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Abstract

The development of noninvasive brain imaging such as resting-state functional magnetic resonance
imaging (rs-fMRI) and its combination with AI algorithm provides a promising solution for the
early diagnosis of Autism spectrum disorder (ASD). However, the performance of the current ASD
classification based on rs-fMRI still needs to be improved. This paper introduces a classification
framework to aid ASD diagnosis based on rs-fMRI. In the framework, we proposed a novel filter
feature selection method based on the difference between step distribution curves (DSDC) to select
remarkable functional connectivities (FCs) and utilized a multilayer perceptron (MLP) which was
pretrained by a simplified Variational Autoencoder (VAE) for classification. We also designed a
pipeline consisting of a normalization procedure and a modified hyperbolic tangent (tanh) activation
function to replace the original tanh function, further improving the model accuracy. Our model
was evaluated by 10 times 10-fold cross-validation and achieved an average accuracy of 78.12%,
outperforming the state-of-the-art methods reported on the same dataset. Given the importance of
sensitivity and specificity in disease diagnosis, two constraints were designed in our model which can
improve the model’s sensitivity and specificity by up to 9.32% and 10.21%, respectively. The added
constraints allow our model to handle different application scenarios and can be used broadly.

Keywords: ASD; fMRI; Filter feature selection; VAE; ABIDE; Classification

1 Introduction

Autism spectrum disorder (ASD) is a common com-
plex neurodevelopmental disorder that occurs in early
childhood and has received much attention in recent
years because of its high incidence and difficulty in
curing. Although the manifestation of individuals
with ASD varies greatly with age and ability [1], the
disorder is characterized by core features in two ar-
eas—social communication and restricted, repetitive
sensory-motor behaviors [2]. Some ASD patients can
go undetected during childhood and be observed to
have psychiatric comorbidity during adolescence [3],
which presents challenges for traditional symptom-
based diagnostic methods in ASD early diagnosis.
Studies have shown that multiple biological factors
can lead to the same ASD-related behavioral pheno-
type [4]. However, traditional symptom-based ASD

*Corresponding author: Yi Pan (yi.pan@siat.ac.cn)

detection methods are unable to give a reliable di-
agnosis from a pathogenic perspective. To bridge
this gap, non-invasive brain imaging techniques such
as resting-state functional Magnetic Resonance Imag-
ing (rs-fMRI) have been used to reveal valuable in-
formation about brain network organization [5] and
contribute to a better understanding of the neural
circuitry underlying ASD and its associated symp-
toms. By measuring changes in Blood Oxygen level-
dependent (BOLD) signals, rs-fMRI can detect the
functional connectivity patterns between the brain
regions of interest (ROIs), and several studies have
found abnormal functional connectivities in ASD sub-
jects [6–8]. With the development of artificial intel-
ligence technology, deep learning techniques have
made it possible to process and analyze large amounts
of fMRI data to discover patterns amongst the com-
plex functional connectivities that are not apparent
to the human eye and have achieved good results
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for ASD prediction, making fMRI-based deep learn-
ing models a promising auxiliary tool for ASD early
screening.

However, small sample sizes and high feature di-
mensionality increase the challenge of developing a
robust and well-performed machine learning model.
One subject’s feature vector composed of functional
connectivities (FCs) extracted from rs-fMRI usually
has tens of thousands of dimensions which makes the
model training a time-consuming process and con-
tains a lot of noise resulting from the recording image
process [9] and redundancy information which will
affect the model performance. Feature selection is
a dimensionality reduction technique that identifies
the key features of a given problem [10]. The main
goal of feature selection is to construct a subset of fea-
tures as small as possible, which represent the vital
features of the entire input data [11]. As an effective
method to reduce training time and improve model
performance, feature selection has been widely used
in previous studies [12–17]. In the work of Guo et
al. [12], a feature selection method based on multiple
sparse autoencoders achieved a 9.09% model accu-
racy improvement based on 55 ASD and 55 Healthy
Controls (HC) subjects from UM site of Autism Brain
Imaging Data Exchange (ABIDE) I dataset [18]. Wang
et al. [13] searched for informative features by SVM-
RFE and obtained 90.60% accuracy by SVM classifier
on a dataset consisting of 255 ASD and 276 HC sub-
jects. In [14], a graph-based feature selection method
was proposed to select remarkable FCs. Based on the
refined features, a deep belief network (DBN) was
trained and achieved a higher classification accuracy
(76.4%) than previous studies on the entire ABIDE I
dataset.

