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abstract

Background: Natural Language Processing (NLP) is widely used to extract
clinical insights from Electronic Health Records (EHRs). However, the lack of
annotated data, automated tools, and other challenges hinder the full utilisation
of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and
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NLP techniques are studied and compared to understand the limitations and
opportunities in this space comprehensively.

Methodology: After screening 261 articles from 11 databases, we included
127 papers for full-text review covering seven categories of articles: 1) medical
note classification, 2) clinical entity recognition, 3) text summarisation, 4) deep
learning (DL) and transfer learning architecture, 5) information extraction, 6)
Medical language translation and 7) other NLP applications. This study fol-
lows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines.

Result and Discussion: EHR was the most commonly used data type
among the selected articles, and the datasets were primarily unstructured. Var-
ious ML and DL methods were used, with prediction or classification being the
most common application of ML or DL. The most common use cases were: the
International Classification of Diseases, Ninth Revision (ICD-9) classification,
clinical note analysis, and named entity recognition (NER) for clinical descrip-
tions and research on psychiatric disorders.

Conclusion: We find that the adopted ML models were not adequately
assessed. In addition, the data imbalance problem is quite important, yet we
must find techniques to address this underlining problem. Future studies should
address key limitations in studies, primarily identifying Lupus Nephritis, Suicide
Attempts, perinatal self-harmed and ICD-9 classification.

keywords

Machine learning; electronic health records; medical natural language process-
ing; artificial intelligence in medicine ; automated tools ; state-of-the-art deep
learning

1 introduction

Electronic Health Records (EHRs), which are automated compilations of health
care activities and assessments, are increasingly prevalent and essential for
healthcare provision, administration, and research [1]. The data found in EHRs
can be both structured and unstructured [2]. Structured EHR data comprises
heterogeneous sources in fixed numerical or categorical areas, such as diagnoses,
prescriptions, and laboratory values. On the other hand, Produced by health-
care personnel, clinical documentation or note and discharge summaries repre-
sent instances of unstructured data. Clinical documentation or notes are input
as free text into EHRs, offering a complete picture of the patient’s condition.

The adoption of EHRs has increased rapidly around the world. In the United
States, it has increased dramatically from 10% to nearly 96% in just 10 years
(2008-2017). In China, this increase is slightly more than 85% [3]. A similar
trend has been observed in General Practices, large hospitals, and health services
in Australia [4, 5].
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With the increased adoption of EHRs, the volume of information can now
be considered ”Big Data,” extending to the modification and application of sub-
stantial data accumulated in EHRs. However, the capacity of human cognition
to study, comprehend, and interpret data is constrained; therefore, there is a
need to contrive computer-based tools that can organize, evaluate, and recog-
nize patterns within these data. The subsequent step is to convert all of these
extensive healthcare data into knowledge by implementing data mining and nat-
ural language processing methods as essential components in data analytics on
EHRs big data to aid the development of an EHR ecosystem.

Most innovations for this growing number of unstructured free texts in the
medical domain are based on novel Machine Learning (ML), and Deep Learn-
ing (DL) techniques [6] [7]. Numerous healthcare and medical applications [8]
include the detection of cardiovascular risk factors and heart conditions [9], the
diagnosis [10] and prognosis of oral diseases [11], and the detection of cancer tu-
mours from radiology images [12], have made extensive use of machine learning.
Recently, the concept of autoML, one of the types of ML integrated tool [13],
has been presented as a way to expand the applications of ML algorithms and
simplify the implementation of those algorithms in a range of industries, includ-
ing in healthcare [14]. Although AutoML is still an emerging technology, it has
already been applied in bioinformatics, translational medicine, diabetes diagno-
sis, Alzheimer diagnosis, electronic health record (EHR) analysis, and imaging
for medical purposes [15]. However, it has not been extensively investigated
for how it might be used to process clinical notes, a significant component of
EHR. In addition, patient data protection is a significant concern when employ-
ing ML-enabled automated systems; yet, no research has identified patient data
protection difficulties or comprehensively explored the strategies that may be
implemented to assure medical data privacy.

Aside from these, several solutions have been developed for EHRs to handle
clinical tasks; however, there remain challenges for health information research
because of the unique language and clinical idioms used by clinicians [16, 17].
Natural Language Processing (NLP), a subfield of Artificial Intelligence (AI)
techniques (such as entity recognition), has been used for clinical text mining [18,
19], which is a notably clinical note analysis. Theoretically, these techniques are
in their conception stage, and it will take some time for them to be able to select
an accurate and precise model for real-world applications. This leads to the most
significant problem in the field of NLP: the processing of medical text data and
decision-making utilising computer technologies. There is a need for novel ways
to classify NLP to facilitate its effective use in contemporary healthcare. This
project’s first and foremost objective is to solve the identified shortcomings in
EHRs-NLP applications for healthcare and find effective methods for analyzing
EHRs, which will have a positive influence on the research community.

This study provides a thorough review of the numerous healthcare uses of
NLP. The objectives of our review are as follows. First, we aim to review the
NLP technique in EHRs with a specific focus on different state-of-the-art models.
Second, we explain the DL and ML paradigms used to analyse EHRs, mainly
clinical free text. Third, we identify core challenges in categorising clinical notes.
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Last, we examine how researchers have implemented their models for managing
clinical notes in the healthcare industry.

We present the difference between our review and existing ones in Table 1.
It is noted that a high proportion of review articles used NLP and EHRs. Still,
few seem to have adhered to the PRISMA structure, an evidence-based minimal
set of reporting elements for comprehensive meta-analyses and reviews. Recent
reviews have covered DL and ML-based strategies, but reviews published before
2020 have not emphasised the use of state-of-the-art models or explained many
potential challenges in clinical NLP. Similarly, information regarding model val-
idation or evaluation matrix was missing. Finally, none of the existing reviews
discussed clinical tools or settings, let alone advanced NLP methods such as the
transformer model.

Table 1: Comparison of our paper with that of the existing articles

Year Authors
PRISMA
Review?

ML? DL? NLP? EHR?
Evaluation
Metrics?

Word
Embeddings?

Feature
Extraction?

Clinical
Tools?

Transformer
Model?

2022 This paper
√ √ √ √ √ √ √ √ √ √

2022 Tyagi et al. [20] χ
√ √ √ √ √

χ χ χ
√

2021 Chowdhury et al. [21]
√ √ √ √ √

χ χ χ χ χ

2020 Juhn et al. [22] χ χ χ
√ √

χ χ χ χ χ

2020 Ahmed et al. [23] χ χ
√ √ √ √

χ χ χ χ

2020 Wu et al. [24]
√

χ
√ √ √

χ
√

χ χ
√

2019 Alzoubi et al. [25] χ
√

χ
√ √ √

χ
√

χ χ

2019 Juhn et al. [26] χ χ χ
√ √

χ χ χ χ χ

2019 Koleck et al. [27] χ χ χ
√ √

χ χ χ χ χ

2018 Wang et al. [28] χ χ χ
√ √

χ χ χ χ χ

2017 Luo et al. [29]
√

χ χ
√ √

χ χ χ χ χ

This paper makes a significant contribution in that by covering a comprehen-
sive systematic review that fills a gap in the existing research. We focus on (1)
the commonly utilised ML and DL-based models, including their importance in
healthcare NLP; (2) the popular ML and DL models with their feature extrac-
tion or word embedding and evaluation matrix; (3) various applications of NLP,
including transformer model, applied in the EHRs; (4) commonly used data
types, clinical free text preprocessing pipeline and study settings; and (5) ex-
isting automated ML-enabled tools used by health professionals and healthcare
industries. We further highlight the core challenges of medical NLP, the trend
of current research, and the shortcomings of the existing literature. We end this
work by addressing our review’s findings and highlighting study shortcomings
and future goals.

The remaining sections of the review article are structured as follows. We
explain the literature search and selection strategy in Section 2.1. The tech-
niques used for analysing EHR are illustrated in Section 3. Discussions and
research viewpoints are delineated in Sections 4 and 5. Finally, the paper is
concluded in Section 6.
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2 Methodology

2.1 Literature search and selection strategy

We searched eleven electronic databases from 2016 to 2022. Significant contri-
butions have been made to NLP research in the last six years [30]. This search
was done through well-established outlets hosting a wide range of high-quality
peer-reviewed articles. We have searched Google Scholar, PubMed, Elsevier,
IEEE, Springer, Oxford University Press, Nature Publishing Group, Wiley On-
line Library, BioMed Central, and American Medical Informatics Association
for literature from 2016-2022. These databases are rich and have high-quality
peer-reviewed articles for NLP research. We have developed several key terms
to identify the studies, like “NLP in Clinical Narratives”, “Medical NLP”, “ML
in EHRs”, “DL in Medical Text”, “Automated ML in EHRs”.

