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Abstract

Cardiac disease is the leading cause of death in the US. Accurate heart disease detection is of critical

importance for timely medical treatment to save patients’ lives. Routine use of electrocardiogram

(ECG) is the most common method for physicians to assess the electrical activities of the heart and

detect possible abnormal cardiac conditions. Fully utilizing the ECG data for reliable heart disease

detection depends on developing effective analytical models. In this paper, we propose a two-level

hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic

diagnosis of ECG signals. The first-level model is composed of a Memory-Augmented Deep auto-

Encoder with GAN (MadeGAN), which aims to differentiate abnormal signals from normal ECGs

for anomaly detection. The second-level learning aims at robust multi-class classification for differ-

ent arrhythmias identification, which is achieved by integrating the transfer learning technique to

transfer knowledge from the first-level learning with the multi-branching architecture to handle the

data-lacking and imbalanced data issue. We evaluate the performance of the proposed framework

using real-world medical data from the MIT-BIH arrhythmia database. Experimental results show

that our proposed model outperforms existing methods that are commonly used in current practice.
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1. Introduction

Heart disease is the leading cause of death in the US. It affects about 85.6 million people and

leads to more than $320 billion in annual medical costs [1]. It is of critical importance to develop

accurate and reliable heart disease diagnoses for timely medical treatments to save patients’ lives
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[2, 3]. The heart rhythm is generated by the excitation, propagation, and coordination of electrical

signals from the cardiac cells across different heart chambers. A normal cardiac cycle starts with

the activation of the sinoatrial node, from where the cardiac electrodynamics spreads out through

the atria. The electrical wave then arrives at the atrio-ventricular node and propagates through

the bundle of His toward Purkinje fibers, leading to the electrical depolarization and repolarization

of the ventricles to complete the cycle. The resulting electrical signals on the body surface are

described by the electrocardiogram (ECG), which consists of a P-wave, QRS-complex, and T-wave

[4]. Changes in electrophysiological properties will vary the propagation pattern of electrodynamics

and lead to different types of conduction abnormalities and/or cardiac arrhythmias manifested in

the variation of ECG waveform patterns [5, 6].

In recent years, rapid advancements in wearable sensing and information technology facilitate

the effective monitoring of patients’ heart health conditions [7, 8, 9, 10, 11, 12, 13, 14]. Routine

use of ECG is the most common method for physicians in everyday clinical practice to assess the

electrical activities of the heart and detect possible abnormal cardiac conditions. Physicians gener-

ally identify the cardiac arrhythmia by checking the ECG waveforms with naked eyes. This can be

time-consuming and may require extensive human resources. Additionally, ECG misinterpretation

may happen especially when there exists a large amount of data to inspect, leading to possible

misdiagnosis of fatal heart disease [15]. Auto arrhythmia detection based on machine learning

algorithms can provide important assistance to physicians [16]. However, although ECG signals

contain rich information associated with the electrophysiological condition of the heart, the research

on fully utilizing ECGs for reliable data-driven disease detection poses several challenges including

(1) Nonlinear and nonstationary dynamics: Real-world cardiovascular systems are fea-

tured with nonlinear and nonstationary dynamics from the complicated interactions of many inter-

connected parts such as ion channels and gap junctions to perform cardiac functions, generating

ECG signals with nonlinear waveforms. Traditional statistical and machine learning methods de-

pend heavily on manual feature engineering of such waveform data, which generally consists of

two stages [17]: human experts extract useful features from raw ECGs at the first stage and then

employ machine learning algorithms on the handcrafted features to generate predictive results at

the second stage. However, this procedure is restricted by the data quality and human expert

knowledge [18], and may result in information loss, which lacks the potential for real clinical im-

plementation. Thus, new algorithms that are able to effectively and automatically extract useful

features are urgently needed for reliable heart disease identification.
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(2) Lack of training labels and imbalanced data issue: Most existing data-driven models

for ECG analysis are achieved through supervised learning, which requires a large volume of anno-

tated ECG cycles (with diagnostic labels such as normal, abnormal, or specific types of arrhythmia).

However, the annotation process requires cardiologists to manually inspect the ECG signals and

assign a label to each different pattern, which is time-consuming and labor-intensive. Additionally,

it is impractical to collect enough data for each type of disease-altered signals in order to meet

the requirement for sufficient supervised training. This is due to the fact that data associated

with abnormal heart conditions is significantly less than data from healthy people. Moreover, the

occurrence rate of different arrhythmias is highly diverse. Data-driven predictive modeling based

on such imbalanced data tends to ignore the minority classes, leading to unsatisfactory detection

performance. As such, new methods that can effectively model the ECGs and account for the

data-lacking and imbalanced data issues are needed for reliable disease identification.

This paper proposes a hierarchical deep learning framework with Generative Adversarial Net-

work (GAN) to investigate ECG signals for automatic identification of different types of arrhyth-

mias. We first propose a Memory-Augmented Deep auto-Encoder with Generative Adversarial

Network (MadeGAN) to achieve the first-level anomaly detection (i.e., binary classification for nor-

mal and abnormal signals). Second, we employ the transfer learning technique to transfer knowledge

learned from the first-level training for second-level multi-class classification to identify different

types of arrhythmias. In addition, in the second-level network, we adapt the multi-branching archi-

tecture developed in our prior work [19] to solve the imbalanced data issue among different types

of heart diseases. We evaluate our proposed hierarchical deep learning framework using the data

from the MIT-BIH arrhythmia database [20]. Experimental results show that our proposed method

significantly outperforms existing approaches that are commonly used in current practice.