In previous studies, machine learning algorithms
such as support vector machine (SVM), decision tree,
and Gaussian naive Bayes have been applied to ASD
recognition [19, 20], most of which belong to super-
vised learning methods. With the development of
deep learning technology, pretraining classifiers us-
ing unsupervised deep learning methods has been
proved to be helpful to improve the performance of
classifiers. For instance, Heinsfeld et al. [21] utilized
a denoising autoencoder to extract underlying rep-
resentations of the input feature vectors and then
trained fully connected layers for classifying ASD
from HC based on 1035 subjects from the ABIDE I
dataset. Their model achieved better classification
accuracy (70%) than SVM and random forest (RF).
Kong et al. [22] pretrained their model by a sparse
autoencoder based on 182 subjects from NYU site of
ABIDE I and achieved an accuracy of 90.39% and the

area under the receiver operating characteristic curve
(AUC) of 0.9738 for ASD/HC classification. Although
denoising autoencoders and sparse autoencoders are
widely used in previous studies and got relatively
good results, the setting of the noise ratios and spar-
sity parameters are subjective to some extent. Some
other researchers such as Sherkatghanad et al. [23]
and Shrivastava et al. [24] performed ASD classifica-
tion by using CNN to process the functional connec-
tivity matrix. These CNN-based methods can extract
local characteristics of images, however, the functional
connectivity matrix is not an image in Euclidean space
and doesn’t have specific local characteristics. Other
state-of-the-art methods that have been used in ASD
classification include DBN [14], CapsNet [25], ASD-
Diagnet [26], etc., all of these methods have achieved
over 70% prediction accuracy. Given that the doctor’s
diagnosis results can be affected by subjective factors
such as different clinical experiences and fatigue, as
well as objective factors such as the patient’s insignifi-
cant symptoms, false negative and false positive cases
have always been difficult to avoid, while most pre-
vious studies primarily concentrated on developing
high-accuracy models without taking measures to
improve sensitivity or specificity, which are critical
for reducing the false-negative rate and false-positive
rate, respectively.

The purpose of this paper is to provide an ASD/HC
classification framework based on rs-fMRI to im-
prove ASD classification performance on heteroge-
neous datasets and to flexibly improve model sen-
sitivity or specificity according to actual needs. In
the framework, we proposed a novel feature selection
method based on the difference between step distri-
bution curves (DSDC) that not only contributed to
higher classification accuracy but significantly speed
up the training process. To get a more accurate and
reliable ASD/HC classification model, we simplified
the architecture of Variational Autoencoder (VAE) to
pretrain the classifier and designed a pipeline con-
sisting of a normalization and a modified hyperbolic
tangent (tanh) activation function to replace the origi-
nal tanh activation function, and adopted the thresh-
old moving approach which is described in Section
2.4.3 to alleviate the impact of class imbalance of the
dataset. In addition, we designed two constraints,
by using which in the training process, model sensi-
tivity or specificity can be effectively improved. The
proposed method can potentially be used for ASD
early screening and provide a valuable reference for
doctors’ decision-making.

Our main contributions are summarized as follows:
1. We proposed an ASD/HC classification frame-
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work including a novel feature selection method (the
DSDC-based feature selection method), a simplified
VAE pretraining method, and an MLP classifier. The
accuracy of our classifier outperforms the state-of-
the-art results reported on the same dataset with an
outstanding training speed.

2. We designed two constraints that can be used
during the model training process to effectively im-
prove model sensitivity and specificity, respectively.

This paper is structured as follows: Section 2 intro-
duces the dataset we used and rs-fMRI data prepro-
cessing process (2.1-2.2), feature selection method (2.3)
and details of our model (2.4-2.5). Section 3 discusses
the experimental results and limitations. Finally, the
conclusion and future work are presented in section
4.

2 Materials and methods

2.1 Participants

ABIDE I dataset is one of the most commonly
used public datasets taken from 17 international
sites (http://preprocessed-connectomes-project.
org/abide/). In order to train a robust model with
stronger generalization ability for the data from dif-
ferent sites, our study was carried out using all valid
rs-fMRI data from ABIDE I including 505 ASD and
530 HC samples, the largest rs-fMRI subset of ABIDE
I that has ever been used, the phenotype of which is
summarized in Table 1.

