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Abstract

Expert interpretation of anatomical images of the human brain is the central part of neuro-radiology. Several machine learning-based
techniques have been proposed to assist in the analysis process. However, the ML models typically need to be trained to perform
a specific task, e.g., brain tumour segmentation or classification. Not only do the corresponding training data require laborious
manual annotations, but a wide variety of abnormalities can be present in a human brain MRI - even more than one simultaneously,
which renders a representation of all possible anomalies very challenging. Hence, a possible solution is an unsupervised anomaly
detection (UAD) system that can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to
detect out-of-distribution samples. Such a technique can then be used to detect anomalies - lesions or abnormalities, for example,
brain tumours, without explicitly training the model for that specific pathology. Several Variational Autoencoder (VAE) based
techniques have been proposed in the past for this task. Even though they perform very well on controlled artificially simulated
anomalies, many of them perform poorly while detecting anomalies in clinical data. This research proposes a compact version of the
“context-encoding” VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA), which
is more robust on clinical data and shows its applicability in detecting anomalies such as tumours in brain MRIs. The proposed
pipeline achieved a Dice score of 0.642±0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859±0.112 while
detecting artificially induced anomalies, while the best performing baseline achieved 0.522 ±0.135 and 0.783 ±0.111, respectively.
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1. Introduction

Acquiring and analysing magnetic resonance images (MRIs)
is an integral part of the work of neuroradiologists. MRI is free
from harmful ionising radiation and its ability to show excel-
lent soft-tissue contrast, making it the preferred imaging modal-
ity for brain imaging in clinical practice (Hagens et al., 2019).
MR images are used to examine numerous brain pathologies,
and manually analysing or annotating such images is part of
the radiologists’ regular duties. Not only such duties are time-
consuming and laborious, but they are also error-prone (Brady,
2017). Noting from Bruno et al. (2015), diagnostics of brain
pathology remain undiscovered in up to 5-10 % of cases. The
medical image analysis community has made numerous contri-
butions toward automating specific steps, focusing on human-
level accuracy at economically adequate computational com-
plexity. With advancements in artificial intelligence, outstand-
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ing achievements have been marked in the detection and seg-
mentation of lesions. Furthermore, these scientific results dis-
play abilities on par with experts (Menze et al., 2014). Such
automated methods try to assist the radiologists in the decision-
making process - reducing the workload and observer depen-
dency while improving the workflow and diagnostic accuracy
(Guerrero et al., 2018).

Most of these automatic methods are based on supervised
learning techniques, relying on the quality and quantity of la-
belled data. They utilise a vast amount of annotated training
data - ranging from thousands to millions of samples. These
trained models are usually specialists in dealing with domain-
specific tasks or the tasks they have been optimised for - which
can also be considered as the bottleneck in such a method as
they typically follow a ‘focus point solution’ design, which
means they are often very focused on one type of pathology
or lesion. Considering an example of cerebral small vessel dis-
ease, supervised solutions are challenging to develop since the
damage is complex in terms of lesion size, contrast, or mor-
phology (Wardlaw et al., 2013). Considering the complex field
of medicine, procuring annotated data is a tedious manual pro-
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cess - while it might be challenging to annotate concerning all
the possible pathologies.

An alternative solution to the conventional approach of the
supervised machine learning method to detect brain pathologies
is an unsupervised anomaly detection (UAD) system. Anomaly
detection is an approach that distinguishes anomalies com-
pletely based on characteristics that describe regular data. Since
the feature of possible irregularities is not learned, they stand
from the normal distribution and can be consequently detected.
Anomaly detection solutions are useful in cases where anoma-
lies are to be detected, but their manifestation is not known, and
they even might occur very rarely - making it difficult to create
a large dataset for supervised training (Pimentel et al., 2014).
Anomaly detection techniques have been applied for multiple
tasks, including credit card fraud detection (Phua et al., 2004),
aerospace monitoring during flight (Clifton et al., 2007), ille-
gal object detection at airports (Akcay et al., 2018) or detecting
faulty microprocessors (Kim et al., 2012). Approach without
using deep learning, by exploiting representative neighbours -
ADRN, has also been proposed for the detection of anomalies
in different datasets Liu et al. (2021).

Anomaly detection in medical imaging is defined as iden-
tifying relevant indicators of diseases and differentiating them
from those of typical healthy tissue characteristics. UAD sys-
tems can directly learn the data distribution from a large cohort
of un-annotated healthy subjects to detect out-of-distribution or
anomalous samples to identify cases for further inspection. As
anomaly detection does not depend on reference annotations,
this approach does not require any human input and can there-
fore be used to identify any medical condition. Unsupervised
segmentation of brain regions for anomaly detection is clini-
cally relevant as it can assist radiologists. It is also of great
interest to the medical image analysis community as it elimi-
nates the need for pixel-level annotations, which is an expen-
sive process and is often a prerequisite for supervised training
of the networks. However, it is worth mentioning that a system,
such as UAD, does not differentiate between different types of
anomalies, i.e. lesions and artefacts - both will be treated as
anomalies by a UAD system. Variational autoencoders (VAEs)
are one of the most commonly used techniques for anomaly
detection, along with methods based on Generative Adversar-
ial Networks (GANs) (Zimmerer et al., 2019; Liu et al., 2020;
Garcı́a González et al., 2021; Pinaya et al., 2022). However,
many of such techniques fail to perform well when it comes
to real clinical data. This research aims to extend the research
field of anomaly detection by creating a UAD pipeline capa-
ble of working with clinical data for the detection of clinically-
relevant anomalies (e.g. lesions) and evaluating its performance
for the task of brain tumour detection.

