF-DSC=97 

Lesion-DSC= 85 

Hu [160] Lesion Segmentation ISBI 2015 MRI 19 MS -- Data 

Enhancement 

3D Attention Context 

U-Net (ACU-Net) 

Keras, 

TensorFlow 

-- DSC= 63.45 

PPV= 86.82 



LTPR= 47.87 

LFPR= 12.99 

Gabr [164] Brain and Lesion 

Segmentation 

CombiRx MRI 1008 MS -- MRIAP 

Pipeline, DA 

Multiclass U-Net 

FCNN 

Keras, 

TensorFlow 

-- WM-DSC= 95 

GM-DSC=96 

CSF-DSC=99 

T2 Lesions-

DSC=82 

Salem [137] Segmentation VH dataset MRI 60 MS ROBEX, ITK, 

Nifty Reg 

3D Patch 

Extraction 

FCNN Keras, 

TensorFlow 

-- DSCs=55 

DSCd=83 

Yoo [177] Distinguish Between 

MS Patients and HC 

Clinical MRI 55 MS 

44 HC 

FSL Lesion Masks, 

Patch Extraction 

Multimodal Deep 

Learning Network 

-- 11 Acc= 87.9 

Sen=87.3 

Spec=88.6 

Sujit [145] Automatically 

Evaluate the Quality 

of Multicenter 

Structural Brain MRI 

Images 

ABIDE MRI 1112 Subjects SPM DA Ensemble DL Model Keras, 

TensorFlow 

-- Acc=84 

Sen=77 

Spec=85 

AUC=90 
CombiRx 110 MS 

Finck [115] Produce synthDIR Clinical MRI 100 MS -- -- DiamondGAN -- -- Detection 

Rate=31.4 

CNR=22 

Wei [125] Predicting PET-

Derived Myelin 

Content from Multi 

Sequence MRI 

Clinical MRI, PET 18 MS, 10 HC FSL, 

FreeSurfer 

DA, Lesion-

Filling 

Procedure 

Conditional Flexible 

Self-Attention GAN 

(two CF-SAGAN 

used as Sketcher and 

Refiner) 

TensorFlow 3 DSC= 91 

Shaul [138] Subsampled Brain 

MRI Reconstruction 

ISBI 2015 MRI 80 MS -- Inverse 

Orthonormal 2D 

FT 

GAN -- -- PSNR=28.26 

SSIM=90 

DSC=90.4 

Zhang [180] Lesion Segmentation Clinical MRI 69 MS FSL DA, Pseudo 3D 

Slice Extraction 

MS-GAN PyTorch -- DSC=67.2 

Recall=69.2 

Prec=72.4 

Wei [182] Predicting PET-

Derived 

Demyelination from 

Multimodal MRI 

Clinical MRI, PET 18 MS, 10 HC FSL ROIs Extraction Sketcher-Refiner 

GANs 

Keras, 

Theano 

3 MSE=0.0083 

PSNR=30.044 

Wei [185] Predict The PET-

Derived Myelin 

Content Map from a 

Combination of MRI 

Modalities 

Clinical MRI, PET 18 MS, 10 HC -- ROIs Extraction Sketcher-Refiner 

GANs 

Keras 3 -- 



Hagiwara [224] Improving the Quality 

of Synthetic FLAIR 

Images 

Clinical MRI 40 MS SyMRI 

Software, FSL 

-- Conditional GAN Python, 

Chainer 

-- PSNR= 35.9 

NRMSE=27 

Karaca [166] Classification of MS 

Subgroups 

Clinical MRI 120 MS  Lesion 

Diameter Data 

SSAE MATLAB 10 Acc=99.78 

Vogelsanger 

[226] 

Latent Space Analysis Clinical MRI 616 MS ITK, 

Framework, 

FSL 

Trimming and 

Down 

Sampling, 

Bounding the 

Voxel Values 

Introspective 

Variational 

Autoencoder (intro-

VAE or IVAE) 

Keras, 

TensorFlow 

-- Pre=92 

Recall= 89 

Aslani [118] Segmentation Clinical MRI 117 MS FSL -- Traditional Encoder-

Decoder Network 

with Regularization 

Network 

Keras, 

TensorFlow 

5 DSC=50 

McKinley [191] Lesion Segmentation MICCAI 2016 MRI 53 MS -- Lesion Mask Nabla-Net Keras, 

