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Abstract

The detection of tiny objects in microscopic videos is a problematic point, especially in large-scale experi-
ments. For tiny objects (such as sperms) in microscopic videos, current detection methods face challenges in
fuzzy, irregular, and precise positioning of objects. In contrast, we present a convolutional neural network
for tiny object detection (TOD-CNN) with an underlying data set of high-quality sperm microscopic videos
(111 videos, > 278,000 annotated objects), and a graphical user interface (GUI) is designed to employ and
test the proposed model effectively. TOD-CNN is highly accurate, achieving 85.60% AP50 in the task of
real-time sperm detection in microscopic videos. To demonstrate the importance of sperm detection tech-
nology in sperm quality analysis, we carry out relevant sperm quality evaluation metrics and compare them
with the diagnosis results from medical doctors.
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1. Introduction

Sperm is necessary for the human and mam-
mal reproductive process, which plays an impor-
tant role in human reproduction and animal breed-
ing [1]. With the continuous development of com-
puter technology, researchers have tried to use
computer-aided image analysis in many fields, such
as whole-slide image analysis [2], histopathology
image analysis [3, 4, 5], cytopathological analy-
sis [6, 7], COVID-19 image analysis [8, 9], and mi-
croorganism counting [10]. In addition, in the field
of semen analysis and diagnosis, researchers have
also proposed many Computer Aided Semen Anal-
ysis (CASA) systems [11]. As the first step of the
CASA system, sperm detection is one of the most
important parts to support the reliability of sperm
analysis results [12]. At present, most sperm detec-
tion techniques [13, 14, 15, 16] are based on tradi-
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tional image processing techniques such as thresh-
olding, edge detection and contour fitting. How-
ever, for many techniques, the detection results re-
quire manual intervention. The common difficul-
ties for sperm detection mainly include the small
size, uncertain morphologies and low contrast of the
sperms, which are difficult for locating. Moreover,
there are lots of similar impurities in the samples
for misleading (as shown in Section 4 Fig. 7).

In recent years, more and more excellent ob-
ject detection models are constantly proposed [17],
such as Region-based CNN (RCNN) series mod-
els [18, 19, 20, 21], You Only Look Once (YOLO)
series models [22, 23, 24, 25], Single Shot Multibox
Detector (SSD) [26], and RetinaNet [27]. The per-
formance of Convolutional Neural Networks (CNN)
has obviously surpassed the complex classic image
processing algorithms in the field of medical im-
age processing [28, 29, 30], which makes it possible
to use deep learning methods to perform real-time
sperm object detection tasks in sperm microscopic
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videos. However, the accuracy of sperm object de-
tection is still lower than that of object detection
under conventional scales [31]. Hence, techniques
such as feature fusion and residual networks are
used in our method to improve the detection per-
formance in this field. The technologies above are
applied to build an easy-to-operate sperm detec-
tion model (TOD-CNN), and an AP50 of 85.60% is
achieved in the task of sperm detection for micro-
scopic videos.

The workflow of the proposed TOD-CNN detec-
tion method is summarized as follows (as shown
in Section 3 Fig. 1): (a) Training and Validation
Data: The training and validation data contains 80
sperm microscopic videos and corresponding anno-
tation data with the location and category infor-
mation of sperms and impurities. (b) Data Pre-
processing: The sperm microscopic video is divided
into frames to obtain one by one sperm microscopic
images, and the object information is annotated by
using LabelImg software. (c) Training Process: The
TOD-CNN model is trained and the best model is
saved to perform sperm object detection. (d) Test
Data: The test data contains 21 sperm microscopic
videos.

The main contributions of this paper are as fol-
lows:

• Build an easy-to-operate CNN for sperm detec-
tion, namely TOD-CNN (Convolutional Neu-
ral Network for tiny object detection).

• TOD-CNN has excellent detection results and
real-time detection ability in the task of tiny
object detection in sperm microscopic video,
achieving 85.60% AP50 and 35.7 frames per
second (FPS).

The structure of this paper is as follows: Sec-
tion 2 introduces the existing sperm object detec-
tion methods based on traditional methods, ma-
chine learning methods, and deep learning methods.
Section 3 illustrates the detailed design of TOD-
CNN. Section 4 introduces the data set used in the
experiment, experiment settings, evaluation meth-
ods, and results. Chapter 5 is conclusion.