1.1. Contributions
This paper presents an unsupervised anomaly detection

pipeline, StRegA - Segmentation Regularised Anomaly, which
combines the proposed compact ceVAE (cceVAE) with pre-
processing steps to simplify the input to the model and post-
processing steps to improve the prediction of the model. The
proposed method has been trained on anomaly-free brain MRI

datasets and then was evaluated on the task of brain tumour de-
tection on the T1ce and T2 MRIs from the BraTS dataset. The
method was compared against three baseline models, includ-
ing the original ceVAE, and an additional baseline by combin-
ing the original ceVAE with the pre-processing techniques of
StRegA. The methods were also evaluated on a synthetically
created anomalous dataset. Additionally, this paper also pro-
vides a comprehensive overview of different autoencoder-based
techniques for anomaly detection.

2. Related Work

Auto-encoders are trained by minimising its reconstruction
error (Alain and Bengio, 2014). Different types of reconstruc-
tion errors are commonly used in unsupervised anomaly detec-
tion, acknowledging that regular distribution models cannot ef-
fectively reproduce anomalies (Ribeiro et al., 2018). Therefore,
regular anomaly-free data is distinguishable from anomalous
data with the degree of error differences in terms of reconstruc-
tion. The majority of the methods assume reconstruction errors
(losses) are optimised for average distribution data, whereas
anomalies are impacted with significant losses when their di-
mensions are reduced.

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) and Variational Autoencoder (VAEs) (Kingma and
Welling, 2013) are two essential methods based on latent space
information modelling, and they have been employed for the
task of anomaly detection (Xu et al., 2018; Yan et al., 2020).
However, both these methods have different approaches for
modelling the distribution. VAE applies variational inference
to approximate the data distribution. The posterior distribution
is encoded into latent space using the encoder network of the
VAE, whereas the decoder network is responsible for modelling
the likelihood. Unlike VAE, the generator network of the GAN
transforms the prior distribution of the random samples in the
latent space into data samples that an optimised classifier can-
not distinguish. The obtained data distribution is inferable, and
GAN is mainly a sampler. Recently some researchers (Carrara
et al., 2021) have coupled an autoencoder with GAN to derive
enhanced latent representations in the domain of anomaly de-
tection.

On the other hand, after revolutionising the field of natural
language processing, Transformers (Vaswani et al., 2017) have
found applications in other areas such as computer vision, in-
cluding modelling brain images with impressive results. The
defining characteristic of a transformer is that it relies on at-
tention mechanisms to capture interactions between inputs, re-
gardless of their relative position to one another. The output is
computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility function
of the query with the corresponding key. Transformers have
been used to model brain images for the purpose of anomaly
detection after assuming an arbitrary ordering to transform the
latent discrete variables zq into a 1D sequence s and training
the transformer to maximise the training data’s log-likelihood
in an autoregressive fashion (Pinaya et al., 2022). However,
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such methods are typically memory-hungry - making them dif-
ficult to use with limited computing resources. VAEs can be
less computationally expensive than transformers, making them
more suitable for using them widely. Hence, this paper focuses
is on VAE-based techniques and some of the related AE and
VAE based works which were studied and experimented with
for baseline selection, are discussed in detail.

2.1. Adversarial Autoencoder

Autoencoders (Rumelhart et al., 1985; Kramer, 1991) try to
learn an underlying function - which is an approximation to
the identity function - trying to reproduce the input as its out-
put, learning a latent space representation (LSR) of the input in
the process (Ng et al., 2011). The model’s output is compared
against the input with the help of reconstruction loss, which
is then backpropagated to train the network. Adversarial au-
toencoder (Makhzani et al., 2016) converts an autoencoder into
a generative model, which has also been used for the task of
anomaly detection (Beggel et al., 2019; Li and Chang, 2019).
The objective is two-fold - a regular reconstruction loss and
an adversarial training loss. The second loss criterion tends to
match the aggregated posterior distribution of the latent space
of the autoencoder to an arbitrary prior distribution. An out-
come of this architecture bounds the encoder module to learn
the data distribution close to the prior distribution, and the de-
coder maps the imposed prior to the data distribution. The en-
coding function of the encoder is formally represented as

q(z) =

∫
x

q(z | x)pd(x)dx (1)

where x is the input and z is its latent representation vector. p(z)
be the prior distribution to be imposed on the latent vectors,
q(z|x) is an encoding dimension, and p(x| z) is the decoding dis-
tribution. Also, pd(x) is the data distribution and p(x) is the
model distribution. The adversarial autoencoder is regularised
by matching this aggregated posterior q(z) to an arbitrary prior,
p(z). The whole training takes place in two phases - recon-
struction phase where the encoder and decoder are updated to
minimise the reconstruction error in the input. Later in the reg-
ularisation phase, the adversarial network updates the discrim-
inator to classify better actual samples (from the prior) from the
generated samples (from the encoder). Finally, the generator or
the encoder is updated to confuse the discriminator.

2.2. Scale-Space Autoencoder

Many variations of autoencoders have been proposed. One
of them is Scale-Space Autoencoder (SSAE) (Baur et al.,
2020b).This framework is used for unsupervised anomaly de-
tection based on the Laplacian pyramid, allowing efficient com-
pression and reconstruction of brain MRI images with high
fidelity and successfully suppressing anomalies. Contrary to
other frameworks, the SSAE framework models the distribu-
tion of the scale-space representation of healthy brain MRI. The
Laplacian pyramid is a multi-scale representation of the input
image; it allows efficient segmentation of anomalies at different
resolutions and then aggregates the results. SSAE architecture

is an encoder-decoder network that aims to localise anomalies
from reconstruction residuals. The frequency band of the input
data is split by compressing and reconstructing the Laplacian
pyramid of the healthy brain MRI. The input image x is repeat-
edly smoothed and downsampled to obtain a Laplacian pyramid
with K levels. Reconstruction can be recursively determined
using

x̂ =

K−1∑
k=0

u(IK−k) + HK−1−k (2)

where Ik is the low-resolution representation of the image x af-
ter K down samplings and high-frequency residuals H0, ..,HK−1
which are obtained at each level k using :

Hk = Ik − u(Ik+1);∀0 ≤ k < K (3)

The overall loss can be defined as the weighted sum of losses at
all scales:

L =

K∑
k=0

λkLk (4)

where,
Lk = l2norm(Ik, Îk) = l2(Ik, u(Îk + Ĥk) (5)