Theano 

-- -- 

Krüger [136] Segmentation Different Dataset MRI Different 

Number of 

Cases 

SPM, LST DA Fully 3D 

Convolutional 

Encoder-Decoder 

Architecture 

-- -- Sen=60 

DSC=45 

Brosch [174] Lesion Segmentation MICCAI 2008 MRI 43 MS FSL Ground Truth 

Segmentations 

Via 

Semiautomatic 

2D Region-

Growing 

Technique 

Convolutional 

Encoder Network 

with Shortcut 

Connections (CEN-s) 

-- -- DSC= 63.83 

LTPR= 62.49 

LFPR= 36.10 

VD= 32.89 

ISBI 2015 21 MS 

clinical 195 MS 

Tripathi [139] Denoising Of MRI 

Scans 

University of 

Syprus Dataset 

MRI -- -- -- CNN-DMRI TensorFlow -- PSNR= 38.51 

SSIM=97 

Gessert [113] Segmentation University Hospital 

of Zurich, 

Switzerland 

MRI 44 MS -- -- Enc-convGRU-Dec -- -- DSC=64 

LTPR=84 

Andermatt 

[131] 

Segmentation ISBI 2015 MRI 20 MS -- DA MD-GRU -- -- DSC= 62.85 

HD= 32.60 

AVD= 1.83 

Sander [194] Brainstem 

Segmentation 

Clinical MRI Different 

Number of 

Cases 

-- DA MD-GRU -- -- DSC=98 

 

 



3. Discussion  

The purpose of this paper is to provide a complete overview of works done in the field of automated 

MS diagnosis using MRI modalities and DL techniques. In this review paper, comprehensive details of 

most of the works carried out are provided for readers. Table (2) summarizes works done in the field of 

MS detection using DL techniques and MRI modalities. According to Table (2), the discussion section 

is organized into several subsections. Subsections of the discussion comprises of comparing 

conventional machine learning techniques with DL, types of MS diagnosis applications, datasets, MRI 

modalities in MS diagnosis, MRI preprocessing toolboxes, DL architectures, DL toolboxes, and finally 

classification algorithms in the diagnosis of MS. Also, the details of DL networks developed for MS 

diagnosis are provided in the appendix table A. They are briefly presented in the following sections. 

3.1. Comparison of deep learning and conventional machine learning methods 

Research in the field of MS diagnosis using AI techniques is divided into two categories: conventional 

machine learning and DL. In references [27-29], various conventional machine learning works 

developed to diagnose MS from modalities are provided. In CADS based on conventional machine 

learning, the main aim is to combine different algorithms together (including preprocessing to 

classification) to achieve highest accuracy. This is a relatively complex task and requires a great deal 

of knowledge in the field of machine learning [93]. 

In recent years, DL techniques have received a particular position in MS diagnosis [238]. Unlike 

conventional machine learning approaches, DL techniques are highly effective in diagnosing MS. In 

CADS based on DL methods, deep layers are exploited to extract the features [238]. This enhanced the 

effectiveness of CADS in MS diagnosis. The application of DL techniques have yielded hope for 

accurate diagnosis of MS using MRI modalities. 

3.2. Comparison of deep learning applications for diagnosis of MS  

In this section, a comparison between various applications based on DL methods for diagnosing MS 

are presented. It can be noted from Table (2) that the majority of works have been focused on 

segmentation and classification approaches, or combination of both as shown in Figure (10). It can be 

noted from the Figure that it is important to perform segmentation to diagnose MS. This will help to 

identify the MS lesions on MR images. The DL techniques can be used to recognize the exact location 

and dimensions of the MS lesion, which will help the clinicians to confirm their diagnosis. There are 

datasets available with manual segmentation of MR images. This has paved the way to have more 

segmentation works being done using DL techniques with MRI neuroimaging modalities. 

 
Fig. 10. Number of Applications used for MS diagnosis. 



3.3. Comparison of available MRI datasets for diagnosis of MS  

Several available datasets of MRI modalities have been introduced for the automated diagnosis of MS. 

The available MRI datasets for the automated MS diagnosis are given in Table (1). In Table (2), the 

clinical datasets on diagnosis of MS are listed. Figure (11) illustrates the number of datasets employed 

to diagnose MS. It can be seen, that most of the works have used clinical data. Among the available 

datasets, ISBI 2015 is the most frequently used one for MS diagnosis research. This dataset contains 

different types of sMRI modalities, and  motivated its application in majority of relevant studies. 

 
Fig. 11. Number of datasets used for MS diagnosis. 