2. Related Work

2.1. Existing Sperm Object Detection Methods

2.1.1. Traditional Methods

Traditional methods mainly include three types,
which are threshold-based methods, shape fitting

methods, and filtering methods. Threshold-based
methods: Urbano et al. [14] use Gaussian filter to
enhance the image, and then the image is binarized
using the Otsu [32] threshold method, and the re-
sult is morphologically operated to determine the
position of the sperm; Elseyed et al. [13] use several
certain frames to generate the background informa-
tion, then the background information is subtracted
from the original image (to suppress noise). Finally,
the Otsu threshold is applied to determine the posi-
tion of the sperm. Shape fitting methods: Zhou et
al. [33] use a rectangular area which is similar to the
shape of the object (sperm) to fit the object, and
then the position of the sperm is described by the
parameters of the rectangle. Yang et al. [16] use an
ellipse to approximate the sperm head, and the im-
proved multiple birth and cut algorithm based on
marked point processes [34] is used to detect and
locate the head of the sperm through modelling.
Filtering methods: Ravanfar et al. [35] select sev-
eral suitable structural elements firstly, and then
the operation based on Top-hat is used to filter the
image sequence to achieve the purpose of separating
sperm and other debris. Nurhadiyatna et al. [36]
use the Gaussian Mixture Model (GMM) enhanced
by the Hole Filling Algorithm as the probability
density function to predict the probability of each
pixel in the image belongs to the foreground and
the background. The researchers found that the
calculation amount of this method is significantly
less than other methods.

2.1.2. Machine Learning Methods

The unsupervised learning method is the most
used machine learning method. Berezansky et
al. [37] use the Spatio-Temporal Segmentation to
detect sperm by segmentation, integrating k-means,
GMM, mean shift, and other segmentation meth-
ods. Shi et al. [38] use the optical capture method
for sperm detection.

2.2. Deep Learning Based Object Detection Meth-
ods

Deep learning methods are widely used in many
artificial intelligent fields, for example classifica-
tion [39, 40, 41, 42], segmentation [43, 44, 45] and
object detection [46, 47]. Furthermore, some widely
recognized general object detection models that
have been proposed in recent years are introduced
bellow.
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2.2.1. One-stage Object Detector

The YOLO series models [22, 23, 24, 25], Reti-
naNet [27], and SSD [26] are prominent representa-
tives of one-stage object detectors. The one-stage
object detectors are based on the idea of regres-
sion, which can directly output the final prediction
results from the input images without generating
suggested regions in advance. YOLO series models:
They use Darknet as the backbone of the model to
extract features from the image. The v1, v2, v3, v4
are successively proposed by improving the back-
bone network structure, improving the loss func-
tion, using batch normalization, feature pyramid
network [48], spatial pyramid pooling network [49],
and other optimization methods. RetinaNet: It
uses ResNet [50] and the feature pyramid network
as the backbone of the model, whose main con-
tribution is proposing a focus loss function. The
focus loss function solves the imbalance between
the number of foreground and background cate-
gories in a single-stage object detector. SSD: It
uses VGG16 [51] as the basic model and then adds
a new convolutional layer based on VGG16 to ob-
tain more feature maps for detection and generates
the final prediction result by fusing the prediction
results of 6 feature maps.

2.2.2. Two-stage Object Detector

The models based on R-CNN series are classical
two-stage object detectors. The R-CNN [18] gen-
erates proposal regions through the selective search

algorithm. Then the features of the proposal re-
gions are extracted by using CNN. Finally, the SVM
classifier is used to predict the objects in each re-
gion and identify the category of the objects. The
Fast R-CNN [19] no longer extracts features for
each proposal region. The features of entire image
is extracted using CNN, then each proposal region
and corresponding features are mapped. Besides,
the Fast R-CNN uses a multi-task loss function, al-
lowing us to train the detector and bounding box
regressor simultaneously. The Faster R-CNN [20]
replaces the selective search algorithm with Region
Proposal Network, which can help CNN to generate
proposal regions and detect objects simultaneously.

3. TOD-CNN based Sperm Detection
Method in Microscopic Image

Sperm detection is always the first step in a
CASA system, which determines the reliability of
the results of sperm microscopic video analysis.
However, the existing algorithms cannot accurately
detect sperms. Therefore, we follow the idea of
YOLO [22, 23, 24, 25], ResNet [50], Inception-
v3 [52], and VGG16 [51] models and propose a novel
one-stage deep learning based sperm object detec-
tion model (TOD-CNN). The workflow of the pro-
posed TOD-CNN detection approach is shown in
Fig. 1.

Fig. 1: The workflow of the proposed sperm object detection method using TOD-CNN.
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3.1. Basic Knowledge

In this section, the methods related to our
work are introduced, including YOLO, ResNet,
Inception-v3, and VGG16 models.

3.1.1. Basic Knowledge of YOLO

YOLO series models solve the object detection
task as a regression problem. The YOLO series
models remove the step of generating the proposal
region in the two-stage object detector and acceler-
ate the detection process. YOLO-v3 [24] is the most
popular model in the YOLO series models due to
its excellent detection performance and speed.