2.3. Bayesian Skip autoencoder

Bayesian Skip autoencoder (Baur et al., 2020a) is formulated
on a concept that has been used and proven advantageous for
biomedical image segmentation. This framework makes use of
skip connections that allow the models with limited capacity
to be trained and utilised for unsupervised anomaly detection.
Skip connections in autoencoders facilitate the reconstruction
of high-resolution and complex medical data with high fidelity.
A drop-out-based identity mitigation technique is employed to
prevent the model from learning an identity mapping and al-
lowing it to bypass the lower levels of the autoencoder. The
loss function for the model can be defined as:

L(x, x̂) = L1(x, x̂) − gdl(x, x̂) (6)

Here, L1 is defined as the L1 Manhattan distance between the
input and its reconstruction x and x̂ respectively, gdl(., .) is the
gradient difference loss.

2.4. Variational Autoencoder (VAE)

Variational autoencoders (VAEs) (Kingma and Welling,
2013) belong to a class of generative models that provides a
probabilistic way to represent the observations in the latent
space. VAE and its flavours are one of the first and most pop-
ular models for unsupervised anomaly detection (An and Cho,
2015; Xu et al., 2018) Unlike an autoencoder, the encoder of
the VAE describes the probability distribution of each latent
attribute. During training, the model computes a latent space
representation (LSR) of the non-anomalous input image. The
latent space in VAEs is continuous by design and allows easy
random sampling and interpolation. This is achieved by de-
signing the encoder to output two vectors: a vector of means µ
of data samples and a vector of standard deviations σ. While
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working with images, the µ and σ are calculated from the inten-
sity values of the encoded images. The encoding is generated
within these distributions. The decoder learns that not just a
single point but all the points around it are referred to as a sam-
ple of the same class, thus decoding even slight variations of
the encoding. Typically, the network is trained by optimising
the evidence lower bound (ELBO) L, which can be defined as:

log p(x) ≥ L = −DKL(q(z | x)‖p(z)) + Eq(z|x)[log p(x | z)] (7)

where, q(z| x) and p(x| z) are diagonal normal distributions that
are parameterised by neural networks fµ, fσ, and gµ, and con-
stant c such that:

q(z | x) = N
(
z; fµ,θ1(x), fσ,θ2(x)2

)
(8)

p(x | z) = N
(
x; gµ,γ(z), I ∗ c

)
(9)

2.5. Vector Quantized Variational autoencoder
Vector Quantised-Variational AutoEncoder (VQ-VAE)

(Oord et al., 2017; Marimont and Tarroni, 2020) framework
encodes the images in categorical latent space. Further, an
auto-regressive (AR) model is used to model the prior distri-
bution of latent codes. The prior probability approximated by
the AR model is then used for unsupervised anomaly detection
and gives the sample and pixel-wise anomaly scores. The
encoder of the VQ-VAE framework is based on a dictionary
mapping K discrete keys into a D-dimensional embedding
space, i.e., observed variables are mapped to the embedding
space, ze(x) ∈ RD. The posterior in VQ-VAE is defined as :

q(z = k | x) =

1, f ork = arg min j ||ze(x) − e j||2

0, otherwise
(10)

The embedding in the dictionary nearest to the encoder’s output
is given to the decoder as an input, i.e.,zq(x) ∼ q(z | x). The
decoder then reconstructs the distribution p(x | zq(x)).The VQ-
VAE Loss function is therefore defined as:

L = log(x | zq(x))+ || sg[ze(x)] − e ||22 + || sg[e] − ze(x) ||22 (11)

where sg[.] is the stop gradient operator. Further, an AR model
is employed to learn the prior distribution of VQ-VAE, and the
probability of samples is approximated. The samples with low
probability are identified as anomalies. AR models generate
multiple restorations as they are generative models and allow
sampling of one variable at a time in an iterative manner.

2.6. Gaussian Mixture Variational Autoencoder
The Gaussian mixture variational autoencoder (Dilok-

thanakul et al., 2016; Chen et al., 2020) approach (GMVAE)
combines image restoration techniques with unsupervised
learning - used in various anomaly detection approaches (Guo
et al., 2018; Fan et al., 2020). A GMVAE is first trained on
an anomaly-free dataset to learn a normative prior distribution.
A Maximum-A-Posteriori (MAP) restoration model then uses

this prior to detecting the outliers. In GMVAE, the ELBO is
formally expressed as:

Eq(z | X)[logp(X | z)] − Eq(ω | X)p(c | z, ω)
[KL[q(z | X)|p(z | ω, c)]]

−[KL[q(ω | X)|p(ω)]] − Eq(z|X)q(ω|X)

[KL[p(c | z, ω)|p(c)]]

(12)

where the first part is the reconstruction term, the second part
ensures the encoder distribution fits the prior, the third term
does not let the posterior ω diverge from the prior p(ω), and the
last term enforces the model to not collapse into a single Gaus-
sian but uses the mixture model. For the architectural choice,
seven convolutional layers for the encoder and seven transpose
layers for the decoder are used. The latent variables z and ω are
2D structures with size (32, 42 1) and nine clusters, c.

2.7. Context-encoding Variational Autoencoder

The core idea of Context-encoding Variational Autoencoder
(ceVAE) (Zimmerer et al., 2018) is to combine the reconstruc-
tion term with a density-based anomaly scoring. This allows
using the model-internal latent representation deviations and an
expressive reconstruction term on the samples and individual
pixels. The overall architecture comprises of fully convolu-
tional encoders fu, fσ and a decoder unit g, where the context
encoding part used the encoder module for a data sample. ce-
VAE can be divided into two branches: VAE branch and CE
branch.

VAE Branch:. The deviations of the latent from the CE branch
is further inspected. The encoders fu, fσ, the decoder g, and
a standard diagonal Gaussian prior p(z) are used in the VAE
module with an objective function:

LVAE = LKL( fµ(x), fσ(x)2) + LrecVAE(x, g(z)) (13)

where z ∼ N( fµ(x), fσ(x)2) with the reparameterisation trick
and LKL loss with a standard Gaussian yield a comparable
anomaly score. KL-loss is used to analyse the deviations of
posterior from the prior.

