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• A framework combining the advanced machine learning model with the
SHapley Additive exPlanations (SHAP) was developed to interpret the
association between a large number of factors and all-cause mortality
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• The optimal feature set for the prediction of mortality in liver trans-
plantation was identified by a BPSO-based wrapper model.

• New discoveries have been made in terms of the variation of the effect
of features in different age groups and follow-up periods.

• It fills the deficiency in machine learning studies for predicting the risk
of death after liver transplantation, especially the mortality risk in the
long term.
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Abstract

Background: Accurate prediction of the mortality of post-liver transplan-
tation is an important but challenging task. It relates to optimizing organ al-
location and estimating the risk of possible dysfunction. Existing risk scoring
models, such as the Balance of Risk (BAR) score and the Survival Outcomes
Following Liver Transplantation (SOFT) score, do not predict the mortal-
ity of post-liver transplantation with sufficient accuracy. In this study, we
evaluate the performance of machine learning models and establish an ex-
plainable machine learning model for predicting mortality in liver transplant
recipients.
Method: The optimal feature set for the prediction of the mortality was
selected by a wrapper method based on binary particle swarm optimiza-
tion (BPSO). With the selected optimal feature set, seven machine learning
models were applied to predict mortality over different time windows. The
best-performing model was used to predict mortality through a comprehen-
sive comparison and evaluation. An interpretable approach based on machine
learning and SHapley Additive exPlanations (SHAP) is used to explicitly ex-
plain the model’s decision and make new discoveries.
Results: With regard to predictive power, our results demonstrate that the
feature set selected by BPSO outperformed both the feature set in the exist-
ing risk score model (BAR score, SOFT score) and the feature set determined
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by principal component analysis (PCA). The best performing machine learn-
ing model, extreme gradient boosting (XGBoost), was found to improve the
Area Under a Curve (AUC) values for mortality prediction by 6.7%, 11.6%,
and 17.4% at 3 months, 3 years, and 10 years, respectively, compared to
SOFT score. The main predictors of mortality and their impact were dis-
cussed for different age groups and different follow-up periods.
Conclusions: Our analysis demonstrates that XGBoost can be an ideal
method to assess the mortality risk in liver transplantation. In combination
with the SHAP approach, the proposed framework provides a more intuitive
and comprehensive interpretation of the predictive model, thereby allowing
the clinician to better understand the decision-making process of the model
and the impact of factors associated with mortality risk in liver transplanta-
tion.
Keywords: Liver transplant, Machine learning, Mortality prediction,
Feature selection, Model interpretability

1. Introduction

Liver transplantation is a life-saving therapy for patients suffering from
end-stage liver disease. It is estimated that in 2017, about 8,000 liver trans-
plants were performed in the U.S. Meanwhile, approximately 11,500 people
were registered on the liver transplant waiting list [1]. A large number of
patients die while waiting for liver transplants since the demand for donated
livers far exceeds the supply. Despite this reality, the number of transplants
does not significantly increase over time. A lack of available organ donors
and inefficient allocation of organs are two of the most pressing challenges.
A more accurate prediction of mortality would strengthen confidence in per-
formance after liver transplantation and facilitate the efficient allocation of
donated livers. Besides, practitioners would be able to better assessment of
the risk of early and late graft dysfunction.

The outcome of liver transplantation is influenced by a complex interac-
tion between donor, recipient, and process factors. Several risk score models,
devised to predict the post-transplant mortality risk have emerged. The three
notable models are End-Stage Liver Disease (MELD) score [2], the Balance
of Risk (BAR) score [3], and the Survival Outcomes Following Liver Trans-
plantation (SOFT) score [4]. MELD score is widely used to prioritize organ
allocation in practice, but it fails to predict post-transplant mortality risk
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well [5]. Numerous studies show MELD’s poor prediction performance re-
quires the development of a more accurate prediction model [6, 7]. A study
by Rana et al. [4] found that the SOFT score offered a more accurate predic-
tion of 3-month post-transplant survival for liver transplant recipients. The
BAR score was later proposed to fulfill the short-term prediction for post-
transplant survival with fewer features [8]. In contrast with the MELD score,
which only takes into account a few factors of the recipient, the SOFT score
and the BAR score consider both factors of the recipient as well as the donor.

Several studies have used these two risk score models to predict mortal-
ity risk after liver transplantation and have achieved better results than the
MELD score [3, 9, 10]. A study by de Campos Junior et al. [11] used the
dataset from a Brazilian transplant center, the area under the curve (AUC)
value for the BAR score is 0.65 for 3-month mortality prediction, which is
clearly unsatisfactory. A study by de Boer et al. [12] used the Scientific Reg-
istry of Transplant Recipients (SRTR) database to predict the mortality of
liver transplant recipients and the AUC for the SOFT score and the BAR
score for 1-year mortality prediction were 0.63 and 0.61, respectively, and
0.59 and 0.56 for mortality prediction at 5 years. These findings suggest
that the predictive performance of the SOFT score and the BAR score is not
sufficiently satisfactory, and therefore, there remains a need for a method
that can provide a more accurate prediction of the mortality risk of liver
transplantation, particularly for the long-term mortality risk. The SOFT
score and the BAR score only consider a few clinical features. Factors that
may have a relevant impact on the results, such as lifestyle, medical history,
ethnicity, and socioeconomic factors, are not considered. It is therefore im-
portant to develop a more comprehensive mortality prediction model that
takes into account a wider range of factors and to examine whether the in-
clusion of these factors improves the performance of mortality prediction in
liver transplantation.

There has been an increase in the use of machine learning algorithms
for the prediction of liver transplant mortality risk in recent years [13–16].
Clinical risk score models, such as the SOFT score and the BAR score, are
primarily based on linear regression. As a result, they are limited in model-
ing nonlinear interactions between the predictors. Complex machine learning
models, such as neural networks can perform more sophisticated modeling
on data, usually resulting in better prediction performance. However, the
use of these complex models also poses some challenges concerning the inter-
pretability of the models. An interpretable machine learning model is critical
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to the medical domain because it can help physicians better understand the
decision-making process and the impact of factors.

To solve these limitations, this study identified the optimal feature set
for liver transplant mortality prediction from the United Network for Organ
Sharing (UNOS) database by using a wrapper method that integrated logis-
tic regression with binary particle swarm optimization (BPSO) algorithm. A
combination of the SHapley Additive exPlanations (SHAP) framework and
advanced machine learning models was used to interpret the model’s decision-
making process not only with regard to the importance of attributes but also
concerning the individual predictions. The model was trained using different
follow-up periods (3-month, 1-year, 3-year, 5-year, and 10-year mortality)
and age groups (under 30 years, 30-49, 50-54, 55-65, and over 65). New find-
ings have been derived by comparing the model applied to different recipient
groups to identify the variation in the impact of attributes. To our knowl-
edge, this is the first study that uses interpretable complex machine learning
models for a comprehensive study of the association between a large number
of attributes and all-cause mortality in liver transplantation.

In summary, the contributions of this paper include:

• To address the fact that current research has focused on short-term
prediction, we examined the performance of different machine learn-
ing models in predicting long-term and short-term mortality risks, for
which we established five distinct time frames.

• The useful features for the prediction of mortality risk were identified
using the BPSO approach.

• The impact of the important features and individual prediction were
explicitly explained by a framework combining the advanced machine
learning model with the SHAP approach.

• New findings regarding the impact of features in different follow-up
periods and age groups were presented to assist clinicians in better
understanding the factors associated with mortality risk in liver trans-
plantation.

The rest of the paper is organized as follows. Section 2 presents the
comparative analysis of existing literature and our work. Section 3 provides
details about the dataset preparation, the proposed framework for feature
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selection, the development of risk score models, and machine learning algo-
rithms. Section 4 presents the results of the experiments in detail. Section 5
discusses the results, limitations, and future directions. Finally, the conclu-
sion is presented in Section 6.