3.4. Comparison of MRI neuroimaging modalities for diagnosis of MS  

Previous sections explained different types of neuroimaging modalities for MS diagnosis. As presented 

in Table (1), so far, datasets with sMRI modalities have been provided for research purposes. MRI 

neuroimaging modalities for the diagnosis of MS are explained in another section of Table (2). It can 

be noted from Table (2) that the number of MRI modalities used in the MS diagnosis is depicted in 

Figure (12). It can be seen from this Figure, that the use of sMRI modalities to diagnose MS has grown 

more than other neuroimaging modalities. Based on Figure 12, few researchers have employed PET 

imaging in addition to sMRI modalities for MS diagnosis, thereby enhancing the precision and 

efficiency of CADS. 

 
Fig. 12. Number of neuroimaging modalities used in the MS diagnosis.  

3.4. Comparison of various MRI preprocessing toolboxes for diagnosis of MS  

As mentioned in the previous sections, preprocessing is an important step in MRI. The pre-processing 

of MRI modalities has certain stages, as presented in Section 2.2. The implementation of these pre-

processing steps are usually time-consuming, and several toolboxes have been proposed to overcome 



this problem. Various toolboxes have been used for low-level preprocessing of MRI modalities, the 

most important of which are the FMRIB software library (FSL) [195], FreeSurfer [196], statistical 

parametric mapping (SPM) [197], and Matlab. The number of MRI preprocessing toolboxes used to 

detect MS are shown in Figure (13). It can be seen, that the FSL toolbox is widely used in many works. 

 
Fig. 13. Number of MR images preprocessing toolboxes used for MS diagnosis. 

3.5. Comparison of different DL methods for diagnosis of MS  

This review mainly examines different DL methods developed for MS diagnosis. The most well-known 

DL techniques for MS diagnosis based on MRI modalities are presented in Section 2.3. Based on 

Section 2.3, DL segmentation and classification methods have been employed for MS diagnosis. 

Among DL methods, only CNN models are employed in different types of segmentation and 

classification techniques. The type of DL model used for automated MS detection using MRI modalities 

are given in Table (2). The number of DL networks used every year for MS diagnosis is shown in Figure 

(14). It can be noted from this Figure that CNN models have been widely used to diagnose MS from 

MRI modalities. The popularity of CNN models compared to other DL techniques lies in getting high 

performance using brain MR images.   

 
Fig. 14. Types of DL networks used for MS diagnosis. 



3.6. Comparison of different DL toolboxes for diagnosis of MS  

Numerous toolboxes have been provided for implementing DL models by companies such as Google 

or Facebook. The various tools used to develop DL architectures are shown in Table (2). The most 

important DL tools are TensorFlow, Keras, Caffe, and PyTorch [198-200]. Various DL toolboxes used 

by authors are also shown in Table (2). The number of DL toolboxes used in automated MS diagnosis 

is displayed in Figure (15). It can be noted from Figure (15) that the Keras toolbox is the most used 

system to MS detection using MRI modalities. Keras is a powerful, free-of-charge, easy-to-use, and 

open-source library for the development and evaluation of DL models. It covers one numerical machine 

learning library of TensorFlow, and allows researchers to easily implement DL models. Hence, Keras 

is the most popular library among DL researchers for diagnosis of MS. 

 
Fig. 15. Types of DL toolboxes used for MS diagnosis. 

3.7. Comparison of classification methods for diagnosis of MS  

The activation function of the last layer used for classification in DL models is the last part of the DL-

based CADS shown in Table (2). The number of activation functions used in DL-based CADS for MS 

detection is shown in Figure (16). It can be noted that, the softmax function has yielded the highest 

classification performance. 

4. Challenges  

In this section, the most important challenges in the automated MS diagnosis using MRI neuroimaging 

modalities and DL techniques are discussed. The inaccessibility of available sMRI databases belonging 

to more subjects and different modalities is the first challenge. The second challenge is the 

inaccessibility of datasets with functional neuroimaging modalities for MS diagnosis research. Finally, 

DL models and hardware resources remain the third challenge. These challenges are discussed below. 

4.1. Unavailable big data sMRI datasets with different modalities  

In the automated MS diagnosis, huge datasets are needed to obtain highest classification performance. 

The datasets available have a finite number of subjects and therefore advanced DL models cannot be 

employed to investigate them. In segmentation applications, the principal objective is to apply a DL 

method to delineate the MS lesions in the MRI modalities. This can be achieved when the DL network 

is first trained using a huge number of MR images. This huge number of images obtained from large 

number of subjects need to be manually delineated and fed as input to perform automated segmentation.  



 
Fig. 16. Number of MS classification works proposed using DL methods. 

