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Abstract

Adequate blood supply is critical for normal brain func-
tion. Brain vasculature dysfunctions, including stalled
blood flow in cerebral capillaries, are associated with cog-
nitive decline and pathogenesis in Alzheimer’s disease. Re-
cent advances in imaging technology enabled generation of
high-quality 3D images that can be used to visualize stalled
blood vessels. However, localization of stalled vessels in
3D images is often required as the first step for downstream
analysis. When performed manually, this process is te-
dious, time-consuming, and error-prone. Here, we describe
a deep learning-based approach for automatic detection of
stalled capillaries in brain images based on 3D convolu-
tional neural networks. Our approach includes custom 3D
data augmentations and a weights transfer method that re-
uses weights from 2D models pre-trained on natural images
for initialization of 3D networks. We used an ensemble of
several 3D models to produce the winning submission to
the ”Clog Loss: Advance Alzheimer’s Research with Stall
Catchers” machine learning competition that challenged
the participants with classifying blood vessels in 3D image
stacks as stalled or flowing. In this setting, our approach
outperformed other methods and demonstrated state-of-the-
art results, achieving 85% Matthews correlation coefficient,
85% sensitivity, and 99.3% specificity. The source code for
our solution is publicly available.

1. Introduction

Healthy brain vasculature is crucial for maintaining cere-
bral blood flow (CBF) that supplies neurons with oxygen,
energy metabolites, and nutrients. It removes carbon diox-

ide and other potentially toxic metabolic waste products
from the brain and into the systemic circulation for clear-
ance [45] 25)]. With limited energy reserve, brain func-
tions stop within seconds if CBF stops, and irreversible
damage to neurons occurs within minutes [31, 45]. It
has been widely acknowledged that disruption of normal
CBF is an early and persistent symptom in developing
Alzheimer’s disease (AD) and other neurodegenerative dis-
orders [31} 45,125, 141,140, [1]. However, underlying mecha-
nisms for cerebral blood flow reduction in Alzheimer’s dis-
ease are not well understood.

Recent advances in imaging technologies, such as mul-
tiphoton microscopy, enabled 3D visualization of individ-
ual capillaries in living tissue up to about one millimeter in
thickness [[15} [11]]. The ability to perform this type of imag-
ing in mouse models of AD offers the opportunity to eluci-
date the mechanistic links between CBF reductions and AD
pathology [15} [1]. Typically, the analysis of such images
starts with identifying capillaries and then manually label-
ing each capillary segment as either flowing or stalled based
on the motion of blood cells during the entire time each cap-
illary is visible in the three-dimensional image stack [ 15} 2]].
However, the process of manual annotation is very tedious
and time-consuming, which limits the ability to investigate
the vital link between capillary function and AD.

One increasingly popular approach to data annotation
that aims to speed up data annotation is crowdsourcing [30],
which combines the efforts of many individuals tasked with
annotating a small part of a larger data set. This ap-
proach creates an opportunity to use the crowdsourced an-
notations for training deep learning models, which rely on
the availability of large labeled datasets [42]. Specifically,
the growing availability of annotated data has recently en-
abled efficient applications of deep learning to the analy-



sis of biomedical images [28]], demonstrating state-of-the-
art results in object detection, segmentation and classifica-
tion 32} |38l 24} [8]. In multiphoton microscopic images,
deep learning have been recently used for segmenting blood
vessels [11}12] and segmenting and classifying cancer cells
[264 15, [19].

A citizen science project named Stall Catchers (formerly
“EyesOnALZ”) aims to speed up the identification of stalls
in research data using crowdsourcing. To prepare data for
annotation by volunteers in Stall Catchers, raw image stacks
of the vasculature are first masked to remove the larger
surface vessels and low signal-to-noise regions, and pre-
processed to normalize the image intensity distribution and
spatial resolution and to remove motion artifacts [3]]. After
that, capillary regions that need to be annotated are iden-
tified using a deep convolutional neural network (CNN)
trained to segment cortical blood vessels [7,13]]. Finally, the
Stall Catchers platform educates and challenges participants
with labeling images of individual capillaries as flowing or
stalled. The resulting labeled data have already enabled new
scientific studies [[7,|3]], but they also created an opportunity
to further improve the data labeling process itself by the ap-
plication of deep learning.

