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Abstract: Feature selection (FS) is a popular data pre-processing technique in machine learning to 

extract the optimal features to maintain or increase the classification accuracy of the dataset, which 

is a combinatorial optimization problem, requiring a powerful optimizer to obtain the optimum 

subset. The equilibrium optimizer (EO) is a recent physical-based metaheuristic algorithm with 

good performance for various optimization problems, but it may encounter premature or the local 

convergence in feature selection. This work presents a self-adaptive quantum EO with artificial bee 

colony for feature selection, named SQEOABC. In the proposed algorithm, the quantum theory and 

the self-adaptive mechanism are employed into the updating rule of EO to enhance convergence, 

and the updating mechanism from the artificial bee colony is also incorporated into EO to achieve 

appropriate FS solutions. In the experiments, 25 benchmark datasets from the UCI repository are 

investigated to verify SQEOABC, which is compared with several state-of-the-art metaheuristic 

algorithms and the variants of EO. The statistical results of fitness values and accuracy demonstrate 

that SQEOABC has better performance than the compared algorithms and the variants of EO. 

Finally, a real-world FS problem from COVID-19 illustrates the effectiveness and superiority of 

SQEOABC. 

 

Keywords: Features selection; Metaheuristic; Equilibrium optimizer; Quantum theory; Artificial 

bee colony 

  



2 

 

1 Introduction 

Nowadays, a tremendous amount of information is generated with the huge development of 

science and technology. Abundant and irrelevant features are existed in data, making the extraction 

and classification of data becoming more difficult [1]. Feature selection (FS) as a data-processing 

technique has been developed rapidly in machine learning, which can find the optimal subset of 

features and reduce irrelevant features [2]. In essence, FS is a combinatorial optimization problem 

and has 2M possible combinations in the dataset with M features [3]. With the increasing size and 

features of a dataset, the exhaustive method is time-consuming especially for high-dimensional 

problems. 

According to the evaluation criteria of features, FS methods can be classified as filter-based 

method, wrapper-based method, embedded-based method, and hybrid method [4]. The filter-based 

method conducts the statistical properties of individual features and evaluates the rank in terms of 

their relevance, which is efficient in FS problems [5]. The wrapper-based method employs the 

learning algorithm to estimate the significant features, which has higher accuracy to find the 

optimal feature subset than the filter-based method, but more computational cost than the 

filter-based method due to more training times [6]. In the embedded-based method, the feature 

selection is fused on the learning algorithm, where the classification accuracy relies on the optimal 

feature and the learning algorithm. The hybrid method combines with the filter model and the 

wrapper model to handle the feature selection problems. Besides, other feature selection methods 

have been also attracted attention for researchers, such as rough set theory [7] and fuzzy rough set 

theory [8]. 

In the FS problem, the optimization techniques are inevitable and very important to obtain the 

optimal feature [9]. Metaheuristic algorithms are inspired by nature phenomenon, physical rules or 

biological behaviors, which are commonly utilized for various optimization problems [10][11]. 

Most metaheuristic algorithms are population-based algorithms, which can find high quality 

solution from complex optimization problems with the reasonable computational cost during the 

iterative process, benefiting from the following advantages: derivative-free, problem-independent, 

good convergence, ease of implementation [12][13]. They are distinguished by the concepts of 

inspiration and by the searching mechanism, leading to different performances in various 

optimization problems. Some of popular and recent metaheuristic algorithms include particle swarm 

optimization (PSO) [14], covariance matrix adaptation evolution strategy (CMA-ES) [15], 

teaching-learning-based optimization (TLBO) [16], grey wolf optimizer (GWO) [17], artificial bee 

colony (ABC) [18][19], Harris hawks optimizer (HHO) [20][21], moth-flame optimization [22], 

slime mould algorithm [23], salp swarm algorithm [24], snake optimizer [25], white shark optimizer 
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[26], beluga whale optimization [27], and so on. When metaheuristic algorithms are applied for 

feature selection, they can provide good performance in classification accuracy. For instance, Ke et 

al. [28] developed an efficient colony optimization with rough set theory for feature selection. Chen 

et al. [29] proposed discernibility-matrix-based FS method from rough set theory using PSO to 

obtain the optimal subset with imbalance data. Hu et al. [30] designed two niching strategies 

(crowding clustering and speciation clustering) into PSO for FS problems, in order to enhance the 

classification accuracy and obtain better FS solutions. Ghimatgar et al. [31] developed a graph 

clustering-based ant colony optimization called GCACO to search for better solutions in FS 

problems, outperforming the ACO and other compared algorithms in classification accuracy. Too 

and Mirjalili [32] developed an improved dragonfly algorithm with binary operator and hyper 

learning for solving FS problems, which was verified by benchmark datasets and a COVID-19 case 

study. Although there exist a lot of research on metaheuristic-based FS methods, new algorithms are 

still required due to No Free Lunch (NFL) theory [33], indicating that there doesn’t exist any 

metaheuristic algorithm with good performance for all optimization problems. Thus, it motivates us 

to enhance more powerful algorithms for FS problems. 

In 2020, Faramarzi et al. [34] proposed a physical-based metaheuristic algorithm called 

equilibrium optimizer (EO), inspired by finding the equilibrium states in a dynamic system, which 

performs good capacity for various optimization problems, such as photovoltaic model [35], image 

segmentation [36], job scheduling [37], power distribution network reconfiguration [38], and stock 

market prediction [39]. The results demonstrated that EO has good convergence in benchmark and 

engineering optimization problems. However, EO still suffers from local stagnation in optimization. 

In [40], a fractional-order chaotic EO was developed to solve global optimization problems and 

apply for PID controllers. Dinkar et al. [41] developed an opposition-based Laplacian EO for image 

segmentation. Liu et al. [42] proposed an improved EO for global optimization and engineering 

design, with operators of Levy flight, spiral encirclement from whale optimization algorithm, and 

adaptive proportional mutation strategy. In [43], an opposition-based learning EO algorithm with 

nonlinear time parameter, chaos theory, and enhanced updating rules was developed for 

high-dimensional optimization problems. In [44], an information-utilization strengthened EO was 

proposed for global optimization, outperforming the original EO in benchmark optimization 

problems. Moreover, researchers also investigated the performance of EO for feature selection. In 

[45], an enhanced EO algorithm was developed with operators of adaptive β hill-climbing, 

improved equilibrium pool and U-shaped transfer function, which was verified by 24 datasets from 

the UCI repository. Ouadfel and Elaziz [46] developed a ReliefF binary EO using local search 

strategy for high-dimensional FS problems. Elmanakhly [47] designed an improved EO for FS 



4 

 

problems, with the enhanced operators of opposition-based learning, S-shaped transfer function and 

the local search strategy. Sayed et al. [48] proposed a chaotic EO with different transfer functions to 

solve FS problems. Minocha and Singh [49] developed a modified binary EO enhanced by 

AV-shape transfer function and kNN for FS problems in the phishing detection system. In [50], a 

normalized mutual information-based EO enhanced by chaos was proposed for ES problems, 

verified by 14 high-dimensional datasets. According to the above research works, the modified 

strategies can enhance the convergence of EO in solving FS problems. However, the balance 

between the exploration and exploitation of EO for the FS problem is still challenging, and the 

updating rule of EO is the key point. 

In this work, we propose a self-adaptive quantum EO with artificial bee colony called 

SQEOABC for feature selection, based on the hybridization of EO and ABC with the operators of 

quantum theorem for updating rules of EO and self-adaptive mechanism for coefficient of EO. 

SQEOABC is verified on 25 UCI standard datasets, which is compared with some state-of-the-art 

metaheuristic algorithms and the variants of EO. Besides, a COVID-19 case is utilized to indicate 

the effectiveness of SQEOABC in feature selection. 

The rest of this paper is organized as follows: Section 2 provides the literature review of 

metaheuristic-based FS methods. Section 3 provides the brief overview of EO, and Section 4 

introduces the enhanced operators and details of the proposed algorithm. The experimental results 

of FS problems are provided in Section 5. Finally, the conclusions and future works are provided in 

Section 6. 

 

2 Related works 

In recent years, a great many of metaheuristic algorithms have been widely proposed for 

various optimization problems, which can be classified as four parts based on the inspiration from 

nature [34]: (1) swarm intelligence, (2) evolutionary algorithm, (3) physics-based algorithm, and (4) 

human-inspired algorithm. In this section, the application of metaheuristic algorithms for FS 

problem is investigated and classified by the inspiration of metaheuristic algorithms. 

Swarm intelligence-based algorithms are inspired from animal behavior in nature. PSO is one 

of the most well-known metaheuristic algorithms which was proposed by Eberhart and Kennedy 

[14], to mimic the swarm behaviors of birds or flocks. PSO was also widely used in solving FS 

problems. Huang and Dun [51] combined PSO with support vector machine (SVM) in feature 

selection, with continuous and discrete versions, which can find optimal feature subset. In [52], an 

enhanced PSO with multi-swarm strategy based on SVM classifier was developed to solve FS 

problems. In [53], a binary PSO with fractional-order velocity, mutation, local and global optimum 



5 

 

was developed to incorporate with SVM for FS problems. Xue et al. [54], and Rashno et al. [6] 

discussed multi-objective PSO for FS problems, respectively. In addition, some development of 

PSO for FS problems have been investigated, such as the recursive PSO [55], self-adaptive PSO 

with candidate solution generation strategies (SPS-PSO) [56], and so on. Artificial bee colony 

(ABC) [18] is a popular swarm-based algorithm mimicking scouting and foraging of honey bees, 

which is also attracted attention in feature selection. In [57], a binary ABC with similarity 

coefficient was proposed for FS problems. Furthermore, the enhanced multi-objective ABC based 

on differential selection and ladder-like sample utilization was also utilized to obtain the optimal 

features in FS problems [58]. In [59], a self-regulating ABC was developed for FS problems, by 

embedding the self-regulating strategy into initialization, onlooker bees and scout bees of ABC, and 

then the random grouping was also incorporated in the proposed algorithm. Dadaneh et al. [60] 

investigated the performance of ant colony optimization with different classifiers in the 

unsupervised probabilistic FS problems. Mafarja and Mirjalili [61] developed the whale 

optimization algorithm (WOA) for feature selection demonstrating that the WOA can achieve better 

solutions than GA and PSO in most tested datasets. Kundu et al. [62] developed an altruistic WOA 

for feature selection, which was verified by 8 microarray datasets. Awadallah et al. [63] proposed a 

binary horse herd optimization algorithm for feature selection, enhanced by binary transfer 

functions and three crossover operators, which provided competitive solutions of accuracy and 

efficiency in datasets. Besides, other swarm-based metaheuristic algorithms for FS problems 

include grey wolf optimizer [64], artificial algae algorithm [65], manta ray foraging optimization 

[66], butterfly optimization algorithm [67], chimp optimization algorithm [68], rat swarm optimizer 

[69], shuffled frog leaping algorithm [70], slime mould algorithm [71], and so on. 

In the second category, evolutionary algorithms mimic the evolutionary process of biology. 

Genetic algorithm (GA) as the popular evolutionary algorithm was also applied for feature selection. 

Yang and Hanavar [72] firstly investigated GA-based FS method, verified by 26 datasets from the 

UCI repository. Huang and Wang [73] developed the GA-based support vector machines for feature 

selection, with better accuracy than the grid algorithm. In [74], the nest-GA with wrapper-FS 

method was developed for FS problems, including high-dimensional cancer Microarray datasets. 