2. Research Background

A variety of statistical and machine learning algorithms have been developed for ECG data

analysis and pattern recognition [21]. For example, Yang et al [22] developed a dynamic spatiotem-

poral warping algorithm to measure dissimilarities between ECG signals and further employed the

spatial embedding to transform the warping dissimilarity matrix into feature vectors for myocardial

infarction classification. Bertsimas et al [23] utilized the XGBoost algorithm to capture disease-

altered patterns in ECG cycles for heart disease prediction. Wavelet-based and recurrence analysis

approaches have also been widely implemented to learn waveform features for ECG classification
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[24, 25, 26]. Lyon et al [27] investigated the linear and quadratic discriminants, support vector

machine, random forest, and Bayesian network for heartbeat classification from ECG signals. A

comprehensive review of statistical and machine learning methods in ECG detection can be found

in [17]. However, most existing traditional data-driven methods depend heavily on manual feature

engineering, which is a labor-intensive trial-and-error process and is generally limited by human

expert knowledge [18, 28].

Deep Neural Network (DNN) is another powerful tool that has achieved promising results in

the area of data-driven disease detection [29]. Unlike conventional statistical and machine learning

methods, the main advantage of DNNs is that they do not require explicit feature engineering.

Instead, feature extraction is automatically achieved by intermediate layers of the network. It

has been demonstrated that DNN-based features are more informative than handcrafted features

for arrhythmia detection [30, 31]. As such, a variety of DNN models including convolutional

neural networks (CNNs) [32] have been designed for arrhythmia detection and have outperformed

conventional statistical methods [33, 34]. For example, Hannun et al [35] employed 1D CNN to

classify 12 rhythm classes and achieved high performance that is comparable to the diagnostic

results provided by cardiology experts. Li et al [36] combined a 2D CNN and a distance matrix to

classify congestive heart failure. Shashikumar et al [37] developed an attention-based model with

a 2d CNN as the feature extractor and a bidirectional recurrent neural network to capture the

temporal pattern in ECG signals.

However, most existing deep learning algorithms for ECG analysis are based on supervised

learning, which requires a large volume of annotated ECG signals and also suffers from the problem

of extremely imbalanced data. Thus, the application of unsupervised and semi-supervised learning

in ECG analysis has been increasingly investigated. For example, Auto-Encoder (AE), a semi-

supervised deep learning technique, has been widely used to study ECG data by extracting critical

low-dimension representation of the raw signals for disease prediction [38, 39]. Furthermore, GAN-

based framework, another semi-supervised learning technique to capture inherent data distributions

[40, 41], has been applied in ECG analysis. For example, Zhou et al [42] developed a BeatGAN

structure to model ECG signals for anomaly detection. Wang et al [43] employed an auxiliary

classifier GAN for data augmentation to handle the imbalanced issue. Shin et al [44] integrated

the AnoGAN framework [45] with a decision boundary-based model for ECG anomaly detection.

However, most existing semi-supervised deep learning methods mainly focus on differentiating the

abnormal ECGs from normal ones (i.e., binary classification) and they are not able to perform
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Figure 1: The proposed two-level hierarchical deep learning framework: (a) first-level MadeGAN for anomaly detec-

tion; (b) second-level classification for arrhythmia type identification; (c) Multi-branching output.

multi-class classification to identify different types of cardiac arrhythmia. Thus, novel analytical

models are urgently needed to efficiently handle the imbalanced data issue and the data lacking

problem for both robust anomaly detection and accurate disease identification from ECG signals.

3. Research Methodology

As shown in Fig. 1, this section presents the proposed hierarchical deep learning framework

for automatic ECG diagnosis. We denote a single ECG cycle as x ∈ Rdx×1, where dx denotes

the dimensionality of x. Each ECG cycle is associated with a multiclass label y. As such, each

training data point can be described by the tuple (x, y) with y = 0 indicating normal signal

and y = 1, 2, . . . ,M corresponding to other different types of arrhythmias. Our objective is to

first differentiate abnormal ECG signals from normal ones (i.e., first-level anomaly detection) and

then classify the abnormal signals into different types of arrhythmias (i.e., second-level multi-class

classification). Specifically, we propose a Memory-Augmented Deep auto-Encoder with Generative

Adversarial Network (MadeGAN) to achieve the first-level anomaly detection. The second-level

classification network is constructed by integrating a shallow classifier with the part of trained

discriminator from the first-level learning (i.e., transfer learning to handle the data-lacking problem)

and a multi-branching layer (to handle the imbalanced data issue).
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3.1. MadeGAN for First-level Anomaly Detection

The goal of first-level MadeGAN is to differentiate abnormal ECG cycles from normal ones.

Specifically, MadeGAN is trained with normal samples and aims to generate similar reconstructed

signals for normal ECG inputs with small anomaly scores and dissimilar reconstructions for ab-

normal ECGs with bigger anomaly scores. As shown in Fig. 1(a), the MadeGAN is designed by

integrating semi-supervised learning based on memory-augmented deep auto-encoder (MemAE)

[46, 47] with adversarial training, which will be detailed in the following subsections.

3.1.1. Semi-Supervised Learning based on Memory-Augmented Deep Auto-Encoder (MemAE)

The MemAE consists of three key modules: an encoder to encode the input signal x ∈ X and

generate a query latent vector z ∈ Z, a decoder to reconstruct signal x̂ from the latent space, and

a memory module with a prototypical database to store the encoded patterns of normal ECGs. In

other words, MemAE is composed by adding a memory module into an Auto-Encoder (AE).