2.2 Selection criteria

A) Inclusion Criteria: We have included literature that described: ML/DL-
based free text classification, word-embedding approach in the context of medi-
cal text data, automatic clinical narratives summarisation, healthcare dialogue
system, medical concept embedding, Delirium risk identification, ICD-9 multi-
label classification, clinical entity recognition, machine learning and deep learn-
ing architecture for EHRs. Only peer-reviewed journal articles or full conference
papers were included. To be included, a study must have used an ML or DL-
based model or framework designed solely for analysing EHRs. Studies must
also have been focused on analysing and identifying clinical narratives through
ML or DL methods.

B) Exclusion Criteria: Research works that were published as a preprint,
with preliminary work or without peer review, were excluded. Editorials and
review papers were also on the exclusion list. After the initial screening, the
articles’ retrieved for full-text analysis also was examined for quality.

2.3 Search Output:

Figure 1 illustrates that in the initial search, 261 titles were identified for the
title and abstract screening, comprising 15 from Springer, 12 from PubMed, 15
from IEEE, 51 from Elsevier, 17 from Oxford University Press, 10 from Nature
Publishing Group, 25 from American Medical Informatics Association (AMIA),
7 from BioMed Central, 8 from Wiley Online Library. Of these, 119 papers
were excluded based on our exclusion criteria. An additional 101 papers were
identified from the reference lists of retrieved articles. Four of these titles were
duplicates and thus excluded, 1 article was not available for review, and ten did
not match our criteria. The remaining 127 papers were retrieved for full-text
review.

Studies included in the review described different traditional and hybrid
methods for analysing clinical free text. Some proposed new approaches and
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Figure 1: Literature exclusion and inclusion results were followed by the
PRISMA method.

others tried to improve existing techniques. The majority of studies originated
from North America, followed by the United Kingdom, Asia, Europe and Aus-
tralia, as illustrated in Figure 2. No articles from the African continent or South
America met our criteria. The sample size used in the retrieved articles varied
between 150 and 823, 627. EHR was the most used data type and was used as
the sole data source by almost all studies. Most datasets were unstructured,
and two studies only used structured free-text data. The study designs were
mostly experimental (n = 24), cohort (n = 9), case study (n = 1). Among the
existing articles we reviewed, some studies (n = 11) used diagnostic tools with-
out specifying the name of the diagnostic tool, while others (n = 9) explicitly
stated that they used the International Classification of Diseases (ICD) tool,
which is used to classify disease and mortality codes.

Table 2.

3 Techniques used in the literature for Analysing
EHR

Techniques used in EHR can be categorised into the following groups: patient
risk analysis/prediction, advanced architectures to analyse EHRs, medical text
summarising and other NLP applications.
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Figure 2: Medical NLP research around the globe.

3.1 Patient Risk Analysis/Prediction

This section presents an overview of the essential concepts of machine learning
and natural language processing applied to analyse and predict the risk condi-
tion of patients. We will discuss articles concerning patient risk analysis and
prediction, including 1) perinatal self-harm detection, 2) suicide attempt detec-
tion, 3) automated HIV risk assessment, 4) delirium detection, and finally, 5)
diagnosing lupus nephritis.

A) Perinatal Self-harm
Mental illness, drug abuse, singleness, and obstetric and neonatal compli-

cations are major risk factors for self-harm throughout pregnancies and the
first year following delivery [31], which is likely to be the case of perinatal self-
harm. It is worthwhile to note that NLP has been used to identify suicidality in
EHRs [32], including those of kids suffering from autism spectrum disorders [33]
and primary care physicians [34].

Several studies have focused on women with Serious Mental Illness (SMI)
during the perinatal stage. Ayre et al. [35] proposed a Natural Language Pro-
cessing (NLP) tool that can effectively identify those who have perinatal self-
harmed. Clinical Record Interactive Search (CRIS) was used in this study, which
enabled researchers to access women’s de-identified medical health records. The
tool investigated by Ayre takes a text as input (”She took an overdose”, ”Pre-
vious episodes of self-harm”, ”Current episode of self-harm”) and sequentially
runs it through five processing layers before generating an Extensible Markup
Language (XML) file in which XML tags annotate each detected instance of
self-harm and its associated attributes. The processing layer includes linguistic
preprocessing, lexical rules, token sequence rules, negation detection and con-
textual search. The developed tool was validated through precision, recall and
f1-score, and the tool’s performance in detecting perinatal self-harm was found
satisfactory. However, there remain several shortcomings in this study. The
sample size of the dataset was relatively small, which may create the possibility
of overfitting problems. Overfitting occurs when a model acquires so much in-
formation and noise from the training data that it impairs its performance on
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new data. In addition, this tool is currently running as a beta version, and full
development is not yet complete making it difficult to measure efficiency.

B) Identify Suicide Attempts
Identifying first-time suicide attempts has always been challenging since pre-

diction models generally demand huge data sets [36]. In addition, risk assess-
ment mainly depends on patient-reported data [37] and, and patients may be
prone to hide suicidal notions [38]. These have hampered the accurate identifi-
cation of suicide risk over the years. In light of the underlined context, a group
of researchers [39] conducted a study using electronic health records to detect
patients who are at-risk for their first attempt at suicide using machine learning
and natural language processing.

An open-source NLP tool, ”cTAKES”, was used to extract clinical outcomes
from medical notes, requiring no preprocessing. This tool has been widely
used and thoroughly tested to process numerous descriptive notes, including
discharge summaries, radiology notes, history and physical progress. When
extracting clinical concepts from large-scale medical records, Concept Unique
Identifiers (CUIs) from the Unified Medical Language System (UMLS) was used
to annotate each concept. Furthermore, Tsui et al. [39] employed traditional
machine learning models to predict the suicide risk by exploiting the retrieved
features of EHRs: Random Forest (RF), Least Absolute Shrinkage and Selec-
tion (LASSO) regression, Näıve Bayes (NB), as well as the Ensemble of Extreme
Gradient Boosting (EXGB). This study adopts 3 frameworks based on feature
engineering concerning feature optimisation: wrapper, filter and embedded. The
main idea of this optimisation is to reduce the number of input variables in or-
der to lower the computational cost of modelling, thus improving the predictive
model’s performance. Note that the proposed algorithms were not compared
with more established models for predicting suicide, making it hard to gauge
the improvement it offers.

Figure 3: Clinical notes analysis’s architecture diagram.

Using a different approach, Carson et al. [40] developed and evaluated an
ML method using NLP in EHR to detect suicide in adolescents. In order to
categorise teenagers according to their history of suicide attempts, the authors
illustrate the implementation of an ML system that creates a classification model
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from codes created by NLP analysis of EHRs notes. In this work, Invenio soft-
ware was employed to encode the unstructured textual information of EHRs.
Invenio is built upon an open-source Apache cTAKES platform [41] and analyses
unstructured descriptions of medical notes. Compared to the cTAKES system,
Invenio was found to be more successful when converting free clinical text; More
specifically, this system uses several features such as a sentence boundary detec-
tor, tokeniser, normaliser and part-of-speech tagger, shallow parser, and named
entity recognition annotation. In addition, Invenio’s performance in capturing
negative phrases in electronic health records proved to be satisfactory. Fur-
thermore, a random forest (RF) classifier was also applied to classify individual
patients according to the history of prior suicide attempts. Again, the authors
used the five-fold cross-validation technique to optimise the features of the pro-
posed model. Finally, Area Under the Curve (AUC) was used to assess the
performance of the model.

C) Automated HIV Risk Assessment
Many studies have proposed solutions for automated Human Immunodefi-

ciency Virus (HIV) risk assessment. These studies primarily rely on structured
medical free text and have many limitations in capturing important informa-
tion on HIV risk factors. Usually, narrative or semi-narrative formats are used
to gather precise descriptions of social and behavioural factors, such as sexual
orientation and sexual activity.

Utilizing machine learning and natural language processing, Feller et al. [42]
suggested a strategy to detect persons at high risk for HIV using EHRs. This
automated diagnosis was carried out in four steps: keyword identification, topic
modelling, variable selection and statistic modelling. The first stage aims to
identify words with potentially rich information value by representing each word
in the clinical note based on its Term Frequency-Inverse Document Frequency
(TF-IDF) weight. The second stage focuses on topic modelling, from which large
amounts of text can be analysed, and its content can be defined by focusing on
hidden features with a certain weight. This was done using the Latent Dirichlet
Allocation (LDA) algorithm, which takes a corpus of notes as input and learns
K clusters, representing the distribution of words in each corpus. The third step
is essential when working with a large number of clinical notes. It can be said
that redundant variables often reduce the performance of predictive models, so
it is recommended to eliminate irrelevant features and keep the corpus simple
before feeding the data to the ML system. Hence, Feller et al. identified a
selection of the most valuable variables using mutual information criteria. The
relationship between two random variables is quantified by mutual information,
which may account for both linear and non-linear correlations.