The YOLO-v3 model mainly consists of four
parts, which are preprocessing, backbone, neck, and
head. The preprocessing: The k-means algorithm
is used to cluster nine anchor boxes in the data
set before training. The backbone: YOLO-v3 uses
Darknet53 as the backbone network of the model.
Darknet53 does not have maxpooling layers and
fully connected layers. The fully convolutional net-
work can change the size of the tensor by changing
the strides of the convolutional kernel. In addition,
Darknet53 follows the idea of ResNet and adds a
residual module to the network to solve the van-
ishing gradient problem of the deep network. The
neck: The neck of the YOLO-v3 model draws on
the idea of the feature pyramid network [48] to en-
rich the information of the feature map. The head:
The head of YOLO-v3 outputs 3 feature maps with
different sizes and then detects large, medium, and
small size objects of the three feature maps with
three sizes.

3.1.2. Basic Knowledge of ResNet

ResNet [50] is one of the most widely used feature
extraction CNNs due to its practical and straight-
forward structure. With the continuous deepen-
ing of CNN, the model’s performance cannot be
continuously improved, and the accuracy may even
decrease. However, ResNet proposes the Shortcut
Connection structure to solve the problems above.
The identity mapping operation and residual map-
ping operation are included in the Shortcut Connec-
tion structure. The identity mapping is to pass the
current feature map backward through cross-layer
transfer (when the dimension of feature map does
not match, a 1 × 1 convolution operation is used
to adjust the dimension of feature map). Resid-
ual mapping is to pass the current feature map
to the next layer after convolution operation. A

Shortcut Connection structure contains one iden-
tity mapping operation and two or three residual
mapping operations in general.

3.1.3. Basic Knowledge of Inception-v3 and
VGG16

In Inception-v3 [52], to reduce the parameters
and ensure the performance of the model, an oper-
ation that replaces N ×N convolution kernels with
1 × N and N × 1 convolution kernels is proposed.
The receptive fields of 1×N and N ×1 convolution
kernels and N×N convolution kernels are the same,
where the former has less parameters than the lat-
ter. In addition, the Inception-v3 model can sup-
port multi-scale input, which can use convolution
kernels with different sizes to perform convolution
operations on the input images, and then the input
feature maps can be connected to generate the final
feature map.

VGG16 [51] model includes 13 convolutional lay-
ers, 3 fully connected layers, and 5 maxpooling lay-
ers. The most prominent feature of the VGG16
model is its simple structure. All convolutional lay-
ers use the same convolution kernel parameters, and
all pooling layers use the same pooling kernel pa-
rameters. Although the VGG16 model has a simple
structure, it has strong feature extraction capabili-
ties.

3.2. The Structure of TOD-CNN

The TOD-CNN model, which refers to the YOLO
series model, can regard the object detection task as
a regression problem for fast and precise detection.
The architecture of TOD-CNN is shown in Fig. 2,
where the entire network is composed of four parts:
Data preprocessing, backbone of the network, neck
of the network and head of the network. The de-
tailed implementation of each part is introduced in
detail below.

3.2.1. Data Preprocessing

The object detection task in the video is essen-
tially based on image processing. Therefore, it is
necessary to split the sperm microscopic video into
continuous frames (single images). However, due
to the movement of the lens during the sperm mi-
croscopic video shooting process, there are some
blurred frames in the sperm microscopic video. Af-
ter analysing the grayscale histogram of frames,
there is an obvious difference between the grayscale
distribution of the blurred frame and the normal
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Fig. 2: The architecture of TOD-CNN.

frame. Therefore, the blurred frames can be solved
by deleting images whose Otsu threshold is less
than a certain threshold (from articial experience).
In addition, TOD-CNN is an anchor-based object
detection model. Therefore, the k-means algorithm
is used to cluster a certain number (TOD-CNN uses
six) of anchor boxes in data set to train the model.

3.2.2. The Backbone of TOD-CNN

A straight forward backbone structure with
cross-layer concatenate operation is designed, which
is shown in Fig. 3. However, in a fully convolu-
tional network, as the structures of CNNs continue
to deepen, the semantic information of the feature
map becomes more and more abundant, while the
location information of the feature map constantly
decreases. As a result, the network can improve the
classification performance but may reduce the po-
sitioning accuracy. Our work focuses on detecting
tiny objects and accurate locating, which needs to
maintain precise local information. Therefore, we
enhance the transfer of location information (trans-
ferring shallow features to deep layers) through the
following methods: First, we refer to the residual
idea of ResNet, the Shortcut Connection structure
provides the approach for transferring local infor-
mation with a cross-layer add operation, which is
used in TOD-CNN (as shown in Res (A, B, C) in
Fig. 3); second, based on the straightforward back-
bone structure, a cross-layer concatenate operation
is applied to enhance the transfer of local informa-
tion (as shown in grey shaded part in Fig. 3).