An AE leverages feedforward neural networks for representation learning where the input is the

same as the output. A traditional AE only contains an encoder and a decoder. The encoder is

characterized by a function fe(·) from original data domain X ⊂ Rdx×1 to a latent manifold domain

Z ⊂ Rdz×1, i.e., fe(·) : X → Z, which captures the critical information of the original signal x by

designing a latent vector z with reduced dimensionality (i.e., dz < dx) through

z = fe(x,θe) (1)

where θe denotes the parameter set of the encoder. The decoder is defined by the function fd(·) to

convert z back to the original space and generate the reconstructed signal as

x̂ = fd(z,θd) = fd(fe(x,θe),θd) (2)

where θd denotes the parameter set of the decoder. The objective of AE is to effectively compress

the input data x into a latent-space representation z and reconstruct a signal x̂ that is close to x

from the encoded representation. This optimization objective is generally achieved by minimizing

the following reconstruction error:

Led(θe,θd) =
1

N

N∑
i=1

‖x̂− x‖2 (3)

where N denotes the size of the training set. If the AE is trained purely based on normal data,

it is expected that bigger reconstruction errors will be produced for abnormal input signals than
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the normal inputs. As such, AE has been widely applied for anomaly detection in various areas

[46, 47, 48, 49].

However, traditional AE-based approaches for anomaly detection often fail to explicitly consider

variations in normal signals. In particular, nonlinear and nonstationary dynamics are inherent in

the real-world cardiovascular system, generating ECG signals with nonlinear waveforms. There

are variations in the shape, amplitude, and phase among different ECG cycles even under normal

conditions. Due to the powerful representation capability of DNN, the AE trained by normal

signals with diverse patterns tends to generalize well and may reconstruct abnormal signals with

small errors [46, 47]. To mitigate the drawback of traditional AEs, we leverage a memory module

to recognize the diversity of normal patterns and reduce the generalizability of AE to abnormal

signals as inspired by the work from [46, 47].

The memory module is added in between the encoder and decoder as shown in Fig. 1(a) and

is formed by a memory database with a matrix of Ω ⊂ RNΩ×dz to store the representative latent

features of normal ECG signals, where NΩ denotes the number of prototypical vectors stored in

the memory module. Given a latent variable z, the memory module will generate a retrieved latent

representation according to

ẑ = ΩTw =

NΩ∑
i=1

wiωi (4)

where ωi denotes the ith memory element in the memory database Ω, and w is a weight vector

with wi ≥ 0 and
∑NΩ

i=1wi = 1 to characterize the contribution of each prototypical vector in Ω

when constructing ẑ. Note that the weight vector w is designed based on the similarity between

the memory elements and the latent query vector z as

wi =
exp(d(z,ωi))∑NΩ
i=1 exp(d(z,ωi))

(5)

where d(·, ·) is a similarity measure, which is selected as the cosine similarity d(z,ωi) = zTωi
‖z‖‖ωi‖

in this study. Hence, the memory module is designed to extract prototypical vectors in Ω with

high similarity with z to generate the representation vector ẑ. ẑ will then serve as the input

of the decoder to reversely map the latent domain back to the original space and generate the

reconstructed signal x̂, i.e., x̂ = fd(ẑ,θd).

3.1.2. Adversarial-training Enhanced Anomaly Detection

To further optimize the AE, minimize potential overfitting possibility, and enlarge the gap

in reconstruction error between anomalous and normal signals, we propose to leverage the GAN
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framework [40] to incorporate adversarial training into the MemAE. The GAN consists of two

modules: a generator G and a discriminator D. G is designed to generate synthetic samples that

are similar to the real data, while D aims to classify the data as real or artificial. The competition

between G and D enables GAN to learn the underlying data distribution and further generate

high-quality synthetic samples by optimizing the objective function:

min
θG

max
θD
V(θG;θD) = Ex∼Px [logD(x;θD)] + Eẑ∼Pz [log(1−D(G(ẑ;θG);θD))] (6)

where θD and θG denote the parameter sets of the discriminator and generator respectively, and Px

and Pz represent probability distributions of the real sample and latent variable spaces, respectively.

The discriminator D tries to maximize the objective function in Eq. (6) with respect to θD given

a fixed generator G(·;θG) by assigning probability of 1 to real data points x and 0 to generated

samples x̂. The objective of generator, G, is to reconstruct a signal x̂ as similar as the original

input and fool discriminator D into classifying the synthetic signal as real by minimizing Eq. (6)

with respect to θG given a fixed discriminator D(·;θD).

In the present investigation, we adopt the MemAE as the generator of GAN, i.e., G(·) =

fd(fe(·;θe,Ω),θd), to design a Memory-Augmented Deep auto-Encoder with Generative Adversar-

ial Network (MadeGAN) for the first-level anomaly detection. Hence, the objective function in Eq.

(6) becomes

min
θG

max
θD
V ′(θG;θD) = Ex∼Px [logD(x;θD) + log(1−D(fd(fe(x;θe,Ω),θd));θD)] (7)

where θG = {θe,Ω,θd}, which denotes the parameter set in MemAE. In other words, we add ad-

versarial training into the MemAE to improve the performance in anomaly detection. Additionally,

in order to guarantee the success of the training procedure, we add feature matching loss [50] into

the objective function of the generator to minimize the difference of meaningful features that are

learned by hidden layers of the discriminator between the real and synthetic signals. Specifically,

the feature matching loss is defined as:

Lfm(θG) = Ex∼Px‖hD(x)− hD(x̂)‖ (8)

where hD(·) denotes feature vector learned from intermediate layers of the discriminator D.