Here, we propose an approach for the automatic detec-
tion of stalled capillaries in 3D brain images from Stall
Catchers data using deep convolutional neural networks.
To address class imbalance, we also introduce several 3D
image augmentation transformations and demonstrate how
weights from pre-trained 2D models can be re-used in 3D
architectures. Our solution placed 1°¢ in the ”Clog Loss:
Advance Alzheimer’s Research with Stall Catchers” ma-
chine learning competition organized by Stall Catchers and
DrivenData [27]. Our approach was recognized as the most
advanced in both performance and sophistication among
proposed solutions by the competition organizers, who es-
timated that our model could automatically analyze about
50% of all existing Stall Catchers data, effectively doubling
the analysis speed and helping to uncover insights towards
connections between stalled blood flow and AD [33]].

2. Methods
2.1. Problem statement and data description

The dataset used for the “Clog Loss: Advance
Alzheimer’s Research with Stall Catchers” competition was
provided by Stall Catchers, a citizen science effort created
by the Human Computation Institute [21]. The objective
of the challenge was to perform binary classification of the
outlined blood vessel segments as either flowing, if blood is
moving through the vessel, or stalled, if the vessel has no
blood flow.

Each sample in the dataset contained a set of images (3D
image volume) taken from brain tissue of an alive mouse,

showing blood vessels and the blood flow through them.
Images were taken via multiphoton microscopy and had ~
0.5 pum lateral and ~ 1.5 um axial spatial resolution. The
resolution could have been degraded by motion artifacts due
to the animal’s heartbeat and respiration.

The z axis of 3D image volumes represents both depth
(looking at successive layers of brain tissue) and time, such
that a step downward in z is also a step forward in time. We
refer the reader to the Stall Catcher’s Tutorial [22] for fur-
ther details of image acquisition. 3D image volumes were
converted to mp4 video files. The dataset contained over
580, 000 videos of blood vessels in brain tissue with a total
size of 1.5 terabytes. The target vessel segment for each set
of images was annotated with a contour. Figure [T] shows
example images with annotated vessels.

The dataset also contained metadata for each video, in-
cluding identifier for the research project that generated the
video (project—id), crowd-labeled probability that the
vessel is stalled, ranging between O for flowing and 1 for
stalled (crowd—score), and a Boolean variable indicat-
ing a highly confident label (t ier1). Additionally, a subset
of videos has been reviewed by an expert, who has labeled
videos as either stalled or flowing. When an expert label
is not available, stalled vessels were defined as videos with
crowd scores greater than or equal to 0.5, while videos with
crowd scores less than 0.5 are labeled as flowing. The ma-
jority of crowd scores gave confident labels with the values
close to either O or 1. Therefore, a threshold of 0.5 for mak-
ing binary labels was a reasonable option for these data [3]].

The tierl flag column indicates the highest quality
data. These are videos that either have an expert label or
a highly confident crowd label. A highly confident crowd
label was defined as one with a crowd score equal to O
(surely flowing) or greater than or equal to 0.75 (most likely
stalled). Thus, videos with tierl flag can be seen as the
most reliable examples of stalled or flowing vessels.

The dataset was highly unbalanced, with 99.7% of
videos displaying healthy vessels. There were 1,887 videos
with stalled vessels, with only 706 of them had a high confi-
dence label (tier1=1). Therest 57,1161 videos contained
flowing vessels. To facilitate easier model prototyping, or-
ganizers provided a “micro” subset of the whole dataset,
with the 70/30 ratio of stalled to healthy vessels. For our
experiments, we used all 1,887 videos of stalled vessels
from the “micro” subset and 50K videos of flowing ves-
sels sampled both from the “micro” subset and from the full
dataset. To alleviate class imbalance, we employed heavy
data augmentations and undersampling of the flowing class
as described below. The majority of videos had 512 x 384
resolution, with some samples with 418 x 384 resolution.
The distribution of data in ”micro” train and test subsets in
each resolution is shown in Table E} Finally, the number of
frames in videos varied between 20 and 300, with 60 frames



Figure 1: Samples of video frames from imaged mouse brain tissue with annotated vessel contours (orange) for (a, b, c)

flowing and (d, e, f) stalled vessels.

on average.