The final step illustrates the development and assessment of the statistical
model. Feller et al. utilised random forest classifiers to predict the risk factors
of HIV as they are simple to tune and provide a measure of variable impor-
tance; following the bagging method reduces the chance of being affected by
outliers and thus allows interpretation. Consequently, the suggested model was
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evaluated through the model validation indicators such as precision, recall and
f1-score.

D) Delirium Identification
Delirium is a sudden onset of confusion that can last for hours or even

days. Delirium is often not classified for billing and is underdiagnosed in clinical
practice. Although manual chart review can be employed to detect the presence
of delirium, it is time-consuming and inappropriate for large-scale investigations.
Since NLP has the ability to process and determine raw text data, Fu et al. [43]
were motivated to implement and evaluate NLP algorithms to detect delirium
events from EHRs.

The authors developed two NLP techniques such as NLP-CAM and NLP-
mCAM, using the Confusion Assessment Method (CAM). CAM is a standard-
ised, evidence-based method that allows physicians without psychiatric train-
ing to effectively identify delirium in clinical and research contexts. The NLP
models examine patient charts for clear indications of delirium patients and
its associated medical information that fits the CAM standards to determine
an individual’s delirium condition. The CAM has four features that help as-
sess delirium: sudden onset and variable course, lack of attention, disordered
thoughts, and altered level of awareness. Each delirium and its associated con-
cept were normalised to the correct format based on these features. In addition,
any erroneous examples found during training were inspected through a manual
process and repeatedly corrected until all errors were rectified, paving the way
for improvement of the model. Thus, the proposed NLP techniques have worked
admirably to identify patients experiencing delirium using health records in a
timely and cost-effective manner.

E) Identify Lupus Nephritis
Lupus nephritis is a kind of kidney condition that is triggered by Systemic

Lupus Erythematosus (SLE or lupus). Much of the information needed to detect
Systematic Lupus Erythematosus (SLE or lupus), such as histology notes for
kidney biopsies, are only available in text-based notes, making it difficult analyse
rule-based detection algorithms and text string searches. Researchers have come
up with innovative solutions to diagnose lupus nephritis, but their solutions
are not very effective. A study conducted by Deng et al. [44] designed an
NLP system to analyse the clinical notes to detect the early onset of nephritis.
In this study, the authors utilised two inpatient and outpatient datasets and
implemented 4 algorithms: a rule-based algorithm that utilises only structured
data (baseline algorithm) and other 3 algorithms utilising various NLP-based
models. Each of the 3 NLP models is built on l2-regularized logistic regression
utilizing a separate feature set, comprising positive mention of Concept Unique
Identifiers (CUIs), number of occurrences of CUIs, and a blend of all three
components, respectively.

Furthermore, Deng et al. preprocessed the medical records by removing
identical entries and lemmatisation phrases. The MetaMap was used to tag
medical terms within these phrases. In addition, the SHAP decision plot was

11



also applied for assessing feature relevance to present which features were more
important during diagnosis. Again, the proposed algorithms were compared
with the three independent NLP models and a baseline algorithm to ensure that
this method could efficiently identify individuals with lupus nephritis. Nonethe-
less, the suggested approach makes it easier to accurately diagnose this disease,
which helps researchers better understand the SLE characteristics of individu-
als. Yet, missing laboratory tests from EHRs with this small sample size (50)
affected prediction accuracy.

3.2 Advanced Architectures to Analyse EHRs

Deep learning and transfer learning architectures have revolutionised clinical
NLP in recent times. The recent results of several pre-trained models against
known benchmarks solidify transfer learning’s position as an indispensable tech-
nique in modern NLP. More specifically, the state-of-the-art DL and transformer-
based model have been used in various NLP tasks over the past years. Examples
include, automated ICD-9 coding, multi-classification problems, medical text
summarisation, language translation, clinical data de-identification, etc. The
following subsection summarises deep learning and transfer learning architec-
tures frequently applied to analyse EHRs.

A) Convolutional Neural Networks
DL methods are beginning to lead a wide range of clinical NLP applications

due to their low complexity, fast processing, and state-of-the-art results in the
automated the International Classification of Diseases (ICD-9) classification. Li
et al. [45] designed a deep learning system (DeepLabeler) to classify ICD-9 au-
tomatically. This framework consists of Convolutional Neural Network (CNN)
with Document to Vector (D2V) technique to retrieve and encode local and
global features. The proposed model performs its task by following two steps:
1) feature extraction and 2) multi-label classification. In the feature extraction
phase, Li et al. effectively extracted global and local features from the Medical
Information Mart for Intensive Care (MIMIC) dataset with the recent success
of D2V techniques. Li et al. demonstrated that the adopted D2V approach
keeps all words in one document for training; Thus, it does not eliminate any
useful information. Compared to the CNN model, it is quite impossible to
retain the full words in the document during training because it considers ig-
noring semantic information while extracting features. Secondly, the multi-label
classification steps utilise a Fully Connected Neural Network (FCNN), sigmoid
activation function and backpropagation technique to anticipate the likelihood
of each ICD-9 code. On the other hand, due to the small number of documents
used in this study [45], it is noticeable that the F-measure was not exception-
ally high. The imbalanced distribution of ICD-9 codes in the MIMIC dataset is
primarily the reason for the low F-measure in ICD-9 automatic coding.

In addition to the wide variety of clinical NLP applications, researchers do
not limit themselves to contemporary NLP solutions, as the research commu-
nity continuously strives to solve several significant problems in the current
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NLP space. It can be said that among the existing articles, clinical name entity
recognition (NER) is not widely available; However, recently, a customised NER
model has been adopted to extract several medical entities from a large number
of medical records. Kormilitzin et al. [46] proposed a NER model to identify
clinical entities in seven categories: Drug Name, Route of Administration, Fre-
quency, Dosage, Strength, Form and Duration. The recommended model was
developed based on the spaCY python-based open source library. While several
excellent libraries are available in full versions, including NLTK [47], Stanford
CoreNLP [48], Hugging Face [49], and NLP4J [50], the Spacy library is opti-
mised for CPU speed. The core architecture of the proposed NER model is
based on a CNN network. The token representations are hashed Bloom embed-
dings of specific word prefixes, suffixes and lemmatisations complemented by a
transition-based chunking model. In the case of model performance, in seven
areas, it received a micro-mean F1 score of 0.957. In addition, the transferabil-
ity of the created model was evaluated utilising data from the United Kingdom
Secondary Care Mental Health Record (CRIS) from United States critical care
facilities.

B) Long Short-Term Memory
A hybrid model of Gated Attention incorporated Bi-Directional Long Short-

Term Memory (ABLSTM), and attention-based bi-directional LSTM was pro-
posed by Li et al. to classify clinical text [51]. In this study, Li et al. applied
a three-stage hybrid system that incorporates the threshold-gated neural net-
work model with the attention-guided rule-based approach to solve a multi-class
clinical text classification problem. To begin with, Recurrent Neural Network
(RNN) was applied in this study to be effective for modelling time-sensitive
sequences. On the other hand, the fundamental concept behind LSTM was to
implement ”gates” to regulate the data flow to RNN units [52]. Furthermore,
the attentive recurrent architecture was introduced because Li et al. observed
that when dealing with medical multi-class classification problems, the notable
drawbacks of ”black box” methods cannot be ignored. In order to overcome
this problem, the authors included a bi-directional LSTM framework, including
an attention layer to enable the network to weigh the words in a phrase based
on their perceived relevance. Besides, the weighted average and occurrence fil-
ter method was prioritised for calculating word weight. Finally, a three-stage
hybrid method was developed that applied three subsequent modules to obtain
the final output: GATED ABLSTM classifier, regular expression-based clas-
sifier, and ABLSTM classifier. However, Li et al. found that the traditional
LSTM network limited the ability to receive significant scores for a particular
word in the input document.
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Figure 4: Architecture of the attention-based bi-directional LSTM.