Moreover, in order to increase the computation efficiency, we propose to promote the sparsity of

the weight vector such that the representation latent vector ẑ can be reconstructed with a restricted

number of phenotypical patterns in the memory database. This is achieved by minimizing the L1
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norm of the weight vector w, i.e.,

Lw(Ω) = ‖w‖1 (9)

As such, the loss function of the MemAE is adapted by the adversarial training given a fixed

discriminator D(·;θD) as

LedA(θG;θD) = Ex∼Px‖x− x̂‖2 + Lw(Ω) + Ex∼Px‖hD(x)− hD(x̂)‖ (10)

where x̂ = fd(fe(x;θe,Ω),θd). LedA(θG;θD) is also considered as the loss function of the generator

in the proposed MadeGAN to improve the robustness and stability of network training. Thus, the

overall objective of MadeGAN is given by

min
θG

max
θD
L(θG,θD) = V ′(θG;θD) + LedA(θG;θD) (11)

By optimizing L(θG,θD), the adversarial training pushes the generator (i.e., the MemAE) to

improve in generating realistic reconstructions from normal inputs such that the discriminator

cannot distinguish between the real and artificial signals. As such, the proposed MadeGAN is

expected to enhance the anomaly detection performance of traditional AE and MemAE to better

preserve the phenotypical patterns of normal ECG data, which will output low reconstruction errors

for normal signals and high errors for abnormal ones.

3.1.3. Anomaly Detection

During the inference stage, the anomaly degree of a new query signal x is evaluated by the

following anomaly score:

s(x) = ‖x−G(x)‖ (12)

which quantifies the discrepancy between the true signal and the signal reconstructed by patterns

extracted from normal signals by G. The network is expected to output big anomaly scores for

abnormal signals. On the other hand, a small s(x) indicates that the test signal x shares similar

patterns as seen in normal ECGs, which will then be classified as normal by the proposed MadeGAN.

3.2. Transfer Learning-enhanced Second-level Classification

The objective of second-level learning is to classify the abnormal ECGs identified from first-

level MadeGAN into different types of arrhythmias for accurate disease detection, as shown in

Fig. 1(b). Note that the performance of deep learning-based classification depends, to a great
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extent, on the quality and quantity of training data. However, due to the expensive data collection

and labeling process, data associated with abnormal heart conditions is significantly less than

that from the healthy condition. Moreover, the occurrence rates of different diseases are highly

diverse, depending on the underlying characteristics of the patient’s health condition, which leads

to imbalanced data sizes for different disease types. Traditional predictive modeling based on such

small and imbalanced data tends to generate biased estimates, leading to unsatisfactory detection

performance. As such, innovative design of network architecture and novel training technique are

urgently needed to study ECG signals for accurate disease identification.

Here, we propose to take advantage of the large volume of normal ECG cycles to improve

the second-level classification through transfer learning [51]. Note that even though the exact

distribution and morphological shapes between normal and abnormal ECGs are different, they share

common patterns on the macroscale. For example, each ECG consists of a P-wave, QRS-complex,

and T-wave. Hence, such macroscale pattern information in normal ECGs can be transferred to

the second-level learning to improve the classification performance.

Transfer learning generally involves two different domains: source domain XS , and target domain

XT , and the corresponding two different learning tasks TS and TT , respectively. The objective of

transfer learning is to leverage the knowledge learned from TS from the source domain XS to improve

the learning task TT in the target domain XT . Specifically, in the present investigation, the source

domain XS consists of the normal ECG data and the associated task TS is anomaly detection. Our

target task TT for second-level learning is multi-class classification to identify different types of

arrhythmias from the data in the target domain XT (i.e., abnormal ECGs). In order to achieve

the knowledge transfer, we adopt the discriminator D in the MadeGAN with learned network

parameters θ̂D from the first-level training to improve the learning of the multi-class classification

TT in the second level. Note that we remove the last 1D CNN and fully connected layers from

discriminator D (see more detail in Fig.2.) and use the remaining network structure D̄(·; θ̂D) as

the feature extractor to extract critical patterns from the abnormal ECG data, which will then

be fed into a shallow classifier (i.e., 1D CNN) for different arrhythmia identification. Note that

D̄(·; θ̂D) is frozen during the whole second-level training process (i.e, θ̂D is kept unchanged).

In addition, because the common problem of imbalanced data may still exist in different types

of abnormal signals, we add the multi-branching (MB) architecture [19] as shown in Fig. 1(c) to the

1-D CNN to address the imbalanced data issue and further improve the classification performance.

We denote the the abnormal dataset as DA = {XA,yA}, where XA is the set of abnormal ECGs
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Figure 2: The architecture details of our proposed hierarchical deep learning framework.

and yA denotes the corresponding label set. Assume there are M different types of arrhythmia or

DA consists of M different sub-groups, i.e., DA = {D1, . . . ,DM}, and assume class l contains the

smallest data samples, i.e., |Dl| ≤ |Dm| for m 6= l and m ∈ {1, . . . ,M}. We generate Nb balanced

datasets, DAi’s (i ∈ {1, . . . , Nb}), from DA by under-sampling the class with larger sample size,

i.e., DAi = {D1i, . . . ,D(l−1)i,Dl,D(l+1)i, . . . ,DMi}, where Dmi is a subset by under-sampling the

data Dm from type m arrhythmia (m ∈ {1, . . . , l− 1, l+ 1, . . . ,M}) to the same size with Dl. The

corresponding Nb branching outputs for the Nb balanced datasets are further created and attached

to the 1D CNN for robust and accurate disease identification.