Table 1: Distribution of video resolution formats in micro”
train and test data sets.

Resolution
Image set 512 x 384 418 x 384
Train 2380 19
Test 14037 123

2.2. Data preprocessing and augmentations

The region of interest (ROI) containing the vessel seg-
ment was annotated in all videos with the orange contour
(see Figure [TI). We trained models both on whole video
frames and on cropped ROIs. For the latter, we cropped se-
lected 3D rectangular cuboid around the ROI in all videos.
The ROI crop size was usually smaller than the video frame
size. This helped models to focus on relevant information,
as well as reduce training time and required computational
resources.

Figure 2] shows the distribution of ROI sizes for training
and testing sets. The ROIs were around 60 x 66 x 67 pixels,
so it was possible to fit several 3D samples into a single
GPU (NVIDIA 1080Ti, 11 GB). However, all 3D samples
had different sizes.

Since the dataset was highly unbalanced, intensive data
augmentations were a crucial part of our training pipeline.

None of the existing data augmentation libraries satisfied
our requirements for 3D image data transforms. Therefore,
we created a custom library dubbed Volumentations [37]],
inspired by the open-source library Albumentations [4], that
is widely used for 2D images augmentations.

For augmenting 3D samples during training, we used ei-
ther random mirroring of the 3D image along each of three
axes (“mirror 3 axes”) or the following complex transforma-
tion protocol (heavy augs”), where p shows the probability
of use:

Spatial transformations:

* Random rotation up to 10 degrees along the first axis,
p=0.3

¢ Elastic transform with interpolation, p = 0.1
* Rotation by 90 degrees

* Flip along each of the axes, p = 0.5

e Grid dropout, p = 0.1

Pixel transformations:

¢ Adding Gaussian noise, p = 0.2

* Random Gamma blurring, p = 0.2
Custom-made transformations:

* Random crop from borders, p = 0.4
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Figure 2: Distribution of ROI sizes for train (green) and test
(blue) sets.

* Random drop plane, p = 0.5
* Resize,p = 1.0

Some of used 3D transforms were adapted from their 2D
counterparts implemented in Albumentations [4], including

Rotate, ElasticTransform, GridDropout,
Flip, RandomRotate90, GaussianNoise,
RandomGamma. Other augmentations were de-

veloped specifically for this task. For example,
RandomCropFromBorders randomly deletes some
pixels from one of the 3D sample borders, while
RandomDropPlane randomly deletes intermediate
2D planes from some 3D sample axes. The use of Vol-
umentations and the “heavy augs” protocol significantly
improved the classification performance (see Results).

2.3. Models

We used 3D CNNs based on Conv3D layers for this
classification task. We re-designed multiple commonly-
used 2D CNNs architectures (ResNet [14]], ResNeXt [43]],
SE-ResNeXt [16], and DenseNet [17]) for working with 3D
data by replacing all 2D convolutions by Conv3D layers,

and changing all other layers respectively, but keeping the
principle architecture and the number of layers. The ar-
chitecture of 3D DenseNet121 is shown in Figure 3] This
model has a relatively low number of parameters (11.9M),
can accommodate the larger batch size, and was the best for
this task according to classification results (see Results).
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Figure 3: Architecture of 3D DenseNetl121. Input dimen-
sions correspond to frames x height X width x channels.

2D models pre-trained on the ImageNet [6] dataset have
previously demonstrated great potential for transfer learn-
ing into different domains with increased accuracy and/or
faster convergence [20], including applications to medical
image analysis [38] 24 [8]]. To leverage pre-training on
large-scale 2D image datasets for 3D image analysis, we de-
veloped a method for weight transfer from 2D to 3D CNNs.
Below, we illustrate the weights transfer by a simple con-
crete example with a 3D video. Figure ] shows the diagram
of 2D and 3D input samples, convolutions, and output fea-
ture maps.