CE branch:. sample x is subjected to context encoding noise
by masking specific regions. Training occurs by reconstructing
the perturbed input x̂ using the encoder fµ and the decoder g,
formally, LrecCE(x, g( fµ(x̂))). The results show CEs are more
discriminative and semantically produce rich representations,
which positively influences the expressiveness of model varia-
tions.

ceVAE:. On combining the above modules, the aim is to cap-
ture both the effects, i.e., a better-calibrated reconstruction loss
and model-internal variations. The objective function is restruc-
tured as the following:

LceVAE = LKL( fµ(x), fσ(x)2)
+LrecVAE(x, g(z)) + LrecCE(x, g( fµ(x̂)))

(14)
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where LKL is the KL-loss, z is sampled with the reparameter-
isation method, and x̂ is perturbed by masking regions similar
to CEs. During the training process LrecCE has no constraints
for normality on the prior p(z | x). The combination of CE and
VAE has a regularising effect that prevents the posterior from
collapsing and better represents the semantics in the input data.

2.8. Hypothesis behind StRegA

Even though VAEs have their advantages, like they can can
be less computationally expensive than transformers, but have
been seen to struggle to detect anomalies in clinical data. The
reason for this could be the differences between the training and
testing sets in terms of image properties (e.g. contrast). One
possible way to improve their performance would be to ”sim-
plify” the input to the model - making it easier for the model to
learn a distribution of the anomaly-free data - which might also
help the model generalise better. Hence, this paper focuses on
developing a VAE-based technique focusing on output ”simpli-
fication” to improve the model’s performance on clinical data.

3. Methodology

3.1. Study of existing methods and baseline selection

Autoencoders and their flavours are commonly used for un-
supervised anomaly detection as discussed in 2. While select-
ing the baselines, the aforementioned methods were compared
and finally, the best performing baseline (i.e. ceVAE) was se-
lected and modified to develop the proposed approach.

3.2. StRegA : Segmentation Regularised Anomaly

The proposed unsupervised anomaly detection pipeline,
StRegA: Segmentation Regularised Anomaly - shown in Fig.1,
includes a modified compact version of the Context-encoding
Variational Autoencoder (ceVAE) (Zimmerer et al., 2018) -
Compact ceVAE (cceVAE), combined with pre and postpro-
cessing steps. Anomaly detection is performed in 2D, per-slice
basis. The input volumes are preprocessed in 3D, then slices are
supplied to the model, followed by that, postprocessing steps
are applied, and finally, the slices are stacked together to obtain
the final result in 3D. It is worth mentioning by splitting the 3D
volumes into 2D slices, the spatial context within the volumes
is lost. But this was done to make the training process feasible
in terms of GPU requirements. The code of StRegA is publicly
available on GitHub 1.

3.2.1. Preprocessing
The first preprocessing step was to segment the input image

into different tissue types and obtain the corresponding seg-
mentation mask. Segmentation means partitioning the input
images into various segments. Segmentation can simplify the
input given to the model as the model needs to deal with less
variations in the input images that can help improve the perfor-
mance of the anomaly detection system. Segmentation helps

1StRegA on GitHub: https://github.com/soumickmj/StRegA

standardise the input images with different image properties,
such as images with different MR contrasts (e.g. T1w, T2w).
This was performed by supplying the 3D brain images to the
automatic segmentation tool of FSL (Jenkinson et al. (2012))
- FAST, which segmented the brain into three different tissue
types: grey matter, white matter, cerebrospinal fluid (CSF); and
background - a total of four classes. The segmentation com-
mand of FSL FAST has a flag to select the modality of the in-
put volume (e.g. T1w, T2w). Rest of the parameters of FSL
FAST (apart from the number of classes and the type of the im-
age) were kept to their default values. The underlying principle
of FAST is formulated on a hidden Markov random field model
and an associated expectation-maximisation algorithm. The en-
tire process is automated and is capable of producing a prob-
abilistic/partial volume tissue segmentation. Apart from seg-
menting the input volume, this tool also corrects spatial inten-
sity variations (also known as bias field or RF inhomogeneities).
The segmentation mask was normalised with the intensity dis-
tribution of the dataset - normalised with zero mean and unit
variance. The volumes were divided into 2D slices in the axial
orientation, and then they were resized to 256×256 in-plane us-
ing bilinear interpolation before feeding them into the network.
During the training phase, in addition to the above-mentioned
preprocessing steps, data augmentation was also performed.

Data Augmentation. The augmentation techniques used can be
split into two groups: intensity-based and spatial augmentation.
Intensity augmentation included bias field artefacts - where the
bias field is modelled as a linear combination of polynomial
basis functions, as in Van Leemput et al. (1999) with the maxi-
mum magnitude of polynomial coefficients set to 0.5 and order
of the basis polynomial functions to 3, Gaussian noise with the
standard deviation of the noise distribution chosen randomly in
a uniform fashion between 0 and 0.25, random gamma with
gamma value being uniformly-chosen between -0.3 and +0.3,
and ghosting artefacts with the number of ghosts being uniform
between 4 and 10. On the other hand, spatial augmentation
consisted of horizontal flipping, vertical flipping, affine trans-
formations (range of degrees from -35 and +35, using nearest
neighbour interpolation), and rotation with a degree between
-15 and +15.