2. Comparative Analysis

Machine learning has proven to be a powerful tool in predicting patient
mortality and assisting with medical decision-making [17–21]. There have
been recent attempts to apply machine learning to electronic health records
(EHR) to predict mortality for liver transplantation. Liu et al. [22] used 538
patients’ blood test data before surgery to construct the model to predict the
patients’ survival within 30 days. They used different day ranges of blood
for prediction and found that the highest AUC values were obtained when
using blood data from patients on days 1-9 (AUC 0.7869). The random
forest model was used to select significant features from the dataset and
then these features were used to construct predictive models. Experimental
results demonstrated that random forest achieves the best results compared
to other machine learning algorithms. The study by Lau et al. [23] used two
machine learning models, random forest and neural network, to predict graft
failure within 30 days after liver transplantation. The study showed that the
neural networks had the best prediction performance using the top 15 features
selected by the random forest model (AUC, 0.835). Ershoff et al. [13] used a
Deep neural network (DNN) to predict the 90-day post-transplant mortality.
Though DNN achieves the highest AUC score (0.708), the improvement is
limited in comparison with the SOFT score and the sensitivity value is even
lower than the SOFT score.

Table 1 summarizes the main characteristics of the related literature. The
existing research has focused primarily on the prediction of short-term mor-
tality for post-liver transplantation. The prediction of long-term mortality
risk is still not adequately investigated. The UNOS dataset was used in
the studies of Ershoff et al. [13], Raji and Chandra [15] and Guijo-Rubio
et al. [24]. Based on our study, the highest AUC values for the prediction
of 3-month mortality and 1-year mortality are 0.717 and 0.681, respectively.
Thus, in terms of prediction results, our prediction for 3-month mortality is
higher than those of the Ershoff et al. [13] and Guijo-Rubio et al. [24], and for
1-year mortality is higher than those of the Guijo-Rubio et al. [24]. Raji and
Chandra [15] obtained good prediction outcomes with an AUC of 0.9975, but
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Table 1: comparative analysis of related work on liver transplant survival prediction
using machine learning method

Related Work Dataset The best
performing model

The time frame
of prediction

Number of
features used

Number of
Patient Main result

Liu et al. [22] Chang Gung Memo-
rial Hospital

Random Forest 30-day 13 538 AUC: 0.787; Sensitivity: 0.955;
Sensitivity: 0.653

Lau et al. [23] Austin Hospital Mel-
bourne, Australia

Neural network 30-day 15 180 AUC: 0.835

Raji and Chandra [15] UNOS Multilayer Perceptron 3-month 27 383 AUC: 0.9975; Accuracy: 0.9974
Ershoff et al. [13] UNOS Neural network 3-month 93 57544 AUC: 0.708; F1-score: 0.212;

Sensitivity: 0.348
Guijo-Rubio et al. [24] UNOS Logistic regression 3 months, 1-year, 2-

year, 5-year
28 11570-34718 AUC: 0.633 (3 months), 0.631 (1-

year), 0.629 (2-year), 0.654 (5-
year)

Ayllón et al. [14] King’s College Hospi-
tal, UK

Neural network 3-month, 1 year 55 858 AUC: 0.94 (3-month), 0.82 (1-
year)

Cruz-Ramirez et al. [25] Spanish liver trans-
plantation units

Neural network 3-month 64 1003 AUC: 0.566; Kappa: 0.0647;
RMSE: 0.3207

Byrd et al. [26] STAR Gradient boosting Same-day, 3-month 50 > 100K AUC: 0.935 (Same-day) 0.834 (3-
month)

only 300 samples were included in his study, whereas Ershoff et al. [13] and
Guijo-Rubio et al. [24] have used much larger data samples. Additionally,
AUC has been used as an evaluation metric across all studies. The obtained
AUC value varied considerably across different datasets, which may be due
to the different features or the differences in granularity of each dataset.

Many studies applied machine learning algorithms to improve the predic-
tion performance for mortality prediction, however, they have not explored
which factors in the model increase or reduce mortality risk [13–15, 25]. The
lack of intuitive interpretation of machine learning models is one of the major
barriers to the application of machine learning methods in liver transplan-
tation decision-making [27, 28]. In our study, the association between a
large number of attributes in liver transplantation and all-cause mortality
is studied to offer clinicians a more intuitive understanding of the model’s
decision-making in the prediction of liver transplant mortality.

3. Methods

3.1. Dataset preparation
For this study, the data was sourced from the UNOS database. UNOS

database collects all the data related to patient waiting lists, organ donation
and matching, and transplantation under the administration of OPTN (The
Organ Procurement and Transplantation Network). It is considered to be
one of the most comprehensive and well-known data sources for organ trans-
plantation. The UNOS database contains more than 290,000 liver transplant
patient records in the US from October 1, 1987, to December 31, 2018.
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In order to predict the mortality of post-liver transplantation across dif-
ferent time windows, we used samples from January 1, 2003, to December
31, 2012, except for the 10-year mortality prediction to ensure that we have
adequate time for the acquisition of the follow-up outcomes. For the 10-year
mortality risk prediction, the sample from January 1, 2003, to December 31,
2007, was used for prediction since more time to obtain follow-up informa-
tion for each recipient is necessary. The characteristics of the samples that
we used for 1-year mortality prediction are shown in Table 2.

Table 2: Characteristics of the study cohort for 1-year mortality (n=47401)

Variable Survived recipients (n=41455) Died recipients (n=5946) Chi-square P-value

Sex 11.64 < 0.001
Male 28106 (67.80%) 3899 (65.57%)
Female 13349 (32.20%) 2047 (34.43%)

Age 53.56± 9.99 54.81± 10.08
Ethnicity 39.44 < 0.001

White 30120 (72.66%) 4224 (71.04%)
Hispanic 5263 (12.70%) 742 (12.48%)
Black 3675 (8.87%) 683 (11.49%)
Asian 1918 (4.63%) 233 (3.92%)
Other 479 (1.16%) 64 (1.08%)

BMI (kg/m2) 28.26± 5.62 28.20± 5.97
Serum albumin (g/dL) 2.97± 0.72 2.90± 0.75
Serum creatinine (mg/dl) 1.38± 1.05 1.68± 1.23
Recipient medical condition 198.47 < 0.001

Not hospitalized 29929 (72.20%) 3243 (54.54%)
Hospitalized not in ICU 6987 (16.85%) 1467 (24.67%)
ICU 4539 (10.95%) 1236 (20.79%)

Cold ischemia time (hours) 7.02± 3.24 7.37± 3.35
Hepatitis C positive 17018 (41.47%) 2609 (44.64%) 25.62 < 0.001
Type 2 diabetes 6121 (14.77%) 953 (16.03%) 17.01 < 0.001
Previous malignancy 6152 (14.84%) 896 (15.07%) 1.70 0.19
Portal vein thrombosis 2974 (7.17%) 609 (10.24%) 14.37 < 0.001
Donor age 41.03± 17.05 43.59± 17.19
Donor ethnicity 0.15 0.700

White 28097 (67.78%) 3910 (65.76%)
Hispanic 5114 (12.34%) 826 (13.89%)
Black 6785 (16.37%) 959 (16.13%)
Asian 920 (2.22%) 168 (2.83%)
Other 539 (1.30%) 83 (1.40%)

Donor sex 4.15 0.04
Male 24792 (59.80%) 3473 (58.40%)
Female 16663 (40.20%) 2473 (41.60%)

a The numerical variable is denoted by mean ± standard deviation and the categorical variable is denoted by number (%).
b P value is determined by Chi square test for categorical variable.

We took a series of steps to clean and process the raw dataset so that the
predictive model can have better performance (Fig. 1). For processing our
study sample, these steps included the exclusion of samples with recipients
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under the age of 18, living donor transplants, multi-organ transplants, and re-
cipients that were subsequently retransplanted. In addition, we also removed
the samples that were lost to follow-up within the corresponding prediction
window. As the number of recipients lost to follow-up varies across time win-
dows, the number of study samples used for each time window also varies.
The processing flow chart of the study samples is shown in Appendix A.
For the processing of features, undesirable features were removed from the
dataset, including identifier codes, dates, etc. Additionally, features collected
after liver transplantation, as well as features that were missing in more than
90% of the observations, were also removed from the feature set.