4.2. Unavailable functional Neuroimaging modalities for MS diagnosis   

This section addresses the most important challenges of functional neuroimaging modalities in the 

diagnosis of MS. The most important challenges include the inaccessibility of available fMRI datasets 

and other functional neuroimaging datasets. They are briefly discussed below. 

 (1). Unavailable fMRI datasets    

The unavailability of functional MRI (fMRI) datasets is the key challenge. fMRI modalities yield 

important information about brain function to specialist physicians and neurologists [60]. fMRI 

modalities contain two categories: rs-fMRI and Task-fMRI [60]. Specialists have concluded that fMRI 

modalities are effective in diagnosing brain diseases, including MS [239]. In clinical studies, there have 

been much debate on the importance of using fMRI to automatically diagnose MS [201-203]. Hluštík 

[239] in a study indicated that applying fMRI modalities in the diagnosis of MS is of great significance. 

In this study, motor, visual and cognitive networks in MS patients were examined using fMRI 

modalities. One of the advantages of fMRI modalities is that they can determine the location of MS 

based on the functioning of brain neurons. But fMRI modalities are more complex than sMRI 

modalities. This has led to research into the diagnosis of MS using fMRI modalities and AI techniques. 

In [204-205], A few researchers have taken the advantage of fMRI neuroimaging modalities alongside 

AI techniques to detect MS and have achieved satisfactory results. Unfortunately, the lack of access to 

fMRI datasets involving large number of subjects has prevented researchers from developing accurate 

and robust DL techniques to diagnose MS. The availability of fMRI datasets with large number of 

subjects helps the researchers to develop an accurate MS diagnosis model which can assist the 

physicians to confirm their manual screening.  

(2). Unavailable other functional neuroimaging datasets     

Furthermore, the lack of accessibility to datasets from other structural neuroimaging modalities is 

another challenge. Few clinical studies have used electroencephalogram (EEG), functional near-

infrared spectroscopy (fNRIS), and magnetoencephalography (MEG) to diagnose MS [206-210]. Also, 

few authors have used EEG signals with conventional machine learning algorithms to detect MS [211-

213] automatically.  



Recently many multimodality techniques have been proposed to accurately diagnose brain disorders 

with satisfactory outcomes [214-216]. Very few clinical works have been conducted to diagnose MS 

using multimodality techniques such as EEG-fMRI [217] and MEG-fMRI [218]. The performance of 

the system can be improved by using data fusion techniques. 

4.3. Dl methods and hardware's   

Another challenge is the selection of DL approach and hardware resources. The development of a DL 

method to distinguish MS using MRI modalities demands more images and experience. Lack of access 

to adequate hardware resources to implement DL architectures is another big challenge. Although 

servers such as Google Colab, Amazon, and cater good hardware resources are available for researchers 

to train DL networks, using these servers in the real world is a big challenge and rises privacy concerns.  

5. Future directions in the automated MS diagnosis using DL techniques 

In this section, directions for future work on MS diagnosis based on MRI neuroimaging modalities and 

DL techniques are delineated. Future research directions include three categories: datasets, application 

of novel DL models, and rehabilitation systems for MS patients.  

5.1. Future works in datasets for automatic diagnosis of MS  

The available datasets for MS diagnosis are presented in Table (1). It can be noted from Table (1) that 

most of the available sMRI datasets are small (limited subjects). Hence, the developed automated 

systems for MS diagnosis may not be accurate and robust. As a future research direction, proposing 

sMRI datasets with large number of subjects will help to design a practical software for MS diagnosis.  

Lack of access to datasets of functional modalities such as fMRI is another challenge in MS diagnosis. 

As a future work, we propose to have more accessible datasets of fMRI modalities for conducting 

research on MS diagnosis. This can pave the way for developing more accurate systems for screening 

of brain function of MS patients by using DL techniques and fMRI modalities.  

In [125], the PET functional modality is used for MS diagnosis. In the future, presenting accessible 

datasets of PET modality can contribute to conducting applied studies in this domain. Physicians in 

clinical research have utilized combined modalities such as PET and MRI to diagnose brain diseases 

[240-242].  Free available of such combined datasets (PET and MRI modalities) can be used to develop 

automated systems for MS diagnosis.  

MRI modalities have been used to classify or segment MS lesions [223]. The T1-w modality, however, 

is often used to segment the brain tissue. MS lesions are usually manifest as hyperintensities in the T2-

w and PD-w modalities [223]. The major drawback of these two modalities are the similarity in lesion 

intensities and CSF, which makes the segmentation difficult. In such cases, the T2-FLAIR modality can 

be of great significance, but this modality becomes problematic when dealing with subcortical structures 

[223]. Therefore, in future, DL models with several neuroimaging modalities can help to identify and 

segment the lesion of MS disease. 