The detailed design of TOD-CNN backbone is
shown in Fig. 3, where the input size of the back-
bone is 416 × 416, the yellow arrow indicates con-
volution operations with a kernel size of 3 × 3 and

stride of 1 (each use filtering with padding and fol-
lowed by a Mish activation), the red arrow indi-
cates convolution operations with a kernel size of
3× 3 and stride of 2 (each followed by a Mish acti-
vation), and the green arrow indicates convolution
operations with a kernel size of 1 × 1 and stride of
1 (each use filtering with padding and followed by
a Mish activation).

3.2.3. The Neck of TOD-CNN

In object detection model, the main purpose of
model neck is to integrate feature informations ex-
tracted from model backbone. The neck structure
of TOD-CNN is shown in Fig. 4. In fact, there
are abnormal morphological sperms (very big) and
some other impurities (such as bacteria, protein
lumps and bubbles) in semen. These sperms and
impurities are significantly different from normal
sperm in size. Therefore, to collect multi-scale in-
formation, we have adopted spatial pyramid pool-
ing operation [49] to integrate multi-scale informa-
tion into TOD-CNN neck. In addition, due to the
small sizes of tiny objects, the information of tiny
objects might be easily lost in down-sampling pro-
cess. In order to solve this problem, the feature fu-
sion method is used in TOD-CNN neck, where the
shallow and deep feature maps are fused by upsam-
pling to avoid the loss of tiny object information.

The detailed design of TOD-CNN neck are shown
in Fig. 4, where all convolution operations are with
stride of 1 (each use filtering with padding ), and
the detailed illustration of the kernel size and acti-
vation function is shown in Fig. 4. Finally, TOD-
CNN neck outputs a feature map of size (input
size/ 8)× (input size/ 8)×42, where 42 is the num-
ber of anchor boxes (6) × 7, because each anchor
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box needs to have 7 parameters: the relative center
coordinates, the width and the high offset, class,
and confidence, the details are explained in Section
3.2.4.

3.2.4. The Head of TOD-CNN

In the head of TOD-CNN, 6 bounding boxes are
predicted for each cell in the output feature map.
For each bounding box, 7 coordinates (tx, ty, tw,
th, C, P0 and P1) are predicted, so the dimension
of the predicted result in Fig. 5 is 42. For each cell,
the offset from the upper left corner of the image is
assumed to be (Cx, Cy), and the width and height
of the corresponding a priori box are Pw and Ph.
The calculation method of center coordinates (bx
and by), width (bw) and height (bh) of predicted
box is shown in Fig. 5. Multi-label classification
is applied to predict the categories in each bound-
ing box. Furthermore, due to the dense prediction
method is applied to the head of TOD-CNN, the
non-maximum value suppression method based on
distance intersection over union [53] is used to re-
move bounding boxes with high overlap in the out-
put results of the network.

Predicted Result 

𝑡𝑡𝑥𝑥 𝑡𝑡𝑦𝑦 𝑡𝑡𝑤𝑤 𝑡𝑡ℎ

42

C 𝑃𝑃0 𝑃𝑃1

Anchor  Box 1

𝑡𝑡𝑥𝑥 𝑡𝑡𝑦𝑦 𝑡𝑡𝑤𝑤 C 𝑃𝑃1𝑡𝑡ℎ 𝑃𝑃0

Anchor  Box 6

... …

𝐶𝐶x

𝐶𝐶𝑦𝑦
𝑃𝑃𝑤𝑤

𝑃𝑃ℎ

𝐵𝐵𝑤𝑤

𝐵𝐵ℎ
𝜎𝜎(𝑡𝑡𝑦𝑦)

𝜎𝜎(𝑡𝑡𝑥𝑥)𝑏𝑏𝑥𝑥 = 𝜎𝜎 𝑡𝑡𝑥𝑥 + 𝐶𝐶𝑥𝑥
𝑏𝑏𝑦𝑦 = 𝜎𝜎 𝑡𝑡𝑦𝑦 + 𝐶𝐶𝑦𝑦
𝑏𝑏𝑤𝑤 = 𝑃𝑃𝑤𝑤𝑒𝑒𝑡𝑡𝑤𝑤
𝑏𝑏ℎ = 𝑃𝑃ℎ𝑒𝑒𝑡𝑡ℎ

Fig. 5: The architecture of TOD-CNN head. Calculate the
coordinates of the prediction box using the network output
result and priori boxes. tx, ty , tw and th are predicted by
TOD-CNN for locating the bounding box. P0 and P1 repre-
sent the probability of sperm and impurity in the bounding
box, respectively. C is the confidence to determine whether
there is an object in the bounding box.