The shallow 1D CNN will be trained by all the Nb datasets, and each branching output will be

trained by the corresponding balanced sub-dataset. This MB architecture and training procedure

will enable the network to learn more effectively from the imbalanced dataset for reliable classifica-

tion [19]. The objective of second-level learning is to search a set of optimal parameters such that

the network outputs a high probability for the true label and low probabilities for others. As such,

we select the multi-class cross-entropy as the loss function of second-level network:

L(θ2nd;XA) = −
NA∑
p=1

Nb∑
i=1

I(p ∈ DAi)
( M∑

m=1

y(m)
p log(P̂

(m)
i (θ2nd; D̄(xp

A; θ̂D)))
)

(13)

where θ2nd denotes the parameter set of the second-level network, NA is the sample size of the

11



abnormal dataset, I(·) is an indicator function, and P̂
(m)
i (θ2nd; D̄(xp

A; θ̂D)) is the predicted prob-

ability of type m arrhythmia from branching output i given the features D̄(xp
A; θ̂D)) extracted by

the discriminator from the input xp
A. Please see more details about the MB network in our prior

work [19]. The final predicted probability of class m for input xp
A is given by

P̂ (m) =
1

Nb

Nb∑
i=1

P̂
(m)
i (θ2nd; D̄(xp

A; θ̂D)) (14)

Integrating the MB structure and the discriminator-based transfer learning with the 1D CNN

enables our second-level model (MB-Conv1d-Discrim) to overcome the data-lacking and imbalanced

data issues, and further improve the classification performance for accurate disease identification.

4. Experimental Design and Results

4.1. Data Description and Experimental Design

The dataset used in this study is obtained from MIT-BIH database [20]. This dataset contains

48 half-hour ECG recordings, which is obtained from 47 subjects from the Beth Israel Hospital

Arrhythmia Laboratory between 1975 and 1979. Each recording is digitized at 360 samples per

second with 11-bit resolution. Two or more independent cardiologists annotate the beats in each

recording. We remove four recordings (102, 104, 107, 217) because of their poor signal quality. Each

heartbeat is segmented through the following procedure: (1) The Pan-Tompkins QRS detection

algorithm [52] is first employed to detect all R-peak locations in original ECG recordings; (2)

320 samples are then selected for each heartbeat with 140 samples before the corresponding R-

peak and 180 samples after it. This procedure guarantees that segmented signals have the same

dimension and approximately cover one heart cycle. In total, our dataset contains 97,553 annotated

beats including: 86,717 normal signals (N), 7,008 premature ventricular contractions (V), 3,026

supraventricular premature beats (S), and 802 ventricular fusion beats (F). Additionally, we employ

the high-pass finite impulse response (FIR) filter to reduce multiple types of noise commonly seen

in ECG signals such as power-line interference and baseline wandering [53].

The performance of our first-level MadeGAN in anomaly detection will be compared with a

pure AutoEncoder (AE), AE with memory module (MemAE), and BeatGAN [42]. The second-

level model (i.e., MB-Conv1d-Discrim) will be benchmarked with a pure 1D CNN (Conv1d), 1D

CNN with the generator feature extractor (Conv1d-Gene), 1D CNN with the encoder feature ex-

tractor (Conv1d-Encoder), 1D CNN with the discriminator feature extractor (Conv1d-Discrim),
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Figure 3: Training and testing procedures for the proposed hierarchical deep learning framework.

1D CNN with an MB layer (MB-Conv1d), Conv1d-Gene with an MB layer (MB-Conv1d-Gene),

and Conv1d-Encoder with an MB layer (MB-Conv1d-Encoder). The performance of both the first-

and second-level learning will be evaluated according to: two overall performance metrics, i.e., Area

Under Receiver-Operating-Characteristic Curve (AUROC), and Area Under Precision-Recall Curve

(AUPRC), and four point performance metrics, i.e., Recall, Precision, f -score, and Accuracy. The

ROC characterizes the relationship between the False Positive Rate (FPR) and True Positive Rate

(TPR), and AUROC is a score quantifying the general prediction performance across all thresholds.

Similarly, the AUPRC evaluates the overall relationship between Recall and Precision.

To evaluate the performance metrics for the first-level anomaly detection, we calculate the

anomaly score, si, for each sample in the test set, generating the set SA = {s1, s2, . . . , sNT
}, where

NT denotes the number of samples in the test set. Then, we apply feature scaling to convert the

anomaly scores into the probabilistic range of [0,1]:

s
′
i =

si −min(SA)

max(SA)−min(SA)
(15)

As such, different thresholds on the normalized score s
′
i will be applied to calculate FPR, TPR,

Recall, and Precision, and further compute the AUROC and AUPRC scores for the first-level

anomaly detection.
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4.2. Training and Testing Procedures

Fig. 2 shows the detailed architecture of the proposed two-level framework. Our first-level Made-

GAN contains four core modules: encoder, decoder, memory module, and discriminator. We use five

1D convolutional (Conv1d) layers in the encoder. Note that the notation of (nfilter, nsize, nstride)

represents that there are nfilter filters with a filter size of nsize and the stride of nstride. For exam-

ple, (32-4-2) means that this Conv1d layer is constructed by 32 filters with the filter size of 4 and

stride of 2. The latent space dimension of the encoder is 50, i.e., dz = 50. Additionally, we use

batch-normalization and leaky ReLU activation to each Conv1d layer to make the model training

more stable. The decoder is a mirrored version of the encoder with five transposed Conv1d layers.

The memory model contains 2000 prototypical vectors of normal ECGs, i.e., NΩ = 2000. The

discriminator has the same core architecture as the encoder with an additional Conv1d and fully

connected layers for classification. Our second-level model consists of a Conv1d layer, an MB layer

with 4 branching outputs, and a feature extractor. Note that the feature extractor is composed of

the discriminator without the last Conv1d and fully connected layers (i.e., the part of discriminator

inside the dashed box in Fig. 2). Specifically, the abnormal signal will first go through Conv1d

(32-4-2), Conv1d (64-4-2), Conv1d (128-4-2), Conv1d (256-4-2), and Conv1d (512-4-2) layers in

the discriminator including all Leaky Relu and Batch normalized layers. Then, the output from

Conv1d (512-4-2) layer will go to the shallow 1D CNN layer (i.e., Conv1d (32-1-2)) and an MB layer

to make the final second-level prediction. Adam optimizer with an initial rate of lr = 0.0002 and

momentums of β1 = 0.5, β2 = 0.999 is used for network training. The network hyper-parameters,

i.e., {nfilter, nsize, nstride, dz, NΩ, lr, β1, β2} are selected by empirical fine-tuning.