3.2.2. Network Model: cceVAE
This work proposes a compact modified version of the ce-

VAE model (Zimmerer et al., 2018), explained in Sec.2.7:
Compact ceVAE (ccVAE). A representational diagram of the
network has been shown in Fig. 2. This is a compact version
as it has smaller encoder and decoder than the original ceVAE
- having a symmetric encoder-decoder with 64, 128 and 256
feature maps and a latent variable size of 256. The authors
hypothesise that a more compact version of the network will
reduce any possibilities of overfitting, especially for data that is
more simplified than un-processed slices - where many learn-
able parameters might not be required. This proposed model
also uses residual connections and batch normalisation layers
- which were not present in ceVAE. The preprocessed images
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Figure 1: StRegA pipeline

are fed into this network model, and the network tries to recon-
struct the input. During training, anomaly-free (in the experi-
ments of this paper: healthy brain MRIs) images are provided,
and the network attempts to learn a Gaussian distribution of the
given anomaly-free dataset. While inference, the network at-
tempts to reconstruct the input image from the learnt Gaussian
distribution. If the network encounters images with anomalies
- they are then out-of-distribution samples. Hence, the network
should ”in-theory” fail to reconstruct the anomalies as they do
not belong to the learnt distribution. The reconstruction differ-
ence is then computed by subtracting the model’s output from
its input to generate the initial anomaly mask - which is then
postprocessed to finally detect the anomaly.

3.2.3. Postprocessing
After subtracting the reconstruction from the model’s input,

the initial anomaly mask is obtained - containing values be-
tween zero and one, where one implies anomaly while zero
means no anomaly. Then this mask is first thresholded to elim-
inate any pixel having a value less than zero by replacing all
the negative values with zero. Then to remove the intensity out-
liers, the mask was thresholded using Otsu’s method 2. The
Otsu thresholding was applied individually on each output slice
- resulting in different suitable thresholds for each slice of each
subject. Otsu is a frequently used method for performing au-
tomatic image thresholding, which divides all the pixels into
two classes - background and foreground, based on a single in-
tensity threshold. The threshold is calculated by minimising
intra-class intensity variance, or in other words, by maximising
inter-class variance. 3.

2https://en.wikipedia.org/wiki/Otsu’s_method
3http://www.labbookpages.co.uk/software/imgProc/

otsuThreshold.html

This results in a binary anomaly mask. After performing
Otsu thresholding, the small irrelevant parts of the mask are re-
moved by applying morphological opening 4 - which removes
all bright structures of an image with a surface smaller than the
area threshold. It is equivalent to applying dilation on top of
erosion on the image. This gives the final anomaly mask. It is
then resized through interpolation to whichever input size the
original image had before resizing during preprocessing. Fi-
nally, all the slice-wise 2D masks are stacked together to get
the final anomaly mask in 3D.

3.3. Datasets

Training unsupervised anomaly detection models warrant
anomaly-free datasets. As the focus of this paper is on brain
MRIs, two anomaly-free datasets were selected for training the
models: MOOD challenge dataset (Zimmerer et al., 2021) and
IXI dataset 5. It is worth mentioning that even though both
the datasets contain MRIs only from normal, healthy subjects
- there might still be some anomalies present in some of the
MRIs that the experts missed. However, in this research, fol-
lowing the authors of the datasets - these datasets were consid-
ered to be comprised of only anomaly-free healthy brain MRIs.
MOOD dataset comprises 800 T1w brain MRIs with a matrix
size of 256x256x256 - 700 of which were used for training, and
100 were held out for testing, while the IXI dataset contains
MRIs of nearly 600 subjects - all of which were used in train-
ing, acquired using 1.5T and 3T MRIs in three different hos-
pitals, with different MRI sequences: T1w, T2w, PDw, MRA,
and DTI. In this research, T1w and T2w images from the IXI

4https://en.wikipedia.org/wiki/Opening_(morphology)
5IXI Dataset: https://brain-development.org/ixi-dataset/
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Figure 2: The proposed Compact ceVAE architecture: cceVAE. Each of the convolution blocks contains a convolution layer with the mentioned configuration,
followed by a batch normalisation layer.

dataset were used separately - for training separate T1 and T2
models. Trainings were performed by combining MOOD with
one of the IXI contrast: MOOD+IXIT1 and MOOD+IXIT2.
Due to the fact that the models worked with segmented volumes
(see Sec. 3.2.1, it was possible to combine MRIs with different
contrasts in the training set as the segmentation helps to stan-
dardise them. However, the segmentation still has some minute
differences in the different contrasts, especially in terms of the
tumour delineation. Hence, the motivation behind combining
different datasets (and contrasts) was to make the model more
robust against inter-dataset variations (e.g. resolution), includ-
ing differences in contrasts in the test set than in the training
set.

For evaluating the approach with a dataset with clinical
anomalies, 80 randomly selected volumes from BraTS 2017
6 dataset was used, which contains four types of MRIs with
high and low-grade brain tumours: T1-weighted, and contrast-
enhanced T1-weighted (with contrast agent), T2-FLAIR, and
T2-weighted. This paper used contrast-enhanced T1-weighted
(T1ce) and T2-weighted MRIs. Additionally, the model was
also tested on the ”toy test set” provided in the MOOD dataset,
comprising one anomaly-free and three anomalous MRIs con-
taining artificial anomalies. It is noteworthy that the image con-
trasts, acquisition parameters, and other image properties of the
BraTS dataset are very different from the training sets. Hence,
a controlled synthetic anomalous dataset was created as a part
of this research - to evaluate the approach on a dataset that con-
tains anomalies, but the contrast and other image characteristics
are similar to the training set.

6BraTs: https://www.med.upenn.edu/sbia/brats2017/data.html

3.3.1. Generating Synthetic Anomalous Dataset
An artificial controlled test set was created by superimpos-

ing anomalies from the BraTS dataset onto the held-out test-
set containing anomaly-free brain MRIs. This was performed
to evaluate the performance of the methods when the non-
anomalous parts of the images have similar contrast and other
characteristics as the training dataset - to solely evaluate the
performance of the model when the model doesn’t encounter
any other difficulties, while it also ensures that the artificial ”tu-
mours” are realistic.