C) Recurrent Neural Networks
Another pioneering effort has shown remarkable achievement in the context

of multi-class classification problems. Recent breakthroughs in advanced deep
learning models show great utility in the NLP space. A hybrid deep learning
model was proposed in [53] to classify ICD-9 codes toward multi-class classifica-
tion. This study applied RNN, LSTM, baseline logistic regression, feed-forward
neural network and Gated Recurrent Unit (GRU) as part of the hybrid ap-
proach. Nigam et al. collected the Medical Information Mart for Intensive Care
(MIMIC III) dataset, consisting of de-identified medical records and various
clinical abbreviations, common misspellings, clinical phrases, and so on. This
study preprocessed noise and less important information from the dataset in
the first phase to create a clean corpus. Secondly, creating vocabulary was a
primary concern when selecting features. Note that abbreviations, misspellings
and idiosyncrasies were ignored during feature selection as they were less sig-
nificant. Nigam et al. applied the Bag of Words (BOW) approach to extract
features from the text document. In the case of model selection, first, the base-
line Logistic Regression (LR) model was applied to train a separate model for
each class, and each model accurately forecasted the predicted value (0 or 1).
Afterwards, the RNN model was created, and this model performed differently
than the baseline LR model. For example, instead of summing the entire BOW
note vector, each vector was separated and input a normalised vector at each
time step. To avoid losing semantic information from previous notes, the labels
of the notes were replaced with LSTM units. Although the proposed model suc-
cessfully classified ICD-9 codes, there is still a limitation. The model appears to
be overfitting the training data and probably requires a higher dropout value.

D) Transformer-based Architectures Recent advances in transfer learn-
ing have gained popularity in clinical NLP. More specifically, the Bidirectional
Encoder Representation from Transformer (BERT) combines bidirectional trans-
formers and transfer learning to create state-of-the-art models for various NLP
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tasks [54]. In recent years, Mulyar et al. [55] proposed a Multitask-Clinical
BERT (MT-Clinical BERT), which is a unique model that combines individual
activities. . For example, it conducts multi-task learning on 8 different infor-
mation retrieval tasks, including entity retrieval and identification of Personal
Health Indicator (PHI), in addition to clinical text embedding learning. These
embeddings are fed as input to these prediction functions. This multi-task strat-
egy is competitive against task-specific information extraction algorithms due to
its capacity to exchange data across several inconsistently annotated datasets.

Another transformer model called BEHRT was suggested by Rao et al. [56],
which learns about the previous illnesses of patients as well as the intercon-
nections between them. This algorithm is specifically designed to forecast a
patient’s future diagnosis (if any), given their past symptoms. The proposed
BEHRT creates a definitive embedding through information on disease pro-
gression and care delivery as well as maintaining event timing. Compared to
previous techniques such as RETAIN [57], an assessment of the model revealed
that BEHRT had greater predictive power, as shown by an increase of 8.0–13.2%
in average accuracy scores for tasks such as sickness trajectories and illness pre-
diction.

In another case, it is often seen that actual clinical data is underutilised in
most studies because researchers often do not have access to actual data due
to data scarcity and confidentiality. Note that most studies focused primarily
on using the MIMIC corpus; nevertheless, MS-BERT was created by Costa et
al. [58] as the first publicly accessible transformer model that was trained on
actual clinical data. The MS-BERT model is publicly accessible and has been
trained on more than 70,000 consultation notes for Multiple Sclerosis (MS)
patients. It is to be mentioned that the notes were de-identified before training.
Furthermore, the model was evaluated using a classification task in order to
forecast the Expanded Disability Status Scale (EDSS). In the macro-F1 score,
the model outperforms competing models using word2vec, CNN and rule-based
techniques.

In addition, a group of researchers [59] developed CheXbert, which employs
BERT to classify free text radiological records. Existing machine learning mod-
els in this study use feature engineering or human annotation. Although of
excellent quality, annotations are limited, and production is expensive. The
CheXbert overcomes this issue by learning to classify radiography reports via
annotations and current rule-based techniques. It first learns to anticipate the
output of a rule-based labeller, then fine-tunes an extensive set of expert com-
ments. It achieved a new state-of-the-art result by improving F1 scores for a
report labelling task on the MIMIC-CXR dataset [60], which contains large-scale
labelled chest radiographs.

3.3 Medical Text Summarising

Creating a summary system from medical narratives has become challenging as
few effective tools have been developed in the healthcare sector. When large
amounts of data are collected, such as in the Intensive Care Unit (ICU), display-
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ing efficient data becomes a key concern for strategic planning. While the most
common strategy would be visually displaying information, text summarisation
has already been found to aid strategic planning. This section will review the
abstract and extractive text summarisation approaches researchers have devel-
oped in the retrieved articles.

A) Extractive Summarisation Models
Portet et al. [61] proposed an extractive summarisation model called BT-45

utilising EHR to generate textual summaries of approximately forty-five min-
utes of constant clinical information and random events. This study developed
text summaries in four steps, each accessing area-specific knowledge containing
conceptual content in neonatal intensive care. Signal analysis (1), which ex-
tracts the basic characteristics of the physiological time-series data, is the first
phase of processing (artefact, pattern and trend). In order to comprehend more
creative clinical findings and linkages derived from data pertaining to signal
features and random occurrences, data interpretation (2) employs a variety of
time and rational reasonings. The third phase of documentation planning (3)
organizes the most relevant occurrences from the preceding phases into a tree
of related occurrences. Eventually, this tree is transformed into a coherent text
through microplanning and realisation. However, human evaluators find model
summaries inefficient because of the difficulty in integrating these disparate data
into one model. As a result, most of the following initiatives focus primarily on
textual information. Despite these limitations, the authors demonstrate that it
is feasible to construct concise paragraphs from huge, complicated information
that may be used as useful planning instruments.

Moradi et al. [62] introduced a graph-based algorithm that analysed words
and phrases using biomedical text. In the first phase, the primary concern was
drawing out technical reports’ content. This task was accomplished per the
document’s formatting and logical structure. In the case of scientific articles,
the main body was extracted by eliminating those parts of the text that seemed
unnecessary to include in the abstract. The title, author information, abstract,
keywords, section and subsection headings, bibliography, and other elements
were included in these parts. Subsequently, Moradi et al. use the Helmholtz
principle from Gestalt theory to determine the concepts that convey primary
information from the text and then construct a graph from that information.
Finally, the degree of each node in that generated graph was calculated by a
summation, which then ordered the nodes in descending order. In addition,
the ROUGE score was used to evaluate the proposed model, which calculates
different ratings indicating the content similarity between a reference summary
and the summary made by a machine learning model. Also, a comparative
analysis of this method with other summaries was carried out during the evalu-
ation period. This model had the best ROGUE value among other comparison
techniques. However, the authors intend to extend this research by using in-
creasingly advanced methods at different stages of the summarisation process.

Another extractive summarisation model developed by McInerney et al. [63]
selects sentences most likely related to a potential diagnosis. First, Mclnerney
et al. compiled a list of individual reporting forms and diagnostic codes from
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each individual, chronologically arranged by date and time in various collected
EHR datasets. Then, their strategy was to train a deep learning model incor-
porating a transformer-based approach to select short phrases from EHRs. For
this, the authors developed and evaluated systems for remote supervision, which
only require grouping diagnostic codes. Such systems employ medical BERTs
to encode questions and comments simultaneously and then identify groups of
ICD codes that correlate with specific illness diagnoses used to train the model.
Although the proposed remotely supervised model significantly outperforms un-
supervised baseline models, Mclnerney et al. intend to expand this research to
determine whether adding a little direct supervision can improve the model’s
performance further.

B) Abstractive Summarisation Model
Radiological reports have been increasingly summarised using seq2seq and

related models in abstractive summarisation research. The first study using
seq2seq to develop radiological impressions was conducted by Zhang et al. [64].
Zhang et al. suggest using the neural seq2seq method for making radiological
assessments. The authors also propose a particular deep learning model for
this activity that learns to encode prior research knowledge and uses it to guide
the decoder. Additionally, a pointer-generator model was used in the decoding
part. Consequently, this model outperforms state-of-the-art baseline models on
larger datasets of radiological records collected from real hospital trials using the
ROUGE system. Although the background part of the report was simplified by
encoding the model as an abstract summary, radiology specialists’ treatments
are often excluded from the results part and require an extensive understanding
of research and field expertise; the model often misses follow-up treatments.

3.4 Other NLP Applications

The additional applications of NLP can be clustered under the following head-
ings: blockchain-based EHRs, identifying goals-of-care conversations, clinical
chart review and medical language translation.