Fig. 3 shows the training and testing procedures for the proposed model. Specifically, during

the first-level MadeGAN training, we use 90% normal signals as the training set and the rest of 10%

normal signals as the test set. In order to evaluate the anomaly detection performance of MadeGAN

in the testing phase, all abnormal ECGs are combined with the rest 10% normal ones to form the

test set. During the second-level training, we use 90% abnormal ECGs as the training set, which

contains 3 different types of arrhythmias (i.e., the V, S, and F samples). The rest of 10% abnormal

signals is used as the test set to evaluate the performance of the second-level classification. Note

that during the second-level training, the parameter θ̂D of discriminator D adopted from MadeGAN

is held frozen to achieve the knowledge transfer from the first-level learning.
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Figure 4: The variations of (a) AUROC score and (b) AUPRC score over epochs in test set for different methods

during the first-level anomaly detection.

4.3. Experimental Results

4.3.1. First-level Anomaly Detection

Table 1 shows the performance comparison between MadeGAN and other benchmarks in the

first-level anomaly detection. Note that MadeGAN achieves the best performance with AUROC and

AUPRC scores of 0.954 and 0.936. Specifically, MadeGAN improves on AUROC by 5.3% compared

with the pure AE (0.906), by 2.9% compared with MemAE (0.927), and by 1.4% compared with

BeatGAN (0.941). Furthermore, the improvement is more significant in terms of AUPRC: with the

improvement of 5.6%, 3.8%, and 1.5% compared with the pure AE (0.886), MemAE (0.902), and

BeatGAN (0.922), respectively.

Table 1: The comparison of AUROC and AUPRC scores of our MadeGAN and other models in the first-level anomaly

detection.

AUROC AUPRC

MadeGAN 0.954 0.936

BeatGAN 0.941 0.922

MemAE 0.927 0.902

AE 0.906 0.886

Fig. 4 (a) and (b) display the AUROC and AUPRC over 350 epochs in the test dataset for

different methods. Note that the pure AE and MemAE converge in the first 100 epochs but

achieve relatively low performance scores, i.e., AUROC of 0.906 and 0.927, and AUPRC of 0.886

and 0.902, respectively. On the other hand, the performance scores of MadeGAN and BeatGAN

improve over epochs and achieve better AUROC of 0.954 and 0.941, and AUPRC of 0.936 and 0.922,
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Figure 5: Reconstructed ECG signals by the proposed MadeGAN and other benchmarks for (a) N class (b) S class

(c) V class (d) F class.

respectively. This is due to the fact that both MadeGAN and BeatGAN incorporate the adversarial

training into the reconstruction, which alleviates the potential overfitting problem in AE training.

In addition, the memory module enables MadeGAN to effectively account for the possible variations

in normal signals and reduce the possibility of reconstructing abnormal ECGs with small errors.

This further enlarges the gap in reconstruction errors between normal and abnormal signals, which

makes MadeGAN achieve better performance compared with BeatGAN. Table 2 further shows

the performance comparison in terms of point metrics. Note that our MadeGAN yields the best

Recall, Precision, f -score, and Accuracy of 0.954, 0.856, 0.902, and 0.885 respectively among the

four methods.

Table 2: The comparison of point metrics of MadeGAN and other methods in the first-level anomaly detection.

Recall Precision f -score Accuracy

MadeGAN 0.954 0.856 0.902 0.885

BeatGAN 0.944 0.826 0.881 0.884

AE 0.894 0.760 0.821 0.784

MemAE 0.886 0.782 0.831 0.800
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Fig. 5 displays the examples of reconstructed ECG signals generated by our first-level MadeGAN

and other benchmarks for normal ECGs and different types of abnormal ECGs. Here, we adopt

the reconstruction error (i.e. ‖x̂ − x‖2) to evaluate the performance for different approaches.

Because all models are trained purely by normal ECGs, we expect that a small reconstruction error

will be produced from the normal signal and a large error will be generated from the abnormal

signal. According to Fig.5 (a), although the reconstructed signals from all the methods match

with the input normal signal closely, our MadeGAN generates the smallest reconstruction error

(0.042) compared to other approaches (0.109 for BeatGAN, 0.074 for AE, and 0.053 for MemAE).

On the other hand, according to Fig. 5 (b)-(d), MadeGAN is able to generate the most dissimilar

reconstructions and produces the largest reconstruction errors for abnormal signals. For example,

the reconstruction error generated by MadeGAN for the S class is 6.488, which is significantly

bigger than 2.402 by BeatGAN, 0.305 by AE, and 0.612 by MemAE.