To generate the synthetic anomalous dataset, the anomalies
(i.e. tumours) from 20 volumes of the BRATS dataset were ex-
tracted by multiplying the ground truth tumour masks with the
brain images. Then the intensity values of the tumours were
normalised between 0 and 1, and the resultant outputs were
interpolated as 256x256 slices. These 20 extracted tumours
were superimposed onto 20 randomly-selected volumes from
the anomaly-free held-out test-set from the MOOD dataset,
which places the tumours on top of the anomaly-free brain
images. This creates a set of synthetic anomalous test data
which can be used in conjunction to test the performance of
the pipeline. Consider a BraTS image sample B, and its corre-
sponding ground-truth segmentation mask S from the dataset
pointing out the tumour, then the superimposed MOOD im-
age (from the held-out test-set) sample A of corresponding slice
from h slices can be calculated as :

A′i = Ai + Mi ;∀i ∈ h ,where

M j = B j . S j ;∀ j ∈ h
(15)
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Figure 3: Synthetic MOOD image generated using anomaly from BRATS data
set, including one anomaly-free example in the last row

4. Experiments and Evaluations

The methods were compared based on their accuracy in seg-
menting the anomalies, calculated with Sørensen–Dice coef-
ficient. Initial experiments were performed using a vanilla
VAE (Chatterjee et al., 2021), following that, different state-of-
the-art models (the ones mentioned in Sec. 2) were compared.
Finally, the three best-performing models in this current exper-
imental setup were chosen as baselines, and final comparisons
were performed against the proposed method.

4.1. Initial Selection of Baseline Models
The initial approach of using the vanilla VAE (Chatterjee

et al., 2021) was able to detect simple contrast anomalies -
anomalies having very different contrast than the rest (e.g.
MOOD toy dataset), but in most cases failed to generate an ac-
ceptable reconstruction. SkipAE (Baur et al., 2020a) resulted
in better detection of anomalies. While the results on the syn-
thetic data and the MOOD toy test data were better, the more
complicated anomalies were harder to detect in the reconstruc-
tions. Other models, which are explained in Sec. 2 were also
experimented with, and it was found that the ceVAE (Zimmerer
et al., 2018) (Sec. 2.7) performed the best when it comes to
segmenting pathological anomalies. Hence, this was chosen as
the primary baseline of this paper. The second and third best
performing models, GMVAE (Chen et al., 2020) (Sec. 2.6) and
SkipAE (Baur et al., 2020a) (Sec. 2.3) respectively, were also
chosen as additional baselines.

4.2. Method Development
This research focused on simplifying the input to the back-

bone model - by introducing different preprocessing techniques.
It was observed that using segmentation as a preprocessing
step assisted the models most and improved the model’s per-
formance which was tested with all the baseline models. Fig. 4
shows a few examples of T1w and T2w slices with tumours
applying FSL FAST - to visualise how this preprocessing seg-
mentation performs while working with the BraTS dataset that
contains tumours. It was observed that the tumour was usually
made part of the CSF class, however, lacks proper delineation.
Apart from the tumour, the actual CSF is also part of this class
- making it impossible to use these as final tumour segmen-
tations. When this particular class was compared against the
corresponding tumour masks, the resultant Dice scores were
0.196±0.116 and 0.202±0.137 for T1w and T2w volumes from
the BraTS dataset. Hence, it is required to further proceed with
the anomaly detection pipeline to finally localise and segment
the tumour. Moreover, as stated earlier, the segmentation step
helps to make the MRIs of different contrasts similar - that can
also be observed in Fig. 4a and 4b.

Different other preprocessing techniques were also experi-
mented with, and the final set of techniques was made part of
the StRegA pipeline - explained in Sec. 3.2.1. When experi-
menting with the number of layers in the encoder and decoder
of the ceVAE model with these preprocessing techniques, it was
observed that the results on the test datasets improved signifi-
cantly when a more compact model was used. This could be
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(a) T1w

(b) T2w

Figure 4: Examples of segmented T1w and T2w volumes using FSL FAST

due to the fact that a more compact model reduces the risk of
over-fitting on the relatively simpler segmented data. Thus after
several experiments, having symmetric 64, 128 and 256 feature
maps and a latent variable size of 256 yielded the best generali-
sation in reconstruction quality. Implementing skip connections
as was used in SkipAE provided no meaningful improvements,
but residual connections with batch normalisation provided bet-
ter results and were thus included in the model - results in the
final cceVAE model (Sec. 3.2.2).For the experiments here, the
proposed model was trained with the Adam optimiser (Kingma
and Ba, 2014) using a learning rate of 1e-4 and a batch size of
64 for 70 epochs.

4.2.1. Comparative Results
The proposed StRegA pipeline was compared against the

three baseline models and an additional baseline - by combin-
ing the StRegA preprocessing steps with the ceVAE model.
Fig. 8 shows a qualitative comparison of the different meth-
ods. It can be observed that the proposed StRegA pipeline pro-
vides a more localised detection of the anomaly compared to
the other methods. Tables 1 and 2 portray a quantitative com-
parison of the T1 and T2 models. The proposed method out-
performed all the other models with statistical significance in
both T1 and T2 cases while achieving 49% and 82% improve-
ments in Dice scores over the baseline ceVAE for the task of
segmenting tumours from T1w and T2w brain MRIs from the
BraTS dataset, resulting in average Dice scores of 0.531±0.112
and 0.642±0.101, respectively. A separate model was also
trained only on the IXI T2w dataset and was then tested us-
ing the BraTS T2w dataset, resulting in an average Dice score
of 0.631±0.117 which is 1.7% less than the model trained on
a combination of MOOD (T1) and IXI T2. This can bee at-
tributed to the fact that this specific training had a smaller train-
ing set than the combined one. Another additional evaluation
was performed by applying the MOOD-IXIT2 traine StRegA
on the BraTS T1 images, and it resulted in an average Dice
score of 0.533±0.179 (similar to BraTS T1 results on the model
trained on MOOD-IXTT1, only 0.38% better). This not only
shows that having more data is better but also the limits of the
model on BraTS T1.