5.2. Future works in DL methods for automatic diagnosis of MS  

Recently, GAN models have been introduced in medical applications and a lot of research is being done 

in this field [228-230]. As mentioned, the lack of medical data is an obstacle for training DL networks. 

GAN models have mostly been able to address the lack of medical data to train DL networks [228-230]. 

For this purpose, various GANs can be employed to generate large amounts of MRI modalities in the 

future works of MS diagnosis. Additionally, some novel models such as graph theory-based 

architectures [231, 232], zero-shot learning [233-235], and representation learning [236-237] can be 

used by researchers as future works in MS diagnosis using MRI neuroimaging modalities. 

 

 



5.3. Future works in design of rehabilitation systems for automatic diagnosis of MS  

Cloud computing is a novel medical technology that has attracted considerable attention from 

researchers [243-245]. It allows researchers to store large MRI data in a cloud space. DL methods can 

also be implemented and simulated in the cloud space. It is expected that future works employ cloud 

computing to study MS diagnosis based on MRI modalities and DL methods.  

The Internet of Things (IoT) is another developing technology in the medical industry [246-248]. 

Access to neurologists is challenging in most treatment centers. Thus, in the future, the use of IoT and 

DL technologies can facilitate the process of treatment and diagnosis for MS patients. 

6. Conclusion  

MS is a chronic disease that directly attacks the central nervous system, including the brain, spinal cord, 

and optic nerves. Early diagnosis of MS is of great significance as it can prevent the progression of the 

disease and save life. MRI neuroimaging modalities provide important information about brain tissue 

and structure to specialist physicians. Therefore, MRI modalities are widely used to obtain the presence 

of MS lesions. Various methods have been proposed to diagnose the MS using MRI modalities and 

machine learning techniques. In this paper, different components of CADS employed for MS diagnosis 

using DL, and automated MS detection systems developed are presented in Table (2). 

The works done on MS diagnosis using MRI modalities and DL techniques are presented in the 

discussion, This section discusses the comparison of conventional machine learning techniques and 

deep learning, available MRI datasets, MRI modalities, MRI preprocessing toolboxes, DL models, DL 

toolboxes, and classifier methods.  

The most important challenges of MS diagnosis with MRI modalities and DL techniques are delineated. 

The inaccessibility of huge sMRI datasets belonging to diverse population and lack of access to fMRI 

modalities are among the most important dataset-related challenges which are discussed in detail. 

Moreover, DL-related challenges include researchers’ lack of access to powerful hardware resources 

for MS diagnosis research.  

Future work suggestions are presented in a section of the paper. They focus on developing more 

available public datasets of sMRI modalities, functional neuroimaging modalities (fMRI and PET), and  

implementation of rehabilitation systems for MS patients.  



Appendix A. Details of deep learning architectures for MS researches    

Works DNN Details Classifier Loss Function Optimizer 

Marzullo [149] 2D-CNN 2 Conv + 2 Max Pooling + 2 Dropout + 2 BN + 2 FC Linear -- Adam 

Siar [154] 2D-CNN 25 Layers Softmax -- -- 

Aslani [155] 2D-CNN ResNet50 + UFF Blocks -- BCE Adadelta 

Eitel [158] 2D-CNN 5 Conv + 5 BN + PIF -- -- -- 

Afzal [159] 2D-CNN 2 Conv + 2 Max Pooling + 1 FC Multinomial LR -- -- 

Roy [172] 2D-CNN 15 Conv -- -- Adam 

Aslani [184] 2D-CNN 3 Parallel ResNet50s + 5 MMFF Blocks + 4 MSFU Blocks + MPR Block Softmax soft Dice Loss function Adam 

Alijamaat [190] 2D-CNN 15 Conv + 1 Average Pooling + 1 FC + Dropout Sigmoid -- Adam 

Shrwan [223] 2D-CNN 3 Conv + 3 BN + 3 Max Pooling + 2 FC Softmax CE SGDM 

Afzal [225] Two 2D-CNN 6 Conv + 6 Max Pooling -- -- Proposed 

Wang [181] 2D-CNN 11 Conv + 11 BN + 4 Pooling + 3 FC + 2 Dropout Softmax -- -- 

Ulloa [135] V-Net CNN 3 Conv + 3 Max Pooling + 2 FC + 5 Dropout Sigmoid BCE and Focal Loss SGD 