For instance, a 3D sample input has following dimen-
sions: (F, H,W,C'), where F', H and W, are number of
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Figure 4: Schematic representation of 2D and 3D input
samples, convolutions, and output feature maps. The 2D
sample is an image with dimensions I x W, where H and
W are the height and width of the image. The 2D convo-
lutions are 2-dimensional matrices with weights (kernels)
with the k X k size; in our case, k& = 3. The 3D sample
shape is (F, H, W), where F', H and W are frames, height
and width of the video sample, respectively. The 3D convo-
lutions are moved across the volume of the sample and are
3-dimensional matrices with the size of £ X k x k, k = 3.

frames, height and width, and C' is number of channels.
Let’s assume C' = 1 for simplicity (such as in gray scale im-
ages), then 3D sample shape is (F, H,W,1) = (F, H,W).
Now, let’s take a random frame K (for example, K = 2): it
will be an image with dimensions H x W. We can compute
a feature map for this frame K using Conv2D. Let’s take
a point with ¢, j coordinates and consider 3 X 3 region in
the vicinity of this point, assuming the input frame has the
following values around this point:

4 3 2
F=11 -1 6
7 1 0

Consider a Conv2D convolution with kernel size 3 x 3
and weights:

Wi Wia Wi

W =1 Wa Wi Wy

Ws1 Wiz Wi

For example, if we take a Conv2D convolution with
weights of:

2 3 4
W=| -3 0 1
2 3 6

the output at the feature map for [¢, j] point is:

Outi,j]=2-4+3-34+4-2+(=3) -1+
0-(-1)+1-6+2-7T+3-146-0=46 (1)

Now, let’s consider the 3D volume around the same point
in the vicinity 3 x 3 x 3. We now take 3 frames around

the point: one frame before and one after the previously
considered frame. For illustration, we assume they have the
following values:

3 4 1 4 3 2 5 3 2
F1=11 0 6]F2=(1 -1 6|F3=1[1 0 7
7 1 0 7 1 0 7 2 1

We can define a 3D convolution Conv3D with kernel
3 x 3 x 3 in the following way:

0 00 Wi Wi Wiz
W1i=W3=10 0 0| W2=|Wsy Wy Wy
(2

Here, if we take W2 the same as our Conv2D convo-
lution for the second frame, and other parts W1 and W3
as zero matrices, at 3D point [2, ¢, j] we will get the same
output as in the 2D case:

Out[2,i,j]=0-3+0-440-1+ ..+
12.443.-344-24...42-74+3-146-0+
0-54+40-3+0-24...40-1=46 (3)

Applying similar 3 x 3 x 3 kernels to all frames in the
input volume, we get a set of feature maps for each frame
of the 3D input, in the same manner as if we computed fea-
ture maps separately for each frame using Conv2D. Such
initialization of weights can be transferred from 2D CNNs
pre-trained on ImageNet (or other datasets) to 3D networks
of the same architecture. It provides reasonable initializa-
tion as intermediate feature maps contain useful features,
even though they are applied to some video frames.

Developing this idea further, we can assume that neigh-
boring frames differ only slightly from each other. Then,
we can average feature maps for the close frames. In or-
der to do so, we create a 3D kernel 3 x 3 x 3 with weights
re-distributed among the neighboring frames, as:

Wai/3 Wae/3 Waz/3 | (4)
W31/3 W32/3 W33/3

Wl=W2=W3=

For example,

2/3  3/3 4/3
Wl=W2=W3=|(-3/3 0/3 1/3 (5)
2/3 3/3 6/3

With such weight re-distribution, we now take into ac-
count frames F'1 and F'2 while keeping the scale of the val-
ues in the output feature map. For the above example, the
output at point [2, 7, j] will be:

OUT[2,i,j] = (2-3+3-4+4-1+ ..+
+3-2+6-1)/3 = (42446 +57)/3 = 48.33 (6)



Table 2: Common model hyper-parameters.

Parameter

Description

Optimizer

Initial learning rate
Learning rate scheduler
Decay

Loss function

AdamAccumulate (accumulate for 20 iterations)

le-4

ReduceLROnPlateu with Decay
0.95 every 3 epochs without improvements

Binary cross-entropy

Using this technique, we converted weights from 2D
CNN s pre-trained on the ImageNet dataset to initialize their
3D counterparts.