4. Experiments

4.1. Experimental Settings

4.1.1. Data Set

A sperm microscopic video data set is released
in our previous work [54] and it is used for the ex-

periments of this paper. These sperm microscopic
videos in the data set are obtained by a WLJY-9000
computer-aided sperm analysis system [55] under a
20× objective lens and a 20× electronic eyepiece.
More than 278,000 objects are annotated in the
data set: normal, needle-shaped, amorphous, cone-
shaped, round, or multi-nucleated head sperms and
impurities (such as bacteria, protein clumps, and
bubbles). The object sizes range from approxi-
mately 5 to 50 µm2. These objects are annotated by
14 reproductive doctors and biomedical scientists
and verified by 6 reproductive doctors and biomed-
ical scientists.

From 2017 to 2020, the collection and prepa-
ration of this data set took four years, including
more than 278,000 annotated objects, as shown in
Fig. 6. Furthermore, the data set contains some
hard-to-detect objects, such as uncertain morphol-
ogy sperm, low contrast sperm, and similar impuri-
ties (as show in Fig. 7), which greatly increases the
difficulty of tiny object detection.

In this data set, Subset-A provides more than
125,000 objects with bounding box annotation and
category information in 101 videos for tiny ob-
ject detection task; Subset-B segments more than
26,000 sperms in 10 videos as ground truth for tiny
object tracking task; Subset-C provides more than
125,000 independent images of sperms and impu-
rities for tiny object classification task. Although
Subset-C is not used in this work, it is still openly
available to non-commercial scientific work.

4.1.2. Training, Validation, and Test Data Setting

We randomly divide the sperm microscopic video
into training, validation, and test data sets at a ra-
tio of 6:2:2. Therefore, we have 80 sperm micro-
scopic videos and corresponding annotation infor-
mation for training, and validation. The training
set includes 2125 sperm microscopic images (77522
sperms and 2759 impurities), and validation set in-
cludes 668 sperm microscopic images (23173 sperms
and 490 impurities). And we have 21 sperm micro-
scopic videos for testing, the test set includes 829
sperm microscopic images (20706 sperms and 1230
impurities).

4.1.3. Experimental Environment

The experiment is conducted by Python 3.7.0
in Windows 10 operating system. The models we
use in this paper are implemented by Keras 2.1.5
framework with Tensorflow 1.13.1 as the backend.
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(a) Subset-A (c) Subset-C(b) Subset-B

Fig. 6: An example of the sperm video data set. (a) The first row shows a frame in a sperm microscopic video and the bottom
row is the corresponding annotation for object detection tasks. Sperms are in green boxes and impurities are in red boxes.
(b) The first row shows a frame in sperm microscopic video and the bottom row shows the corresponding ground truth for
object tracking tasks. (c) The first row shows individual sperm images and the bottom row shows individual impurity images
for classification tasks.

(a) Normal sperms (b) Abnormal sperms

(c) Uncertain morphol-
ogy (two-headed)

(d) Low contrast (e) Similar impurity

Fig. 7: Challenging cases for the detection of sperms. The positions pointed by the red arrow are the blur of sperm imaging
caused by sperm movement and the impurity similar to sperm.
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Our experiment uses a workstation with Intel(R)

Core(TM) i7-9700 CPU with 3.00GHz, 32GB RAM,
and NVIDIA GEFORCE RTX 2080 8GB.

4.1.4. Hyper Parameters

The purpose of object detection task is to find
all objects of interest in the image. Therefore, this
task can be regarded as a combination of position-
ing and classification tasks. Therefore, as the loss
function of the network, we use the complete inter-
section over union [53] (CIoU) function (location
loss function) and the binary cross-entropy func-
tion (confidence and classification loss function),
and then minimize them by Adam optimizer. For
other hyper parameters, when freezing part of the
layer training and unfreezing all layers, the batch
size is set to 16 and 4, the training is 50 and 100
epochs, and the learning rate is set to 1 × 10−3

and 1 × 10−4, respectively. Besides, the cosine an-
nealing scheduler [56] is used to adjust the learning
rate. Besides, when the loss value no longer drops,
the training is terminated early.

4.2. Evaluation Metrics

In order to quantitatively compare the perfor-
mance of various object detection methods, differ-
ent metrics are used to evaluate the detection re-
sults. Recall (Rec), Precision (Pre), F1 Score (F1),
and Average Precision (AP) which can be used to
evaluate the detection results.