It can be observed that all the models perform better in the
case of T2 than on T1ce. This can also be either because the
tumours are easier to detect in T2 images than on T1ce images
and could also be because of the segmentation performance of
FSL in case of anomalous data, as FSL is typically used for
anomaly-free images. Moreover, Fig. 5 compares the range of
resulting Dice scores for the task of anomaly detection in BraTS
T2 images for ceVAE, ceVAE with StRegA preprocessing, and
StRegA, with the help of violin plots. The white dot inside each
of the violins represents the median Dice score, the thick black
bar at the centre exhibits the interquartile range, and the thin
dark line depicts the rest of the distribution excluding outliers.
It can be seen that the segmentation assists the ceVAE model
in achieving better scores, while the complete StRegA pipeline
manages to improve the scores even further. StRegA results in a
higher overall median Dice score than both the other methods,
while its worst outlier is still better than the worst outliers of
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Figure 5: Violin plot comparing predictions on BraTS T2 data

the other methods. Finally, Figures 10 and 11 show the output
of the different stages of the pipeline for BraTS T1 and T2,
respectively. Similarly, Fig. 9 shows the stages for synthetic
anomalies.

4.2.2. StRegA as an Assistive Technology
The earlier comparisons have demonstrated the proposed

pipeline’s superiority over the baseline models. However, sev-
eral cases of under-segmentation were observed. Detecting if
there is any anomaly or providing the location of the anomaly
might also be sufficient to improve the clinical workflow by as-
sisting the radiologists in filtering anomalous cases and getting
an approximate location of the same. Figures. 6 and 7 show the
potential of using StRegA as an assistive technology to localise
the anomalies in the MRIs for BraTS T1ce and T2, respec-
tively. This was achieved by creating bounding boxes around
the prediction of StRegA, and they were compared against the
bounding boxes generated from the ground-truth labels. It can
be observed that the proposed method was able to properly lo-
cate the anomalies. As seen earlier, the T2 results were better
than the T1ce ones. For T1ce, under-estimations were observed
most of the time. However, for T2, the results are better, and
most of the time, StRegA managed to mark them appropriately.
Despite the under-estimations, the results show the potential of
using this method as assistive technology - as a decision support
system.

Figure 6: Anomaly localisation : BraTS T1ce

Figure 7: Anomaly localisation : BraTS T2

5. Discussion

The results demonstrate that the proposed StRegA pipeline
achieved significantly better scores than the baseline models
in detecting brain tumours and artificial anomalies while being
trained on anomaly-free brain MRIs. The proposed pipeline
aims at simplifying the input to the model by segmenting it.
This same step also helps the model to generalise better in terms
of the changes in contrast - which can be seen from the re-
sults of the models on the BraTS dataset. MOOD toy and the
synthetic anomalous datasets had the same image contrast and
resolution as the training dataset - on which the baseline mod-
els achieved comparable results, while BraTS had considerably
different contrast - on which the baseline models struggled the
most. Due to the fact that the input is simpler, a less-complex
model has been seen to be sufficient (i.e. cceVAE instead of ce-
VAE). This helps in reducing the memory requirement - making
it possible to work with more commonly-available hardware,
and also reduces the chances of overfitting as the model has
less number of trainable parameters.

Even though StRegA has performed significantly better than
the baseline models, it is to be noted that the predictions are not
perfect - which is commonly seen with UAD techniques, and
there is a strong dependency on the preprocessing steps, as can
be seen from the results of ceVAE and ceVAE with StrRegA
preprocessing. It is also worth mentioning as FSL segmenta-
tion is typically used on anomaly-free images, using them on
anomalous data might have induced some bias in the training-
testing of the models which is not possible to quantify. More-
over, it was observed that the compact version of ceVAE pro-
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posed here performed better than the original ceVAE model,
which might be attributed to the fact that the preprocessed im-
ages require a much simpler representation than images without
preprocessing - consequently requiring less number of trainable
parameters to learn the distribution of healthy-brain. Another
interesting observation can that can be made from the results
is that the models performed 21% better on T2w images than
T1ce from the BraTS dataset, even while being trained to focus
on T1w images (T1ce was tested on models trained on purely
T1w images, T2s were tested on models trained on a combina-
tion of T1 and T2). This can be because the tumours are easier
to distinguish in T2 than in T1ce due to the significant intensity
difference between tumour and non-tumour tissues. It can also
be due to some bias induced by the FSL’s segmentation.

Undersegmentations can be observed in all the examples.
This also resulted in a complete disappearance of a small
anomaly as can be seen in Fig. 10 (row 2). Hence, one im-
mediate point of concern is the size of the anomaly in the input
image. As morphological opening would eliminate the predic-
tion if it is too small, the StRegA postprocessing steps might
not be ideal for detecting small anomalies, e.g. multiple scle-
rosis. One way to deal with the small anomalies would be to
reduce the area threshold. For synthetically generated anoma-
lies, the pipeline performed almost perfectly, as can be seen in
Fig. 9. Nevertheless, these models were trained in an unsuper-
vised fashion – without any labelled training data. Hence, the
requirement of large manually annotated training data can be
mitigated. The anomalies detected by such a method can also
be further used as weak labels to train weakly-supervised or
semi-supervised models - which might improve the final seg-
mentation quality without requiring much manual intervention.

StRegA, similar to the baselines experimented here, works in
2D and relay upon the model’s reconstruction error. This way
of detecting anomalies is suitable for local structural anomalies,
such as tumours, but might not be suitable for detecting changes
in brain atrophy, such as the change in brain atrophy due to the
Alzheimer’s disease. Going for a 3D method and extending the
way of detecting the anomalies might help the method detect
such anomalies. It is worth mentioning that the preprocessing
techniques like brain extraction and segmentation used in this
approach aiming at simplifying the input provided to the model
are domain-specific for brain MRIs, while augmentations like
random bias field artefacts might only be realistic for MRIs.
However, the principal idea proposed here - simplifying the in-
put before supplying to a VAE-based model for anomaly detec-
tion, as well as the cceVAE model - is applicable to other do-
mains and applications, such as liver tumour detection in CT or
MRI Gul et al. (2022), lesion detection in chest x-rays (Qi et al.,
2022), even for non-medical domains like fault-detection in ad-
ditive manufacturing (Iuso et al., 2022). For the same, different
domain-specific preprocessing steps (e.g. segmenting abdomi-
nal MRI input into different organ classes - similar to the FSL
segmentation performed here) to simplify the input have to be
ascertained and evaluated.