2.4. Evaluation

The challenge submissions were evaluated using
Matthews correlation coefficient (MCC), defined as follows
129]):

TP x TN — FP x FN
MCC = X i

V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

@)
where T'P — true positives, F'P — false positives, T'N — true
negatives, and F'N — false negatives. This metric takes into
account all four components of the confusion matrix and is
well-suited for unbalanced datasets.

To compare different models, we computed the area
under the receiver operating characteristic curve (AUC)
from their predictions. The receiver operating characteristic
curve plots the True Positive Rate (TPR) versus False Pos-
itive Rate (FPR) at different classification thresholds. The
TPR and FPR are defined as follows:

TP
TPR= ———
TP+ FN ®)
FPR = rr 9)
~ FP+TN

The AUC measures the entire two-dimensional area un-
derneath the receiver operating characteristic curve.

The models were evaluated using the AUC and MCC
metrics and five-fold cross-validation (CV) scheme. The
training set was divided into five parts, stratified by the
stalled vessels, with 80% of samples used for training and
20% for validation. The TP, FP, TN, and F'N were cal-
culated using all validation samples in each of five folds,
thus providing validation metrics for a full dataset. The
holdout testing set was predicted with each of these five-
fold models. The predictions from five models were aver-
aged and used to calculate the final metrics on the testing
set.

2.5. Model training

Each model was trained on the total of 51,490 videos
(49,603 non stalled”, 1,887 ’stalled”). Stalled videos in-

cluded tierl as well is non-tierl videos. We used a
range of 3D DenseNet and ResNet models with weights
transferred from their 2D counterparts pre-trained on the
ImageNet dataset. The models were trained using five fold
cross-validation scheme. The hyper-parameters used for the
training experiments are outlined in Table 2.

Here are the details of the training process for the best
single model 3D DenseNet121 (public leaderboard MCC
score: 0.8436, public leaderboard MCC score: 0.8411).

e As the training dataset was highly unbalanced (see
Section 2), we used a sampler as an extra balanc-
ing technique. Batches were randomly generated with
25% of class 1 and 75% of class 0.

e Augmentations: heavy augmentations were applied
(see Section 4).

* Additional fully connected layer was added after back-
bone before classification layer; we used dropout of
0.5 to prevent overfitting.

* The training process included two stages. At the first
stage, the MCC metric was maximized on validation.
Then, starting from the weights of the first stage, we
optimized the AUC metric.

* At the first stage, validation was performed only on the
part of available data, such that class 0" and class ’1”
were 50/50% balanced. On the second run, we used
all available validation data with class ”0” comprising
80% and class 1 - 20%.

2.6. Model interpretability

It can be useful to visualize the relevance of pixels in the
input image to the classification of that image to make sure
the prediction relies on blood flow and not on irrelevant in-
formation such as image artifacts. To visualize model atten-
tion, we used global max pooling instead of average pooling
before the classification head. It facilitated highlighting re-
gions that formed feature vectors, as they were determined
by the maximum pixel in each feature map.

For better clarity of heatmaps, it is critical to use higher
input resolution. For instance, for input with N x H x W



size (N — number of frames, H - height, and W - width),
corresponding heatmap size is N/32 x H/32 x W/32. So,
for the input 3D sample with size 128 x 160 x 160 the
heatmap size is only 4 x 5 x 5 pixels.

We used inputs with dimensions 320 x 400 x 400 px for
creating heatmaps with size 10 x 13 x 13 px. We scaled the
heatmap 32 times to match the input resolution and overlaid
them with inputs. We used the last output from the convo-
lution block before the Global Max Pooling layer to
plot heatmaps. In our case, feature maps are feature vol-
umes. For 3D ResNet18, their dimensions were (10, 13, 13,
512), i.e., 512 feature volumes with shapes (10, 13, 13) are
transformed into a 1D vector of 512 values after 3D global
max pooling.