4.3.2. Second-level Arrhythmia Identification

Table 3: The comparison of AUROC and AUPRC between MB-Conv1D-Discrim and other approaches in the second-

level classification

S Class V Class F Class

AUROC AUPRC AUROC AUPRC AUROC AUPRC

MB-Conv1D-Discrim 0.988 0.989 0.988 0.987 0.997 0.988

MB-Conv1D-Encoder 0.963 0.955 0.960 0.938 0.952 0.899

MB-Conv1D-Gene 0.983 0.981 0.985 0.938 0.952 0.953

MB-Conv1D 0.987 0.987 0.984 0.975 0.981 0.939

Conv1D-Discrim 0.985 0.981 0.984 0.987 0.963 0.911

Conv1D-Encoder 0.974 0.956 0.979 0.986 0.952 0.719

Conv1D-Gene 0.979 0.961 0.980 0.981 0.959 0.828

Conv1D 0.976 0.953 0.974 0.983 0.924 0.534

Table. 3 shows the AUROC and AUPRC of our MB-Conv1d-Discrim and other MB-based and

Conv1D-based benchmarks in the second-level arrhythmia classification. Note that a good model

will have a large AUROC and AUPRC. According to Table. 3, our MB-Conv1d-Discrim has the

best AUROC and AUPRC among other methods. Specifically, compared with MB-Conv1d-Gene

and MB-Conv1d-Encoder, our MB-Conv1d-Discrim increases AUROC from 0.983 and 0.963 to

0.988, and increases AUPRC from 0.981 and 0.955 to 0.989 for the S class. Similarly, for the V

class, MB-Conv1d-Discrim improves AUROC from 0.985 and 0.960 to 0.988, and increases AUPRC
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from 0.981 and 0.938 to 0.987 compared with MB-Conv1d-Gene and MB-Conv1d-Encoder. The

improvement is more significant in the F class, which has the smallest sample size among the three

classes. Specifically, MB-Conv1d-Discrim achieves 1.5% and 3.8% performance improvement on

AUROC, and 3.8% and 10.0% improvement on AUPRC compared with MB-Conv1d-Gene and

MB-Conv1d-Encoder for the F class.

Similarly, MB-Conv1d-Discrim increases AUROC from 0.979 and 0.974 to 0.988, and improves

AUPRC from 0.961 and 0.956 to 0.989 compared with Conv1d-Gene and Conv1d-Encoder for the

S class. For the V class, MB-Conv1d-Discrim enhances AUROC from 0.980 and 0.979 to 0.984,

and increases AUPRC from 0.981 and 0.986 to 0.987 compared with Conv1d-Gene and Conv1d-

Encoder. For the F class, MB-Conv1d-Discrim achieves 3.9% (from 0.959 to 0.997) and 4.7% (from

0.952 to 0.997) performance improvement on AUROC compared with Conv1d-Gene and Conv1d-

Encoder, and achieves 19.3% (from 0.828 to 0.988) and 37.4% (from 0.719 to 0.988) improvement on

AUPRC. More importantly, our MB-Conv1D-Discrim achieves a significant improvement of 7.3%

on AUROC (from 0.924 to 0.997) and 85% on AUPRC (from 0.534 to 0.988) for F class compared

with the pure Conv1D without any transfer learning or MB layer. In order to further show that

our proposed MB-Conv1d-Discrim dominates other method, we plot the Detection Error Tradeoff

Curves (DETC) with logarithmic x- and y-axis in Appendix. Please see the details in Appendix.

According to Table 3, the discriminator-based feature extractor outperforms the generator-

based and encoder-based feature extractors. This is due to the fact that the discriminator is

trained to classify the signal as fake or real. In other words, classification is the learning task of the

discriminator in the first-level training, which is similar to the second-level task (i.e., multi-class

classification). However, the learning tasks for the generator or the encoder are signal reconstruction

and latent-space generation respectively, which are different from the second-level learning task.

As such, the discriminator-based feature extractor yields the best performance to improve the

second-level classification.

It is also worth noting that MB-based methods outperform non-MB-based methods. This

improvement is more significant for the class with a small sample size (i.e., F class). Specifically,

as shown in Table. 3, MB-Conv1d increases AUROC and AUPRC from 0.924 to 0.981 and from

0.534 to 0.939 respectively, compared with the pure Conv1d model. MB-Conv1d-Discrim increases

AUROC and AUPRC from 0.963 to 0.997 and from 0.911 to 0.988 respectively, compared with

the Conv1d-Discrim. This is due to the fact that the MB architecture guarantees each branching

output is trained by a balanced sub-dataset to effectively relieve the imbalanced data issue. As such,
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Table 4: Confusion matrix on the test dataset from the second-level MB-Conv1d-Discrim method.

Predicted labels

S V F

True

labels

S 299 4 0

V 4 687 10

F 0 1 80

the integration of transfer learning and MB architecture has significantly improved classification

performance in the second-level learning.

Table 4 further shows the confusion matrix on the test dataset provided by the proposed second-

level model (i.e., MB-Conv1d-Discrim). Note that even for the F class, our model provides pretty

good classification performance. Specifically, 80 F samples are correctly predicted out of the 81

total F samples. Table 5 shows the performance comparison of point metrics between MB-Conv1d-

Discrim and other benchmarks. Note that MB-Conv1d-Discrim yields the best Recall, Precision,

f -score, and Accuracy of 0.976, 0.976, 0.975, and 0.976, respectively. Note that MB-based meth-

ods also outperform non-MB methods in terms of the point metrics. For example, MB-Conv1d-

Discrim, MB-Conv1d-Encoder, MB-Conv1d-Generator, and MB-Conv1d achieve 2.5%, 7.3%, 4.7%,

and 22.3% improvement on the f -score compared with their non-MB counterparts. It is also worth

noting that MB-Conv1d-Discrim achieves a more significant improvement on Recall, Precision,

and f -score than Accuracy compared to the pure Conv1d without any transfer learning or MB layer.

Specifically, MB-Conv1d-Discrim achieves 29.8% performance improvement on Recall, 21.8% on

Precision, and 20.5% on f -score. This is due to the fact that Recall, Precision, and f -score are

more robust evaluation metrics when there exists an imbalanced issue, which can be effectively

addressed by the MB architecture and transfer learning.