Carvalho [75] combined GA with a convolutional neural network to find the optimal features in 

computed tomography (CT) images, demonstrating its good accuracy in feature selection. Meenachi 

and Ramakrishnan [76] proposed two fuzzy rough set-based feature selection methods based on 

Tabu search with ACO and GA, respectively, which were verified by 4 cancer medical datasets. In 

this category, differential evolution (DE) is also popular in solving FS problems. Al-Ani [77] 

developed an improved DE with a wheel-based search strategy in solving FS problems. In [78], a 
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binary DE with self-learning strategy was developed for multi-objective FS problems. In [3], a 

self-adaptive weighted DE called SaWDE was proposed to deal with high-dimensional FS problems, 

verified by UCI datasets with above 1000 dimensions. Other evolutionary algorithms were also 

developed for FS problems, such as evolution strategy [79] and biogeography-based optimization 

[80]. 

In the third category, the physics-based algorithm mimicking physics of law in nature is also 

popular in the field of feature selection. Debuse [81] proposed a FS method based on information 

gain and simulated annealing, improving the performance of data mining system and reducing the 

number of features. Meiri and Zahavi [82] employed simulated annealing to a linear regression 

model to find the optimal features in marketing applications. Han et al. [83] proposed a modified 

gravitational search algorithm with piecewise linear chaotic map, embedded into the wrapper model 

to solve FS problems. Guha et al. [84] developed the binary version of the gravitational search 

algorithm with clustering population for FS problems, which was verified by 20 datasets from the 

UCI repository. Al-rawashdeh [85] developed a hybrid water cycle algorithm with simulated 

annealing to solve FS problems in spam email detection. Other physics-based algorithms for feature 

selection consist of multi-verse optimizer [86], charged system search [87], black hole [88] and 

atom search optimization [89]. 

The last category is human-based algorithms, usually mimicking human beings, having popular 

algorithms such as TLBO [15] mimicking the teaching and learning behaviors of students, harmony 

search [90] inspired by the music performance and the sine cosine algorithm [91] inspired by sine 

and cosine functions. Inbarani et al. [92] developed a hybrid FS method based on the rough set 

theory with quick reduct technique, where the improved harmony search algorithm is used to find 

the optimal subset feature. Shukla et al. [93] developed a hybrid TLBO-simulated annealing 

algorithm with SVM for feature selection, verified by UCI datasets and a case of gene expression 

data. Pradhan et al. [94] proposed a multi-class SVM based on improved TLBO to solve FS 

problems, including enzyme subclass classification. Sameer et al. [95] developed a hybrid binary 

TLBO algorithm with SVM classification for multi-objective feature selection. Gholami et al. [96] 

proposed a binary global harmony search with KNN classifier to find feature subsets. Hussain et al. 

[97] developed an improved sine cosine algorithm hybridized with HHO high-dimensional FS 

problems. Kale et al. [98] developed four versions of boosting sine cosine algorithms for global 

optimization and feature selection. In [99], a hybrid sine cosine algorithm embedded with simulated 

annealing and chaos theory was developed for feature selection of Hadith classification. 

Furthermore, other human-based algorithms applied for FS problems include imperialist 

competitive algorithm [100] and group search optimizer [101]. 



7 

 

 

3 Equilibrium optimizer (EO) 

In 2020, Faramarzi et al. [34] proposed a novel metaheuristic algorithm called equilibrium 

optimizer (EO), motivating from the mass balance equation in a control volume from a physical 

principle, attempting to find the equilibrium state of a system. EO is a powerful optimizer when 

solving optimization problems due to its updating mechanism, including three phases: initialization, 

equilibrium pool and concentration update. The details of EO are illustrated as follows. 

Step 1: Initialization. In this phase, the positions of each particle are regarded as the 

concentration of the control volume (C), while a set of particles are generated randomly among the 

boundaries as: 

 ( ), min, max, min, , 1, , 1, ,i j j j jC c r c c i n j d= + − = =K K  (1) 

where Ci,j represents the position in the j-th dimension of the i-th particle, r is a random number 

between (0, 1), cmin,j and cmax,j are the boundaries of each particle in j-th dimension, respectively. 

The fitness values are evaluated and the particles are sorted after the generation of initialized 

particles to prepare to construct an equilibrium pool. 

Step 2: Equilibrium pool and candidates. To find the final equilibrium state of a system in EO, 

different best-so-far particles are required to enhance the population diversity. Therefore, an 

equilibrium pool is constructed. After the initialization phase, four sorted particles with best-so-far 

fitness values are selected as the candidates in the equilibrium pool. Besides, the average position of 

the above four particles is calculated and saved in the equilibrium pool simultaneously. After each 

iteration, the five candidates are updated based on the above mechanism. The equilibrium pool is 

written as: 

 ( ) ( ) ( ) ( ) ( ) , 1 2 3 4
, , , ,eq pool eq eq eq eq eq ave

=C C C C C C  (2) 

where Ceq,pool is the equilibrium pool, Ceq(i) (i=1,2,3,4) are four candidates with best-so-far fitness 

values, and Ceq(ave) means the average position of four candidates, which can be expressed as:  

 ( )
( ) ( ) ( ) ( )1 2 3 4

4

eq eq eq eq

eq ave

+ + +
=

C C C C
C  (3) 

In each iteration, a candidate is selected randomly from the equilibrium pool as the best 

particle in the current iteration. It should be noted that, each candidate in the equilibrium pool has 

same probability to be selected, providing good diversity in population. 

Step 3: Concentration update. To update the concentration of particles, two main terms should 

be mainly considered in the EO algorithm, exponential term (F) and generation rate (G). The task of 

term F is to control the balance between exploration and exploitation, defined as: 
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 ( ) ( )1 1 20.5 exp 1EOa sign t= − − −  F r r  (4) 

where r1 and r2 denote the random vectors at the interval (0, 1), a1 is a constant to control the 

exploration capacity, tEO represents the coefficient of EO, which is updated during each iteration: 

 ( )( )21 itera T M

EO itert T M= −  (5) 

where a2 is a constant controlling the exploitation capacity, T denotes the current iteration, and Miter 

represents the maximum iteration. If the a1 is larger, the exploration of EO algorithm will be 

strengthened. Similarly, if a2 is larger, the exploitation of EO will be enhanced. In the basic EO 

algorithm, a1 and a2 are set as 2 and 1, respectively [34]. 

The generation rate (G) is another important term for concentration updating in EO algorithm, 

for it is utilized to transfer exact solution with enhancing exploitation. The mathematical model of 

generation rate (G) is expressed as: 

 ( )2 , 1, ,eq i i n= − − = KG P C r C F  (6) 

 
1 2

2

0.5 d d

d

r r GP

r GP

 
=   0

u
P  (7) 

where Ceq is a selected candidate in the equilibrium pool, Ci is the position of the i-th particle, rd1 

and rd2 denote the random numbers between (0, 1), u represents a unit vector, and GP is the 

generation probability that affects the exploration and exploitation, which is equal to 0.5. 

Therefore, the updating rule in EO is established as: 

 ( ) ( ) 31new

i eq i eq V= + − + −C C C C F F G r  (8) 

where new

iC  is the updating position of the i-th particle, r3 denotes the random vector at the 

interval (0, 1), V is equal to 1. After the updating stage of EO, check the boundary of the updated 

positions and calculate their fitness values, then employ the memory saving mechanism to adopt the 

better particles in the updated solutions. The pseudo-code of EO is provided in Algorithm 1. 

Algorithm 1: The pseudo-code of EO algorithm 

Input: Algorithmic parameters (population size, maximum iteration) 

Output: The best solution 

1: Set the algorithmic parameters, input information of optimization problems 

2: Initialize particles by Eq. (1), and construct the equilibrium pool 

3: While T≤Tmax Do 

4:   For each particle (Ci) Do 

5:     Calculate the fitness value of i-th particle 

6:     If f(Ci)<f(Ceq(1)) 

7:       Ceq(1) = Ci, f(Ceq(1))=f(Ci) 
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8:     Elseif f(Ci)>f(Ceq(1)) and f(Ci)<f(Ceq(2)) 

9:       Ceq(2) = Ci, f(Ceq(2))=f(Ci) 

10:     Elseif f(Ci)>f(Ceq(1)) and f(Ci)>f(Ceq(2)) and f(Ci)<f(Ceq(3)) 

11:       Ceq(3) = Ci, f(Ceq(3))=f(Ci) 

12:     Elseif f(Ci)>f(Ceq(1)) and f(Ci)>f(Ceq(2)) and f(Ci)>f(Ceq(3)) and f(Ci)<f(Ceq(4)) 

13:       Ceq(4) = Ci, f(Ceq(4))=f(Ci) 

14:     End If 

15:   End For 

16:   Calculate the average position of fifth candidate by Eq. (3) 

17:   Update the equilibrium pool by Eq. (2) 

18:   Implement the memory saving 

19:   Evaluate coefficient of EO using Eq. (5) 

20:   For each particle (Ci) Do 

21:     Find a candidate in the equilibrium pool as Ceq 

22:     Compute the exponential term (F) using Eq. (4) 

23:     Compute P using Eq. (7) 

24:     Compute the generation rate (G) using Eq. (6) 

25:     Obtain the concentration of i-th particle using Eq. (8) 

26:     Check the boundary of the updated particle 

27: End For 

28:   Find current global best solution 

29::   T=T+1 

30: End While 

 

4 The proposed algorithm 

As mentioned above, EO is an efficient metaheuristic algorithm for optimization problems. 

However, EO still encounters the difficulty of the local convergence or premature, especially in 

solving FS problems, due to the imbalance between exploration and exploitation. Therefore, the 

self-adaptive quantum equilibrium optimizer-artificial bee colony algorithm (SQEOABC) is 

proposed to overcome the disadvantage of EO in solving FS problems. SQEOABC integrates three 

efficient strategies: the self-adaptive mechanism, the quantum theory, and the artificial bee colony 

algorithm. These modifications and the procedure of the proposed algorithm are described as below. 

 

4.1 Self-adaptive mechanism in coefficient 

In the metaheuristic algorithms, the quality of solution is highly influenced by the transition 

from the global exploration to the local exploitation. In the basic EO algorithm, the exponential 

term F controls the exploration and exploitation, in which the transfer coefficient tEO in Eq. (5) is 

one of the important point parameter affecting the performance of algorithm. A large value of 

coefficient tEO benefits for exploration, while a small value of tEO is helpful for exploitation. Besides, 
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the user-defined parameter a2 in EO may also lead to inefficient solution. However, the existing 

formulation of the coefficient may fail to achieve good transition from exploration to exploitation. 

In this work, a self-adaptive coefficient [43] is adopted in tEO to conduct the transition from 

exploration to exploitation, which can be calculated as: 

 ( )1 sin cos 2
iterT M

iter
EO

iter

M T
t

M
 −

=  − +    (9) 

where θ denotes the amplitude of the change with iterations, expressed as θ = π/2×T/Miter. The 

proposed self-adaptive strategy in coefficient is more focused on the exploration to enhance the 

global search capacity, and it does not require user-defined parameter a2 for tuning, which is 

beneficial to convergence of the algorithm.  