Table 1: Demographic description of participants for ABIDE I

Site ASD HC Male Female Subtotal Average age

CALTECH 19 18 29 8 37 27

CMU 14 13 21 6 27 26

KKI 20 28 36 12 48 10

LEUVEN 29 34 55 8 63 18

MaxMun 24 28 48 4 52 25

NYU 75 100 139 36 175 15

OHSH 12 14 26 0 26 10

OLIN 19 15 29 5 34 16

PITT 29 27 48 8 56 18

SBL 15 15 30 0 30 34

SDSU 14 22 29 7 36 14

Stanford 19 20 31 8 39 9

Trinity 22 25 47 0 47 16

UCLA 54 44 86 12 98 13

UM 66 74 113 27 140 14

USM 46 25 71 0 71 22

Yale 28 28 40 16 56 12

Total: 505 530 878 157 1035

Four different preprocessed datasets have been
provided by ABIDE I according to four pipelines
(CPAC [27], CCS, DPARSF, and NIAK). The CPAC
pipeline was considered in our work, partly because
previous studies such as Zhang et al. [28] have com-
pared the four different pipelines and found that data
preprocessed with CPAC pipeline can achieve bet-
ter classification results, and partly because it allows
our model to be compared and evaluated against
most of the other methods that have chosen CPAC
pipeline as well. In addition, ABIDE I dataset pro-
vides data preprocessed by seven brain atlases among
which Craddock 200 (CC200) [29] and Craddock 400
(CC400) have been proved by previous studies bet-
ter than other atlases such as Automated Anatomical
Labeling(AAL), Dosenbach160, etc [26, 30]. CC400
atlas was adopted in our work mainly because CC400
has a more detailed division of ROIs than CC200.
Another important reason is that the DSDC-based
feature selection greatly reduced the dimension of
the original feature vector, which enables us to com-
plete the model training in a short time even based
on a complex brain atlas like CC400 (392 ROIs, 76636
features for each subject).

2.2 Functional Connectivity Measures and Sub-
ject’s Feature Vector

CC400 is a brain atlas with 392 ROIs from which 392
time series were extracted. The Pearson correlation
coefficient (PCC) was calculated between each pair
of time series by Formula (1) to measure the coac-
tivation level between each pair of ROIs and form
a PCC matrix. For each subject, we took the upper
triangle of the PCC matrix and removed the main
diagonal elements, after which the remaining triangle
was flattened into a one-dimensional feature vector
including 392× (392− 1)/2 = 76636 features. The
entire process of generating subjects’ feature vectors
is shown in Figure 1.

PCCx,y =
∑N

i=1(xi − x̄)(yi − ȳ)√
∑N

i=1(xi − x̄)2
√

∑N
i=1(yi − ȳ)2

(1)

Where PCCx,y is the PCC between time series x and
y; N is the length of time series; x̄ and ȳ are the mean
value of time series x and y.

2.3 DSDC-based feature selection

A subject can be represented by a feature vector as
explained in section 2.2, while most features have com-
plex distributions across subjects. In order to reduce
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Figure 1: The process of generating subjects’ feature vectors from fMRI images

the complexity of the distribution curves, the value
range of features was evenly divided into 20 subin-
tervals. Within each subinterval, for each class, the
number of samples was divided by the total sample
size of the class and got a normalized value. By using
all the normalized values, step distribution curves
(see Figure 2 (B)) were created to approximate the
original feature distribution curves (see Figure 2 (A)).
We defined the DSDC score in equation (2) to measure
the distribution difference of positive and negative
samples.

DSDC_score =
b1

∑
i=b0+δ

|n+
i /N+ − n−i /N−| (2)

Where b0 and b1 represent the lower bound and upper
bound of feature values; δ is the span of subinterval;
n+

i and n−i are the numbers of positive and negative
samples whose feature values are in [i − δ, i); N+

and N− are the positive and negative sample sizes.
The larger the DSDC score of a feature, the more
discriminative the feature is.

In our experiment, a feature was considered re-
markable if its DSDC score is bigger than a preset
filter threshold (0.241). The filter threshold was de-
termined by the following process: first, 55 feature
subsets of different sizes were generated by the DSDC-
based feature selection method with different filter
thresholds, then an MLP with two hidden layers was
used to perform 10-fold cross-validation on each fea-
ture subset and the average accuracy was calculated.
We chose the filter threshold corresponding to the
highest average accuracy as the preset filter threshold
(see Figure 3). Through DSDC-based feature selection,

3170 remarkable features were selected from the orig-
inal 76636 features whose dimension was reduced by
95.86%. Subsequent experimental results show that
the feature selection not only improved the classifier’s
accuracy but also greatly reduced the training time
of the deep learning model. In addition, the feature
selection process of ABIDE I dataset with the input
matrix size of 1035 x 76636 takes 28.12 seconds based
on Intel Xeon Silver 4114 CPU, which reflects that the
DSDC score is computationally efficient.