4.3.3. Comparison Study with Existing Literature

In order to benchmark with existing literature, we use the 5-fold cross validation to further

evaluate the proposed first- and second-level models. The 5-fold cross validation has been proved
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Table 5: The comparison of point metrics between MB-Conv1d-Discrim and other approaches in the second-level

classification

Recall Precision f -score Accuracy

MB-Conv1d-Discrim 0.976 0.976 0.975 0.976

MB-Conv1d-Encoder 0.881 0.881 0.879 0.891

MB-Conv1d-Generator 0.913 0.933 0.922 0.928

MB-Conv1d 0.931 0.936 0.934 0.939

Conv1d-Discrim 0.955 0.947 0.951 0.973

Conv1d-Encoder 0.786 0.869 0.819 0.917

Conv1d-Generator 0.888 0.877 0.881 0.934

Conv1d 0.752 0.801 0.770 0.896

to be able to generate a less biased estimate of model performance and is widely utilized to evaluate

machine learning models. Table 6 summarizes the comparison of AUROC and AUPRC between

the first-level MadeGAN and existing methods that used the MIT-BIH dataset for ECG anomaly

detection. Our MadeGAN yields the average of the 5 folds ± 1 standard deviation (std) for AUROC

and AUPRC of 0.950±0.002 and 0.922±0.003, respectively, which outperforms existing methods

[42, 44].

Table 6: The comparison of AUROC and AUPRC between MadeGAN and existing anomaly detection models.

Authors Methods AUROC AUPRC

Wang et al. MadeGAN 0.950 0.922

Zhou et al.,[42], 2019 BeatGAN 0.945 0.911

Shin et al.[44], 2019 AnoGAN 0.948 -

Table 7: The comparison of performance scores between our MB-Conv1d-Discrim and existing classification models.

Authors AUROC AUPRC Recall Precision f−score Accuracy

Wang et al. 0.989 0.984 0.964 0.967 0.965 0.967

Li et al.,[54] - - 0.647 0.475 - 0.946

Acharya et al.[55] - - 0.960 0.915 - 0.940

Mousavi et al.[56] - - 0.831 0.923 - 0.987

Kachuee et al.[57] - - - - - 0.934

Table 7 summarizes the comparison of the performance scores between our second-level model

(i.e., MB-Conv1d-Discrim) and existing approaches. Our method yields the average (±1 std) of the

5 folds for AUROC of 0.989(±0.001), AUPRC of 0.984(±0.002), Recall of 0.964(±0.006), Precision

of 0.967(±0.005), and f -score of 0.965(±0.005), which significantly outperforms existing methods.

Note that the Accuracy of our model (i.e., 0.967 ± 0.005) is slightly smaller than the accuracy (i.e.,
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0.987) in [56]. However, the Accuracy alone may not serve as a reliable performance measure when

evaluating machine learning models with imbalanced data issue [58]. For example, if we have a

dataset with 10,000 negative samples and 10 positive samples, we can obtain an Accuracy as high

as 99.9% if we train a model to predict all samples as negative. However, this model is meaningless

because we are more interested in the ability of the model to predict positive samples, which are

commonly evaluated by Recall and Precision. Note that our model has significantly better Recall

and Precision (i.e., 0.964 and 0.967) compared with [56] (i.e., 0.831 and 0.923).

4.4. Discussion on the Limitation

One potential limitation of this work is that we only focus on single-lead ECG analysis. Although

single-lead ECG analysis has great application potential for wearable everyday health monitoring,

cardiologists usually make the medical diagnosis based on multi-lead ECG signals (e.g., 12-lead

ECGs) from patients with severe heart disease. It is worth noting that 12-lead ECGs are multi-

channel time-series signals, which can be considered as 3D tensors characterized by (nb, nc, nt),

where nb is the batch size, nc is the number of channels (nt = 12 for 12-lead ECGs), and nt is

the number of time ticks of one heartbeat. By re-designing the input layer to incorporate the

channel information, the 3D tensor data can be fed to and train the network for anomaly detection

and arrhythmia identification. However, the predictive performance depends to a great extent on

the network structure details and hyperparameter selection. One of our future research directions

will focus on adapting the proposed hierarchical deep learning framework and designing effective

network structures to capture both the temporal dynamics within each channel and the correlations

across different channels to analyze multi-channel ECG signals for heart disease detection.

Another potential limitation is that the finite impulse response (FIR) filter for ECG denoising

may not be effective to remove motion artifacts [59, 60, 61]. In order to further increase the appli-

cability of the proposed method in real clinical diagnosis, more advanced signal quality assessment

methods are needed in preprocessing step [59, 60, 61], which will be investigated and combined

with our model for ECG signal analysis in our future work.

5. Conclusions

In this paper, we develop a two-level hierarchical deep learning framework with Generative Ad-

versarial Network to investigate ECG data for robust and reliable identification of heart diseases.

In the first-level learning, we propose a Memory-Augmented Deep auto-Encoder with Generative
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Adversarial Network (MadeGAN) to achieve anomaly detection (i.e., binary classification of nor-

mal and abnormal signals). In the second-level learning, we employ transfer learning by adopting

the discriminator with learned network parameters from the first-level training to handle the data-

lacking problem and achieve the multi-class classification among different types of arrhythmias.

Additionally, the multi-branching technique is used in the second-level model to handle the im-

balanced data issue and enhance the classification performance. Experimental results show that

our framework effectively captures the disease-altered feature patterns from ECG signals, yielding

better performance in predicting heart disease with higher performance scores compared with ex-

isting methods. Moreover, this hierarchical deep learning framework can be broadly implemented

to study other waveform data such as electroencephalography (EEG) and photoplethysmography

(PPG) for smart anomaly detection and multi-class classification.
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