 

4.2 Quantum equilibrium optimizer (QEO) 

With the development of quantum computing, the quantum theorem was widely utilized in the 

metaheuristic algorithms to enhance the performances [102][103][104][105]. The quantum theorem 

is established on the Schrödinger equation, which is very important in the physics. In the 

Schrödinger equation, the trajectory of particle does not depend on the velocity and position, but on 

the wave function. Therefore, the behaviors of particles in the quantum EO are different from the 

behaviors in EO. In this research, the quantum equilibrium optimizer (QEO) is developed, and the 

updating rule of EO is modified by adding an attractor to enhance the diversity of EO, and to 

improve the probabilities of finding better solution. 

We first briefly introduce the basic quantum behaviors in the quantum PSO (QPSO) [102]. The 

rule of QPSO means that the quantum behavior exists in each particle, which is determined by a 

wave function. Based on the convergence analysis of PSO [106], it’s assumed that a particle moves 

in D-dimensional space centered at pi,j on the j-th dimension. Therefore, the wave function ψ could 

be established as: 

 ( ) ( )1
, , ,

1
expT T

i j i j i j ij
T

ij

C C p L
L

 + = − −  (10) 

where ψ represents the probability density function, T

ijL  denotes the standard deviation of the 

double exponential distribution, where pi,j is the local attractor. 

By Monte Carlo method, the position of the j-dimension in the i-th particle is expressed as: 

 ( )1
, ,

1
ln 1

2
T T

i j i j ijC p L r
+ =   (11) 

where r is a random number uniformly distributed over (0, 1). T

ijL  can be calculated as: 
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 ,2T T

ij j i jL M C= −  (12) 

where MT denotes the mean best position, calculated as the mean of local positions of particles: 

 ( )1 2 ,1 ,2 ,
1 1 1

1 1 1
, , , , , ,

N N N
T T T T T T T

D i i i D

i i i

M M M M C C C
N N N= = =

 = =  
 
  K K  (13) 

where N represents the population size. Thus, the updating rule of QPSO in Eq. (11) can be 

rewritten as: 

 ( )1
, , , ln 1T T

i j i j j i jC p M C r+ =  −  (14) 

In this work, we introduce the quantum mechanism into EO from QPSO. The updating rule of 

QEO is expressed as: 

 
( ) ( ) ( )
( ) ( ) ( )
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 (15) 

where Ceq,j is the j-th position of a selected candidate in the equilibrium pool, Fj and Gj are the j-th 

position of exponential term and generation rate, respectively, r4 and r5 are random numbers 

between (0, 1), and α is the contraction-expansion coefficient, which is changed with the iteration 

number T: 

 
iter

iter

M T

M
 −
=  (16) 

The performance of QEO is different from EO, because the Eq. (13) allows particles to search 

in the whole space at each iteration, while particles in EO only search in a limited space. Besides, in 

the main updating rule from Eq. (15), the global convergence of EO is enhanced in the optimization 

process, by introducing the average best position of particles. In QEO, any lagged particle will not 

be leaved out, performing more intelligent and cooperative group. 

 

4.3 Artificial bee colony (ABC) 

To enhance the performance of EO in FS problems, the updating rule of ABC is also employed 

into the SQEOABC algorithm. ABC was proposed by Karaboga [18], mimicking the scouting and 

foraging behaviors of honey bees, which was applied for solving various optimization problems 

[11][19][107]. In the basic ABC algorithm, the population is composed of honey bees, which are 

divided as employed bees, onlooker bees and scout bees, and the food source is regarded as the 

solution of optimization problems.  

The main task of employed bees is designed to find the food source. The new generated 

velocity of each employed bee is based on the neighboring area, which is expressed as: 
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 ( ), , , ,i j i j i j k jV X X X= + −  (17) 

where Vi,j represents the updating velocity in the j-th dimension of the i-th bee, Xi,j and Xk,j denote 

the position in the j-th dimension of the i-th bee and the k-th bee, respectively; φ is calculated as: 

 2 1r = −  (17) 

For onlooker bees, the information is shared. The updating rule of the onlooker bee is similar 

to the employed bee, while the only difference is that the food source of each onlooker bee is 

selected from the probability in terms of the fitness values calculated as: 

 
( ) ( )

( )
1

i

r i N

i

i

f
P

f
=

=


X

X

X

 
(19) 

where f(Xi) is the fitness value of the i-th food source. If the random number r generated from (0,1) 

is smaller than Pr(Xi), the i-th food source is selected; otherwise, repeat the same process until the 

(i+1)-th food source is selected. 

For scouter bees, when the food source is larger than the abandonment limit parameter, the 

positions are generated with a food source randomly, as shown in Eq. (1), and the older position is 

updated. 

 

4.4 Procedure of SQEOABC 

The proposed SQEOABC is consisted of EO and three strategies, the self-adaptive coefficient, 

the quantum theory, and the updating rule of ABC. In SQEOABC, the updating rule of EO is 

enhanced by the quantum EO to enhance the diversity, which improves the probability of finding 

the global optimum in the search space; The self-adaptive mechanism is used for evaluating the 

coefficient of EO to increase the exploration capacity, and the updating mechanism from ABC is 

also developed into the SQEOABC to avoid the local optimum and enhance the global convergence 

for FS problems. The procedure can be described as follows: 

Step 1: Set the parameters and optimization problem, generate population in the initialization 

phase, and construct the equilibrium pool. 

Step 2: Compute the coefficients of quantum EO and ABC, and obtain the mean positions in 

population. 

Step 3: For the quantum EO phase, calculate the exponential term (F) and generate term (G), 

and obtain the parameters and positions from the quantum theory, then update the position by Eq. 

(15); for the ABC phase, calculate φ in recruit phase and then update the position by Eq. (17). 

Step 4: Check the boundaries of the updated particles and calculate their fitness values, then 

sort the particles by the fitness values and update the equilibrium pool with four best-so-far particles 
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and their average position. 

Step 5: For the onlooker bee phase of ABC, obtain the probability of fitness and calculate φ in 

the onlooker bee phase, then update the position using Eq. (17). 

Step 6: Calculate the fitness values and update the equilibrium pool. 

Step 7: If the maximum iteration is satisfied, output the best solution; otherwise, repeat Steps 

2−6 until the T is larger than Tmax. 

The pseudo-code and flowchart of SQEOABC algorithm are described in Algorithm 2, and the 

flowchart of SQEOABC is provided in Figure 1. 

 

Fig. 1 Flowchart of SQEOABC for feature selection 

 

Algorithm 2: Pseudo-code of SQEOABC 

1: Set parameters of the proposed algorithm (N, Miter, LA, nAlpha). 

2: Initialize the population of features and construct the equilibrium pool 

3: Set T=1 

4: While T≤Tmax Do 

5:   Utilize self-adaptive mechanism to evaluate coefficient parameter tEO by Eq. (9) 

6:   Obtain the coefficient tABC = tEO 

7:   Calculate the contraction-expansion coefficient α using Eq. (16) from quantum theory 

8:   Obtain the mean position  

9:   For each particle (Ci) Do 

10:     If r>tABC 

11:       Find a candidate in the equilibrium pool as Ceq 
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12:       Compute the exponential term (F) using Eq. (4) 

13:       Compute P using Eq. (7) 

14:       Compute the generation rate (G) using Eq. (6) 

15:       Calculate the standard deviation of the double exponential distribution by Eq. (11) 

16:       Update the position by quantum EO by Eq. (15) 

17:     Else 

18:       Calculate φ in recruit phase of ABC using Eq. (18) 

19:       Update the position from recruit bee of ABC by Eq. (17) 

20:     End If 

21:   End For 

22:   For each particle (Ci) Do 

23:     Calculate the fitness value of i-th particle 

24:     If f(Ci) is smaller than the previous fitness value of i-th particle 

25:       The position and fitness value are updated to Ci and f(Ci); CABC=CABC+1 

26:   End If 

27:   If f(Ci)<f(Ceq(1)) 

28:       Ceq(1) = Ci, f(Ceq(1))=f(Ci) 

29:     Elseif f(Ci)>f(Ceq(1)) and f(Ci)<f(Ceq(2)) 

30:       Ceq(2) = Ci, f(Ceq(2))=f(Ci) 

31:     Elseif f(Ci)>f(Ceq(1)) and f(Ci)>f(Ceq(2)) and f(Ci)<f(Ceq(3)) 

32:       Ceq(3) = Ci, f(Ceq(3))=f(Ci) 

33:     Elseif f(Ci)>f(Ceq(1)) and f(Ci)>f(Ceq(2)) and f(Ci)>f(Ceq(3)) and f(Ci)<f(Ceq(4)) 

34:       Ceq(4) = Ci, f(Ceq(4))=f(Ci) 

35:     End If 

36:   End For 

37:   Obtain the average position of four candidates using Eq. (3) 

38:   Update the equilibrium pool by Eq. (2) 

39:   For each particle (Ci) Do 

40:     If i<nAlpha 

41:       Obtain the probability by Eq. (17) and select particle k using roulette wheel selection 

42:       Calculate φ in the onlooker bees 

43:       Update the position by Eq. (17) 

44:     Else 

45:       Restart babysitters by Eq. (1) 

46:     End If 

47:     Check boundary of particles 

48:     Calculate the fitness values and sort the particles 

49:     Find the best four candidates and update the equilibrium pool 

50:   End For 

51:   T=T+1 

52: End While 

53: Output final global solution 
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4.5 SQEOABC for FS problems 

In this work, the wrapper-based FS method is utilized to evaluate the fitness of solution, with 

the main task of decreasing the number of selected features, to improve the classification accuracy 

of dataset. Learning algorithm is required in the wrapper-based FS method. The k-nearest neighbor 

(kNN, k=5) is adopted in the FS method to measure the classification error, due to simplicity and 

low computational burden [65]. When solving FS problems, the proposed SQEOABC algorithm is 

employed to final the optimal solution and evaluate the accuracy of kNN classifier. Thus, the fitness 

function is defined as: 

 ( )Fit 1
S

Y

M
  =  + −  (20) 

where γS denotes the rate of classification error, |Y| is the number of selected features, |M| is the total 

number of features, λ means the weight of classification error rate and subjects to (0, 1). 

 

5 Experimental results and discussion 

In this section, the proposed SQEOABC is verified by a series of benchmark datasets with 

different types and features, and compared with several state-of-the-art metaheuristic algorithms. 

Besides, several variants of EO are also compared with SQEOABC. The performance analysis is 

based on the statistical results evaluated from all algorithms. Furthermore, a real-world feature 

selection problem of COVID-19 is also investigated to demonstrate the effectiveness of the 

proposed algorithm. 

 

5.1 Experimental setups 

The performance of SQEOABC-FS algorithm is verified by the experiment of 25 datasets from 

UCI machine learning repository (http://archive.ics.uci.edu). The 25 datasets are selected from 

various fields, including Breast Cancer, BreastEW, CongressEW, Exactly, Exactly2, HeartEW, 

Ionosphere, KrVsKpEW, Lymphography, M-of-n, PenglungEW, Sonar, SpectEW, Tic-tac-toe, Vote, 

WaveformEW, Wine, Zoo, CNAE, Connectionist Bench Data, Lung Cancer, Optical Recognition of 

Handwritten, QSAR biodegradation, SPECTFHeart and UJIIndoorLoc. Table 1 summaries the 

details of these datasets, including number of attributes, samples, classes, and the source fields. 

Each dataset has two parts: training data and testing data, and the fitness values of accuracy are 

obtained by the KNN classifier. The details of datasets can also be found at [3][46][98]. 