To visualize heatmaps, we calculated maximum, mean,
and standard deviation for each point in the corresponding
(10, 13,13) volume. Using vectorization in NumPy [13]],
they can be computed as following:

# Layer before pooling

pstd = np.std(out, axis=-1)

pmax = np.max(out, axis=-1)

pmean = np.mean (out, axis=-1)

# Normalize to 0..255 to plot as RGB
nstd = normalize-array (pstd, 0, 255)
nmax = normalize-array (pmax, 0, 255)
nmean = normalize-array (pmean, 0, 255)

# Stack as RGB video
hmap = np.stack((nstd, nmax, nmean), axis=-1)

We used maximum, mean, and standard deviation in-
stead of RGB channels. Maximum shows the maximum
value possible in this point, standard deviation shows how
the weight varies at this point, and mean corresponds to the
average influence of this point for the final classification.

Figure 5: Model attention visualization: (a) input slices
cropped around ROI, (b) scaled heatmaps, and (c) overlays
of heatmaps with inputs.

3. Results
3.1. Ablation study

First, we illustrated the influence of augmentations on
the classification performance of the DenseNet121 model.

As shown in Table 3] using augmentations led to the higher
AUC and MCC metrics.

We also assessed the utility of 2D-to-3D pre-trained
weight conversion for transfer learning. Our experiments
showed that weight transfer from 2D model pre-trained on
the ImageNet dataset to 3D model robustly helped to de-
crease convergence time and to improve classification per-
formance results. Specifically, we achieved the MCC of
0.810 with DenseNet121 initialized by 2D weight transfer,
compared to 0.795 with random initialization. The models
with converted weights are available at [33].

3.2. Vessel classification results

First, we trained 3D models on the whole video frames
rescaled into different sizes, such that they could fit into the
3D model. The results for different input sizes and model
backbones are shown in Table[d The input dimensions of
the samples here correspond to frames x height x width x
channels. Best performance metrics were reached using a
larger input resolution of 192 x 256, which suggested that
smaller resolutions were not enough to capture all impor-
tant information. This motivated us to perform further ex-
periments using ROI cropping to focus on relevant areas in
the image, while reducing memory footprint.

ROI cropping allowed us to use images of higher res-
olution without requiring more training time or computa-
tional resources. On the cropped regions, we tested multiple
3D CNN architectures with different backbones and hyper-
parameters, as shown in Table E} The 3D DenseNet121
demonstrated the overall best classification performance for
this task, as measured by AUC and MCC. This model has
a relatively low number of parameters (11.9M) and can ac-
commodate a larger batch size, which reduces training time.
These results stress the importance of using heavy augmen-
tations and image sampling to correct for class imbalance.

To highlight the areas in the image that influenced the
network’s decisions, we created model attention heatmaps
shown in Figure 5] These results indicate that the last layer
of the 3D CNN focused on the blood vessel in general, since
the shape of the active region in the heatmap overlaps well
with the shape of the vessel. By compiling these heatmaps,
we created a video visualization of many analyzed vessels
that is available on YouTube [34].

3.3. Model reliability assessment
3.3.1 Probability calibration

When model predictions can influence important decisions
such as a medical diagnosis, it is important to assess
whether a prediction can be trusted or not. A standard ap-
proach to doing so is to use the classifier' s own confidence,
i.e., probabilities from the softmax layer of a neural net-
work. While using model's own implied confidences ap-
pears reasonable, it has been shown that the raw confidence



Table 3: Classification metrics achieved with and without augmentations on a validation set.

Model Input size Augmentations ~ AUC MCC
DenseNetl121 (96, 128, 128, 3) no augs 0.9073 0.5622
DenseNet121 (96, 128, 128, 3) heavy augs 0.9665 0.7226

Table 4: Results for models trained on videos without ROI cropping.

Model Input size Batch size MCC, Valid AUC, Valid MCC, Test
ResNet18 (64, 96, 128, 3) 20 0.534 0.821 0.4437
ResNet18 (64, 192, 256, 3) 6 0.669 0.892 0.6105
DenseNetl121 (64, 96, 128, 3) 10 0.534 0.833 0.4201
ResNet34 (128, 96, 128, 3) 5 0.544 0.840 0.4251
ResNet50 (64, 192, 256, 3) 4 0.697 0914 0. 5986

values from modern neural networks are often poorly cal-
ibrated [10]. For example, neural networks with residual
connections [14] typically exhibit average confidence that
is substantially higher than their accuracy [10].