Figure 1: The overall flow for mortality prediction for liver transplant

As a binary event, the death of the recipient within each prediction win-
dow was extracted. Take the calculation of labels for 1-year mortality as an
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example. In the calculation of labels for 1-year mortality, the label is set to
1 if the patient dies within 365 days, and 0 if the patient lives beyond 365
days. Labels were calculated by this method for each prediction window. The
dataset was then further processed by imputation, encoding, and min-max
normalization. The synthesizing minority oversampling technology combined
with edited nearest neighbors (SMOTE+ENN) was applied to deal with the
imbalance between positive and negative categories. This sampling method
was developed by Batista et al. [29]. It combines the capability of the syn-
thesizing minority oversampling technology (SMOTE) to generate synthetic
examples for minority categories with the capability of Wilson’s Edited Near-
est Neighbor Rule (ENN) to remove from both categories some observations
that were identified as having different categories between the observed cat-
egory and its K-nearest-neighbor majority category[30]. Numerical features
with missing values were imputed by the mean. Next, the numerical features
were normalized as large values might obscure the impact of other features
with relatively smaller values. Concerning categorical features with more
than 30 levels, we retained the levels that accounted for more than 95% of
all the values for each feature and binned the rest into an ’other’ category.
These categorical features were then converted into dummy variables. After
pre-processing, our data file contained 217 features.

3.2. Feature selection
In this study, a wrapper method was used to select the optimal feature

set for predicting mortality, as it has better coverage of the search space and
can detect interactions between features. The process of feature selection by
wrapper method is shown in Fig. 2. In wrapper methods, a subset of features
is evaluated using a machine learning classifier. The approach applies a search
strategy to examine all potential subsets of features and evaluates them in
accordance with the performance of the machine learning classifier.

3.2.1. Particle swarm optimization
A wrapper method based on BPSO was developed for feature selection

for the prediction of mortality risk after liver transplantation. The particle
swarm optimization (PSO) is an intelligent algorithm with biological inspira-
tions in swarming behavior aimed at solving the optimization problem [31–
33]. In our study, PSO was used to minimize both the classification error
and the number of selected features, which contributes to the best model
performance.
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Figure 2: The process of wrapper feature selection

In the PSO technique, the population of particles is initially distributed
randomly in the search space. Considering a swarm with K particles, each
having its own velocity and position. The position of each particle is denoted
by a vector xi = (xi1, xi2, . . . , xiD), where D is the dimension of the search
space. As each particle is searching for the best value in the search space,
its velocity is represented as vi = (vi1, vi2, . . . , viD). The best value so far
for each particle (local best - pbest) and the best value so far for the whole
group (global best - gbest) are used to update the position and velocity of each
particle in the next step, so that the particle continues to search in the search
space until the stopping condition is satisfied. The velocity and position of
each particle are updated according to Eq. (1) and Eq. (2) [34].

vij(t+ 1) =w ∗ vij(t) + c1 ∗ r1 ∗
(
pbestij − xij(t)

)
+ c2 ∗ r2 ∗

(
gbestj − xij(t)

)
(1)

xij(t+ 1) = xij(t) + vij(t+ 1) (2)

where i = 1, 2, · · · , K and j = 1, 2, · · · , D. t represents the iteration number.
Variable w represents the inertia weight, which determines how previous
velocities affect current velocity. vij is the velocity of ith particle in the swarm
at the jth position index of the particle, and is subject to a predetermined
minimum velocity Vmin and maximum velocity Vmax. r1 and r2 are two
random parameters in the range of [0, 1]. The variables c1 and c2 are the
positive constants. pbestij is the local optimum of the particle and gbestj is the
global optimum of the whole particle group in jth dimensions. The stopping
criterion can be a pre-defined fitness value or reaching the maximum number
of iterations [35].
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3.2.2. Feature selection based on BPSO
PSO methods were originally designed to solve optimization problems in

search spaces with continuous values. However, feature selection is essentially
an optimization problem in a discrete search space. The BPSO algorithm,
resulting from some improvements to PSO, can solve optimization problems
in discrete domain [36, 37].

In BPSO, two terms (1 and 0) are used to represent the position of the
particles. Assuming that we have a particle with D dimensions, the position
of the particle can be expressed as: x = [x1, x2, x3, . . . , xD] where xj ∈ 0, 1.
Suppose that we have a dataset with D features and each feature is expressed
as a dimension of a particle. We can therefore interpret the binary array as
simply turning a feature on or off and eventually finding the best position
by implementing the BPSO. The probability distribution of the particle po-
sitions can be specified as 0 or 1 depending on the calculated value using the
logistic function for the velocity values. The velocity is still updated in the
same way as it does in PSO [38] and the position of the particle is determined
using Eq. (3) and Eq. (4). rand() is a random number uniformly distributed
in the range of [0, 1].

Xij(t+ 1) =

{
1 if rand() < S(vij(t+ 1))

0 Otherwise
(3)

S (vij(t+ 1)) =
1

1 + e−vij(t+1)
(4)

When considering the feature selection problem as an optimization prob-
lem, two issues must be taken into account, one is the number of features
selected and the other is the classification accuracy. There is a trade-off
between maximizing the prediction accuracy and minimizing the number of
selected features. In designing the fitness function for optimization, it is nec-
essary to consider both the number of selected features and the classification
accuracy, as we want to select as few features as possible and achieve the
best classification accuracy. The fitness function is designed using Eq. (5).

Fitness = αγR(D) + β
|R|
|F |

(5)

where γR(D) is the error rate of the classifier. In our study, it denotes
1− AUC. |R| is the number of features selected, |F | is the total number of
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features, and α ∈ [1, 0], β = (1− α) indicate the importance of the accuracy
of the classifier and the number of features selected, respectively.

Due to the high computational cost of the wrapper method, a wrapper
model that combined logistic regression and BPSO was used to select the
important features from the UNOS database. The logistic regression model
was chosen because it is easy to implement and computationally efficient
compared to other types of models. The wrapper model was developed us-
ing the PySwarms and Scikit-learn library. Table 3 summarizes the BPSO
parameters utilized in this study. The values of the BPSO parameters were
determined by changing one parameter at a time while keeping the other pa-
rameters constant and then evaluating the fitness function. The parameters
are fine-tuned based on the best fitness values and a reasonable computation
time.

Table 3: The parameters for BPSO to use in this study

Parameter Value

inertia weight w 0.8
acceleration constant c1 1.8
acceleration constant c2 1.8
Population size K 200
Dimension D 217
Iterations 150
fitness parameter α 0.92

3.3. Risk score models
The MELD, SOFT, and BAR scores are three notable risk score models

that can be used to estimate the risk of mortality for liver transplant recipi-
ents as previously mentioned. The MELD score [2] is defined in Eq. (6) and it
uses only creatinine, bilirubin, and the international normalized ratio (INR).
The features used in the BAR score [3] and the SOFT score [4] are shown
respectively in Table 4 and Table 5. Compared with the MELD score, the
SOFT and BAR scores use more features, and also the prediction accuracy
is higher. The prediction accuracy of these risk score models was then used
to compare with different machine learning models in this study.
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MELD =9.57 ∗ loge (creatinine) + 3.78 ∗ loge (bilirubin)
+ 11.20× loge (INR) + 6.43 (6)

Table 4: The calculation of BAR Score

BAR Score Assigned Points

MELD score at transplantation 6− 15 0
16− 25 5
26− 35 10
> 35 14

Retransplantation 4
Life support pretransplant 3
Recipient age (years) ≤ 40 0

> 40− 60 1
> 60 3

Cold ischemia time (hours) 0− 6 0
> 6− 12 1
> 12 2

Donor age (years) ≤ 40 0
> 40 1

3.4. Model development and performance metrics
Seven different machine learning models were employed in this study.

Classifiers include one linear statistical method (linear regression), two tree-
based methods (decision tree, random forests), three boosting methods (Log-
itBoost, AdaBoost, XGBoost), and DNN. These machine learning models
have been used extensively in a variety of medical applications [39, 40].
Among them, random forest, LogitBoost, AdaBoost, and XGBoost are en-
semble methods. Ensemble methods are supervised machine learning tech-
niques that combine several base models in order to generate a stronger
predictive model. The random forest constructs many trees on a subset of
data and then combines the output of all the trees to make predictions. As
a result, it reduces the problem of overfitting in decision trees, thus increas-
ing its accuracy and making it suitable for large datasets. XGBoost is an
optimized implementation of gradient boosting that provides a high level of
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Table 5: The calculation of SOFT score