2.4 Deep neural network classifier

This section introduces the architecture of our classi-
fier and its training process.

2.4.1 Simplified VAE and MLP

The training process of our classifier consists of sim-
plified VAE unsupervised pretraining and MLP su-
pervised fine-tuning.

VAE [31, 32] is a generative model with an encoder
and a decoder. Given an input vector x, the VAE’s
encoder outputs the latent space parameters (µ and
logvar) by equations (3), (4) and (5). Then the param-
eters are used to generate the latent variables z by
equation (6). At last, VAE’s decoder uses the latent
variables to reconstruct the input vector.

h = W1x + b1 (3)

µ = W2h + b2 (4)

logvar = W3h + b3 (5)

4



Figure 2: The original distribution curves and the corresponding step distribution curves for the functional connectivities between Right
Middle Frontal Gyrus and Right Superior Frontal Gyrus. (A) Original distribution curves; (B) Step distribution curves

Figure 3: Selecting the filter threshold corresponding to the highest
average accuracy of the 10-fold cross-validation

z = µ + ε× e0.5×logvar (6)

where h is the output of the first hidden layer of
VAE’s encoder, µ and logvar are parameters of the
latent space, {W1, W2, W3, b1, b2, b3} are weights and
biases of the encoder, ε is a random number sampled
from N(0, 1) distribution.

We use the root-mean-square propagation (RM-
SProp) [33] as the backpropagation method to op-
timize the loss function of VAE which is defined as
follows,

Loss(W, b) = MAE + β
n

∑
i=1

KL[N(µi, elogvari ) ‖ N(0, 1)]

(7)

MAE =
1
n

n

∑
i=1
| fW,b(xi)− xi| (8)

KL[N(µi, elogvari ) ‖ N(0, 1)] = −1
2
(1 + logvari − elogvari − µi

2)

(9)
Where Loss(W, b) represents the loss function of

VAE. MAE represents the mean absolute error [34]
between prediction and true label, n is the number of
samples, xi is the input of the ith sample, fW,b(xi) is
output of VAE’s decoder. KL[N(µi, elogvari ) ‖ N(0, 1)]
represents the Kullback-Leibler divergence between
N(µi, elogvari ) and N(0, 1), µi and logvari are parame-
ters of latent space generated by encoder of VAE.

As seen from equations (4) and (5), the µ and logvar
are generated by two branch networks with different
parameters, respectively. However, our purpose is
transfering the parameters of the pretrained VAE’s
encoder to MLP for fine-tuning, thus we simplified the
structure of VAE’s encoder by using a unified network
to generate µ and logvar simultaneously following
equation (10) to ensure the encoder’s structure is the
same as the MLP’s structure.

µ = logvar = W2h + b2 (10)

After pretraining, we use the parameters of the
VAE’s encoder as the initialization parameters of the
MLP and fine-tune the MLP’s parameters through
supervised training. Cross entropy is used as the loss
function and RMSProp is adopted as the backprop-
agation method. A softmax layer is added after the
MLP to calculate probabilities to determine the label
of each subject. Afterwards, evaluation metrics such
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Figure 4: The entire process of feature selection, pretraining, fine-tuning and model evaluation

as accuracy, sensitivity, and specificity can be calcu-
lated by using the prediction label and true label. The
model’s architecture and the entire process of feature
selection, pretraining, fine-tuning, and evaluation are
shown in Figure 4.

2.4.2 Normalization and modified tanh activation func-
tion

To further improve the classification accuracy, a
pipeline consisting of a normalization procedure and
a modified tanh activation function was designed to
replace the original tanh activation function.

The normalization can be performed according to
Equation (11) through which the outputs of hidden
layers are mapped to [−1, 1] in order to match the
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Figure 5: A comparision of the tanh and the modified tanh

subsequent activation function.

xnorm =
2(x− xmin)

xmax − xmin
− 1 (11)

Where x is the output of one hidden node and xnorm is
the normalized output; xmax and xmin is the maximum
and minimum output of the hidden node.