We assessed our best model’s trustworthiness by visual-
izing model calibration as a reliability diagram in Figure [6]
The model is clearly miscalibrated as it consistently out-
puts probabilities higher than its accuracy. To correct the
model’s overconfidence, we performed probability calibra-
tion based on isotonic regression [44], arguably the most
common non-parametric calibration method [[10] that learns
a piecewise constant function to transform uncalibrated out-
puts. Since we didn’t have access to the labels of the test set,
we randomly split the validation set into two equal parts.
We used the first half of the validation set to train a cal-
ibration classifier and predicted calibrated probabilities on
the second half. As shown in Figure[6] this approach was ef-
fective at calibrating predictions, improving the trustworthi-
ness of our model. The bottom panel shows the histogram
of the mean predicted values after calibration. Unsurpris-
ingly, most of the predicted probabilities are close to zero
due to the highly unbalanced dataset.

3.3.2 Uncertainty estimation

Another approach to assess the reliability of network de-
cisions is to obtain an estimate of Bayesian uncertainty.
While mathematically sound tools to assess model uncer-
tainty in the Bayesian probability theory framework exist,
they are typically very expensive computationally. How-
ever, it has been shown that the use of dropout [39]] in neural
networks can be interpreted as a Bayesian approximation of
a Gaussian process that provides an estimate of the prob-
ability distribution over many possible models for a given
sample [9]]. Therefore, dropout can be used as a tool to rep-
resent uncertainty in deep learning models, including deep
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Figure 6: Top: performance of the 3D DenseNet121 models
before (orange) and after (blue) calibration. Bottom: his-
togram of the mean predicted values after calibration.

convolutional neural networks.

To assess the reliability of decisions on these data, we
computed the uncertainty of our best-performing model us-
ing dropout. We randomly selected 5000 flowing samples
(target label 0) and all 1887 stalled samples (target label 1).
For each sample, we calculated the predicted probabilities
50 times for five folds using the 3D DenseNet121 model
with the active dropout of 0.5 [9]]. The results are presented
in Figure[7} Here, the blue lines show the output probability
variations for the flowing samples and red shows the results
for the stalled samples. Overall, the model has higher vari-



Table 5: Results for models trained on cropped ROI regions.

Model Input size Parameters MCC, Valid AUC, Valid MCC, Test
ResNet18 (96, 128, 160, 3) Mirror 3 axes 0.720 0.927 0.6734
ResNet18 (128, 160, 160, 3) Heavy augs, Sampler 25%/75% 0.623 0.966 0.7234
DenseNet121 (96, 128, 160, 3) Mirror 3 axes 0.837 0.959 0.7442
DenseNet121 (96, 128, 128, 3) Heavy augs 0.641 0.967 0. 7887
DenseNet121 (96, 128, 128, 3) Heavy augs, Sampler 25%/75% 0.649 0.973 0.8129
DenseNet121 (96, 128, 128, 3) tierl only, extra-heavy augs, Sampler 0.622 0.958 0.8436
DenseNet169 (64, 128, 128, 3) Heavy augs 0.7485
DenseNet201 (96, 128, 128, 3) Heavy augs, Sampler 25% /75% 0.588 0.963 0.7532
Best ensemble — — — — 0.8555

ation in the output probabilities (has more uncertainty) for
the stalled samples, which was expected, given high class
unbalance in the data. The flowing samples (blue) had a
mean probability difference of 0.0229 and a standard devi-
ation of 0.0518. While the stalled samples (red) had a mean
difference of 0.0924 with a standard deviation of 0.0922.

Since one of the goals of this competition was to improve
the automatic labeling of images, this procedure can help
with better identification and processing of uncertain inputs
that may require attention of an expert to produce the correct
label.

Samples Percentage

0 0.2 0.4 0.6 0.8 1.0
Predicted probability

Figure 7: The probabilities distribution for the flowing
(blue) and stalled (red) samples calculated 50 times for
the 5 folds of the 3D DenseNet121 models with the active
dropout of 0.5.