A) Blockchain-based EHRs
The significance of having a reliable record-tracking and communications

mechanism has been highlighted more recently worldwide during the COVID-
19, which indicates the current inadequacy in this field. Bharimalla et al. [65]
focused on a blockchain and NLP-based approach to make a communication and
record tracking system [33]. The proposed prototype system is based on Hyper-
ledger Fabric, a distributed ledger technology that is open source and designed
for enterprise use. It is a popular choice for private blockchains. Bharimalla
et al. categorised their methodology into system architecture, data pulling and
sharing, patient data management and converting paper prescriptions to text.
To be more specific, Bharimalla et al. focused on converting paper prescriptions
into text using NLP methods to integrate old paper-based clinical records into
the new system using a mobile application-based interface.

Turning to the data extraction phase, CNN, LSTM and Residual Networks
(ResNet) were applied in terms of extracting handwritten data. At the same
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time, the Google tesseract model was considered to extract printed prescrip-
tions data. Moreover, Bharimalla et al. carried out some preprocessing in
the extraction process. Firstly, the image was converted to grayscale to create
a more functional model. The next step was to apply the Otsu thresholding
process, which turns the pixels into ones and zeros after the grayscale opera-
tion. Note that some pixels are usually lost during thresholding; therefore, to
mitigate these problems, Erosion and Dilation techniques were used to restore
certain pixels, where Erosion enlarges some pixels and Dilation reduces some
pixels. Bharimalla et al. explain that these images will be forwarded to Google-
Tesseract after completing preprocessing. Finally, all text from the image will
be extracted by tesseract and sent over the network. Figure 5 illustrates the
proposed framework for a blockchain-based healthcare system. It shows the
main participants, elements, and transaction procedures.

Figure 5: Framework for Blockchain-based Healthcare System [65] .

B) Identify Goals of Care Conversations Goals-of-care conversations
aid patients with severe illnesses in articulating what they value most and wish
to occur with their medical treatment. Medical professionals can use this in-
formation to create a care plan based on the patient’s values and preferences.
In light of the context, Lee et al. [66] developed an automated method for
identifying goals of goal-of-care discussion using NLP approaches. In brief, a
sample of 3183 EHR notes was collected from 1426 patients with severe illnesses,
and each note was manually evaluated for documentation of goals-care discus-
sions. The EHR notes were randomly divided into 100 training and test set
pairs. The NLP technique was used to tokenise each note in unigram (i.e., one-
word length tokens), removing common stop words and negation terms. In this
study, the logistic regression classifier was applied for each training set and mea-
sured the classifier’s performance using the Area under the receiver operating
curve (AUC). The authors divided the data samples into inpatient or outpatient
datasets and used the same methodology for training and testing the model in
both subgroups to investigate the suggested model’s effectiveness. However,
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Lee et al. stated that additional research is required to validate the proposed
approach, particularly in identifying outpatients’ goals-of-care discussions.

C) Clinical Chart Review
Periprosthetic joint infection (PJI) data elements exist in both unstructured

and structured EHR records and must be collected manually. This study [67]
aims to create an NLP technique to simulate manually annotated chart evalu-
ation for data items of PJI. The suggested strategy was based on expert rules
that focused on textual cues (i.e., PJI-related terms) identified in orthopaedic
surgeons’ or communicable diseases experts’ clinical narration. The text prepro-
cessing, concept extraction, and classification processes are the three primary
parts of the NLP method. Sentence segmentation, assertion detection, and
temporal extraction were the critical elements of the textual data processing
workflow. Additionally, concept extracting is a knowledge-driven annotating
and indexing technique that recognizes phrases in the unstructured text that
correspond to topics of interest. Furthermore, in developing the NLP algorithm,
a training sample of 1208 TJA surgeries (170 PJI cases) and a test sample of
1179 TJA surgeries (150 PJI cases) were selected randomly. To successfully
predict the state of PJI based on MSIS criteria, the NLP technique was applied
to all consultation notes, surgical notes, pathology reports, and microbiological
reports. After extracting the existence of sinus tract, purulence, pathologic ev-
idence of inflammation, and growth of bacterial isolates from the affected TJA,
the algorithm obtained an f1-score between 0.771 and 0.909.

D) Medical Language Translation
Most researchers, except specialists, have limited knowledge of EHRs be-

cause they contain specialised medical terms, acronyms, and a distinct structure
and writing style. Translating medical writings into a more understandable form
for laypeople is known as medical language translation. For example, the term
”peripheral edema” might be substituted with ”ankle swelling”. There are only
a few research have been conducted on the topic of EHR simplifying. Weng et
al. [68] used an unsupervised task of text simplification to medical documenta-
tion in order to simplify them. Manually annotating text with simplified versions
using unsupervised algorithms helps to alleviate the lack of text. They employ
skip-gram embeddings learnt from 2 different clinical corpora: MIMIC-III, which
has a substantial amount of medical terminology, and MedlinePlus [69], which
is oriented toward laypeople. These complex and basic phrase embeddings are
aligned using a bilingual dictionary induction model, which also initialises a
denoising autoencoder. This autoencoder takes as input a sentence written by
a doctor, converts it into a simplified translation using a language model, and
then reconstructs the original sentence through the translation. On the other
hand, a human-annotated medical language translation dataset called MedLane
was introduced by Luo et al. [70]. It aligns professional medical language with
expressions that the average person can understand. For training, validation,
and testing, it contains 12,801/1,015/1,016 samples, respectively. In addition,
they presented the PMBERT-MT model, which employs the pre-trained Pub-
MedBERT [71] and carries out translation training using MedLane.

E) Medical Disease Prognosis
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Additionally, research in medical imaging is currently in the limelight, which
was very useful in the early stages of the COVID-19 outbreak. It should be noted
that CNN-based methods were came into the attention to the research com-
munity and numerous concepts are currently being developed to solve specific
cases. Recently, Bhosale et al. [72] introduces a unique CNN model (PulDi-
COVID) for the CXI-based detection of nine illnesses (atelectasis, bacterial
pneumonia, cardiomegaly, covid19, effusion, infiltration, no-finding, pneumoth-
orax, viral-Pneumonia). Utilizing COVID-19 and CXI data for chronic lung
diseases, a variety of transfer-learning models are trained, including VGG16,
ResNet50, VGG19, DenseNet201, MobileNetV2, NASNetMobile, ResNet152V2,
and DenseNet169. The complete dataset contains a subset of CXI associated
with a variety of lung diseases and COVID-19 as well as healthy patients. Fur-
thermore, Bhosale et al. [72] select six illnesses from fourteen ChestX-ray8 clas-
sifications for the sake of experimentation: atelectasis, cardiomegaly, effusion,
infiltration, no-finding/healthy, and pneumothorax. The suggested framework
has the greatest achieved accuracy on the dataset utilized in the experiment,
with an accuracy of 99.70%, precision of 98.68%, recall of 98.67%, F1-score of
98.67%, minimal zero-one loss of 12 and error rate of 1.33%. The proposed
model PulDi-COVID has demonstrated superior performance to earlier devel-
oped methods. In order to reduce patient severity and mortality, the COVID-19
speedy detection requirements with various lung diseases can be successfully met
by the suggested SSE method with PulDi-COVID.

4 Analysis of the literature

This section will discuss findings based on the retrieved articles. First, we discuss
data types and quantities in 4.1. Second, the clinical free text preprocessing
pipeline is shown in 4.1.2. The most frequently used ML and DL models are
illustrated in 4.2. A comparison of frequently used models is explained in 4.3.
Model evaluation matrices and commonly used feature extraction methods are
illustrated in 4.4 and 4.5. Finally, clinical settings are presented in 4.6.
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Figure 6: Analysing EHRs using DL and ML algorithms.

4.1 Data Type and Quantity

The Clinical Practice Research Datalink (CPRD) dataset has been used only in
one article [56]; all other articles have used electronic health record data. This
section describes two essential factors: (a) a comparison of overall insights of
data and (b) details of preprocessing pipelines used.

4.1.1 Comparison of Overall Insights of Data

Table 2 presents studies that reported the following eight parameters: (1)
dataset, (2) sample, (3) funding status, (4) universal availability, (5) data type,
(6) diagnostic tool, (7) design/settings, and (8) data format. Most of these
studies (n = 21) were well funded, indicating that research on clinical NLP has
become essential for improving clinical outcomes in recent years. Table 2 groups
type of information recorded in EHR, which include clinical notes (n = 14),
clinical narratives (n = 5), echocardiography reports (n = 2), medication ad-
ministration records (n = 4), lung cancer data (n = 1), mental health (n = 1),
demographic data (n = 2) and discharge summary (n = 1). Due to patients’
confidentiality, the availability of clinical data is quite challenging. Most EHR
data researched was not open to public access and was not available to access
upon study completion.