To measure the performance of a metaheuristic algorithm in solving FS problems, two metrics 

are included: mean accuracy, and mean fitness value. 

 

http://archive.ics.uci.edu/
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Table 1 Description of datasets 

No. Dataset Attributes Samples Classes Domain 

1 Breast Cancer 9 569 2 Biology 

2 BreastEW 30 569 2 Biology 

3 CongressEW 16 435 2 Politics 

4 Exactly 13 1000 2 Biology 

5 Exactly2 13 1000 2 Biology 

6 HeartEW 13 270 2 Biology 

7 Ionosphere 34 351 2 Electromagnetic 

8 KrVsKpEW 36 3196 2 Game 

9 Lymphography 18 148 2 Biology 

10 M-of-n 13 1000 2 Biology 

11 PenglungEW 325 73 2 Biology 

12 Sonar 60 208 2 Biology 

13 SpectEW 22 267 2 Biology 

14 Tic-tac-toe 9 958 2 Game 

15 Vote 16 300 2 Politics 

16 WaveformEW 40 5000 3 Physics 

17 Wine 13 178 3 Chemistry 

18 Zoo 16 101 7 Artificial 

19 CNAE 856 1080 9 Business 

20 Connectionist Bench Data 60 208 2 Physical 

21 Lung Cancer 56 32 3 Biology 

22 Optical Recognition of Handwritten 64 3823 10 Computer 

23 QSAR biodegradation 41 1055 2 Chemistry 

24 SPECTF Heart 44 267 2 Life 

25 UJIndoor Loc 529 21048 2 Computer 

 

(1) Mean accuracy: The mean accuracy (μAcc) denotes the classification accuracy of classifier 

when obtaining the selected features from the dataset, which can be described as the average value 

of results evaluated by several independent runs of the algorithm: 

 
1

1 M
k

Acc

k

Acc
M


=

=   (21) 

where M means the number of independent runs, and Acck is the obtained accuracy in the k-th run. 

The larger the accuracy is, the better the algorithm performs. 

    (2) Mean fitness value: The mean fitness value (μFit) represents the average value of the 

obtained fitness values among several independent runs of an algorithm: 

 
1

1 M
k

Fit

k

Fit
M


=

=   (22) 
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where Fitk is the obtained fitness value in the k-th run. The smaller the fitness value is, the better the 

algorithm performs.  

The proposed SQEOABC is compared with 11 different metaheuristic algorithms, including 

PSO [14], evolution strategy with covariance matrix adaptation (CMAES) [15], grey wolf optimizer 

(GWO) [17], salp swarm algorithm (SSA) [24], Harris hawks optimization [20], slime mould 

algorithm (SMA) [23], white shark optimizer (WSO) [26], teaching-learning-slime mould algorithm 

(TLSMA) [108], directionally driven self-regulating PSO (DDSRPSO) [109], elite evolutionary 

strategy-HHO (EESHHO) [110] and LSHADE-cnEpSin [111]. For each algorithm, the population 

size is 20, and the maximum iteration is 100. Each algorithm is performed to solve the FS problem 

with 30 independent runs, and the statistical results of two performance metrics are obtained (the 

best results are outlined in boldface). Table 2 provides the parameters of each metaheuristic 

algorithm in solving FS problems. All algorithms are run in the MATLAB 2018b, under Windows 

11, with Intel(R) Core (TM) i9-10900k CPU @ 3.70 GHz and 128 GB RAM. 

 

Table 2 Parameter settings of algorithms 

Algorithm Parameter setting 

Common Values Population size N = 20, Maximum iteration Tmax = 100 

PSO c1=2, c2=2, w=0.7298 

GWO Interval a = [2 0] 

CMAES α=2 

HHO Probability of escaping 0.5 

SSA Leader position update probability p=0.5 

SMA z=0.03 

WSO fmin=0.07, fmax=0.75, τ=4.125, a0=6.25, a1=100, a2=0.005 

TLSMA z=0.03 

DDSRPSO Probability of attack pR= 0.5 

EESHHO Interval of E0 =[−1, 1] 

LSHADE-cnEpSin μF=0.5, μCR=0.5, H=5, freq=0.5, ps=0.5, pc=0.4, Nsize=[18D, 4] 

SQEOABC a1=2, GP=0.5 

 

5.2 Comparison of SQEOABC with other metaheuristic algorithms 

This section provides the statistical results of SQEOABC and 11 compared metaheuristic 

algorithms. Table 3 summarizes the statistical results of fitness values obtained by SQEOABC and 

compared algorithms, including mean, STD and rank values, where the best results among all 

algorithms are in boldface. According to the results, SQEOABC ranks the first in 23 out of 25 

datasets (92%), which outperforms the compared algorithms. For comparison, EESHHO achieves 

the first rank in 3 datasets (12%), TLSMA in 2 datasets (8%), GWO, HHO and SMA in 1 dataset 

(4%). Based on the Friedman mean rank and final rank, SQEOABC obtains the first rank with 
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Freidman mean rank value 1.08, followed by GWO (3.6), LSHADE-cnEpSin (3.6), EESHHO 

(4.16), HHO (5.32), and other compared algorithms. Obviously, SQEOABC outperforms the 

compared metaheuristic algorithms in terms of the fitness values. 

Table 4 also gives the statistical results of accuracy values, including mean, STD and rank 

values. From the results, SQEOABC achieves the best in 24 out of 25 datasets (96%), while 

EESHHO ranks the first in 4 datasets (4%), HHO and LSHADE-cnEpSin in 3 datasets (12%), 

GWO in 2 datasets (8%). It should be noted that most compared algorithms achieve the best 

accuracy solutions in the UJIIndoorLoc dataset, which is consistent to the results of [3]. This dataset 

has 523 attributes, where 520 attributes are equal to the same values (100) except for a few outliers, 

so most metaheuristic algorithms are easy to obtain the optimal features. The results of Friedman 

mean rank and final rank values indicate that SQEOABC obtains the first rank with Freidman mean 

rank value 1.16, followed by LSHADE-cnEpSin (3.16), GWO (3.68), EESHHO (3.88), HHO (5.0), 

and other compared algorithms. Thus, SQEOABC can provide good performance in the 

classification of accuracy, outperforming the compared metaheuristic algorithms. 
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Table 3 The fitness values evaluated by SQEOABC and compared algorithms 

No. Datasets Algo PSO CMAES GWO HHO SSA SMA WSO TLSMA DDSRPSO EESHHO 
LSHADE- 

cnEpSin 
SQEOABC 

1 BreastCancer Mean 0.03239 0.03192 0.03075 0.02986 0.03268 0.03942 0.03124 0.03501 0.03161 0.03057 0.03061 0.02956 

STD 0.00366 0.00328 0.00169 0.00050 0.00293 0.00568 0.00223 0.00413 0.00222 0.00144 0.00153 0.00031 

Rank 9 8 5 2 10 12 6 11 7 3 4 1 

2 BreastEW Mean 0.07116 0.07099 0.06763 0.06613 0.07144 0.07637 0.07008 0.06977 0.06969 0.06869 0.06786 0.06387 

STD 0.00272 0.00644 0.00336 0.00379 0.00276 0.00359 0.00257 0.00344 0.00227 0.00295 0.00299 0.00351 

Rank 10 9 3 2 11 12 8 7 6 5 4 1 

3 CongressEW Mean 0.04199 0.03934 0.03824 0.03716 0.04422 0.04566 0.03965 0.04145 0.03906 0.03857 0.03773 0.03478 

STD 0.00506 0.00426 0.00275 0.00341 0.00389 0.00186 0.00412 0.00377 0.00458 0.00311 0.00391 0.00262 

Rank 10 7 4 2 11 12 8 9 6 5 3 1 

4 Exactly Mean 0.05525 0.05143 0.02475 0.07633 0.06715 0.27138 0.02402 0.16720 0.02831 0.00462 0.00533 0.00462 

STD 0.10170 0.10411 0.07663 0.12960 0.08713 0.05409 0.05569 0.14278 0.04938 1.76E-18 0.00271 1.76E-18 

Rank 7 6 4 9 8 11 3 10 5 1 2 1 

5 Exactly2 Mean 0.27986 0.28270 0.27258 0.23441 0.27905 0.23441 0.27761 0.23441 0.27868 0.23441 0.27547 0.25691 

STD 0.01516 0.01451 0.01619 2.82E-17 0.01756 2.82E-17 0.01309 2.82E-17 0.00572 2.82E-17 0.01195 0.02137 

Rank 8 9 3 1 7 1 5 1 6 1 4 2 

6 HeartEW Mean 0.20961 0.20934 0.20384 0.20368 0.21753 0.23485 0.20773 0.22399 0.20993 0.20764 0.20451 0.19521 

STD 0.01025 0.00840 0.00953 0.00698 0.01773 0.00793 0.00824 0.01327 0.00931 0.00782 0.00773 0.00404 

Rank 8 7 3 2 10 12 6 11 9 5 4 1 

7 Ionosphere Mean 0.09882 0.08848 0.06978 0.08496 0.11781 0.11722 0.10186 0.07598 0.09917 0.07600 0.08407 0.05577 

STD 0.01159 0.01518 0.01206 0.01059 0.00824 0.01376 0.01224 0.01554 0.00948 0.01560 0.01367 0.00695 

Rank 8 7 2 6 12 11 10 3 9 4 5 1 

8 KrVsKpEW Mean 0.03837 0.02663 0.03149 0.03288 0.04721 0.08745 0.03702 0.03390 0.02993 0.02717 0.02679 0.02265 

STD 0.01048 0.00529 0.00930 0.00588 0.00983 0.02045 0.00762 0.00822 0.00544 0.00639 0.00308 0.00068 

Rank 10 2 6 7 11 12 9 8 5 4 3 1 

9 Lymphography Mean 0.15034 0.14999 0.13241 0.13873 0.14986 0.18545 0.13786 0.14754 0.13750 0.14091 0.12948 0.11816 
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STD 0.01835 0.01853 0.01682 0.01812 0.01954 0.01890 0.01234 0.01804 0.01880 0.01790 0.01496 0.00721 