After normalization, the modified tanh activation
function in Equation (12) is applied to the outputs
of hidden layers. Compared with tanh, the modified
tanh can make the features whose values close to zero
more discriminating by mapping them to a larger
interval (see Figure 5)

ynorm_act =
e2.5·xnorm − e−2.5·xnorm

e2.5·xnorm + e−2.5·xnorm
(12)

Where ynorm_act is the output of normalization-
activation pipeline.

2.4.3 Threshold moving

Threshold moving is an approach to alleviate the im-
pact of class imbalance on classification performance
by adjusting the classification threshold. When the
data is balanced, the classification threshold of a soft-
max layer’s output is usually set to 0.5. However, the
number of HC samples is larger than that of ASD
samples in ABIDE I, therefore, the threshold moving
approach was adopted in our work and the decision
is made according to the following rules.

pASD
pHC

· NHC
NASD

> 1⇔ pASD
pHC

>
NASD
NHC

⇒ ASD (13)

pASD
pHC

· NHC
NASD

< 1⇔ pASD
pHC

<
NASD
NHC

⇒ HC (14)

Where [pASD, pHC] are the outputs of the softmax
layer, representing the probabilities of a sample being
ASD and HC. NHC and NASD are the number of HC
and ASD samples in the training set, respectively.

As shown in equations (13) and (14), in the clas-
sification decision stage, we increase the weight of
ASD which is equivalent to relaxing the criterion for
determining ASD.

2.5 Additional constraints during model training

This section will introduce two constraints that can
help to train models with higher sensitivity and speci-
ficity, respectively. The constraints are used in the
model training process to determine whether the op-
timized model parameters of a certain training epoch
should be saved. The mechanism of the constraints is
detailed in Algorithms 1.

Take constraint 1 for example, in the training
process, constraint 1 helps to improve the difference
between sensitivity and specificity while improving
the accuracy. The sensitivity increases because it is
positively correlated with the difference between sen-
sitivity and specificity which can be proved as follows.

Because:

Accuracy =
TP + TN

NASD + NHC
(15)

Sensistivity =
TP

NASD
, Speci f icity =

TN
NHC

(16)

Sensitivity− Speci f icity =
TP

NASD
− TN

NHC
(17)

NASD, NHC = Constant (18)

Assume:
Accuracy = Constant (19)

Then:
TP + TN = Constant (20)

Obviously:

TP
NASD

− TN
NHC

↑⇒ TP ↑⇒ Sensistivity ↑ (21)

But if the difference between sensitivity and specificity
keeps increasing and exceeds a certain value, the
model’s performance will deteriorate. Therefore an
appropriate threshold is needed and the selection of
the threshold will be discussed in detail in Section
3.3.
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Algorithm 1
Input: 1.initial model . Untrained Model with random

initialization of parameters
2.training set . The dataset used to train a model
3.validation set . The dataset used to stop training

automatically
4.constraint_type . Parameter used to choose

Constraint 1 or Constraint 2
5.threshold . A preset threshold for constraints, the

effect of which will be disscussed in Section 3.4
Output: final model . The trained model
1: max_acc = 0
2: δ = −1
3: for training_epoch = 1 to max_training_epoch do
4: Training model on training set→ current model
5: Calculating accuracy, sensitivity and specificity of current

model on validation set→ v_acc, v_sen, v_spe
6: if contraint_type == 1 then . Constraint 1
7: if v_acc ≥ max_acc and v_sen− v_spe ≥ δ then
8: max_acc = v_acc
9: if δ < threshold then

10: δ = v_sen− v_spe
11: else
12: δ = threshold
13: final model = current model

14: else if contraint_type == 2 then . Constraint 2
15: if v_acc ≥ max_acc and v_spe− v_sen ≥ δ then
16: max_acc = v_acc
17: if δ < threshold then
18: δ = v_spe− v_sen
19: else
20: δ = threshold
21: final model = current model

22: else
23: if v_acc ≥ max_acc and |v_sen− v_spe| ≤ δ then
24: max_acc = v_acc
25: if δ > threshold then
26: δ = |v_sen− v_spe|
27: else
28: δ = threshold
29: final model = current model