We also retrieved the parameters of the studies such as diagnostic tool,
research design/setting, and data format. These studies can further be clustered
into observational studies (n = 8), experimental studies (n = 24), and case
studies (n = 1) with a variety of diagnostic tools utilised in both cohort and
empirical research. The International Classification of Diseases (ICD) was one
of the most widely used approaches to assign codes against a specific disease.
The data format of each observational and experimental study was unstructured
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when obtained from the various EHR sources.

Table 2: Data type and size with relevant parameters

Dataset Sample Funded Research Publicly Available Data Type Diagnostic Tool Design/Setting Structured
EHRs [73] 302 χ χ Clinical Notes ICD Cohort χ
EHRs [18] 792

√
χ Clinical Notes ICD Cohort χ

EHRs [74] 681 χ χ χ χ χ χ
EHRs [75] 16665

√
χ Clinical Notes χ Experimental Research χ

EHRs [76] 8000
√

χ Clinical Notes Apache cTAKES Experimental Research χ

EHRs [77] 1237
√

χ Clinical Discharge Summaries Phenotyping Framework. Case Study χ

Forensic EHRs [78] 6865 χ χ Case Notes χ Experimental Research χ
EHRs [79] 291

√
χ Clinical Notes ACS NSQIP Cohort

√

EHRs [80] 781
√

χ Clinical Notes χ Experimental Research
√

EHRs [81] 7853 χ χ χ ICD Cohort χ
EHRs [82] 7149 χ χ Physician Notes χ Experimental Research χ
I2B2 [83] 4605

√ √
Medication Administration Record χ Experimental Research χ

EHRs [83] 6861
√

χ Clinical Notes ICD Cohort χ

EHRs [84] χ χ χ Medical Language χ Experimental Research χ
CRIS [85] χ

√
χ Medication Administration Record χ Experimental Research χ

EHRs [86] 154 χ χ Clinical Notes χ Experimental Research χ
EHRs [87] 700,000 χ χ Medication Administration Record χ Experimental Research χ
EHRs [88] χ χ χ Patient Demographic Data χ Experimental Research χ
EHRs [66] 92151

√
χ Mental Health Disorder χ Experimental Research χ

EHRs [89] 76 643
√

χ Lung Cancer ICD Cohort χ

EHRs [43] 150
√

Clinical Notes χ Experimental Research χ

EHRs [90] 1003
√

χ Echocardiogram Reports χ Experimental Research χ

EHRs [44] 1052
√

χ Clinical Notes χ Experimental Research χ

EHRs [39] 798 665
√

χ Clinical Notes ICD Cohort χ

EHRs [65] 17 235 χ χ Clinical Narratives χ Experimental Research χ
EHRs [91] 586

√
χ Clinical Narratives χ Experimental Research χ

EHRs [92] χ χ χ Clinical Narratives χ Experimental Research χ
EHRs [93] 823,627 χ χ Clinical Narratives χ Experimental Research χ
CPRD [56] 674

√
χ Clinical Narratives χ Experimental Research χ

EHRs [94] 1000 χ χ Medication Administration Record ICD Cohort χ
EHRs [95] 300 χ χ χ χ Experimental Research χ
EHRs [96] 500

√
χ Clinical Notes χ Experimental Research χ

EHRs [97] 198
√

χ Echocardiography Reports ICD Cohort χ

EHRs [96] 820
√

χ Patient Demographics χ Experimental Research
√

EHRs [33] χ
√

χ Clinical Narratives χ Experimental Research χ

4.1.2 Clinical Free Text Preprocessing Pipeline

Understanding what techniques researchers frequently use in clinical text pro-
cessing is essential. Finding the right direction to process clinical free text is
vital to understanding the free text processing settings. Table 3 presents data
preprocessing methods used in the reviewed articles. We compare commonly
used data preprocessing techniques such as commercial, manual, electronic, and
distributed. Our analysis reveals that the researchers did not explain any de-
tails of the clinical text preprocessing settings in the articles listed in Table 3.
Although structured data was used in two manuscripts [79] [80], we did not find
comprehensive approaches to clinical text preprocessing.
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Table 3: Comparison of data preprocessing methods

Dataset Data Type Structured Commercial Data Processing Manual Processing Electronic Processing Distributed Processing
EHRs [73] Clinical Notes χ χ χ χ χ
EHRs [18] Clinical Notes χ χ χ χ χ
EHRs [74] χ χ χ χ χ χ
EHRs [75] Clinical Notes χ χ χ χ χ
EHRs [76] Clinical Notes χ χ χ χ χ
EHRs [77] Clinical Discharge Summaries χ χ χ χ χ

Forensic EHRs [78] Case Notes χ χ χ χ χ
EHRs [79] Clinical Notes

√
χ χ χ χ

EHRs [80] Clinical Notes
√

χ χ χ χ

EHRs [81] χ χ χ χ χ χ
EHRs [82] Physician Notes χ χ χ χ χ
EHRs [83] Clinical Notes χ χ χ χ χ
EHRs [84] Medical Language χ χ χ χ χ
CRIS [85] Medication Administration Record χ χ χ χ χ
EHRs [86] Clinical Notes χ χ χ χ χ
EHRs [87] Medication Administration Record χ χ χ χ χ
EHRs [88] Patient Demographic Data χ χ χ χ χ
EHRs [66] Clinical Notes χ χ χ χ χ
EHRs [89] Lung Cancer χ χ χ χ χ
EHRs [43] Clinical Notes χ χ χ χ χ
EHRs [90] Physician-adjudicated echocardiogram reports χ χ χ χ χ
EHRs [44] Clinical Notes χ χ χ χ χ
EHRs [39] Clinical Notes χ χ χ χ χ
EHRs [65] Clinical Narratives χ χ χ χ χ
EHRs [91] Clinical Narratives χ χ χ χ χ
EHRs [92] Clinical Narratives χ χ χ χ χ
EHRs [93] Clinical Narratives χ χ χ χ χ
CPRD [56] Clinical Narratives χ χ χ χ χ
EHRs [94] Medication Administration Record χ χ χ χ χ
EHRs [95] χ χ χ χ χ χ
EHRs [33] Echocardiography Reports χ χ χ χ χ
EHRs [96] Patient Demographics χ χ χ χ χ
EHRs [33] Clinical Narratives χ χ χ χ χ

4.2 Models

4.2.1 Frequently Used ML Models

Experimental techniques that were effective when implemented on EHRs were
Logistic Regression (LR), Support Vector Machine (SVM), eXtreme Gradient
Boosting (XGBoost), AdaBoost, Random Forest (RF), Linear Regression (LR),
Näıve Bayes (NB), Gradient Boosting (GB), and Decision Tree (DT) models.
These ML and DL-based algorithms were applied to conduct various NLP tasks,
including classification, prediction, word embedding, text summarisation, lan-
guage modelling, ICD-10 classification, clinical notes analysis, mental health is-
sue identification and medical dialogue analysis. The two most prominent NLP
tasks in recent years have been classification (n = 15) and prediction (n = 14).

The bar graph in Figure 7 compares the widely accepted ML models for
medical NLP used for EHRs. In short, Support Vector Machine (SVM) and
boosting algorithms have been the most widely utilised models applied to elec-
tronic health record data for many years. Now turning back to the details,
Figure 7 clearly explain that the use of the SVM model for clinical free text
analysis has increased rapidly by 95% in recent years, showing that scholars
have concentrated more on utilizing this approach in recent years. On the other
hand, the use of the Decision Tree (DT) model was the lowest among other
classical ML algorithms at 40%. It is obvious that boosting strategies such as
AdaBoost and XGBoost were used significantly in selected articles. It is also
noticeable that, in recent years, about four-fifths of the Logistic Regression (LR)
model has been applied to analyse medical free text, as can be clearly seen from
Figure 7. Finally, model evaluation indicators and automated software tools
were used in a very small number of articles.
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Figure 7: Visual presentation of recognised machine learning models and
mapping their cumulative frequencies.

4.2.2 Frequently Used DL Models

In addition to ML models, various DL-based strategies from data concerning
health are also applied to make automated decisions. Table 4 explains the
frequently used DL models and compares them with the evaluation metrics
techniques. Moreover, we were unable to determine why evaluation metrics
were not discussed in many research articles. One possible reason is that the
model’s performance was rather satisfactory; therefore, evaluation via metrics
was not used.

The bar chart in Figure 8 illustrates the recognised DL models and their
cumulative frequency mapping. Overall, it can be seen that Neural Network
(NN) was the most frequently used model applied to the electronic health records
for analysing clinical free text. Artificial neural networks (ANN), commonly
referred to as neural networks or neural nets, are inspired by biological brain
networks. An ANN is comprised of a network of interconnected units or nodes
known as artificial neurons, which loosely resemble the neurons of a biological
brain.