Rank 11 10 3 6 9 12 5 8 4 7 2 1 

10 M-of-n Mean 0.01986 0.00507 0.00462 0.00464 0.03704 0.13137 0.00735 0.00556 0.00817 0.00462 0.00467 0.00462 

STD 0.04118 0.00209 1.76E-18 0.00014 0.04621 0.04530 0.00671 0.00461 0.01306 1.76E-18 0.00020 1.76E-18 

Rank 8 4 1 2 9 10 6 5 7 1 3 1 

11 PenglungEW Mean 0.09530 0.04432 0.01625 0.07320 0.10712 0.12509 0.09529 0.03549 0.08708 0.03733 0.06930 0.00620 

STD 0.02395 0.02773 0.01354 0.02132 0.01226 0.01780 0.01496 0.01877 0.01956 0.02384 0.02065 0.01085 

Rank 10 5 2 7 11 12 9 3 8 4 6 1 

12 Sonar Mean 0.13476 0.11636 0.10602 0.13532 0.15968 0.19645 0.13602 0.11695 0.12974 0.12416 0.11445 0.09543 

STD 0.01697 0.01430 0.01686 0.01815 0.02117 0.01373 0.01581 0.01776 0.01553 0.01669 0.01487 0.01376 

Rank 8 4 2 9 11 12 10 5 7 6 3 1 

13 SpectEW Mean 0.14551 0.14069 0.13705 0.13995 0.15842 0.17591 0.14216 0.15030 0.14151 0.13878 0.13356 0.12820 

STD 0.01247 0.01309 0.00788 0.00697 0.00978 0.01070 0.00968 0.01673 0.01206 0.00870 0.00692 0.00320 

Rank 9 6 3 5 11 12 8 10 7 4 2 1 

14 Tic-tac-toe Mean 0.22693 0.22435 0.22416 0.22292 0.23381 0.24935 0.22419 0.22514 0.22479 0.22548 0.22262 0.22161 

STD 0.00785 0.00329 0.00558 0.00152 0.01284 0.01110 0.00404 0.00707 0.00779 0.00548 0.00145 5.65E-17 

Rank 10 6 4 3 11 12 5 8 7 9 2 1 

15 Vote Mean 0.03174 0.03222 0.02817 0.02724 0.03377 0.03682 0.03096 0.03173 0.03094 0.02920 0.02785 0.02298 

STD 0.00494 0.00384 0.00432 0.00467 0.00617 0.00356 0.00462 0.00497 0.00432 0.00454 0.00463 0.00208 

Rank 9 10 4 2 11 12 7 8 6 5 3 1 

16 WaveformEW Mean 0.21615 0.20223 0.20283 0.21685 0.22812 0.25015 0.21612 0.21608 0.21149 0.20945 0.20524 0.19647 

STD 0.00732 0.00469 0.00560 0.00654 0.00882 0.00399 0.00721 0.00686 0.00654 0.00696 0.00521 0.00176 

Rank 9 2 3 10 11 12 8 7 6 5 4 1 

17 Wine Mean 0.03288 0.03389 0.03109 0.02883 0.03929 0.06926 0.03180 0.04063 0.03258 0.02888 0.03016 0.02686 

STD 0.01055 0.01133 0.00493 0.00479 0.00903 0.01763 0.00702 0.01196 0.00771 0.00563 0.00607 1.41E-17 

Rank 8 9 5 2 10 12 6 11 7 3 4 1 

18 Zoo Mean 0.04752 0.04654 0.04406 0.04301 0.04478 0.06008 0.04320 0.04366 0.04389 0.04295 0.04287 0.04257 

STD 0.00804 0.00895 0.00480 0.00052 0.00472 0.01526 0.00046 0.00326 0.00335 0.00031 0.00036 3.53E-17 
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Rank 11 10 8 4 9 12 5 6 7 3 2 1 

19 CNAE Mean 0.15513 0.09969 0.14405 0.16052 0.21264 0.18286 0.18234 0.14052 0.12785 0.11270 0.12059 0.08319 

STD 0.01838 0.01688 0.01595 0.01377 0.02517 5.65E-17 0.02607 0.01333 0.01332 0.01339 0.01782 0.00714 

Rank 8 2 7 9 12 11 10 6 5 3 4 1 

20 Connectionist Bench 

Data 

Mean 0.09947 0.07440 0.06905 0.09930 0.12499 0.15363 0.09904 0.08566 0.09567 0.08998 0.07195 0.05305 

STD 0.02288 0.01353 0.01311 0.01534 0.01480 0.01856 0.01792 0.01782 0.01947 0.01918 0.01626 0.01062 

Rank 10 4 2 9 11 12 8 5 7 6 3 1 

21 Lung Cancer Mean 0.15868 0.13384 0.10633 0.10993 0.19894 0.23795 0.15045 0.18365 0.14662 0.11503 0.12223 0.05524 

STD 0.06231 0.04535 0.05822 0.04929 0.05320 0.05503 0.04965 0.05509 0.05577 0.06213 0.04915 0.04496 

Rank 9 6 2 3 11 12 8 10 7 4 5 1 

22 Optical Recognition 

of Handwritten 

Mean 0.03451 0.02514 0.02931 0.03295 0.04462 0.04111 0.03514 0.03041 0.03071 0.02634 0.02543 0.02123 

STD 0.00586 0.00327 0.00586 0.00352 0.00823 7.06E-18 0.00509 0.00307 0.00330 0.00391 0.00396 0.00217 

Rank 9 2 5 8 12 11 10 6 7 4 3 1 

23 QSAR 

biodegradation 

Mean 0.15062 0.14184 0.13978 0.15140 0.16505 0.18651 0.15243 0.15001 0.14716 0.14304 0.14161 0.13157 

STD 0.00761 0.00848 0.00841 0.00690 0.01014 0.01023 0.00758 0.00916 0.00782 0.01015 0.00652 0.00616 

Rank 8 4 2 9 11 12 10 7 6 5 3 1 

24 SPECT Heart Mean 0.05734 0.04699 0.03009 0.06630 0.10180 0.15936 0.07315 0.05230 0.07031 0.04319 0.04157 0.01474 

STD 0.02598 0.02633 0.01936 0.02362 0.03051 0.03005 0.02179 0.02379 0.03006 0.02472 0.01932 0.01695 

Rank 7 5 2 8 11 12 10 6 9 4 3 1 

25 UJIIndoorLoc Mean 0.00364 0.00260 0.00055 0.00092 0.00447 0.00048 0.00431 0.00002 0.00338 0.00021 0.00342 0.00005 

STD 0.00025 0.00022 0.00016 0.00104 0.00014 0.00141 0.00018 3.45E-21 0.00046 0.00051 0.00016 0.00008 

Rank 10 7 5 6 12 4 11 1 8 3 9 2 

Friedman mean rank 8.96 6.04 3.6 5.32 10.52 11 7.64 6.88 6.72 4.16 3.6 1.08 

Final rank 9 5 2 4 10 11 8 7 6 3 2 1 
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Table 4 The accuracy values evaluated by SQEOABC and state-of-the-art algorithms 

No. Datasets Algo PSO CMAES GWO HHO SSA SMA WSO TLSMA DDSRPSO EESHHO 
LSHADE- 

cnEpSin 
SQEOABC 

1 BreastCancer Mean 0.97210 0.97257 0.97362 0.97429 0.97238 0.96486 0.96762 0.96848 0.97343 0.97390 0.97400 0.97429 

STD 0.00349 0.00341 0.00144 0.00000 0.00274 0.00601 0.00413 0.00400 0.00153 0.00124 0.00087 3.39E-16 

Rank 9 7 5 2 8 12 11 10 6 4 3 1 

2 BreastEW Mean 0.93087 0.93063 0.93357 0.93627 0.93181 0.92653 0.93122 0.93110 0.93239 0.93239 0.93357 0.93721 

STD 0.00285 0.00635 0.00343 0.00396 0.00285 0.00411 0.00201 0.00366 0.00234 0.00312 0.00303 0.00359 

Rank 10 11 4 2 7 12 8 9 5 6 3 1 

3 CongressEW Mean 0.96083 0.96298 0.96375 0.96528 0.95868 0.95499 0.95745 0.95975 0.96375 0.96390 0.96467 0.96790 

STD 0.00510 0.00506 0.00337 0.00396 0.00428 0.00262 0.00537 0.00452 0.00465 0.00344 0.00442 0.00331 

Rank 8 7 6 2 10 12 11 9 5 4 3 1 

4 Exactly Mean 0.94880 0.95253 0.97953 0.92687 0.93753 0.72987 0.90753 0.83453 0.97667 1.00000 0.99933 1.00000 

STD 0.10395 0.10611 0.07790 0.13239 0.08851 0.05708 0.09907 0.14590 0.04910 0.00000 0.00254 0.00000 

Rank 7 6 4 9 8 12 10 11 5 2 3 1 

5 Exactly2 Mean 0.72387 0.72040 0.73013 0.76400 0.72347 0.76400 0.71367 0.76400 0.72593 0.76400 0.72807 0.74467 

STD 0.01448 0.01413 0.01437 0.00000 0.01654 0.00000 0.01734 0.00000 0.00564 0.00000 0.01072 0.01840 

Rank 9 11 6 4 10 3 12 2 8 1 7 5 

6 HeartEW Mean 0.79185 0.79210 0.79728 0.79753 0.78395 0.76420 0.77210 0.77605 0.79160 0.79358 0.79679 0.80593 

STD 0.01017 0.00824 0.00982 0.00710 0.01784 0.00872 0.01758 0.01438 0.00927 0.00796 0.00770 0.00408 

Rank 7 6 3 2 9 12 11 10 8 5 4 1 

7 Ionosphere Mean 0.90379 0.91383 0.93125 0.91610 0.88504 0.88277 0.88504 0.92443 0.90360 0.92462 0.91780 0.94508 

STD 0.01126 0.01455 0.01188 0.01083 0.00799 0.01388 0.01209 0.01580 0.00889 0.01572 0.01341 0.00689 

Rank 8 7 2 6 11 12 10 4 9 3 5 1 

8 KrVsKpEW Mean 0.96648 0.97812 0.97174 0.97222 0.95788 0.91756 0.96195 0.97111 0.97572 0.97797 0.97837 0.98166 

STD 0.01084 0.00561 0.00944 0.00605 0.01008 0.01974 0.01035 0.00796 0.00545 0.00647 0.00295 0.00112 

Rank 9 3 7 6 11 12 10 8 5 4 2 1 

9 Lymphography Mean 0.85270 0.85315 0.87027 0.86396 0.85315 0.81622 0.83874 0.85450 0.86577 0.86171 0.87342 0.88468 
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STD 0.01856 0.01869 0.01760 0.01876 0.01999 0.01931 0.01699 0.01901 0.01909 0.01833 0.01526 0.00772 