30: return final model

3 RESULTS AND DISCUSSION

On ABIDE I dataset (505 ASD / 530 HC), most pre-
vious studies evaluated their models through a sin-
gle 10-fold cross-validation, the evaluation results of
which may be susceptible to the randomness of the
dataset division. In our work, 10-fold cross-validation
was repeated 10 times to evaluate our model more
objectively. For each 10-fold cross-validation, we per-
formed a stratified sampling to randomly divide the
dataset into a training set, a validation set, and a test-
ing set in an 8:1:1 ratio. The training set was used
to train a model and the validation set was used to
stop training automatically when the validation accu-
racy stopped increasing to avoid overfitting, and the
testing set is used for evaluating the classification per-
formance of the trained model. Accuracy, sensitivity,
specificity, and training time are obtained by calculat-
ing the mean value of 10 times experiments for model
evaluation. A grid search with a step size of 50 was
performed to optimize the model’s layer configuration
from full[100]-full[100]-full[2] to full[1000]-full[900]-
full[2], through which the layer configuration is deter-
mined as full[250]-full[150]-full[2], corresponding to
the highest accuracy (78.12%), where full[N] denotes
a fully-connected layer with N outputs.

In the following subsections, first, the DSDC-based
feature selection method is compared with two other
commonly used feature selection methods to high-
light the advantage of the former. Next, the contri-
bution of each procedure in our framework to clas-
sification accuracy is discussed. Then, we analyze
the model performance by using constraints with dif-
ferent thresholds and provide a feasible threshold
selection range. After that, our experimental results
are compared with other state-of-the-art studies on
the same dataset. Finally, the limitations of the current
work are discussed.

3.1 Evaluation of feature selection methods

The advantage of the proposed DSDC-based feature
selection method is highlighted by comparing it with
two widely used feature selection methods based on
F-score [35] and PCC. At first, all features are ranked
by DSDC score, F-score, and the absolute value of
PCC in descending order. Then top n (n varies from
500 to 30000) features of the different feature rankings
were fed into the same SVM classifier. Finally, we
compared the accuracy of the SVM classifier under
different feature rankings (Figure 6).

As in Figure 6, the red curve (representing DSDC)
rises faster, indicating the top features of DSDC-based
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Figure 6: A comparision of different feature selection methods
based on the same SVM classifier

feature selection include more vital information than
the top features of the other two methods (F-score and
PCC). With the increase in the number of top features,
more important features have been selected by all the
three methods so that the accuracy difference between
the three methods becomes smaller, while the DSDC-
based feature selection method still showed better
performance. This illustrates that DSDC can help to
select more refined features and contribute to better
classification performance. It is worth mentioning
that we use an SVM classifier to compare different
feature selection methods instead of a deep learning
model because the model parameters will change
according to different input dimensions. Changes in
the parameters of a deep learning model commonly
have an influence on the model performance, and it
is difficult to tell whether changes in classification
performance are mainly caused by the new inputs or
the changes in model parameters.

3.2 The performance analysis of our framework

The contribution to the classification accuracy of each
procedure in our framework is shown in Figure 7.
Besides, we performed two-sample t-tests and cal-
culated p-values to investigate the significance of
accuracy improvement (p-value < 0.05 indicates a
significant improvement in accuracy). Due to the fea-
ture vectors without dimensionality reduction can
bring a huge time cost to the training and hyperpa-
rameter tuning of a deep learning model, an SVM
classifier is used instead to evaluate the performance
improvement contributed by DSDC-based feature se-
lection (see the 1st and 2nd rows). It can be observed
that the DSDC-based feature selection resulted in a
significant accuracy improvement of 5.56% (p-value
< 0.01). The 2nd and 3rd rows verify the advantages

Figure 7: Performance comparison of SVM, FS+SVM, FS+DNN,
FS+DNN[a] and FS+DNN[a,b] models

• FS: The DSDC-based feature selection described in Section 2.3
• DNN: MLP pretrained by simplified VAE described in Section 2.4.1
• a: Using normalization and modified tanh activation function de-

scribed in Section 2.4.2 instead of tanh in DNN
• b: Using threshold moving approach described in Section 2.4.3 in

DNN

of deep learning over traditional machine learning
by comparing the deep learning model pretrained by
simplified VAE with SVM (p-value < 0.01). By re-
placing the original tanh activation function with the
normalization-activation pipeline described in section
2.4.2 and using the threshold moving approach de-
scribed in section 2.4.3, a 0.65% increase in accuracy is
observed by comparing the 3rd and 5th rows (p-value
= 0.02), indicating that using these methods can sig-
nificantly improve the accuracy of our model, while
the individual effects of the normalization-activation
pipeline (0.31% accuracy increase showed in 3th and
4th rows) and threshold moving (0.34% accuracy in-
crease showed in 4th and 5th rows) are slight. In the
loss function of the simplified VAE, we have also tried
to use MSE loss instead of MAE loss, whereas the
accuracy of the final classifier slightly decreased by
0.28%. One possible reason is that the MAE loss is
more robust to outliers than the MSE loss, and more
than 89% of the 3170 input features have outliers if
values more than three times the standard deviation
away from the mean value is regarded as outliers.