The other common models identified in the included studies were Long Short-
Term Memory (LSTM), Bidirectional Long Short-Term Memory (BI-LSTM),
Convolutional Neural Network (CNN), Residual Neural Network (ResNet), Trans-
fer Learning (TL), Recurrent Neural Network (RNN), Gated Recurrent Units
(GRU) and Representation Learning (RL).
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Figure 8: Deep learning models and their cumulative frequency mapping.
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Table 4: Top frequently utilised traditional models with evaluation metrics and
validation techniques of the existing research articles.

Model used
Evaluation metrics

Validation
AUC Accuracy P R F1 Score

Elastic Net [74] χ χ χ χ χ χ
NLP, EPA [75] 0.98 χ χ χ χ χ
XGBoost [76] 0.91 χ χ χ χ χ
BEHRT [77] 0.91 χ

√
χ χ χ

NLP, LCA [78] χ χ χ χ χ χ
K-NN, SVM, NB, RF [79] 0.98 χ χ χ χ χ
UMLS, MedLEE, NV [80] 0.9 χ χ χ χ χ

RF [81] 0.92 χ χ χ χ χ
N/A [82] χ χ χ

√
χ χ

N/A [98] χ 97 χ χ χ χ
N/A [85] χ 86.81 χ χ χ χ
N/A [86] χ χ χ 85

√
χ

N/A [99] χ 93.8 χ χ χ χ
N/A [100] χ χ χ

√
χ χ

CLM BR [88] χ χ χ χ χ χ
N/A [101] χ χ χ χ χ χ
N/A [102] χ χ

√
χ χ χ

NLP and supervised ML [66] 93.3 χ χ χ χ χ
LASSO [103] 0.58 χ χ χ χ χ

Sentiment Analysis, Cognition Engine and NLP techniques [104] 0.58 N/A χ χ χ χ
PheCAP [105] χ

√
χ χ χ χ

VHA [89] χ 94.4 χ χ χ χ
N/A [43] χ

√
χ χ χ χ

Topic modeling+LDA [106] χ 81 χ χ χ χ
cTAKES [107] χ 96.7 χ χ χ χ
N/A [108] χ 98.2 χ χ χ χ

LR, RF, SVM [67] χ 71 χ χ χ χ
Sag, Meta map, SHAP [106] χ 96 χ χ χ χ

CNN-LSTM, ResNet-LSTM [44] χ 99 χ χ χ χ
LF, Sense2vec, OxCRIS [44] χ 95.7 χ χ χ χ

NLP, DL [46] χ χ χ χ χ χ
RF, LASSO, EXGB, NV [109] 0.95 χ χ χ χ χ

N/A [110] χ χ 97 χ χ χ
ASUDS, LRM [35] χ 94 χ χ χ χ
Cohort study [111] χ χ

√ √
χ χ

ICD9-CM, CPT and NLP techniques [73] χ χ χ 85.7–92.9
√

χ

Expert-driven Queries+NLP [18] χ χ χ χ χ
√

Rule-based NLP [74] χ χ χ χ χ
√

cTAKES NLP Software [75] χ χ χ χ χ χ
LR, SVM, DT and RF [76]

√ √ √ √ √ √

LMT, LR, Linear Regression and SVM [76] χ χ
√ √ √

χ

Automated Clinical Follow-up Tool [78]
√ √ √ √ √ √

Regression, SVMs, DT, RF [112]
√

χ χ χ χ χ

RF, SVM, LR [113] χ χ
√ √ √

χ

Supervised and Unsupervised Model [79]
√

χ
√ √ √

χ

RF, Gradient Boosting, Neural Network, and Linear Regression [79]
√

χ χ χ χ
√

Transfer Learning and Neural Networks [83] χ χ χ χ 82.4 χ
PAD-ML and LASSO approach [84] 0.801 and 0.888 70 90

√
χ

√

4.3 Comparison of frequently utilised models

In this sub-section, we compare commonly used ML and DL-based models and
discuss their advantages and disadvantages in general. It will provide readers
with an understanding of the core information of each model in a clinical free
text context.
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Table 5: Comparison of popular ML and DL models applied in the EHRs

Model Advantage Disadvantage

SVM
(a) SVM is very efficient for high dimensional space.

(b) This algorithm uses relatively less memory.

(a) Support vector machine is not very efficient for very large datasets.
(b) The model is easily affected if the dataset contains overlapping classes and noise.

Gradient Boosting

(a) Does not require data scaling and can handle missing values.

(b) The algorithm is relatively flexible due to loss function
optimisation and hyperparameter tuning.

(a) Outliers may overfit the model.
(b) Comparatively more time-consuming /slower and requires more memory.

XGBoost
(a) Can build decision trees in parallel.

(b) Can use distributed computing method for complex models.
(a) XGBoost does not perform so well on sparse and unstructured data.

Logistic Regression
(a) Logistic regression is easy to implement and interpret.
At the same time, it uses relatively less computational resources.
(b) Logistic regression works well when the data are linearly separable.

(a) The overfitting tendency of logistic regression is generally low,
but the model may overfit if the dataset becomes too dimensional,
in which case, dimension reduction should be done before modeling [114].

(b) If the number of observations becomes less than the number of features,
the model will not be valid, and the problem of overfitting will arise.

Random Forest

(a) Following the random forest bagging method reduces the probability of
being influenced by outliers.

(b) It works well for both categorical and continuous data,

(a) Complex models require more computational resources when the number
of learners is large.

Näıve Bayes
(a) It is easy to implement and relatively fast.
(b) It also works well for small datasets.

(a) Gives slightly lower accuracy than other algorithms.

Decision Tree
(a) Decision trees do not require the dataset to be scaled.
(b) Decision tree can be explained very easily.

(a) Decision trees are not very effective for continuous value prediction in many cases.

(b) Decision tree model takes comparatively more time in training.

Neural Network (a) Multitasking is a common advantage of neural networks.
(a) Black Box Nature
(b) Hardware dependent

LSTM (a) The complexity of updating each weight is reduced to O(1). (a) Dropout is much harder to implement in LSTMs.
BI-LSTM (a) Enable additional training by traversing the input data twice (a) Since BiLSTM has double LSTM cells, so it is costly

CNN (a) Without any human oversight, it automatically discovers significant features. (a) Large training data required
ResNet (a) Large number of layers can be trained easily without increasing the training error percentage. (a) Deeper network usually requires weeks of training.

Transfer Learning (TL) (a) Overcome cost- and time-consuming issues. (a) Problem of negative transfer, i.e., utilizing source domain data/knowledge reduces unfavourably learning performance in the target domain.
Recurrent Neural Network (RNN) (a) When processing temporal, sequential data, like text or videos, RNNs perform better. (a) Gradient vanishing and exploding problems.

4.4 Model Evaluation Metrics

Model evaluation metrics take a key role in evaluating the accuracy and per-
formance of a trained model. Our analyses reveal that researchers focused pri-
marily on AUC, Accuracy, Precision, Recall and F1-score among the articles
we reviewed. It is noteworthy that the AUC tends to differentiate between the
classes of a dataset. The higher the AUC, the better the performance of a
model that distinguishes between positive and negative classes. Furthermore,
the Confusion matrix measures the precision of all classification techniques. The
Confusion Matrix has four distinct values: True Positive (TP), False Positive
(FP), True Negative (TN) and False Negative (FN). False Positive of Confusion
Matrix is called Type 1 Error, and False Negative is called Type 2 Error. Sev-
eral approaches are used to evaluate a model’s accuracy. For example, TP, TN,
FP, and FN are the main determinants of the model’s performance.

The following equations (1), (2), (3) and (4) are primarily applied to deter-
mine the precision, recall, and f1-score [115].

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 · Precision.Recall

Precision + Recall
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

4.5 Word Embedding/Feature Extraction Methods

Table 6 explains feature extraction approaches used with EHR. From the studies
we reviewed, various feature extraction techniques were adopted, most of which
are traditional approaches. Feature extraction methods of medical narratives
such as word weighting, word embedding, and some open-source tools were
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considered in various studies. Examples include TF-IDF, BOW, Word2vec,
Glove, and FastText. The TF-IDF and BOW methods were incorporated as
a word weighting technique, while the Word2vec and Glove were favoured as
a word embedding approach. Among the selected papers, TF-IDF (n = 7),
BOW (n = 5), and Glove (n = 5) were more frequently utilised than the other
methods, such as FastText or BERT transformer models.