Rank 10 9 3 5 8 12 11 7 4 6 2 1 

10 M-of-n Mean 0.98493 0.99967 1.00000 1.00000 0.96833 0.87473 0.96147 0.99920 0.99667 1.00000 1.00000 1.00000 

STD 0.04131 0.00183 0.00000 0.00000 0.04648 0.04535 0.05575 0.00438 0.01273 0.00000 0.00000 0.00000 

Rank 5 2 1 1 6 8 7 3 4 1 1 1 

11 PenglungEW Mean 0.90721 0.95766 0.98468 0.92793 0.89640 0.87477 0.89910 0.96486 0.91532 0.96306 0.93333 0.99459 

STD 0.02426 0.02811 0.01362 0.02168 0.01246 0.01807 0.01576 0.01898 0.01974 0.02405 0.02098 0.01100 

Rank 9 5 2 7 11 12 10 3 8 4 6 1 

12 Sonar Mean 0.86795 0.88590 0.89519 0.86699 0.84327 0.80513 0.84840 0.88397 0.87308 0.87692 0.88814 0.90641 

STD 0.01693 0.01445 0.01700 0.01822 0.02145 0.01404 0.01725 0.01802 0.01565 0.01683 0.01483 0.01358 

Rank 8 4 2 9 11 12 10 5 7 6 3 1 

13 SpectEW Mean 0.85697 0.86219 0.86468 0.86219 0.84453 0.82711 0.84353 0.85149 0.86119 0.86318 0.86891 0.87413 

STD 0.01256 0.01296 0.00825 0.00726 0.01020 0.01110 0.01262 0.01701 0.01218 0.00905 0.00698 0.00379 

Rank 8 5 3 6 10 12 11 9 7 4 2 1 

14 Tic-tac-toe Mean 0.77711 0.77933 0.77975 0.78107 0.77056 0.75651 0.75581 0.77905 0.77933 0.77815 0.78149 0.78288 

STD 0.00761 0.00343 0.00572 0.00210 0.01274 0.00988 0.01795 0.00707 0.00804 0.00577 0.00200 0.00000 

Rank 9 6 4 3 10 11 12 7 5 8 2 1 

15 Vote Mean 0.97089 0.97044 0.97422 0.97511 0.96911 0.96422 0.96244 0.96978 0.97178 0.97311 0.97467 0.97933 

STD 0.00510 0.00417 0.00454 0.00493 0.00567 0.00446 0.00689 0.00546 0.00453 0.00479 0.00476 0.00203 

Rank 7 8 4 2 10 11 12 9 6 5 3 1 

16 WaveformEW Mean 0.78719 0.80109 0.79927 0.78739 0.77544 0.75627 0.77829 0.78864 0.79301 0.79480 0.79808 0.80665 

STD 0.00750 0.00457 0.00574 0.00645 0.00916 0.00307 0.00837 0.00614 0.00593 0.00646 0.00527 0.00163 

Rank 9 2 3 8 11 12 10 7 6 5 4 1 

17 Wine Mean 0.97116 0.97004 0.97266 0.97528 0.96479 0.93333 0.95655 0.96217 0.97191 0.97528 0.97378 0.97753 

STD 0.01091 0.01193 0.00566 0.00544 0.00921 0.01793 0.01836 0.01269 0.00821 0.00619 0.00681 3.39E-16 

Rank 7 8 5 3 9 12 11 10 6 2 4 1 

18 Zoo Mean 0.95621 0.95752 0.95948 0.96078 0.95948 0.94510 0.95686 0.96013 0.96013 0.96078 0.96078 0.96078 

STD 8.43E-03 0.00904 0.00497 0 0.00497 0.01579 0.01080 0.00358 0.00358 0 0 0 
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Rank 8 6 5 1 4 9 7 3 2 1 1 1 

19 CNAE Mean 0.84797 0.90406 0.85670 0.84550 0.79030 0.82540 0.80423 0.86631 0.87910 0.89330 0.88298 0.92205 

STD 0.01859 0.01712 0.01613 0.01433 0.02540 0.00000 0.03183 0.01314 0.01307 0.01308 0.01806 0.00694 

Rank 8 2 7 9 12 10 11 6 5 3 4 1 

20 Connectionist Bench 

Data 

Mean 0.90320 0.92785 0.93242 0.90274 0.87808 0.84749 0.88584 0.91553 0.90731 0.91096 0.93059 0.94886 

STD 0.02302 0.01390 0.01343 0.01541 0.01498 0.01825 0.02138 0.01802 0.01927 0.01929 0.01646 0.01075 

Rank 8 4 2 9 11 12 10 5 7 6 3 1 

21 Lung Cancer Mean 0.84242 0.86667 0.89394 0.89091 0.80303 0.76061 0.81212 0.81515 0.85455 0.88485 0.87879 0.94545 

STD 0.06286 0.04613 0.05888 0.05008 0.05383 0.05590 0.04735 0.05590 0.05650 0.06286 0.04970 0.04530 

Rank 8 6 2 3 11 12 10 9 7 4 5 1 

22 Optical Recognition 

of Handwritten 

Mean 0.97029 0.97933 0.97457 0.97390 0.96048 0.96857 0.96390 0.97667 0.97638 0.97933 0.97952 0.98381 

STD 0.00603 0.00333 0.00602 0.00342 0.00843 0.00000 0.00694 0.00271 0.00290 0.00365 0.00405 0.00217 

Rank 9 4 7 8 12 10 11 5 6 3 2 1 

23 QSAR 

biodegradation 

Mean 0.85216 0.86072 0.86189 0.85108 0.83811 0.81568 0.84405 0.85144 0.85595 0.85856 0.86090 0.87054 

STD 0.00752 0.00839 0.00844 0.00686 0.01012 0.01049 0.00934 0.00954 0.00775 0.01037 0.00661 0.00604 

Rank 7 4 2 9 11 12 10 8 6 5 3 1 

24 SPECT Heart Mean 0.94524 0.95476 0.97143 0.93571 0.90119 0.84048 0.90595 0.94881 0.93214 0.95833 0.96071 0.98690 

STD 0.02608 0.02642 0.01967 0.02373 0.03066 0.03073 0.02566 0.02425 0.03017 0.02496 0.01956 0.01750 

Rank 7 5 2 8 11 12 10 6 9 4 3 1 

25 UJIIndoorLoc Mean 1.00000 1.00000 1.00000 1.00000 1.00000 0.99990 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

STD 0.00000 0.00000 0.00000 0.00000 0.00000 0.00056 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Rank 1 1 1 1 1 2 1 1 1 1 1 1 

Friedman mean rank 7.8 5.56 3.68 5 9.32 10.72 9.88 6.64 5.88 3.88 3.16 1.16 

Final rank 9 6 3 5 10 12 11 8 7 4 2 1 
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To investigate the data distribution of quartiles from the algorithms, the boxplot analysis is 

implemented. When the median value is larger or the spread value is smaller, the metaheuristic 

algorithm has better performance. Fig. 2 summarizes the boxplots of fitness accuracy for 

SQEOABC and its competitors, including PSO, CMAES, GWO, HHO, SSA and TLSMA. X-axis 

represents the algorithms, and y-axis denotes the accuracy values. It is observed that SQEOABC 

has higher boxplots than that of the competitors with the highest median in the tested datasets, such 

as Breast Cancer, BreastEW, Exactly, Ionosphere, KrVsKpEW, Lymphography, SpectEW, 

WaveformEW, and so on. In comparison, the compared algorithms also provide competitive results 

in some datasets, such as Breast Cancer (GWO, HHO), Exactly (GWO), Zoo (PSO, CMAES, GWO, 

HHO, SSA, TLSMA). In all, SQEOABC outperforms the compared algorithms in the majority of 

the datasets. 

Fig. 3 summarizes the convergence curves of accuracy values obtained by SQEOABC and 

state-of-the-art algorithms. X-axis and Y-axis denote the values of accuracy and iteration, 

respectively. Based on the convergence behaviors, SQEOABC has fast convergence in most of the 

datasets such as BreastEW, CongressEW, HeartEW, Ionosphere, Lymphography, SpectEW, etc., 

which outperforms competitors including PSO, CMAES, GWO, HHO, SSA, SMA, WSO, TLSMA, 

DDSRPSO, EESHHO, and LSHADE-cnEpSin. In comparison, several metaheuristic algorithms 

also provide competitive convergence in some datasets, such as Breast Cancer, KrVsKpEW, but the 

compared algorithms cannot obtain better convergence accuracy curves in the majority of datasets. 

The convergence behaviors of accuracy demonstrate the effectiveness of SQEOABC. 
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(a) Breast Cancer 

 

(b) BreastEW 
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(e) HeartEW 

 

(f) Ionosphere 
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(g) KrVsKpEW 

 

(h) Lymphography 

 

(i) Sonar 

 

(j) SpectEW 

 

(k) WaveformEW 

 

(l) Connectionist Bench Data 

Fig. 2 Boxplots by SQEOABC and state-of-the-art algorithms 
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(g) KrVsKpEW 

 

(h) Lymphography 

 

(i) Sonar 

 

(j) SpectEW 

 

(k) WaveformEW 

 

(l) Connectionist Bench Data 

Fig. 3 Convergence curves of accuracy values by SQEOABC and state-of-the-art algorithms 
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5.3 Comparison of SQEOABC with variants of EO 

To further investigate the influence of different operators in the proposed SQEOABC 

algorithm, several variants of EO are also compared in the FS problems, including SEO 

(self-adaptive EO), QEO (quantum EO), EOABC (EO with artificial bee colony), SQEO 

(Self-adaptive quantum EO). Besides, an advanced EO algorithm called comprehensive learning 

Harris hawks-equilibrium optimizer (CLHHEO) [13] is also considered for comparison. The 

algorithmic parameters of EO and variants are the same as Table 2. 

Table 5 summarizes the fitness values of the standard EO and variants of EO. Based on the 

results, SQEOABC achieves the first rank in 23 out of 25 datasets (92%), except for the datasets of 

Wine and UJIIndoorLoc. For comparison, the basic EO and its variants also perform well on some 

datasets, where EO ranks the first in 3 datasets (12%), SEO in 2 datasets (8%), CLHHEO in 4 

datasets (16%), EOABC and SQEO in 6 datasets (24%), QEO in 7 datasets (28%). However, the 

variants of EO still cannot provide better results than the proposed SQEOABC algorithm. The 

effects of different operators on the modified EO are also discussed. The QEO has better or equal 

fitness values than that of EO in 18 out of 25 datasets (72%), illustrating the effectiveness of the 

quantum operator. Besides, EOABC has better or equal fitness values than EO in 22 out of 25 

datasets (88%), SQEO outperforms or equals to EO in 24 out of 25 datasets (96%), demonstrating 

the effectiveness of operators of self-adaptive mechanism and artificial bee colony. It should be 

noted that, the self-adaptive EO cannot achieve better solutions than EO, but the SQEO has 

obviously advantages than EO, indicating that the ensemble strategies are more useful in the 

modification of the basic EO algorithm. The numbers of rank are also provided in Table 5, 

illustrating that SQEOABC has the best Friedman mean rank (1.2), which is better than that of 

SQEO (2.44), EOABC (2.56), QEO (3.48), CLHHEO (4.4), EO (4.48) and SEO (5.04). The above 

experimental results indicate that SQEOABC outperforms the variants of EO, and the ensemble 

strategies are more effective than the single operator into EO in solving FS problems. 

The statistical results of accuracy values evaluated by SQEOABC and variants of EO are 

provided in Table 6, showing that SQEOABC still has very good performance and ranks the first in 

23 out of 25 datasets (92%). In comparison, EO, SEO, QEO, EOABC, SQEO, CLHHEO achieve 

the first rank in 4 (16%), 3 (12%), 8 (32%), 9 (36%), 7 (28%), 5 (20%) out of 25 datasets, 

respectively. It should be mentioned that, similarly to the fitness values, the ensemble strategies are 

effective on EO to obtain the accuracy of classification, where EOABC and SQEO has better or 

equal solutions than EO in 23 (92%) and 25 (100%) out of 25 datasets, respectively. Moreover, 

SQEOABC ranks the first with the Friedman mean rank (1.36), followed by EOABC (2.28), SQEO 

(2.28), QEO (3.48), CLHHEO (4.12), EO (4.36) and SEO (4.72). The results indicate that the three 
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enhanced operators from self-adaptive mechanism, quantum theory, and artificial bee colony 

employed in EO can improve the accuracy of classification in FS problems. 