Figure 8 was used to investigate the influence of
the simplified VAE pretraining method on the conver-
gence speed of the classifier by comparing the average
training accuracy of the 10 times 10 folds’ experiments
after each training epoch. As shown in Figure 8, the
red curve (representing the MLP pretrained by sim-
plified VAE) is above the blue curve (representing the
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Figure 8: A comparision of convergence speed between MLP pre-
trained by simplified VAE and unpretrained MLP

unpretrained MLP), which shows that the simplified
VAE pretraining can speed up the convergence of the
MLP by providing it with initialization parameters.

Since different sites of ABIDE I adopt different scan-
ning protocols, there is heterogeneity among data
from different sites. To investigate whether the simpli-
fied VAE pretraining method can extract more useful
information from a large heterogeneous dataset. We
selected the five largest sites from the ABIDE I dataset
and performed pretraining, fine-tuning, and inference
independently on each of them (the corresponding
accuracy is represented by blue bars in Figure 9). For
comparison, we used the entire ABIDE I dataset (ex-
cluding the testing set) for pretraining and performed
fine-tuning and inference independently on each of
the 5 sites (the corresponding accuracy is represented
by orange bars in Figure 9). As shown in Figure 9,
for LEUVEN, UCLA, UM, and NYU sites, classifiers
pretrained on the entire ABIDE I dataset achieved
higher accuracy than those pretrained on a single site,
which indicates that in most cases more useful pat-
terns could be extracted from a larger heterogeneous
dataset through the simplified VAE. However, the re-
sult of the USM site is an exception. One possible
reason is the features’ distribution the USM samples
has a relatively bigger difference from that of other
sites.

3.3 The effects of constraints on model perfor-
mance

Section 2.5 has described the mechanism of the two
constraints used to train models with higher sensitiv-
ity and specificity and explained that an appropriate
threshold is necessary to ensure a good model per-
formance. This section will analyze the influence of
constraints’ thresholds on model performance. Our

Figure 9: Accuracy comparision of MLPs pretrained independently
on the five largest sites of ABIDE I dataset and pretrained on the
entire ABIDE I dataset

• ACC: The accuracy of MLP pretrained and fine-tuned on a single site
• ACC*: The accuracy of MLP pretrained on the entire ABIDE I dataset

and fine-tuned on a single site

experimental results demonstrate that the constraints
can significantly improve the model’s sensitivity or
specificity at a cost of small accuracy reduction while
ensuring the overall performance. Figure 10 summa-
rizes the trade-off among accuracy, sensitivity, and
specificity under different thresholds in Algorithm
1. Take constraint 1 as an example, in the range of 0
to 0.3, selecting a higher threshold will improve the
sensitivity, but at a cost, the accuracy and specificity
will decrease; When the threshold exceeds 0.3, the
performance of the model deteriorates as the thresh-
old increases. Constraint 2 follows a similar pattern.
Therefore, the value range for the threshold is 0 to 0.3.
In our work, we set the threshold to be 0.3 and trained
two models with 87.20% sensitivity and 88.55% speci-
ficity by using constraint 1 and constraint 2 in Al-
gorithm 1, respectively. Compared with the model
trained without using the two constraints (Model 1 in
Table 2), Model 2 in Table 2 improved sensitivity by
9.32% at the cost of an accuracy reduction of 2.76%
and Model 3 in Table 2 improved specificity by 10.21%
at the cost of an accuracy reduction of 4.38%. For dis-
ease diagnosis, a model with high sensitivity and
specificity can reduce missed diagnosis and misdiag-
nosis rates which reflects our model could potentially
adapt to the different cases for clinical application.
For example, a model with higher sensitivity is very
useful for the cases like COVID-19 screening since
missing the diagnosis of a virulent communicable ill-
ness has far-reaching public health implications and
may accelerate the pandemic. Models with higher
sensitivity and specificity can also be used to perform
a double check on the doctor’s diagnosis results. For
subjects whose doctor’s diagnosis results are incon-
sistent with the model’s prediction results, further
analysis or detection can be performed to eliminate
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Figure 10: Influence of different thresholds for constraints in Algo-
rithm 1 on accuracy, sensitivity and specificity of classifier