Birenbaum [179] 4 CNN Models V-Net, L-Net, Multi-View CNN, Multi-View Longitudinal CNN Softmax CCE Adadelta 

Birenbaum [165] 4 CNN Models V-Net, L-Net, Multi-View Longitudinal CNN, Multi-View CNN -- CCE Adadelta 

SALEM [156] Encoder-Decoder U-NET 2 Encoders and 2 Decoders -- CCE Adadelta 

Cascaded 3D CNNs Cascade of 2 Identical CNNs 

Roca [127] 3D-CNN 6 Conv + 3 BN + 3 Max Pooling + 2 Dense Linear 

Activation 

MSE Adam 

Nair [129] 3D-CNN 12 Conv + 4 De-Conv + 4 Dropout +4 Skip Connection Sigmoid Weighted BCE Adam 

Brown [132] 3D-CNN 6 Conv + 4 De-Conv and Up Sampling + 4 Concatenation Softmax CCE Adam 

Sepahvand [152] 3D CNN 10 Conv + 4 Max Pooling + 4 BN + 4 Dropout + 2 FC Sigmoid CE Adam 

Modified U-net 17 Conv + 7 BN + Dropout + 3 Max Pooling + 3 De-Conv + 3 Concatenation 

Rosa [153] Cascade of Two 3D Patch-

Wise CNNs 

4 Conv + 2 Max Pooling + 4 BN + 1 FC + 1 Dropout Softmax CE Adam 

Tousignant [162] 3D-CNN 3 Consecutive Conv Blocks + 2 FC + 5 Dropout Sigmoid CE RMSProp 

Yoo [163] 3D-CNN 3 Conv + 3 Max Pooling +2 FC + 2 Dropout LR CE Adadelta 

Kazancli [168] Two 3D-CNNs in a Cascade 

Fashion 

2 Conv + 2 Average Pooling + 2 BN + 1 FC + 1 Dropout Softmax CE Adam 

Gros [169] Sequence of Two CNNs First CNN with 2D Dilated Convolutions, Second CNN with 3D Convolutions -- Dice Loss Adam 

Valverde [173] 3D-CNN 4 Conv + 2 Max-Pooling + 4 BN + 3 FC + 3 Dropout Softmax CCE Adadelta 

Zhang [176] 3D-CNN 7 Conv +7 Pooling + 3 FC + 3 Dropout Softmax -- -- 

Yoo [178] 3D-CNN 3 Conv + 3 Max Pooling + 2 FC + 2 Dropout LR CE Adadelta 

Eitel [188] 3D-CNN 4 Conv + 4 Max-Pooling + 4 Dropout Sigmoid -- Adam 

Valverde [192] 3D-CNN 2 Conv + 2 Pooling + 1 Dropout + 1 FC Softmax CCE Adadelta 

Valverde [175] Cascade of Two 3D Patch-

Wise CNNs 

2 Conv + 2 Max Pooling + 2 BN + 1 FC + 1 Dropout Softmax CCE Adadelta 



Gessert [170] Attention-Guided Two-Path 

CNNs 

2 Conv In + 21 ResBlocks + 6 Conv Down + 3 Conv Up + Fusion Block + Conv 

Out 

-- Dice Loss Adam 

Sepahvand [116] NE SubNet 17 Conv + 7 BN + 3 Max Pooling + 3 De-Conv + 4 Concatenation Sigmoid CE Adam 

McKinley [121] DeepSCAN 2 Conv Blocks + 1 Max Pooling block + 4 Dilated Dense Blocks + 1 Up Sampling -- Combination of Focal 

Loss and Label-Flip 

Loss 

-- 

Ackaouy [122] Seg-JDOT 6 Conv + 5 Context Modules + 4 Up Sampling + 3 Localization Modules Softmax Proposed Proposed 

Maggi [128] CVSnet 3 Conv + 3 Max Pooling + 3 Dropout + FC Softmax CCE Adam 

McKinley [227] DeepSCAN 2 Conv + 4 Dense Blocks + Max Pooling + Up Sampling -- Combination of Multi-

Class CE Loss and 

Label-Flip Loss 

Adam 

HASHEMI [189] 3D Patch-Wise FC-Dense-Net 5 Conv + 3 BN + 11 DenseBlocks + 5 Transition Down + 5 Transition Up + 1 De-