As a final note, StRegA as an assistive technology might
help radiologists notice anomalies that might otherwise be over-
looked. Diagnostics by radiologists remain undiscovered in up

to 5-10 % of cases (Bruno et al., 2015). The cause of these er-
rors is due to unintentional bias, where radiologists focus more
on the centre part of the MRI while neglecting peripheral find-
ings. The ever-increasing number of radiological images for as-
sessment increases the workload in radiology which in turn can
result in more missed brain pathologies. The presented method
might assist in localising anomalies (as seen in Fig. 7 and 7)
and improve the overall diagnostic accuracy.

6. Conclusions and Future Work

This paper address the challenge of anomaly detection in an
unsupervised manner by presenting an unsupervised anomaly
detection system named StRegA: Segmentation Regularised
Anomaly, which combines a modified and compact version of
the ceVAE model (cceVAE) with pre- and postprocessing steps.
The proposed method was trained using anomaly-free brain
MRIs from two benchmark datasets and was then evaluated for
the task of detection of brain tumours. The proposed method
was compared against four baselines and outperformed all of
them with statistical significance. StRegA achieved Dice scores
of 0.531±0.112 and 0.642±0.101 while segmenting tumours, as
well as 0.723±0.134 and 0.859±0.112 while segmenting artifi-
cial anomalies, from T1w and T2w MRIs, respectively - result-
ing in 49%, 83%, 5%, and 21% improvements, respectively in
the four scenarios, over the best performing baseline model ce-
VAE, while achieving 2%, 23%, 2%, and 10% improvements
over ceVAE with StRegA preprocessing. Undersegmentations
were observed in most cases, however, the method could lo-
calise the anomalies properly. This work has shown the poten-
tial of using this method as part of a decision support system.

In the future, this method will be evaluated for the tasks
of detecting other types of anomalies than brain tumours - to
evaluate its generalisability to other pathologies. The current
method faces difficulties while detecting small anomalies - this
might be addressed by modifying the postprocessing steps. Fur-
thermore, techniques other than segmentation to simplify the
input to the model will also be evaluated in the near future.
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Table 1: Comparative results of StRegA with other models on T1 data.

Model Dice Score (µ ± σ)
MOOD Toy Data Synthetic Anomalous Data BraTS T1w

SkipAE 0.443 ± 0.136 0.498 ± 0.164 0.209 ± 0.113
GMVAE 0.657 ± 0.121 0.711 ± 0.105 0.337 ± 0.124
ceVAE 0.633 ± 0.145 0.690 ± 0.164 0.356 ± 0.132

ceVAE (with StRegA preprocessing) 0.724 ± 0.132 0.710 ± 0.111 0.520 ± 0.108
StRegA 0.737 ± 0.098 0.723 ± 0.134 0.531 ± 0.112

Table 2: Comparative results of StRegA with other models on T2w data.

Model Dice Score (µ ± σ)
MOOD Toy Data Synthetic Anomalous Data BraTS T2

SkipAE 0.517 ± 0.145 0.498 ± 0.173 0.221 ± 0.101
GMVAE 0.699 ± 0.121 0.701 ± 0.121 0.340 ± 0.167
ceVAE 0.724 ± 0.145 0.712 ± 0.132 0.350 ± 0.071

ceVAE (with StRegA preprocessing) 0.797 ± 0.099 0.783 ± 0.111 0.522 ± 0.135
StRegA 0.856 ± 0.098 0.859 ± 0.112 0.642 ± 0.101

Figure 8: Comparative results from different methods. Top row: artificially generated anomalous data. Bottom row: BraTS T2w image. (a) A slice from the input
volume, (b) ceVAE, (c) SkipVAE, (d) GMVAE, (e) StRegA and (f) ground truth

Figure 9: StRegA results on synthetically generated data
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Figure 10: StRegA results on BraTS dataset (T1) images (a) Input Image (b) Segmented Image (c) Reconstruction (d) Manual and Otsu thresholding (e) Morpho-
logical Opening -¿ Final prediction (f) Ground Truth
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Figure 11: StRegA results on BraTS dataset (T2) images (a) Input Image (b) Segmented Image (c) Reconstruction (d) Manual and Otsu thresholding (e) Morpho-
logical Opening Final prediction (f) Ground Truth
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T., Reinke, A., Maier-Hein, L., Maier-Hein, K., 2021. Medical out-of-
distribution analysis challenge 2021. URL: https://doi.org/10.5281/
zenodo.4573948, doi:10.5281/zenodo.4573948.

16

https://doi.org/10.5281/zenodo.4573948
https://doi.org/10.5281/zenodo.4573948
http://dx.doi.org/10.5281/zenodo.4573948

	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Adversarial Autoencoder
	2.2 Scale-Space Autoencoder
	2.3 Bayesian Skip autoencoder
	2.4 Variational Autoencoder (VAE)
	2.5 Vector Quantized Variational autoencoder
	2.6 Gaussian Mixture Variational Autoencoder
	2.7 Context-encoding Variational Autoencoder
	2.8 Hypothesis behind StRegA

	3 Methodology
	3.1 Study of existing methods and baseline selection
	3.2 StRegA : Segmentation Regularised Anomaly 
	3.2.1 Preprocessing
	3.2.2 Network Model: cceVAE
	3.2.3 Postprocessing

	3.3 Datasets
	3.3.1 Generating Synthetic Anomalous Dataset


	4 Experiments and Evaluations
	4.1 Initial Selection of Baseline Models
	4.2 Method Development
	4.2.1 Comparative Results
	4.2.2 StRegA as an Assistive Technology


	5 Discussion
	6 Conclusions and Future Work