Rec measures how many objects present in
the annotation information are correctly detected.
However, we cannot judge the detection result from
the perspective of Rec alone. Pre measures how
many objects detected by the model exist in the an-
notation information. The F1 is the harmonic aver-
age of model Pre and Rec, and is an metric used to
measure model performance. AP is a metric, which
is widely used to evaluate the performance of object
detection models. It can be obtained by calculat-
ing the area under the curve of Pre and Rec. It can
evaluate object detection models from two aspects:

Pre and Rec. The definitions of these evaluation
metrics are provided in Table 1.

The metrics in Table 1 are calculated based on
True Positive, True Negative, False Positive, and
False Negative. The intersection over union (IoU) is
one of the evaluation criteria for evaluating whether
the detected object is positive or negative. The
calculation method of IoU is shown in Fig. 8 and
Eq. (1).

IoU =
A
⋂
B

A
⋃
B

=
(Gx − kx)(Gy − ky)

GxGy + PxPy − (Gx − kx)(Gy − ky)
(1)

𝑃𝑃𝑥𝑥

𝐺𝐺𝑥𝑥
A

B
𝑘𝑘𝑦𝑦

𝑘𝑘𝑥𝑥

R

Fig. 8: The IoU calculation method.

From Fig. 8 and Eq. (1), it can be found that
the smaller the values of Gx, Gy, Px, and Py, the
more sensitive the value of IoU to the changes of kx
and ky. The above phenomenon further illustrates
that it is very difficult to detect tiny objects and

Table 1: The definitions of evaluation metrics, where TP, TN, FP and FN represent True Positive, True Negative, False Positive
and False Negative, respectively; N denotes the number of detected objects.

Metric Definition Metric Definition

Average Precision
∑N

i=1{Precision(i)×Recall(i)}
Number of Annotations Recall TP

TP+FN

F1 Score 2 × Precision×Recall
Precision+Recall Precision TP

TP+FP
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it is unfair to use IoU alone to evaluate tiny object
detection. Therefore, without affecting the sperm
positioning, we propose a more suitable evaluation
index. This indicator is a positive sample when the
detected object meets two conditions at the same
time: the first is that the detected object category
is correct, and the second is that the IoU of the
detection box and the ground truth box exceeds
B1, or the IoU of the detection box and the ground
truth box exceeds B2, and the distance between
the center points of the two box does not exceed R
pixels.

4.3. Evaluation of Sperm Detection Methods

In order to prove the effectiveness of the pro-
posed TOD-CNN method for sperm detection in
sperm microscopic videos, we compared its detec-
tion results with other state-of-the-art methods,
such as YOLO-v3 [24], YOLO-v4 [25], SSD [26],
RetinaNet [27], and Faster R-CNN [20]. In the ex-
periment process, each metric is calculated under
the condition of B1 = 0.5, B2 = 0.45, and R = 3.
B1 and B2 represent the IoU value, and R repre-
sents the pixel distance between the center of the
predicted box and the center of the ground-truth
box. Among them, whether B1 is greater than 0.5
is a more common standard for evaluating positive
and negative samples in the field of object detec-
tion [57]. In addition, after our extensive experi-
mental verification, the sperm object center coor-
dinates obtained when B2 ≥ 0.45 and R ≤ 3 have
little effect on the sperm tracking task. Therefore,
this paper adopts this standard to evaluate the ex-
perimental results.

4.3.1. Compare with Other Methods

In this part, we make a comparison between
TOD-CNN and some state-of-the-art methods in
terms of memory costs, training time, FPS, and
detection performance.

Evaluation of Memory, Time Costs and
FPS. To compare the memory costs, training time
and FPS among TOD-CNN, YOLO-v4, YOLO-v3,
SSD, RetinaNet and Faster R-CNN, we provide the
details in Table 2.

From Table 2, we can find that the memory cost
of TOD-CNN is 164 MB, the training time of TOD-
CNN is around 119 min for 60 sperm microscopy
videos, and the FPS is 34.7. In contrast, the mem-
ory cost and FPS of TOD-CNN are not optimal,

but it considers both the model size and real-time
performance. By comparing with YOLO-v3 and
YOLO-v4, TOD-CNN has the minor memory cost.
By comparing with RetinaNet and Faster R-CNN,
TOD-CNN has faster detection speed. By com-
paring with SSD, TOD-CNN does not have better
memory cost and real-time performance, but sperm
detection ability of TOD-CNN is much better than
SSD, which will be explained in detail in the next
paragraph.

Table 2: The memory costs, training time and FPS of TOD-
CNN, YOLO-v4, YOLO-v3, SSD, RetinaNet and Faster R-
CNN.