Conv + 5 Concatenation 

Sigmoid Asymmetric Loss 

Functions 

Adam 

McKinley [171] DeepSCAN Cascade of Two CNNs Softmax Hybrid Loss Adam 

Vincent [114] FiLMed-Unet -- -- Dice Loss Adam 

Vang [130] Synergy-Net Fusing U-Net and Mask R-CNN and RPN Sub-Networks -- Multi-Tasks Loss 

Function 

Adam 

Calimeri [193] Graph Based Neural 

Networks 

Vertex Sequential Fully Connected (vs-FC) + the Graph Sequential Fully 

Connected (gs-FC) + Dropout 

Softmax -- Adamax 

Marzullo [186] Graph Convolutional Neural 

Network (GCNN) 

1 Graph Conv + FC + Dropout Softmax -- Adam 

Dai [187] MDN Cascading 2 Basic Blocks (Dilated Convolutions, Global and Local Residual 

Learnings, Concatenation Layers) 

-- Proposed Loss Function Adam 

Dewey [183] DeepHarmony 10 Conv + 8 Strided Conv + 17 BN + 5 Concatenation -- MAE Adam 

Yoo [161] Hierarchical Multimodal 

Fusion (HMF) Model 

3 Conv + 3 Max Pooling + 6 FC + 3 RBM + 2 mf-fc + 1 hf-fc + 6 Dropout Logistic 

Regression 

CE AdaDelta 

Essa [134] 2 Parallel R-CNN 6 Conv + 3 Polling + 2 FC + Softmax ANFIS -- -- 

Hou [148] Cross Attention Densely-

Connected Network (CA-

DCN) 

3 Cross Attention Block + 12 Conv + 3 Down Sampling + 3 Up Sampling +8 

Concatenation 

3 Softmax Proposed -- 

Ulloa [150] Single-View Multi-Channel 

(SVMC) 

3 Conv + 3 Max Pooling + 4 Dropout + 1 FC Softmax CCE SGD 

Zhang [151] Recurrent Slice-Wise 

Attention Network (RSANet) 

3D U-Net Backbone with RSA Blocks -- Exponentially Weighted 

CE 

Adam 

Narayana [117] VGG16+FCN Modified Architecture + 3 FC Sigmoid BCE Adam 

Barquero [133] RimNet (two parallel CNNs 

inspired by VGGNet) 

12 Conv + 6 Max Pooling + 3 BN + 3 FC Softmax CE Adam 

Ye [140] DNN 10 Hidden FC + 10 BN Softmax CE Adam 

Fenneteau [167] 3D U-Net 26 Conv + 4 Strided-2 Conv + 30 Instance Normalization + 5 Dropout + 7 

Addition + 6 Up-Sampling + 4 Concatenation 

Sigmoid -- Adam 

Coronado [119] 3D U-Net 5 Conv + 4 Context Modules + 3 Up Sampling Modules + 2 Localization Modules 

+ 2 Segmentation + 3 Strides + 3 De-Conv + 1 Upscaling 

Softmax Multiclass Weighted 

Dice 

Adam 



Narayana [120] Multiclass U-net 18 Conv + 4 Max Pooling + 4 De-Conv and Up Sampling + 4 Copy and 

Concatenation 

Softmax Balanced Version of 

Dice Score Coefficient 

SGD 

Rosa [123] Multi-task 3D U-Net + ICD 9 Conv + 2 Max Pooling + 2 Up Sampling + 3 Concatenation -- Voxel-Wise Weighted 

CE 

Adam 

Rosa [124] 3D U-Net 7 Conv + 2 Max Pooling + 2 De-Conv + 2 Concatenation -- pixel-wise weighted CE Adam 

Narayana [126] 2D U-net 16 Conv + 4 Max Pooling + 4 De-Conv and Up Sampling + 4 Copy and 

Concatenation 

Softmax Balanced Version of 

Dice Score Coefficient 

Adam 

Abolvardi [141] 3D U-Net 19 Conv + 4 Max Pooling + 4 Up Sampling and Conv + 4 Copy and Crop -- -- -- 

Falvo [142] Multimodal Dense U-Net 

(MDU) 

11 Conv + 3 Pooling + 1 Merge and Conv + 2 De-Conv + 6 Dense Blocks + 3 

Copy and Concatenation 

-- Proposed Adam 

Ghosal [143] Light-Weighted U-Net 10 Conv + 8 BN + 4 Max Pooling + 4 Up Sampling Sigmoid BCE Adam 

Kumar [144] Modified Dense U-Net 6 Dense Blocks + 3 Max Pooling + 5 Conv + 3 Up Sampling + 3 Concatenation Softmax BCE Adam 