the potential diagnostic errors. In order to evaluate
the influence of Algorithm 1 on the model’s overall
performance, Figure 11 compares the models’ aver-
age AUCs, ROCs, and DET curves before and after
using Algorithm 1. The result shows that the three
models have similar ROCs and AUCs which demon-
strates that the proposed constraints can ensure the
model’s overall performance while improving sensi-
tivity or specificity. In Figure 11, the DET curves of
the classifier trained without using Algorithm 1 and
classifiers trained with constraint 1 and constraint 2
in Algorithm 1 are represented by green, red, and
blue curves, respectively. It can be observed that the
red curve is generally below the green curve when
the false-negative rate is lower than 20% and the blue
curve is generally below the green curve when the
false-positive rate is lower than 20%. This indicates
that when the false-negative rate and the false-positive
rate are relatively low, constraint 1 and constraint 2
can contribute to better model performance, respec-
tively.

3.4 Comparision with other state-of-the-art meth-
ods on the same dataset

In this section, we make a comparison of our pro-
posed method with several previous methods based
on the same dataset in Table 2. The state-of-the-
art methods used for comparison include denoising
autoencoder, convolutional neural network (CNN),
DBN, CapsNet, and ASD-Diagnet, all of which have
achieved over 70% prediction accuracy. In our work,
we trained three models based on simplified VAE and
MLP, Model 2 and 3 were trained by using the con-
straint 1 and constraint 2 described in algorithm 1,
respectively, while Model 1 is trained without using
the two constraints. The accuracy (78.12%), sensitivity
(87.20%), and specificity (88.55%) of Model 1, Model

2, and Model 3 exceed the corresponding results in
previous studies on the same dataset, respectively.
This highlights the outstanding classification perfor-
mance and flexibility of our framework. Our method
also runs efficiently due to less number of selected
features. The last column of Table 2 lists the training
time and the corresponding GPU used for training.
The training time of our model is 85s for 10-fold cross-
validation (8.5 seconds for training a single model),
which has an advantage over other studies after tak-
ing into account the GPUs’ performance differences.
A model with a fast training speed can be retrained
in a short time as new subjects arrive, which means
that the model can potentially achieve real-time opti-
mization and improvement in practical use.

3.5 Limitations

In the present study, the experimental results are
based on the ABIDE I dataset. More ASD datasets or
other neurological diseases are expected to be used to
evaluate the classification framework in the future. In
addition, two other modalities of MRI (structural MRI
and diffusion tensor imaging) have not been used
in our work. Since different MRI modalities contain
complementary information for ASD identification,
fusing multiple modalities for ASD classification may
work better than just using rs-fMRI. The proposed
deep learning model can potentially be used to dis-
cover vital functional connectivities by studying its
explainability, which can help to understand the ASD
mechanism. However, this has not been included in
the current work.

4 Conclusion

In this study, we proposed a novel filter feature selec-
tion method (DSDC-based feature selection method)
to select remarkable FCs and designed a deep learning
model with two procedures – simplified VAE pretrain-
ing and MLP fine-tuning. In our model, we designed
a pipeline consisting of normalization and a modified
tanh activation function to replace the original tanh
function and adopted the threshold moving approach,
which can further improve the classification accuracy.
In addition, we proposed two constraints that can
help to train models with higher sensitivity or speci-
ficity. The outstanding classification performance on
the heterogeneous dataset and adjustable sensitivity
and specificity suggest that our method goes one step
further based on state-of-the-art methods and has the
potential to be a viable auxiliary method for ASD
early detection.
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Figure 11: ROCs (left) and DET curves (right) of classifiers trained with and without constraints in Algorithm 1

• The threshold of the constraints is set to 0.3

Future work will focus on fusing multimodal MRI
data to utilize the complementary information for
ASD identification, which is expected to further im-
prove the classification performance, and experiments
will be performed on more datasets to verify the ro-
bustness of the model. In addition, further work
will be carried out to study the explainability of the
proposed model, which can potentially be used to
discover vital functional connectivities and help to
understand the ASD mechanism.
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