SOFT Score Assigned Points

Age (years) > 60 4
BMI > 35 2
One previous transplant 9
Two previous transplants 14
Previous abdominal surgery 2
Albumin (g/dl) < 2.0 2
Dialysis prior to transplantation 3
Intensive care unit pre-transplant 6
Admitted to hospital pre-transplant 3
MELD score > 30 4
Life support pretransplant 9
Encephalopathy 2
Portal vein thrombosis 5
Ascites pretransplant 3
Portal bleed 48h pretransplant 6
Donor age (years) 10− 20 -2
Donor age (years) > 60 3
Donor cause of death from CVA 2
Donor creatinine (mg/dl) > 1.5 2
National allocation 2
Cold ischemia time (hours) 0− 6 -3

The feature "Portal bleed within 48h pretransplant" is not available in the
UNOS database. The calculation is based on the remaining features.

computational efficiency and is suitable for processing large datasets. Several
studies have shown that ensemble learning methods outperform single mod-
els in terms of prediction performance [41–43]. With powerful approximation
capabilities for non-linear models, DNN models are more efficient in learn-
ing complex features and performing more intensive computational tasks. In
this study, we will compare the performance of these machine learning mod-
els for predicting mortality after liver transplantation over a variety of time
windows.

All the models were constructed in Python. Logistic regression, random
forest, decision tree, and AdaBoost were implemented using the Scikit-learn
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library. XGBoost and LogitBoost were built using the XGBoost library and
LogitBoost library in Python, respectively. The DNN used in this study is
a feedforward network consisting of multiple fully connected layers and a
sigmoid output function, which was developed using Pytorch with NVIDIA
Quadro P1000 GPU acceleration. Based on the average cross-validation re-
sults, the optimal hyperparameters and architecture for each model were
determined by performing the 5-fold cross-validation using the training set
(80%). The hyperparameters of each model were optimized by maximiz-
ing the average AUC through a grid search method. Each model was then
trained using the best hyperparameters on the training set (80%) before its
performance was tested on a separate test set (20%).

4. Results

4.1. Feature selection
As discussed in Section 3.2, the wrapper method based on BPSO and

logistic regression was used to select the significant features from the UNOS
database. Comparatively, we applied the machine learning models to the
complete feature set, the principal component analysis (PCA)-selected fea-
ture set, the feature set of the SOFT score, and the feature set of the BAR
score. PCA is an unsupervised dimensionality reduction method that is
used to identify critical original features of the principal components. In our
study, PCA was applied to cover 95% of the data variance, and the new
vector created after processing by PCA was applied to different classification
algorithms. We compared the predictive power of different feature sets using
five different metrics, including AUC, sensitivity, specificity, accuracy, and
F1-score. Table 6 illustrates the mean results for all experiments using the
given feature set.

The results indicate that the highest values for all metrics are found either
in the complete feature set or in the BPSO feature set. Among them, the best
AUC, specificity, accuracy, and F1-score were achieved by the complete set,
whereas the BPSO feature set achieved the highest sensitivity. In terms of
the classifier, none of the algorithms is optimal in all five metrics. XGBoost
achieved the highest AUC and F1-score values on the complete set of features,
while logistic regression achieved the optimal sensitivity on the BPSO feature
set. Comparing XGBoost’s performance with different feature sets, it can be
seen that using the BPSO feature set is superior to using the feature set
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of PCA, SOFT score, and BAR score on almost all metrics, indicating the
efficiency of the feature set selected by BPSO.

Table 6: Results for experiments with different feature sets using SMOTE-ENN and ma-
chine learning models for 1-year mortality prediction

Feature set Algorithm AUC Sensitivity Specificity Accuracy F1-score

Complete

SE-LR 0.678 0.548 0.706 0.688 0.286
SE-LB 0.646 0.365 0.800 0.750 0.250
SE-DT 0.645 0.434 0.760 0.723 0.263
SE-AB 0.677 0.572 0.689 0.675 0.287
SE-XGB 0.685 0.613 0.669 0.670 0.289
SE-RF 0.677 0.662 0.595 0.602 0.275
SE-DNN 0.666 0.565 0.676 0.663 0.277

BPSO

SE-LR 0.672 0.683 0.562 0.575 0.268
SE-LB 0.656 0.523 0.659 0.643 0.251
SE-DT 0.643 0.507 0.684 0.663 0.253
SE-AB 0.671 0.533 0.717 0.696 0.286
SE-XGB 0.681 0.602 0.680 0.668 0.287
SE-RF 0.676 0.564 0.676 0.663 0.276
SE-DNN 0.667 0.512 0.723 0.700 0.279

PCA

SE-LR 0.656 0.603 0.629 0.626 0.269
SE-LB 0.543 0.473 0.605 0.590 0.208
SE-DT 0.568 0.454 0.653 0.630 0.219
SE-AB 0.638 0.613 0.589 0.592 0.255
SE-XGB 0.641 0.523 0.665 0.649 0.254
SE-RF 0.622 0.558 0.617 0.610 0.246
SE-DNN 0.656 0.532 0.698 0.680 0.275

SOFT score

SE-LR 0.635 0.569 0.626 0.620 0.255
SE-LB 0.624 0.506 0.676 0.656 0.251
SE-DT 0.614 0.386 0.772 0.728 0.245
SE-AB 0.639 0.509 0.700 0.678 0.265
SE-XGB 0.651 0.532 0.675 0.658 0.262
SE-RF 0.647 0.422 0.776 0.753 0.267
SE-DNN 0.645 0.529 0.670 0.654 0.259

BAR score

SE-LR 0.630 0.470 0.723 0.694 0.260
SE-LB 0.598 0.371 0.768 0.722 0.234
SE-DT 0.614 0.482 0.674 0.652 0.240
SE-AB 0.636 0.479 0.708 0.681 0.255
SE-XGB 0.643 0.509 0.686 0.666 0.258
SE-RF 0.640 0.518 0.664 0.648 0.251
SE-DNN 0.637 0.613 0.578 0.583 0.251

Abbreviations: SE, SMOTE+ENN; LB, LogitBoost; LR, Logistic regression; DT, Decision tree;
AB, AdaBoost; XGB, XGBoost; RF, Random forest; DNN, deep neural network.

42 features were selected out of 217 total features by BPSO. Unlike ex-
isting risk score models, such as the BAR score and the SOFT score, which
contain relatively limited features, the BPSO feature set contains more ex-
tensive features including the patient’s past lifestyle, the patient’s history of
chronic disease as well as some socioeconomic features. The importance of
some features is also presented in the literature, but these features are not
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considered by the existing risk score model. For instance, a study by Qiu
et al. [44] illustrated that smoking exerts deleterious effects on transplant
survival. a study by Correia et al. [45] presented that obesity and diabetes
negatively affect long-term liver transplant survival and these factors should
be monitored and assessed for the recipient. As shown in Fig. 3, the three
feature sets have unique selections of features, suggesting there is no clinical
consensus on what features are important for assessing post-transplantation
mortality risk. In the meantime, it is worth noting that the BPSO selected
feature set includes most of the features contained in the SOFT score and the
BAR score. Four features are contained in both three feature sets, namely
recipient’s age, donor’s age, cold ischemic time, and life support at trans-
plantation.

Figure 3: Venn diagram of selected feature set and clinical features used for BAR score
and SOFT score.

4.2. Prediction of mortality risk
Machine learning methods were used to predict the mortality risk of post-

transplant recipients and the results are shown in Table 7. AUC was calcu-
lated for different time frames, including 3 months, 1 year, 3 years, 5 years,
and 10 years, which covers both short- and long-term mortality risks compre-
hensively. A comparison was made between three existing risk scores models
and seven machine learning models. Bolded values in Table 7 indicate that
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the model outperformed the compared model for the particular prediction
window.