 

Table 5 The fitness values evaluated by SQEOABC and EO variants 

No. Datasets Algo EO SEO QEO EOABC SQEO CLHHEO SQEOABC 

1 BreastCancer Mean 0.03694 0.03694 0.03694 0.03694 0.03694 0.03724 0.03694  

STD 2.82E-17 2.82E-17 2.82E-17 2.82E-17 2.82E-17 0.00079 2.82E-17 

Rank 1 1 1 1 1 2 1 

2 BreastEW Mean 0.05268 0.05375 0.05047 0.05049 0.05060 0.05101 0.05047  

STD 0.00277 0.00366 1.41E-17 0.00008 0.00064 0.00128 1.41E-17 

Rank 5 6 1 2 3 4 1 

3 CongressEW Mean 0.04263 0.04328 0.03752 0.03649 0.03824 0.03924 0.03641  

STD 0.00358 0.00302 0.00225 0.00122 0.00326 0.00314 0.00128  

Rank 6 7 3 2 4 5 1 

4 Exactly Mean 0.01283 0.07047 0.00462 0.00462 0.00462 0.00462 0.00462  

STD 0.04497 0.12213 1.76E-18 1.76E-18 1.76E-18 1.76E-18 1.76E-18 

Rank 2 3 1 1 1 1 1 

5 Exactly2 Mean 0.24233 0.24233 0.24233 0.24233 0.24233 0.24233 0.24233  

STD 1.13E-16 1.13E-16 1.13E-16 1.13E-16 1.13E-16 1.13E-16 1.13E-16 

Rank 1 1 1 1 1 1 1 

6 HeartEW Mean 0.16950 0.17195 0.16650 0.16612 0.16662 0.16845 0.16595  

STD 0.00320 0.00744 0.00154 0.00092 0.00174 0.00277 2.82E-17 

Rank 6 7 3 2 4 5 1 

7 Ionosphere Mean 0.05802 0.05701 0.05598 0.05658 0.05553 0.06245 0.05209  

STD 0.00596 0.00778 0.00735 0.00566 0.00667 0.00779 0.00498  

Rank 6 5 3 4 2 7 1 

8 KrVsKpEW Mean 0.02838 0.02936 0.02467 0.02346 0.02315 0.02467 0.02215  

STD 0.00855 0.00796 0.00183 0.00104 0.00098 0.00167 0.00068  

Rank 6 7 5 3 2 4 1 

9 Lymphography Mean 0.13453 0.13424 0.11775 0.11707 0.11967 0.12719 0.11562  

STD 0.01527 0.01492 0.00804 0.00766 0.00934 0.01098 0.00651  

Rank 7 6 3 2 4 5 1 

10 M-of-n Mean 0.00462 0.00926 0.00462 0.00462 0.00462 0.00462 0.00462  

STD 1.76E-18 0.02545 1.76E-18 1.76E-18 1.76E-18 1.76E-18 1.76E-18 

Rank 1 2 1 1 1 1 1 

11 PenglungEW Mean 0.00792 0.00804 0.02038 0.01442 0.00710 0.00996 0.00624  

STD 0.01200 0.01202 0.01206 0.01351 0.01140 0.01286 0.01087  

Rank 3 4 7 6 2 5 1 

12 Sonar Mean 0.06832 0.07290 0.08185 0.05993 0.06100 0.07613 0.04575  

STD 0.01632 0.01301 0.01277 0.01411 0.01421 0.01526 0.01340  

Rank 4 5 7 2 3 6 1 

13 SpectEW Mean 0.15208 0.15445 0.14891 0.14807 0.15100 0.15275 0.14564  
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STD 0.00563 0.01095 0.00730 0.00541 0.00603 0.00622 0.00399  

Rank 5 7 3 2 4 6 1 

14 Tic-tac-toe Mean 0.21631 0.21717 0.21541 0.21541 0.21541 0.21541 0.21541  

STD 0.00403 0.00604 1.13E-16 1.13E-16 1.13E-16 1.13E-16 1.13E-16 

Rank 2 3 1 1 1 1 1 

15 Vote Mean 0.05099 0.04995 0.04895 0.04957 0.04957 0.05025 0.04850  

STD 0.00471 0.00368 0.00195 0.00236 0.00285 0.00362 0.00132  

Rank 7 5 2 3 4 6 1 

16 WaveformEW Mean 0.19685 0.19936 0.20235 0.19359 0.19603 0.20286 0.19055  

STD 0.00428 0.00595 0.00352 0.00377 0.00404 0.00555 0.00310  

Rank 4 5 6 2 3 7 1 

17 Wine Mean 0.04162 0.04377 0.03799 0.03863 0.03801 0.04086 0.03828  

STD 0.00453 0.00450 0.00000 0.00243 0.00014 0.00442 0.00161  

Rank 6 7 1 4 2 5 3 

18 Zoo Mean 0.01590 0.01638 0.00502 0.00500 0.00801 0.01045 0.00500  

STD 0.01019 0.00877 0.00011 1.76E-18 0.00684 0.00847 1.76E-18 

Rank 5 6 2 1 3 4 1 

19 CNAE Mean 0.12538 0.14050 0.13326 0.11037 0.10120 0.11678 0.07942  

STD 0.01243 0.01205 0.00967 0.01276 0.01228 0.01595 0.00666  

Rank 5 7 6 3 2 4 1 

20 Connectionist 

Bench Data 

Mean 0.06079 0.06652 0.07565 0.05942 0.05533 0.07037 0.04802  

STD 0.01923 0.02328 0.01575 0.01500 0.01422 0.01607 0.01293  

Rank 4 5 7 3 2 6 1 

21 Lung Cancer Mean 0.12404 0.11220 0.07983 0.03532 0.05277 0.10336 0.03167  

STD 0.06855 0.07707 0.04517 0.04411 0.04519 0.05635 0.04293  

Rank 7 6 4 2 3 5 1 

22 Optical Recognition 

of Handwritten 

Mean 0.03228 0.03362 0.03573 0.02978 0.03013 0.03137 0.02705  

STD 0.00342 0.00403 0.00406 0.00352 0.00257 0.00356 0.00256  

Rank 5 6 7 2 3 4 1 

23 QSAR 

biodegradation 

Mean 0.14385 0.14338 0.14194 0.13557 0.13663 0.14140 0.13290  

STD 0.00730 0.00655 0.00604 0.00418 0.00509 0.00531 0.00486  

Rank 7 6 5 2 3 4 1 

24 SPECT Heart Mean 0.09184 0.09182 0.09750 0.09540 0.09047 0.10826 0.07564  

STD 0.03548 0.04105 0.03459 0.03280 0.03306 0.05285 0.02685  

Rank 4 3 6 5 2 7 1 

25 UJIIndoorLoc Mean 0.00003 0.00009 0.00002 0.00145 0.00002 0.00006 0.00005  

STD 0.00002 0.00008 0.00000 0.00031 0.00000 0.00020 0.00010  

Rank 2 5 1 6 1 4 3 

Friedman mean rank 4.48 5.04 3.48 2.56 2.44 4.4 1.2 

Final rank 6 7 4 3 2 5 1 
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Table 6 The accuracy values evaluated by SQEOABC and EO variants 

No. Datasets Algo EO SEO QEO EOABC SQEO CLHHEO SQEOABC 

1 BreastCancer Mean 0.96571 0.96571 0.96571 0.96571 0.96571 0.96571 0.96571  

STD 3.39E-16 3.39E-16 3.39E-16 3.39E-16 3.39E-16 3.39E-16 3.39E-16 

Rank 1 1 1 1 1 1 1 

2 BreastEW Mean 0.94836 0.94730 0.95070 0.95070 0.95059 0.95023 0.95070  

STD 0.00297 0.00387 3.39E-16 3.39E-16 0.00064 0.00122 3.39E-16 

Rank 4 5 1 1 2 3 1 

3 CongressEW Mean 0.95991 0.95914 0.96621 0.96743 0.96528 0.96436 0.96728  

STD 0.00439 0.00378 0.00279 0.00117 0.00396 0.00362 0.00141  

Rank 6 7 3 1 4 5 2 

4 Exactly Mean 0.99173 0.93353 1.00000 1.00000 1.00000 1.00000 1.00000  

STD 0.04528 0.12330 0 0 0 0 0  

Rank 2 3 1 1 1 1 1 

5 Exactly2 Mean 0.75600 0.75600 0.75600 0.75600 0.75600 0.75600 0.75600  

STD 1.13E-16 1.13E-16 1.13E-16 1.13E-16 1.13E-16 1.13E-16 1.13E-16 

Rank 1 1 1 1 1 1 1 

6 HeartEW Mean 0.83210 0.82963 0.83630 0.83679 0.83605 0.83358 0.83704  

STD 0.00405 0.00778 0.00226 0.00135 0.00256 0.00376 5.65E-16 

Rank 6 7 3 2 4 5 1 

7 Ionosphere Mean 0.94318 0.94413 0.94527 0.94545 0.94583 0.93864 0.94962  

STD 0.00615 0.00791 0.00753 0.00550 0.00696 0.00795 0.00489  

Rank 6 5 4 3 2 7 1 

8 KrVsKpEW Mean 0.97495 0.97422 0.98085 0.98073 0.98125 0.97970 0.98290  

STD 0.00889 0.00828 0.00248 0.00161 0.00178 0.00188 0.00165  

Rank 6 7 3 4 2 5 1 

9 Lymphography Mean 0.86757 0.86757 0.88514 0.88604 0.88333 0.87523 0.88739  

STD 0.01603 0.01563 0.00851 0.00768 0.00971 0.01160 0.00648  

Rank 7 6 3 2 4 5 1 

10 M-of-n Mean 1 0.99533 1 1 1 1 1 

STD 0 0.02556 0 0 0 0 0  

Rank 1 2 1 1 1 1 1 

11 PenglungEW Mean 0.99279 0.99279 0.98108 0.98739 0.99369 0.99099 0.99459  

STD 0.01216 0.01216 0.01260 0.01371 0.01163 0.01296 0.01100  

Rank 4 3 7 6 2 5 1 

12 Sonar Mean 0.93301 0.92853 0.92115 0.94295 0.94135 0.92564 0.95673  

STD 0.01665 0.01329 0.01273 0.01427 0.01458 0.01535 0.01354  

Rank 4 5 7 2 3 6 1 

13 SpectEW Mean 0.84876 0.84627 0.85199 0.85348 0.85000 0.84826 0.85572  

STD 0.00586 0.01102 0.00735 0.00536 0.00599 0.00630 0.00408  

Rank 5 7 3 2 4 6 1 

14 Tic-tac-toe Mean 0.78824 0.78733 0.78914 0.78914 0.78914 0.78914 0.78914  

STD 0.00424 0.00636 0 0 0 0 0  
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Rank 2 3 1 1 1 1 1 