4. Discussion

Common approaches to video classification are typically
based on extracting features from the sequence of the video
frames using 2D CNNs and then using those features as
inputs to LSTM models [23]. However, these methods
did not demonstrate competitive performance for this task.
Other approaches that performed well in the challenge also
employed 3D CNNs. The second-place winner used 3D
ResNets and cropped regions of interest on videos, simi-
larly to our solution. The third-place winner used spatio-
temporal neural network architectures based on ResNet18.
They were designed for video classification and pre-trained
for action recognition on the Kinetics-400 data set [27].

To assess the potential usefulness of our model for au-
tomatic labeling, it is essential to compare model predic-
tions with the human labeling approach. Currently, spe-
cialized methods aggregate multiple players into a single
“crowd answer” that achieves a 0.99 sensitivity and 0.95
specificity threshold on 95% of datasets. Our model gives
higher specificity of 0.99 at the cost of the lower sensitiv-
ity of 0.85. The precision-recall trade-off can be adjusted
to fit research and clinical needs by choosing the threshold
for binary classification. The results indicate a potential for
multiple possible ways of combining machine learning pro-
duced annotations and human labeling, which can flexibly
address current limitations of data pre-processing and anal-
ysis and provide insights towards mechanistic connections
between stalled blood flow and AD.

We should note that multiphoton microscopic imaging is
an invasive diagnostic technique. This imaging method can
see down hundreds of micrometers to a millimeter into brain
tissue, but only after gaining optical access to the brain sur-
face by removing a section of the skull [[15 [L1]. It is not
likely that such an approach would be used in any human
clinical diagnostic. However, the study of animals could
bring a better understanding of the mechanisms in brain vas-
culature dysfunctions such as stalled blood flow, which in
turn can help to identify mechanisms behind AD and man-



age it.

5. Future improvements

The challenge organizers provided outlines for vessels
in each video, produced by their segmentation model [L1]],
such that we only had to analyze already pre-selected areas
by cropping the ROI around them. To automate the solu-
tion even further, one could consider performing simultane-
ous classification and segmentation of vessels, which could
potentially alleviate the requirements of labeling images
twice—for localization and for classification. Heatmaps
produced by our approach outline vessels of interest well
and could be employed as weak labels in the localization or
segmentation problem setting.

It is worth noting that the difference between two con-
secutive frames of the video samples was relatively small.
This leads to the idea of considering only every n-th frame
as an input of the model and potentially achieving similar
performance at a fraction of computational time. Such in-
vestigation is out of the scope of this paper, however, we
agree with the suggestion of one of the reviewers that this
could help reducing model’s computational requirements.

Another possibility for improvement is using the crowd
score itself. The crowd score values were also provided,
which allowed experimenting with the threshold values for
creating binary target labels. The majority of the crowd
scores gave confident labels with values close to either O or
1. One can add another head to the models with a regression
task to predict crowd score values. A similar multi-tasking
strategy (regression plus classification) demonstrated model
improvements in the other computer vision tasks [§]].

6. Conclusion

In this paper, we described a solution for automatic brain
vessel classification in a highly unbalanced dataset of 3D
images. This approach was used to produce a winning solu-
tion to the ”Clog Loss: Advance Alzheimer’s Research with
Stall Catchers” machine learning competition, which posed
a binary classification problem of identifying blood vessels
in live mouse brain as flowing or stalled. Our best solution
was based on 3D CNN architecture trained on pre-selected
crops with custom 3D image augmentations, balanced sam-
pling, and test-time augmentations.

The ablation study has shown the significant influence of
data augmentation on the performance of the model. We
made a custom library with 3D data augmentations, Volu-
mentations [37]], publicly available.

We tested a range of 3D classification models with
weights transferred from their 2D analogs pre-trained on the
ImageNet dataset. 3D DenseNet121 [18] demonstrated the
best performance for this task, achieving the MCC of 0.84
and AUC of 0.97 for a single model, which by itself was

enough to take the first place in the competition.

Our final submission to the competition included an en-
semble of 18 models with different backbones, demon-
strating even further improvement of the MCC to 0.855.
The source code for our solution is publicly available at
GitHub [36].
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