Our results show that XGBoost outperforms all the other models, by ob-
taining the highest AUC in all of 3-month (0.717 ± 0.008), 1-year (0.681 ±
0.004), 3-year (0.662± 0.006), 5-year (0.660± 0.004), 10-year (0.674± 0.005)
horizons. A very narrow set of features is used by the MELD score, resulting
in a poor prediction performance for almost all time windows. Although the
SOFT score is the best risk score model among all three models, it performs
poorly in predicting long-term liver transplantation mortality, such as 3-year
(0.593 ± 0.008), 5-year (0.580 ± 0.006) and 10-year (0.574 ± 0.005), with
AUC values not exceeding 0.60. XGBoost improves the AUC for mortality
prediction by 6.7%, 11.6%, and 17.4% for 3 months, 3 years, and 10 years,
respectively, compared with the SOFT score. As a result, XGBoost is shown
to provide consistent improvement in the prediction of post-transplantation
mortality as compared to the other machine learning and risk score mod-
els. The NRI is a popular indicator that measures the improvement in the
percentage of correctly classified cases. Table 8 shows the overall NRI im-
provement for XGBoost compared with the BAR score which was used as
the baseline model. In terms of results, XGBoost achieved the highest overall
NRI improvement (15.281%) in its prediction of 1-year mortality. For the
10-year mortality prediction, the overall NRI improvement is 6.860%.

Table 7: Performance of the predictive models for different time frames

Methods AUC (Mean ± Std)
3-month 1-year 3-year 5-year 10-year

MELD 0.610± 0.006 0.579± 0.005 0.539± 0.005 0.523± 0.007 0.517± 0.005
SOFT 0.672± 0.009 0.632± 0.007 0.593± 0.008 0.580± 0.006 0.574± 0.005
BAR 0.657± 0.008 0.621± 0.006 0.578± 0.005 0.560± 0.007 0.555± 0.004
LR 0.703± 0.009 0.672± 0.005 0.652± 0.005 0.649± 0.009 0.660± 0.003
LB 0.693± 0.008 0.656± 0.006 0.644± 0.005 0.642± 0.007 0.661± 0.006
DT 0.687± 0.007 0.643± 0.006 0.643± 0.005 0.623± 0, 006 0.637± 0.005
AB 0.715± 0.006 0.671± 0.004 0.655± 0, 003 0.646± 0.004 0.667± 0.005
XGB 0.717± 0.008 0.681± 0.004 0.662± 0.006 0.660± 0.004 0.674± 0.005
RF 0.711± 0.008 0.676± 0.005 0.659± 0.008 0.656± 0.004 0.663± 0.005
DNN 0.705± 0.006 0.667± 0.005 0.652± 0.006 0.649± 0.005 0.665± 0.004

P-value <0.001 <0.001 <0.001 <0.001 <0.001
a P-value is determined by applying one-way variance analysis to the AUC values of the seven models.
b XGBoost is significantly different from other models on the basis of comparisons of Least Significant Difference

(LSD).
c Abbreviations: LB, LogitBoost; LR, Logistic regression; DT, Decision tree; AB, AdaBoost; XGB, XGBoost; RF,

Random forest; DNN, deep neural network.
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Table 8: The overall net reclassification improvement (NRI) for risk scoring models and
XGBoost over the different follow-up periods

Methods 3-month 1-year 3-year 5-year 10-year

BAR Score Baseline Model
SOFT Score 5.514 (1.480) 7.011 (1.302) 0.041 (0.045) 0.152 (0.084) 3.976 (0.779)
XGBoost 13.212 (1.521) 15.281 (1.031) 8.994 (0.255) 7.000 (0.441) 6.860 (0.423)

Values represents the mean percentage improvement and values in brackets represent the standard deviations.

4.3. Feature importance
Assessing the importance of features is of great importance for clinical

decision-making. Due to the superior prediction performance of XGBoost
over other machine learning algorithms shown in Table 7, a method called
SHAP [46] was used to assess which features are essential for XGBoost to gen-
erate predictions. The SHAP value measures the significance of the output
resulting from the inclusion of a specific feature in all possible combinations
other than that particular feature. In this study, the SHAP method was
implemented in Python using the SHAP library to interpret the XGBoost
model for the mortality prediction of post-liver transplantation from the fol-
lowing three aspects: 1. To identify the important features and explain how
they influence the outcome. 2. To provide explanations of the individual
samples and indicate the significant factors that contribute to making that
prediction. 3. To identify important factors in short- and long-term liver
transplant mortality and discover the risk factors associated with different
age groups of recipients.

4.3.1. Discovering the feature importance in the model
Fig. 4 illustrates the top 15 risk factors for the 1-year mortality predic-

tion of post-liver transplantation based on the SHAP value. The SHAP value
provides a unified index that measures the impact of a certain feature in the
model. The five most significant factors that are strongly associated with
mortality after liver transplantation include the recipient’s age, donor’s age,
serum creatinine, recipient’s medical condition, and cold ischemic time. Note
that in Fig. 4B, each dot is generated by the attribution value of a specific
feature in the model of each patient, so that the SHAP values not only depict
the magnitude of an individual feature’s importance, but also its direction
of effect. For example, younger donor age reduces the mortality risk in re-
cipients, while lower serum albumin level increases the mortality risk. Fig. 5
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Figure 4: The ranking of feature importance is based on SHAP values for 1-year mor-
tality prediction using the XGBoost model. (A): The mean absolute SHAP values are
represented to demonstrate the importance of features. (B): The SHAP summary plot
explained the relationship between a feature and mortality outcome. The input variables
are presented in descending order of feature importance. In each feature, red represents
high feature values, and blue represents low feature values. The positive SHAP value is
indicative of increased mortality risk, while the negative SHAP value is indicative of a
decreased mortality risk.

Figure 5: SHAP dependence plot of the XGBoost model for 1-year mortality prediction.
(A): The effect of age on 1-year mortality. (B): The effect of donor age on 1-year mortality.
(C): The effect of serum creatinine on 1-year mortality. (D): The effect of cold ischemic
time on 1-year mortality. The dependence plot illustrates how individual features affect
the output of the XGBoost model. The SHAP value above zero indicates an increased risk
of mortality for a specific feature, while the value below zero indicates a decreased risk of
mortality.
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shows the main effects of some top risk factors, where we can roughly deter-
mine the thresholds and the extent of effects associated with these variables.
In Fig. 5C, the SHAP value is below zero when serum creatinine is approxi-
mately between 0.5mg/dl and 1.2mg/dl, which indicates that the mortality
risk for post-liver transplantation is decreased within this range. Fig. 5D
shows that the mortality risk increases when the recipient’s cold ischemic
time exceeds 6.5 hours.

Figure 6: The explanation and analysis of the individual recipient based on the XGBoost
model for 1-year mortality prediction. (A): The individualized explanation for the death
of a transplant recipient within 1 year. (B): The individualized explanation for a recipient
who is alive after 1 year. The values shown in bold indicate the predicted values for that
individual recipient, and the base value is the average predicted value. Features shown in
red indicate an increased risk of death, while features shown in blue indicate a decreased
risk of death.

4.3.2. Interpretation of individual predictions
SHAP can be used to analyze individual predictions and show the impact

of each feature on mortality risk for liver transplantation. Fig. 6 provides two
examples to illustrate the interpretation of the model at the individual level.
The first recipient (Fig. 6A) died within 1 year while the second recipient
(Fig. 6B) survived after 1 year. The XGBoost model predicted that the 1-
year probability of death for the first recipient was 0.568 and 0.021 for the
second recipient. It can be seen from Fig. 6A that the predicted value for
the mortality risk is 0.27, which is higher than the base value (average of
output values). The red arrows indicate factors associated with an increased
risk of mortality. The top 5 significant factors determining the prediction
of the mortality risk in this recipient are donor age, serum creatinine, age,
positive hepatitis C antibody, and hospitalization before transplantation. For
the second recipient, the predicted SHAP value for the mortality risk is -
3.83, which is lower than the base value. The five most important factors
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contributing to making this prediction are donor age, serum creatinine, serum
albumin, age, and cold ischemic time.