15 Vote Mean 0.95067 0.95178 0.95289 0.95267 0.95222 0.95156 0.95311  

STD 0.00483 0.00379 0.00169 0.00203 0.00253 0.00347 0.00122  

Rank 7 5 2 3 4 6 1 

16 WaveformEW Mean 0.80548 0.80275 0.80000 0.80947 0.80732 0.80085 0.81251  

STD 0.00439 0.00591 0.00342 0.00385 0.00377 0.00492 0.00313  

Rank 4 5 7 2 3 6 1 

17 Wine Mean 0.96180 0.95918 0.96629 0.96554 0.96629 0.96292 0.96592  

STD 0.00560 0.00551 6.78E-16 0.00285 6.78E-16 0.00524 0.00205  

Rank 6 7 2 4 1 5 3 

18 Zoo Mean 0.98824 0.98758 1.00000 1.00000 0.99673 0.99412 1.00000  

STD 0.01104 0.00961 0.00000 0.00000 0.00743 0.00914 0.00000  

Rank 4 5 1 1 2 3 1 

19 CNAE Mean 0.87637 0.86111 0.87346 0.89303 0.90476 0.88898 0.92566  

STD 0.01264 0.01221 0.00917 0.01297 0.01213 0.01570 0.00682  

Rank 5 7 6 3 2 4 1 

20 Connectionist 

Bench Data 

Mean 0.94064 0.93470 0.92694 0.94338 0.94703 0.93151 0.95434  

STD 0.01948 0.02350 0.01582 0.01515 0.01427 0.01609 0.01314  

Rank 4 5 7 3 2 6 1 

21 Lung Cancer Mean 0.87576 0.88788 0.92121 0.96667 0.94848 0.89697 0.96970  

STD 0.06954 0.07803 0.04613 0.04456 0.04582 0.05716 0.04359  

Rank 7 6 4 2 3 5 1 

22 Optical Recognition 

of Handwritten 

Mean 0.97152 0.97029 0.97029 0.97486 0.97495 0.97333 0.97743  

STD 0.00348 0.00408 0.00448 0.00371 0.00256 0.00362 0.00253  

Rank 5 6 7 3 2 4 1 

23 QSAR 

biodegradation 

Mean 0.85784 0.85847 0.86144 0.86748 0.86694 0.86162 0.87027  

STD 0.00740 0.00683 0.00658 0.00423 0.00553 0.00519 0.00536  

Rank 7 6 5 2 3 4 1 

24 SPECT Heart Mean 0.90833 0.90833 0.90238 0.90595 0.90952 0.89167 0.92500  

STD 0.03594 0.04161 0.03501 0.03314 0.03347 0.05345 0.02710  

Rank 4 3 6 5 2 7 1 

25 UJIIndoorLoc Mean 1 1 1 1 1 1 1  

STD 0 0 0 0 0 0 0  

Rank 1 1 1 1 1 1 1 

Friedman mean rank 4.36 4.72 3.48 2.28 2.28 4.12 1.12 

Final rank 5 6 3 2 2 4 1 

 

The quality of solutions generated by SQEOABC and the variants of EO are analyzed, and the 

boxplots of tested datasets are depicted in Fig. 4. X-axis is the name of each algorithm, and y-axis is 

the accuracy. According to the boxplots, SQEOABC has higher boxplots in the tested datasets with 

the high median and narrow spread, such as CongressEW, Ionosphere, KrVsKpEW, Sonar, 

SpectEW, WaveformEW, CNAE, QSAR biodegradation. 
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(a) CongressEW 

 

(b) Ionosphere 

 

(c) KrVsKpEW 

 

(d) Sonar 

 

(e) SpectEW 

 

(f) WaveformEW 
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(g) CNAE 

 

(h) QSAR biodegradation 

Fig. 4 Boxplots by SQEOABC and EO variants 

 

The convergence curves of accuracy obtained by SQEOABC and the variants of EO in the 

tested datasets are summarized in Fig. 5, illustrating that the proposed SQEOABC algorithm has 

good performance in the convergence for feature selection problems. Although several compared 

algorithms can provide competitive convergence behaviors in some datasets, SQEOABC still has 

better convergence rate than the variants of EO in the datasets, such as Ionosphere, Sonar, SpectEW, 

WaveformEW, CNAE, QSAR degradation. In a word, the proposed SQEOABC algorithm can 

achieve the highest classification accuracy and good in dimensionality reduction at most of the 

datasets. 

 

 

(a) CongressEW 

 

(b) Ionosphere 
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(c) KrVsKpEW 

 

(d) Sonar 

 

(e) SpectEW 

 

(f) WaveformEW 

 

(g) CNAE 

 

(h) QSAR biodegradation 

Fig. 5 Convergence curves of accuracy values by SQEOABC and EO variants 
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5.4 Real application of feature selection of COVID-19 case 

In the above-mentioned experiment, the performance of SQEOABC is verified by 24 datasets 

from UCI repository. Furthermore, an additional experiment is implemented to demonstrate the 

effectiveness of SQEOABC for real-world application. COVID-19 is a worldly widespread disease 

from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused huge losses to 

humankind. Until to Sep 2022, it infected more than 600 million people and caused more than 6 

million people deaths [112]. Metaheuristic algorithms were also utilized to help researchers in 

resisting COVID-19 such as prevention and detection [113]. In this subsection, the patient health 

prediction of COVID-19 is considered to verify the proposed algorithm. This dataset composes of 

863 samples and 15 features, including the basic information and some symptoms of patients, where 

the source data can be found in [32]. The features are transferred into the numerical format, and the 

dataset is divided into the training dataset and validating dataset, respectively. In this real-world 

problem, the proposed algorithm is compared with 11 state-of-the-art algorithms, PSO, CMAES, 

GWO, HHO, SSA, SMA, WSO, TLSMA, DDSRPSO, EESHHO, LSHADE-cnEpSin. The 

parameters of these algorithms are the same with Table 2. 

The statistical results of the proposed algorithm and compared algorithms are provided in 

Table 7, including the fitness values and accuracy. The results show that SQEOABC obtained the 

highest classification accuracy of 95.833% and the smallest fitness values of 0.04587, which 

outperforms other compared algorithms. The Friedman mean rank also illustrates that SQEOABC 

ranks the first in this FS problem, which is better than PSO, CMAES, GWO, HHO, SSA, SMA, 

WSO, TLSMA, DDSRPSO, EESHHO, LSHADE-cnEpSin. Besides, some of the compared 

algorithms can also achieve the min fitness value and the max accuracy, but SQEOABC has better 

robustness than the compared algorithms. The convergence analysis of this problem is also 

investigated. Fig. 6 provides the convergence behaviors of fitness values and accuracy obtained by 

SQEOABC and compared algorithms. It can be seen that SQEOABC provides good convergence 

rate and obtains the final solution, after 19 iterations in fitness values and 17 iterations in the 

accuracy, respectively. The results illustrate the effectiveness of SQEOABC in solving real-world 

feature selection problems. 
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Table 7 The fitness values of SQEOABC and state-of-the-art algorithms 

Algo 
Fitness Accuracy 

Best Mean Worst STD Rank Best Mean Worst STD Rank 

PSO 0.04587 0.04915 0.05732 0.00349 9 0.94676 0.95517 0.95833 0.00336 7 

CMAES 0.04587 0.04844 0.06495 0.00487 8 0.93750 0.95571 0.95833 0.00511 6 

GWO 0.04587 0.04765 0.05960 0.00389 5 0.94213 0.95625 0.95833 0.00440 5 

HHO 0.04587 0.04594 0.04663 0.00023 2 0.95833 0.95833 0.95833 4.52E-16 1 

SSA 0.04587 0.04943 0.05809 0.00353 10 0.94676 0.95471 0.95833 0.00358 8 

SMA 0.04968 0.05951 0.07186 0.00643 12 0.93519 0.94460 0.95602 0.00614 11 

WSO 0.04587 0.04839 0.06420 0.00411 7 0.93750 0.95162 0.95833 0.00612 10 

TLSMA 0.04587 0.05098 0.05960 0.00522 11 0.94213 0.95231 0.95833 0.00582 9 

DDSRPSO 0.04587 0.04714 0.05428 0.00251 4 0.95139 0.95725 0.95833 0.00225 3 

EESHHO 0.04587 0.04790 0.05351 0.00344 6 0.95139 0.95648 0.95833 0.00312 4 

LSHADE- 

cnEpSin 
0.04587 0.04650 0.05351 0.00153 3 0.95139 0.95756 0.95833 0.00165 2 

SQEOABC 0.04587 0.04587 0.04587 2.12E-17 1 0.95833 0.95833 0.95833 4.52E-16 1 

 

  

Fig. 6 Convergence curves in the COVID-19 case 

 

5.5 Discussion 

According to the above-mentioned results, the proposed SQEOABC algorithm displays 

superiority on the fitness value and classification accuracy compared to EO in the feature selection 

problems. SQEOABC also has stable solutions in terms of smaller mean and STD fitness values. 

Compared with several state-of-the-art metaheuristic algorithms, the proposed SQEOABC 

algorithm has superiority on the fitness values and provides competitive results on the classification 

accuracy. In most of the tested datasets, SQEOABC also has faster convergence speed when 

searching for the optimal solution. The real-world problem in patient health prediction of 

COVID-19 demonstrates the effectiveness and superiority of SQEOABC. 
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The reasons for higher accuracy and better convergence of SQEOABC in solving FS problems 

compared with other algorithms can be discussed as follows. The self-adaptive mechanism in 

SQEOABC achieves good exploration capacity to enhance the global convergence in FS problems. 

Besides, the quantum theory is embedded into the updating rule of EO to provide better diversity of 

search agents, which can increase the searching ability in the design space. Moreover, the 

combination of ABC and quantum EO plays a key role, where quantum EO is used to control the 

exploration by calculating the exponential term and generation rate, the updating rule of ABC is 

introduced to control the exploitation to improve the convergence and accuracy of EO for FS 

problems. According to the results from Tables 5-6 and Fig. 5, we observe that SQEOABC has 

better performance than the origin and EO’s variants, indicating that the hybridization of three 

operators in EO is more effective than the single operator into EO in solving FS problems. In all, 

the SQEOABC achieves good accuracy and convergence for FS problems with the contributions of 

the above operators for EO. 

Except for the benefits, there also exist some limitations in SQEOABC for FS problems. 

Firstly, SQEOABC is derived from EO and enhanced by three operators, which requires more 

expensive computational cost than other swarm-intelligent algorithms. Secondly, the kNN classifier 

is used as the learning algorithm for feature selection, which is easy to be affected by the noisy data 

especially for large-scale dataset, so other classifier can be further utilized in FS problems, such as 

support vector machine and random forest. Moreover, compared with the basic EO, the number of 

algorithmic parameters is not added in the proposed algorithm, but we still expect to develop 

parameter-free technique in solving various FS problems. 

 

6 Conclusions and future works 

To overcome the limitations of equilibrium optimizer (EO) in feature selection, this paper 

presents the self-adaptive quantum equilibrium optimizer-artificial bee colony (SQEOABC) 

algorithm to solve FS problems. In SQEOABC, the coefficient of EO is enhanced by the 

self-adaptive mechanism, and the quantum theory is embedded into the updating rule of EO to 

increase the diversity of solutions. Besides, the artificial bee colony is also hybridized into the 

proposed algorithm to avoid the local optimum. The performance of SQEOABC is firstly examined 

by 25 datasets from UCI repository. The compared metaheuristic algorithms consist of PSO, 

CMAES, GWO, HHO, SSA, SMA, WSO, TLSMA, DDSRPSO, EESHHO, LSHADE-cnEpSin. 

The statistical results of fitness values and accuracy, the boxplots of accuracy, and the convergence 

curves of accuracy are analyzed. The experimental results indicate the superiority of SQEOABC in 

solving FS problems. Besides, to investigate the influence of different operators of modified EO, 
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several variants of EO are utilized to compare SQEOABC. The results show that SQEOABC 

outperforms the standard EO and variants of EO in FS problems, and the ensemble strategies 

employed in EO can enhance the accuracy of classification in FS problems. Finally, the 

effectiveness of SQEOABC is investigated by a real-world FS problem from COVID-19, and the 

results also illustrate that SQEOABC can performs better than the compared algorithms in terms of 

the fitness values and accuracy.  

In future studies, the proposed SQEOABC can be hybridized with other algorithms or 

operators, such as Levy flight, chaos, or other metaheuristic algorithms. SQEOABC versions can be 

extended to deal with large-scale data problems, by combing with different learning strategies. 

Furthermore, the modification of SQEOABC will be considered to solve multi-objective feature 

selection, or other real-world multi-objective optimization problems. 
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