Model Memory Cost Training Time FPS
TOD-CNN 164 MB 119 min 35.7
YOLO-v4 244 MB 135 min 28.4
YOLO-v3 235 MB 374 min 37.0

SSD 91.2 MB 280 min 31.5
RetinaNet 139 MB 503 min 21.0

Faster R-CNN 108 MB 2753 min 7.8

Evaluation of Sperm Detection Perfor-
mance. TOD-CNN is compared with existing ob-
ject detection models using our data set. In Table 3,
we list the comparison with the best performance
results of various models (SSD, RetinaNet, Reti-
naNet, and Faster R-CNN). In TOD-CNN, AP is
nearly 20% higher, F1 is nearly 12% higher and Rec
is nearly 22% higher. Our Pre is about 6% lower
than the best performing model (RetinaNet). It
is observed that our Rec is 75% higher than that
of RetinaNet, which shows that the number of de-
tected objects obtained by TOD-CNN far exceeds
RetinaNet. Overall, TOD-CNN outperforms exist-
ing models in sperm detection. Furthermore, a vi-
sual comparison of the models discussed above is
shown in Fig. 9.

Table 3: A comparison of detection results between TOD-
CNN and existing models. (In [%].)

Models AP F1 Pre Rec
TOD-CNN 85.60 90.00 89.47 90.54
YOLO-v4 51.00 70.16 85.19 59.64
YOLO-v3 42.93 64.36 78.36 54.60

SSD 65.00 78.51 93.48 67.67
RetinaNet 15.05 27.00 95.62 15.72

Faster RCNN 35.76 55.28 46.57 67.99

From Fig. 9, we can see that the correct detection
case of TOD-CNN is only fewer than Faster RCNN
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Fig. 9: Comparison of TOD-CNN with YOLO-v4 [25], YOLO-v3 [24], SSD [26], RetinaNet [27], and Faster RCNN [58]. In
these images, the blue boxes represent the corresponding ground-truth, the green boxes correspond to the correctly detected
objects, and the red boxes correspond to the incorrectly detected objects. The values represent the number of correctly
detected objects/the number of incorrectly detected objects/the number of objects in the annotation information but are not
detected/and the total number of objects in the annotation information.
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in “sperm-lack” scenes (oligospermia), but our Pre
is much higher than Faster RCNN [58]. In “sperm-
normal” scenes (healthy), the correct detection case
of TOD-CNN is the best and our Pre and Rec are
higher. By observing Fig. 9, it is easy to understand
why TOD-CNN has slightly lower Pre than SSD
and RetinaNet, but other metrics are better than
other models (the number of correct detections of
TOD-CNN far exceeds other models).

Furthermore, to test the robustness of TOD-CNN
against impurities in the microscopic videos, we
have added 4,479 impurities into the experiments.
The experimental results are shown in Table 4,
where TOD-CNN shows the best robustness against
the effect of impurities compared to other models.

Table 4: A comparison between TOD-CNN and existing
models in the scene with impurity, where AP S, AP I and
mAP represents AP of sperm, AP of impurity and mean AP,
respectively. (In [%].)

Models AP S AP I mAP F1 Pre Rec
TOD-CNN 85.60 57.33 71.47 88.57 88.41 88.74
YOLO-v4 51.00 30.00 40.50 69.61 84.76 59.06
YOLO-v3 42.93 35.90 39.42 63.80 78.34 53.81

Faster RCNN 35.76 25.80 30.78 54.52 46.06 66.78
SSD 65.00 18.95 41.98 76.59 92.23 65.44

RetinaNet 15.05 33.84 24.44 28.51 95.36 16.76

4.3.2. Cross-validation Experiment

To verify the reliability, stability and repeatabil-
ity of TOD-CNN, we have performed five-fold cross-
validation. The experimental results are shown in
Table 5, where the mean values (µ) of the four eval-
uation metrics is higher than 89% except for AP,
and AP is higher than 86%. It can be seen that
TOD-CNN has good performance and repeatabil-
ity. The standard deviation (STDEV) of F1 is
1.02%, the STDEV of two of the four evaluation
metrics are below 1.40%, and only the STDEV of
Pre is slightly higher (2.05%), showing that TOD-
CNN is relatively stable and reliable.

4.3.3. Sperm Tracking

The ultimate goal of sperm detection is to find
the sperm trajectories and calculate the relevant
parameters for clinical diagnosis. TOD-CNN and
two models with better detection results (YOLO-
v4 and SSD) are are compared for sperm tracking
in Table 3. Based on the detection result of each

Table 5: The detection results, µ and STDEV of the five-fold
cross-validation experiments. (In [%].)