Figure 7: The importance of the selected features for mortality prediction over different
time frames.

4.3.3. The interpretation of features over different time frames
To interpret features that have different effects on short-term and long-

term mortality risk prediction, we combined different levels of each categori-
cal feature in the selected feature set. The SHAP values were calculated for
each time frame, and the relative importance of features was determined by
scaling the absolute value of the SHAP value of the feature to a range be-
tween 0 and 1. The importance of features over the different time frames was
visualized with a heatmap, as shown in Fig. 7. We can see that some factors
contribute less to short-term mortality prediction than long-term mortality
prediction, such as donor’s age, diabetes, recipient’s previous malignancy,
and hepatitis C status, while recipient’s medical condition, cold ischemic
time, recipient weight, BMI, ventilator usage, and portal vein thrombosis
contribute more to short-term mortality prediction than long-term mortal-
ity prediction. The result illustrates the variation in the significance of each
feature for a short and long-term mortality prediction and provides a more
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comprehensive interpretation of mortality risk factors associated with liver
transplantation.

Figure 8: The importance of the selected features for 5-year mortality prediction in differ-
ent age groups.

4.3.4. The interpretation of features in different age groups
The Fig. 8 shows the relative importance of input features for 5-year mor-

tality prediction in different age groups (< 40, 30-50, 55-65, > 65). As can be
seen, some features are more vital for the elder subgroups compared to the
younger subgroups such as hepatitis C status, serum creatinine, portal vein
thrombosis, recipient medical condition, diabetes, previous malignancy, and
donor hypertension history. Results indicate that the mortality risk for the
elder subgroups is more influenced by chronic diseases and geriatric condi-
tions. However, most of these diseases are not taken into consideration by the
existing risk score models. In addition, some features are more important for
the younger subgroups compared to the elder subgroups. The top five most
important features for the under-30 subgroup are cold ischemic time, donor
age, serum albumin, recipient weight, and BMI. Among these features, cold
ischemic time, serum albumin, and recipient weight are significantly more
critical in predicting mortality risk in the under-30 subgroup than in the
elder subgroups and therefore deserve attention and further exploration.
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5. Discussion

Accurate mortality prediction of post-liver transplantation plays an im-
portant role in the prediction of the risk of early and late graft dysfunction as
well as providing decision support for optimizing organ allocation. The pur-
pose of this study was to assess the risk of death after liver transplantation
and provide an extensive interpretation of the model’s decision-making and
impact of a large number of variables by using machine learning algorithms.
More specifically, we will discuss our results in the following sections.

Selection of the optimal feature set. A wrapper model was devel-
oped for selecting an optimal feature set to predict mortality risk for liver
transplantation. 42 features were selected from the UNOS database, covering
various aspects of the recipient, such as the recipient’s lifestyle, medical his-
tory, and socioeconomic status. We found that the machine learning model
trained with the selected optimal feature set has a much higher prediction
accuracy than the same model trained with the features of the existing risk
scores. Consequently, the results demonstrate the necessity of incorporating
a broader range of significant features into the predictive model to enhance
prediction performance.

Comparison of machine learning models and risk scores. Our re-
sults indicate that XGBoost outperforms other models in all time windows.
Existing studies have shown that the XGBoost model has superior predic-
tive performance in a variety of medical applications due to its architecture
suitable for training with minimal features and ease of handling missing val-
ues [47, 48]. Our results suggested that XGBoost has good interpretability
and can be considered as a suitable machine learning method for mortality
risk assessment for liver transplantation and aiding clinical decision-making.
In addition, we found that DNN models did not outperform XGBoost and
random forest, indicating that more sophisticated algorithms are not always
superior to other simpler machine learning models. With superior nonlinear
modeling capabilities, DNN models may be better suited to analyzing large-
scale, heterogeneous, and high-granularity datasets that are not available in
the UNOS dataset.

Short- and long-term prediction performance and risk factors
determination Most studies on liver transplant mortality prediction have
focused only on short-term or long-term risk, but have not shown how the
impact of features and performance of the model changes over time. In
this study, five different time windows were chosen for comparison. From
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the experimental result, the predictive performance of all three risk scores
decreased significantly as the time windows became longer, with particularly
poor predictions of 10-year mortality. However, the prediction accuracy of
most machine learning models for the 3- and 5-year mortality risks were found
to be slightly lower than that of the 10-year mortality risk. The prediction
accuracy of XGBoost is significantly higher than that of the existing three
risk score models across all time windows.

Interpretation of the machine learning model In the medical field,
it is essential to intuitively interpret the machine learning model, which has
always been a challenging task. Compared to previous studies, our study
provides a more comprehensive interpretation of the machine learning model
based on the SHAP values in the context of liver transplantation. In con-
trast to existing studies that only showed the importance of features, we
also described how these features influence the model’s decision-making, in-
cluding whether the feature increases or decreases the mortality risk of liver
transplantation and at what threshold the feature may increase or decrease
the risk of death. Clinicians can then better understand the decision-making
process of the model and the impact of specific variables. Additionally, Some
interesting findings were also presented in this study. For instance, for the
elder subgroups, we found that geriatric and chronic diseases have a greater
impact on mortality risk for liver transplantation compared to the younger
subgroups. This deserves further exploration and research.

Limitations The study has several limitations. First, we performed our
study using the UNOS database, which is one of the largest organ trans-
plantation databases in the world. To increase the generalizability of these
findings, further external validation of our model using other databases is
necessary. In future studies, liver transplantation databases from other re-
gions or countries may serve as an external validation of our model. Besides,
the dataset used in this study is structured. Several studies have presented
that the combination of clinical text notes with structured data enhances the
prediction accuracy in some clinical application areas [49, 50]. Future work
may include the integration of clinical text notes with structured EHR data
to improve our predictive performance. Third, due to the different recording
systems used by different transplant centers, the predictive performance of
the model may be affected by distinct application environments. Although
it may not be ideal to directly export a well-trained model from one cen-
ter to another, it is still perfectly practicable to tailor the approach to each
transplant center.
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6. Conclusion

In contrast to the existing risk score models, which incorporate only a
limited number of clinical features, this study considered a broader range of
factors, including the patient’s lifestyle, medical history, and socioeconomic
status. A wrapper model that combines BPSO with logistic regression clas-
sifier was used to identify the optimal set of features from the feature-rich
UNOS database. Five different time frames were set up to compare the
performance of different machine learning algorithms in predicting the mor-
tality of liver transplant recipients over the short, medium, and long term.
Our results demonstrate that XGBoost outperformed other machine learn-
ing models as well as existing risk score models in all prediction windows
and can therefore be considered an ideal method for assessing the mortality
risk following liver transplantation. An approach combining machine learn-
ing and SHAP was used to explore the association between a large number
of attributes in liver transplantation and all-cause mortality. Based on this
approach, the individual predictions, the impact of attributes and their cor-
responding thresholds, and variations in the impact of attributes with respect
to follow-up periods and age groups were interpreted explicitly. This com-
prehensive interpretable paradigm can also be applied to the assessment of
the risk of other diseases and provide better interpretations.
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Appendix A. The chart for number of data used

Figure A.1: The flow chart of the study cohort. The study cohort is not the same for
each time window because the number of recipients lost to follow-up at different periods
is different. As the 10-year mortality analysis requires a longer period of time to collect
follow-up information from the recipients, five years of data from 2003 to 2007 were used.