Kats [146] 2D U-net based FCNN 6 Conv + 2 Max Pooling + 2 Dropout + 2 De-Conv + 2 Concatenation Sigmoid Proposed -- 

Feng [147] 3D U-Net 15 Conv + 14 BN + 3 Max Pooling + 3 De-Conv and Up Sampling + 3 Copy and 

Crop 

-- Weighted CE Adam 

Narayana [157] Multi-Class U-Net 18 Conv + 4 Max Pooling + 3 De-Conv and Up Sampling + 4 Copy and 

Concatenation 

-- Weighted CCE Adam 

Hu [160] 3D Attention Context U-Net 

(ACU-Net) 

2 Conv + 5 3D Context Guided Modules + 2 3D Spatial Attention Blocks + 3 De-

Conv + 3 Channel-Wise Concatenation 

Softmax Focal Tversky Loss 

function 

SGD 

Gabr [164] Multiclass U-Net FCNN 18 Conv + 4 Max Pooling + 4 De-Conv and Up Sampling + 4 Copy and 

Concatenation 

-- Multiclass Dice Loss Adam 

Salem [137] FCNN 3D Registration Architecture + 3D Segmentation Architecture -- Proposed Adam 

Yoo [177] Multimodal Deep Learning 

Network 

2 DBNs RF -- -- 

Sujit [145] Ensemble DL Model 3 Cascaded Networks (Each Cascaded Network Consists of a DCNN Followed by 

a Fully Connected Network 

Averaging the 

Quality Scores 

BCE Adam 

Finck [115] DiamondGAN 2 Generators, 2 Discriminators 2 

Neuroradiologis

ts 

Cycle Consistency Loss 

Function 

-- 

Wei [125] Conditional Flexible Self-

Attention GAN (two CF-

SAGAN used as Sketcher and 

Refiner) 

Generator:2 Conv + 4 ResDown Blocks + 2 Flexible Self-Attention + 4 ResUp 

Blocks + 4 Long Connections 

Discriminator: Conv + 4 ResDown Blocks + 1 Flexible Self-Attention + 1 Dense 

Sigmoid Adversarial Loss 

Functions 

Adam 

Shaul [138] GAN 2 Generator (2 U-Nets), 1 Discriminator Sigmoid Proposed Adam 

Zhang [180] MS-GAN Multimodal Encoder-Decoder Generator + Multiple Discriminators -- Proposed Adam 

Wei [182] Sketcher-Refiner GANs 2 cGANs named Sketcher and Refiner Softmax Adversarial Loss 

Functions 

Adam 

Wei [185] Sketcher-Refiner GANs 2 cGANs named Sketcher and Refiner Softmax Adversarial Loss Adam 

Hagiwara [224] Conditional GAN Generator: 2 Parallel Fully Connected Neural Network Streamlines 

Discriminator: Similar to The Structure Of U-Net 

Sigmoid Adversarial Loss Adam 

Karaca [166] SSAE 2 Autoencoders Softmax Proposed -- 



Vogelsanger 

[226] 

Introspective Variational 

Autoencoder (intro-VAE or 

IVAE) 

Encoder: Conv + BN + Pooling + Dense + Dropout 

Decoder: Dense + Dropout + BN + De-Conv + Up Sampling 

LDA Proposed -- 

Aslani [118] Traditional Encoder-Decoder 

Network with Regularization 

Network 

Encoder Network + Decoder Network + Regularization Network Softmax Proposed Adam 

McKinley [191] Nabla-Net 17 Conv + 16 BN + 3 Max Pooling + 3UnPooling + Concatenation Sigmoid BCE Adadelta 

Krüger [136] Fully 3D Convolutional 

Encoder-Decoder 

Architecture 

37 Conv + 5 Up Sampling and Conv + 9 Concatenation + 12 Element Wise Sum + 

3 Segmentation + 2 Up Scale 

-- CE Adam 

Brosch [174] Convolutional Encoder 

Network with Shortcut 

Connections (CEN-s) 

2 Conv + 1 Average Pooling + 2 De-Conv + 1 UnPooling -- Proposed Adadelta 

Tripathi [139] CNN-DMRI 3 Conv + 2 Down Sampling + 4 Residual Blocks + 2 De-Conv -- MSE Adam 

Gessert [113] Enc-convGRU-Dec 2 Conv + 12 ResBlock + 3 Conv Down + 3 Conv Up + 4 convGRU -- -- -- 

Andermatt [131] MD-GRU -- Softmax -- -- 

Sander [194] MD-GRU -- -- -- -- 
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