Metrics AP F1 Pre Rec
1 85.60 90.00 89.47 90.54
2 84.90 90.11 92.76 87.61
3 88.80 92.78 95.19 90.48
4 86.37 91.33 94.12 88.66
5 87.29 90.65 91.15 90.16
µ 86.59 90.97 92.54 89.49

STDEV 1.36 1.02 2.05 1.16

model, we use the kNN algorithm to match sperms
in adjacent video frames to the actual trajectories
marked in Subset-B. The visualization results are
shown in Fig. 10. We can observe that our track-
ing trajectories are very close to the actual ones,
and the trajectory discontinuity or incorrect track-
ing is rarely occurred due to the stronger detection
capability of TOD-CNN.

In addition, we calculate three important motil-
ity parameters of sperms on Subset-B, including the
Straight Line Velocity (VSL), Curvilinear Velocity
(VCL) and Average Path Velocity (VAP) [59] of ac-
tual trajectories, with TOD-CNN, SSD and Yolo-
v4, respectively. Comparing with the actual trajec-
tories, the error rates of VSL, VCL and VAP calcu-
lated with TOD-CNN (10.15%, 5.09% and 8.95%)
are significantly lower than that of SSD (41.58%,
5.01% and 17.40%) and Yolo-v4 (12.73%, 36.12%
and 19.65%). Based on VCL, VSL, and VAP, an
experienced threshold value from a clinical doc-
tor is set to determine whether a sperm is motile
to calculate the corresponding progressive motility
(PR). The error between PR obtained by TOD-
CNN tracking results and doctors’ diagnosis results
are all within 9%. The experimental result shows
that our TOD-CNN can assist doctors in clinical
work.

4.3.4. A Python-based Graphical User Interface

To conveniently use TOD-CNN to detect tiny ob-
jects in microscopic videos and images, we design
a Python-based GUI (Fig. 11) that can help users
to control the Intersection of Union (IoU) thresh-
old and confidence according to their own needs
to achieve the desired test performance. Besides,
users can load Model Path to use their own set-
ting/weights for tiny object detection. This GUI is
compatible with videos (such as “.mp4” and “.avi”)
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Fig. 10: An example of sperm tracking results. Green lines represent the actual trajectories based ground truth; red, blue and
orange lines denote the tracking trajectories of TOD-CNN, SSD and Yolo-v4, respectively.

and images (such as “.png” and “.jpg”) in various
formats.

Fig. 11: GUI of TOD-CNN for detecting sperms in micro-
scopic videos or images.

5. Conclusion and Discussion

We develop and present a public, massive and
high-quality data set for sperm detection, tracking
and classification, and this data set now is published

and available online. We also provide a one-stage
CNN model (TOD-CNN) on Subset-A for tiny ob-
ject detection in real-time, which can accurately de-
tect sperms in videos and images. However, TOD-
CNN fails in some cases and cannot detect sperms
completely or accurately. The example of incorrect
detection results are shown in Fig. 12.

In Fig. 12(a), we can see that the detection boxes
can surround sperms correctly. However, due to
the small size of the ground truth boxes, a minor
position offset (one or two pixels) causes the IoU
between detection and ground truth boxes to be
lower than 0.5. In Fig. 12(b), due to the movement
of the sperms, the thickness of the semen wet film
and noticeable interference fringes in sperm videos,
it may lose valuable information and lead to er-
rors in detection. Also, because some impurities
have very close visual information to sperms, TOD-
CNN incorrectly detects the impurities as sperms.
In Fig. 12(c), for the sperms appearing on figure
edges, it is difficult to explore the complete infor-
mation and sometimes these sperms are missed in
detection. To ensure the annotation information re-
liability, when we marked sperms in videos, we only
choose sperms without controversy. In Fig. 12(d),
the detected sperms may be located deeply in the
semen wet film. Because of its unclear imaging, it
is difficult to distinguish whether it is a sperm or
an impurity and it is not annotated in our data set.
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Fig. 12: Visualized results of some typical detection failures
of TOD-CNN. The red and green boxes represent the detec-
tion results, the blue boxes represent the ground truth, S
represents sperms and Impurity represents impurities.

In future work, we will continue to integrate re-
lated optimization algorithms to improve the per-
formance of TOD-CNN, such as monarch butter-
fly optimization [60], earthworm optimization algo-
rithm [61], elephant herding optimization [62, 63],
moth search algorithm [64], slime mould algo-
rithm [65], hunger games search [66], Runge Kutta
optimizer [67], colony predation algorithm [68, 69],
and Harris hawks optimization [70].

Acknowledgements

This work is supported by the “National Natural
Science Foundation of China” (No. 61806047). We
thank Miss Zixian Li and Mr. Guoxian Li for their
important discussion.

Declaration of Competing Interest

The authors declare that they have no conflict of
interest.

References

[1] S. Gadadhar, G. Alvarez Viar, J. N. Hansen, A. Gong,
A. Kostarev, C. Ialy-Radio, S. Leboucher, M. Whit-
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