Appendix B. The feature set selected by BPSO-LR

Appendix C. The number and percentage of missing value

Appendix D. Characteristics of the study cohort

Appendix E. Hyperparameters for the classifiers
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Table B.1: Description of the feature set selected by BPSO-LR model

# Feature name Feature description

1 AGE Recipient age
2 AGE_DON Donor age
3 ALBUMIN_TX Recipient’s serum albumin at transplant
4 ALCOHOL_HEAVY_DON Donor had history of alcohol dependency
5 AMIS HLA mismatch level
6 ASCITES_TX Recipient had ascites at transplant
7 BMI_CALC BMI of recipient at transplant
8 COLD_ISCH Total cold ischemic time
9 CONTIN_CIG_DON The smoking history of the donor
10 CREAT_TX Recipient’s serum creatinine at transplant
11 DDR1 Donor’s DR1 antigen
12 DIAB Recipient had diabetes at registration
13 DIURETICS_DON Donor treated hypertension with diuretics
14 EBV_IGG_CAD_DON Result of IGG test for donor’s EBV
15 EDUCATION The highest education level of the recipient
16 ENCEPH_TX Recipient’s level of encephalopathy at transplant
17 ETHCAT Recipient’s ethnicity
18 ETHCAT_DON Donor’s ethnicity
19 EXC_HCC Type of exception relative to HCC: HCC/HBL/NON-HCL
20 FINAL_DIALYSIS_PRIOR_WEEK Patient dialysis twice in prior week
21 HBV_CORE_DON Donor HBV core antibody
22 HCV_SEROSTATUS Recipient Hepatitis C virus status
23 HEP_C_ANTI_DON Hepatitis C virus antibody of Donor
24 HGT_CM_DON_CALC Donor’s height
25 HIST_CANCER_DON Donor’s history of cancer
26 HIST_HYPERTENS_DON Donor’s history of hypertension
27 INIT_WGT_KG Recipient’s weight at waiting list
28 INOTROP_SUPPORT_DON Donor took inotropic medications at procurement
29 INTRACRANIAL_CANCER_DON Donor has intracranial cancer at procurement
30 LITYP The type of liver graft was whole or split
31 LV_EJECT_METH_DON Left ventricular ejection fraction
32 MALIG Recipient had any malignancy previously
33 MED_COND_TRR Medical condition of the recipient prior to transplant
34 MICRO_FAT_LI_DON Donor’s micro fat (%)
35 NON_HRT_DON Donor’s organ was donated after cardiac death
36 NUM_PREV_TX The number of previous transplants
37 ON_VENT_TRR Recipient was on ventilator at transplant
38 OTH_LIFE_SUP_TRR Other life support type for recipient at transplant
39 PORTAL_VEIN_TRR Recipient suffered from portal vein thrombosis
40 RDR1 Recipient’s DR1 antigen
41 TX_YEAR Transplant year
42 WORK_INCOME_TCR Recipient was working at registration
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Table C.1: Statistics of missing values (n=47401)

# Feature name Number of missing value (Percentage)

1 AGE 0 (0%)
2 AGE_DON 0 (0%)
3 ALBUMIN_TX 7 (0.01%)
4 ALCOHOL_HEAVY_DON 5882 (12.41%)
5 AMIS 27478 (57.97%)
6 ASCITES_TX 0 (0%)
7 BMI_CALC 32 (0.07%)
8 COLD_ISCH 2516 (5.31%)
9 CONTIN_CIG_DON 33752 (71.21%)
10 CREAT_TX 49 (0.10%)
11 DDR1 1250 (2.64%)
12 DIAB 14 (0.03%)
13 DIURETICS_DON 31489 (0.66%)
14 EBV_IGG_CAD_DON 13770 (29.05%)
15 EDUCATION 16 (0.03%)
16 ENCEPH_TX 0 (0%)
17 ETHCAT 0 (0%)
18 ETHCAT_DON 0 (0%)
19 EXC_HCC 0 (0%)
20 FINAL_DIALYSIS_PRIOR_WEEK 0 (0%)
21 HBV_CORE_DON 0 (0%)
22 HCV_SEROSTATUS 524 (1.11%)
23 HEP_C_ANTI_DON 0 (0%)
24 HGT_CM_DON_CALC 1 (0%)
25 HIST_CANCER_DON 1 (0%)
26 HIST_HYPERTENS_DON 1 (0%)
27 INIT_WGT_KG 2 (0%)
28 INOTROP_SUPPORT_DON 30 (0.06%)
29 INTRACRANIAL_CANCER_DON 1 (0%)
30 LITYP 2 (0%)
31 LV_EJECT_METH_DON 18166 (38.32%)
32 MALIG 0 (0%)
33 MED_COND_TRR 0 (0%)
34 MICRO_FAT_LI_DON 35270 (74.41%)
35 NON_HRT_DON 1 (0%)
36 NUM_PREV_TX 0 (0%)
37 ON_VENT_TRR 0 (0%)
38 OTH_LIFE_SUP_TRR 0 (0%)
39 PORTAL_VEIN_TRR 0 (0%)
40 RDR1 27354 (57.71%)
41 TX_YEAR 0 (0%)
42 WORK_INCOME_TCR 8223 (17.35%)
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Table D.1: Characteristics of the study cohort for 3-month mortality (n=47877)

Variable Survived recipients (n=44810) Died recipients (n=3067) Chi-square P-value

Sex 28.03 < 0.001
Male 30382 (67.80%) 1937 (63.16%)
Female 14428 (32.20%) 1130 (36.84%)

Age 53.67± 9.98 54.27± 10.59
Ethnicity 10.79 0.001

White 32443 (72.40%) 2184 (71.21%)
Hispanic 5736 (12.80%) 386 (12.59%)
Black 4053 (9.04%) 334 (10.89%)
Asian 2063 (4.60%) 131 (4.27%)
Other 515 (1.16%) 32 (1.04%)

BMI (kg/m2) 28.23± 5.62 28.48± 6.16
Serum albumin (g/dL) 2.97± 0.72 2.90± 0.76
Serum creatinine (mg/dl) 1.40± 1.06 1.75± 1.27
Recipient medical condition 301.20 < 0.001

Not hospitalized 32035 (71.49%) 1466 (47.80%)
Hospitalized not in ICU 7696 (17.17%) 600 (19.56%)
ICU 5079 (11.34%) 1001 (32.64%)

Cold ischemia time (hours) 7.04± 3.24 7.49± 3.33
Hepatitis C positive 18735 (42.26%) 1105 (36.57%) 5.07 0.02
Type 2 diabetes 6659 (14.87%) 477 (15.55%) 10.02 0.002
Previous malignancy 6698 (14.95%) 417 (13.60%) 4.15 0.04
Portal vein thrombosis 3248 (7.25%) 367 (11.97%) 37.65 < 0.001
Donor age 41.24± 17.07 42.73± 17.30
Donor ethnicity 0.51 0.47

White 30254 (67.52%) 2043 (66.61%)
Hispanic 7329 (16.36%) 476 (15.52%)
Black 5617 (12.54%) 424 (13.82%)
Asian 1027 (2.28%) 77 (2.51%)
Other 583 (1.30%) 47 (1.53%)

Donor sex 3.96 0.05
Male 26801 (59.81%) 1778 (57.97%)
Female 18009 (40.19%) 1289 (42.03%)

a The numerical variable is denoted by mean ± standard deviation and the categorical variable is denoted by number (%).
b P value is determined by Chi square test for categorical variable.
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Table D.2: Characteristics of the study cohort for 3-year mortality (n=46380)

Variable Survived recipients (n=36507) Died recipients (n=9873) Chi-square P-value

Sex 0.01 0.93
Male 24643 (67.50%) 6659 (67.45%)
Female 11864 (32.50%) 3214 (32.55%)

Age 53.51± 9.97 54.78± 9.93
Ethnicity 110.61 < 0.001

White 26684 (73.09%) 6994 (70.84%)
Hispanic 4593 (12.58%) 1200 (12.15%)
Black 3103 (8.50%) 1194 (12.29%)
Asian 1700 (4.66%) 382 (3.87%)
Other 427 (1.17%) 103 (1.04%)

BMI (kg/m2) 28.30± 5.62 28.14± 5.83
Serum albumin (g/dL) 2.98± 0.72 2.92± 0.74
Serum creatinine (mg/dl) 1.38± 1.04 1.58± 1.18
Recipient medical condition 101.00 < 0.001

Not hospitalized 26411 (72.34%) 6081 (54.54%)
Hospitalized not in ICU 6100 (16.71%) 1932 (19.57%)
ICU 3996 (10.95%) 1860 (18.84%)

Cold ischemia time (hours) 7.02± 3.24 7.37± 3.35
Hepatitis C positive 17018 (41.05%) 2609 (43.88%) 66.91 < 0.001
Type 2 diabetes 5345 (14.65%) 1580 (16.00%) 23.28 < 0.001
Previous malignancy 5269 (14.43%) 1655 (16.76%) 6.69 0.010
Portal vein thrombosis 2651 (7.17%) 867 (8.78%) 17.12 < 0.001
Donor age 40.73± 17.02 43.85± 17.12
Donor ethnicity 0.08 0.78

White 24836 (68.03%) 6498 (65.82%)
Hispanic 4397 (12.04%) 1383 (14.01%)
Black 6005 (16.45%) 1586 (16.06%)
Asian 797 (2.18%) 272 (2.76%)
Other 472 (1.29%) 134 (1.36%)

Donor sex 2.63 0.10
Male 21823 (59.78%) 5812 (58.87%)
Female 14684 (40.22%) 4061 (41.13%)

a The numerical variable is denoted by mean ± standard deviation and the categorical variable is denoted by number (%).
b P value is determined by Chi square test for categorical variable.
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Table D.3: Characteristics of the study cohort for 5-year mortality (n=45270)

Variable Survived recipients (n=32674) Died recipients (n=12596) Chi-square P-value

Sex 3.51 0.061
Male 21946 (67.16%) 8577 (68.10%)
Female 10728 (32.84%) 4019 (31.90%)

Age 53.51± 9.97 54.78± 9.93
Ethnicity 108.46 < 0.001

White 23893 (73.13%) 9003 (71.47%)
Hispanic 4104 (12.56%) 1505 (11.95%)
Black 2741 (8.39%) 1479 (11.74%)
Asian 1555 (4.76%) 477 (3.79%)
Other 381 (1.16%) 132 (1.05%)

BMI (kg/m2) 28.31± 5.63 28.16± 5.78
Serum albumin (g/dL) 2.98± 0.72 2.94± 0.74
Serum creatinine (mg/dl) 1.38± 1.04 1.55± 1.16
Recipient medical condition 77.14 < 0.001

Not hospitalized 23600 (72.23%) 8096 (64.27%)
Hospitalized not in ICU 5482 (16.78%) 2362 (18.75%)
ICU 3592 (10.99%) 2138 (16.97%)

Cold ischemia time (hours) 7.00± 3.25 7.26± 3.25
Hepatitis C positive 12710 (39.28%) 5950 (47.93%) 68.31 < 0.001
Type 2 diabetes 4726 (14.47%) 2049 (16.27%) 37.59 < 0.001
Previous malignancy 4640 (14.20%) 2143 (17.01%) 11.23 < 0.001
Portal vein thrombosis 2371 (7.26%) 1074 (8.53%) 14.43 < 0.001
Donor age 40.50± 16.98 43.85± 17.1
Donor ethnicity 0.06 0.80

White 22236 (68.05%) 8371 (66.46%)
Hispanic 3911 (11.97%) 2020 (16.04%)
Black 5407 (16.55%) 1697 (16.06%)
Asian 696 (2.14%) 342 (2.72%)
Other 424 (1.29%) 166 (1.32%)

Donor sex 2.44 0.12
Male 19530 (59.77%) 7427 (58.96%)
Female 13144 (40.23%) 5169 (41.04%)

a The numerical variable is denoted by mean ± standard deviation and the categorical variable is denoted by number (%).
b P value is determined by Chi square test for categorical variable.
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Table D.4: Characteristics of the study cohort for 10-year mortality (n=20751)

Variable Survived recipients (n=11350) Died recipients (n=9401) Chi-square P-value

Sex 9.93 0.002
Male 7561 (66.62%) 6457 (68.68%)
Female 3789 (33.38%) 2944 (31.32%)

Age 52.26± 9.86 53.98± 9.95
Ethnicity 23.63 < 0.001

White 8288 (73.90%) 6987 (74.32%)
Hispanic 1366 (12.03%) 1052 (11.19%)
Black 902 (7.95%) 955 (10.16%)
Asian 581 (5.12%) 316 (3.36%)
Other 213 (1.88%) 91 (0.97%)

BMI (kg/m2) 28.05± 5.50 28.04± 5.74
Serum albumin (g/dL) 2.94± 0.70 2.88± 0.71
Serum creatinine (mg/dl) 1.36± 1.05 1.52± 1.14
Recipient medical condition 25.58 < 0.001

Not hospitalized 8373 (73.77%) 6452 (68.63%)
Hospitalized not in ICU 1752 (15.44%) 1542 (16.40%)
ICU 1225 (10.79%) 1407 (14.97%)

Cold ischemia time (hours) 7.42± 3.48 7.68± 3.61
Hepatitis C positive 3988 (35.84%) 4016 (43.89%) 42.42 < 0.001
Type 2 diabetes 1006 (8.87%) 1095 (11.65%) 33.54 < 0.001
Previous malignancy 1167 (10.28%) 1258 (13.38%) 15.52 < 0.001
Portal vein thrombosis 526 (4.63%) 548 (5.83%) 2.69 < 0.101
Donor age 39.52± 17.21 43.63± 17.56
Donor ethnicity 0.06 0.81

White 7978 (70.29%) 6418 (68.27%)
Hispanic 1738 (15.31%) 1384 (14.72%)
Black 1286 (11.33%) 1250 (13.30%)
Asian 202 (1.78%) 233 (2.48%)
Other 146 (1.29%) 116 (1.23%)

Donor sex 1.36 0.24
Male 6796 (59.88%) 7427 (59.07%)
Female 4554 (40.12%) 5169 (40.93%)

a The numerical variable is denoted by mean ± standard deviation and the categorical variable is denoted by number (%).
b P value is determined by Chi square test for categorical variable.

Table E.1: Hyperparameters for the classifiers
Model Parameter optimization range Parameter

Logistic Regression C: [0.001,0.01,0.1,1,10,100], penalty: [’l1’,’l2’,’elasticnet’,’none’],
solver: [’newton-cg’,’lbfgs’, ’liblinear’, ’sag’, ’saga’] penalty=’l1’, solver=’liblinear’, C=0.1

LogitBoost n_estimators: [100,200,500,1000,2000], learning_rate: [0.1,0.2,0.3,0.5,1,2] n_estimators= 1000, learning_rate = 1

Decision tree criterion: [’gini’,’entropy’], max_depth :[4,5,6,7,8,9,10,12,15,20,30,40,50,100],
min_samples_split: [1,2,3,4,5,10,15,20], min_samples_leaf: [1,2,3,4,5,6,7,8,10,15]

criterion = ’entropy’, max_depth = 6,
min_samples_split = 3, min_samples_leaf = 5

AdaBoost n_estimators: [100,200,500,1000,2000], learning_rate: [0.1,0.2,0.3,0.5,1,2] n_estimators= 500, learning_rate = 0.2

Random Forest n_estimators: [100,200,500,1000,2000],max_depth:[4,5,6,7,8,9,10,12,15,20,30,40,50,100],
min_samples_split: [1,2,3,4,5,10,15,20,30], min_samples_leaf: [1,2,3,4,5,6,7,8,10,15]

n_estimators= 500, max_depth = 20,
min_samples_split = 20, min_samples_leaf = 4

XGBoost max_depth: [2,3,4,5,6,7,8,9,10,15,20], learning_rate:[0.01,0.05,0.1,0.15,0.2,0.5,1]
n_estimators: [100,200,500,1000,2000], reg_lambda:[0.05,0.01,0.15,0.20,0.3,0.4,0.5,1.0]

max_depth=3, learning_rate=0.15
n_estimators=500, reg_lambda = 0.15

DNN
Num_hidden_layer:[1,2,3,4,5,6], learning_rate:[0.0001,0.001,0.01,0.1,0.2,0.3,0.4,0.5,1]
Num_Neurons in each hidden layer (depend on number of hidden layer) :[1024,512,256,128,64,32,16]
, batch size:[256,512,1024,2048,4096]

Number of Hidden layer = 4, learning rate = 0.001,
Number of Neurons in each hidden layer = [1024, 128, 16], batch size = 2048
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