Table 6: Feature extraction approaches used with EHRs

Context
Word Weighting Word Embedding

Transformer Approach
Automated Tools

TF-IDF BOW CountVectorizer Word2vec Glove FastText cTakes Metamap
Clinical notes classification

√ √
χ

√
χ χ χ

√
χ

DL assessment for ICD
√ √

χ
√

χ χ χ χ χ

Free text classification
√

χ χ χ χ χ χ χ χ

Medical text labeling
√

χ χ χ χ χ χ χ χ

recognising alcohol consumption
√

χ χ χ χ χ χ χ χ

Computerised ICD coding
√

χ χ χ χ χ χ χ χ

Indexing biomedical literature
√

χ χ χ χ χ χ χ χ

Multi-label classification χ
√

χ χ χ χ χ χ χ

Clinical coding χ
√

χ χ χ χ χ χ χ

ML-based encoding χ
√

χ χ χ χ χ χ χ

Feature identification χ
√

χ χ χ χ χ χ χ

Extracting medication χ χ χ
√

χ χ χ χ χ

ICD encoding χ χ χ
√

χ χ χ χ χ

Clinical coding χ χ χ
√ √

χ χ χ χ

Note classification χ χ χ χ
√

χ χ χ χ

Note embedding χ χ χ χ
√

χ χ χ χ

Classifying diagnosis χ χ χ χ
√

χ χ χ χ

Pre-screening for paediatric oncology patients χ χ χ χ χ χ χ
√

χ

DL comparison χ χ χ χ χ χ χ
√

χ

Feature engineering χ χ χ χ χ χ χ
√

χ

Knowledge extraction χ χ χ χ χ χ χ
√

χ

Text mining of cancer χ χ χ χ χ χ χ
√

χ

Free text analysis χ χ χ χ χ χ χ
√

χ

Extraction of drugs indications χ χ χ χ χ χ χ χ
√

Diagnosis codes to free-text χ χ χ χ χ χ χ χ
√

4.6 Automated tools

This sub-section will explain the automated tools currently being utilised in
healthcare. Tables 7 and 8 illustrate automated machine learning integrated
tools employed for commercial and open-source applications. Overall, it is
evident that several automated ML solutions produced by Google, Amazon,
Microsoft, and JADBIO are chargeable and do not require coding. Likewise,
technologies that do not require a fee necessitate minimum coding in the local
environment and have some limits compared to fee-based solutions. On the
other hand, existing AutoML technologies are not commercially available for
structured data and focus primarily on well-defined unstructured data.

Table 7: Automated machine learning integrated tools.

Platform Chargeable Coding Environment Dataset Domain
Auto ML [116]

√
χ Google Cloud Images, Text, and Tabular Nonspecific

Create ML [116] χ
√

Local Images, Text, and Tabular Nonspecific

Amazon Auto ML [116]
√

χ Cloud Images, Text, and Tabular Nonspecific

Microsoft Auto ML [116]
√

χ Cloud Images, Text, and Tabular Nonspecific

Auto-Sklearn [13] χ
√

Local Tabular Nonspecific
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Table 7 continued from previous page
Platform Chargeable Coding Environment Dataset Domain

Auto-WEKA [117] χ
√

Local Tabular Nonspecific

Auto-Keras [118] χ
√

Local Tabular Nonspecific

TPOT [119] χ
√

Local Tabular Nonspecific

JADBIO [120]
√

χ Cloud Tabular Biomedical and Multi-omics

AutoPrognosis [121] χ
√

Local Tabular Biomedical

Observing Table 7, numerous platforms have created automated ML-enabled
solutions for a variety of activities, with Auto-Sklern [13] being the most pop-
ular because it is integrated into the Sklearn library and is designed to se-
lect algorithms and optimise hyperparameters [122]. This approach also uses
Bayesian optimisation techniques and meta-learning to perform its tasks. An-
other open-source platform developed by the University of British Columbia is
Auto-Weka [117], sometimes known as the Automated Waikato Environment for
Knowledge Analysis. Auto-Weka uses Bayesian optimisation for hyperparame-
ter optimisation. The AutoML platform, which utilises statistical algorithms,
can only analyse structured data, such as stock market prices, student grades,
hotel occupancy, etc.

Table 8: Commercially available and as open source automated machine learning
tools used.

Dataset Format Category Feature Platform

Unstructured

Audio

Health Associated Open Source Commercial
Hearing Aid [123] χ χ

√

Lung cancer [15] χ χ
√

Images
Generic [124] [116]

√
χ χ

Liver Injury [125] χ χ
√

Ophthalmic syndrome [126] χ χ
√

Structured Tabular

Alzheimer’s disease [127]
√

χ χ

BioSignature [128]
√ √

χ

Brain Age [129] χ
√

χ

Brain Tumor [130] χ
√

χ

Cardiovascular disease prognosis [121]
√ √

χ

Diabetes [117] χ
√

χ

Generic [131]
√ √

χ

Metabolic [132] χ
√

χ

It can also be seen that the majority of unstructured data is processed with
commercial AutoML solutions, while structured data is often processed with
open-source tools and clinical AutoML platforms. Due to its process-readiness,
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structured information is easier to manipulate, which is a matter of great con-
cern in this regard. On the other hand, business organisations that benefit
from AutoML platforms have created more dynamic text and image processing
capabilities. Some examples are Amazon’s Recognizer, Apple’s CreateML, Mi-
crosoft’s AutoML, and Google’s AutoML. These industries have invested heav-
ily in the implementation of ML-enabled automated platforms. As a result, the
majority of their products required no coding, and their tools became relatively
user-friendly.

5 Research Viewpoint

This section discusses current research trends, core challenges in medical NLP,
research gaps, and potential future directions.

5.1 Trend of Current Clinical NLP Research

Current trends in medical NLP research are illustrated in Figure 9. Analysis
of clinical notes from five studies [35] [39] [42] [42] [44] revealed a substantial
effort was put into patient risk assessment. We found several papers that ex-
plored ICD-9 code classification; however, most of the articles did not emphasise
machine learning or deep learning techniques. As a result, we discarded them
because they did not meet our criteria for literature selection. We only found
two publications [45] [53] that emphasised ICD-9 code classification based on
machine learning and deep learning.

In addition, the scientific community is currently paying considerable atten-
tion to clinical Named Entity Recognition (NER) and medical text summarisa-
tion. Five studies [61] [62] [133] [63] [134] created the medical text summarisa-
tion model, whereas two studies [135] [83] offered the medical NER model. The
most prevalent physiological illnesses in recent years were dementia and geriatric
mental health. There were five studies on dementia [136] [137] [138] [139] [140]
and three on geriatric mental health [141] [142] [143]. Many studies have come
up with solutions to alleviate such disorders, yet, there is a significant research
opportunity in this field.

Figure 9: Trend of current medical NLP research.
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5.2 Core Challenges in Clinical NLP

In clinical NLP, the core challenge is information overload, which poses a sub-
stantial problem in accessing a particular, significant piece of information from
vast datasets. In addition, semantic and context understanding are essential
and challenging for summarisation systems with a quality deficiency and issues
related to usability. Also another significant problem is the wide variety of text
formats that an NLP program has to deal with to answer queries from sev-
eral sources. The following subsections provide a detailed description of the
challenges in clinical natural language processing.

Figure 10: Potential challenges of clinical natural language processing.

5.2.1 Medical abbreviations

Sometimes abbreviations are misread, misinterpreted or misunderstood. Their
use increases the amount of time needed to train health care professionals, wastes
time determining their cost, often delays patient care, and occasionally results
in patient harm. As shown in Figure 10, many studies have combined medical
abbreviations, confusing terms, or data from different diseases when analysing
clinical descriptions as a strategy to overcome NLP challenges. Researchers have
used these strategies to address frequent clinical phrases used to describe pa-
tient care: time of admission, time of initial examination, time of hospitalisation,
time to discharge planning, and throughout the coding and billing process [144].
Similar challenges are presented by medical abbreviations and acronyms, such
as when prescribing medications. Physicians sometimes use Latin-derived ab-
breviations to specify the frequency of drug administration, such as ”BD” (bis
die), meaning twice daily. Computers had trouble correctly recognising pat-
terns when identifying such complex abbreviations [145]. However, no study
has effectively filtered medical acronyms by removing stop words.

5.2.2 Spelling Correction and Negation Detection

Terms in medical summary documents are misspelt for two reasons: clerical
errors and Optical Character Recognition (OCR) errors. The Levenshtein dis-
tance is a straightforward method for replacing all misspelt words with dictio-
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nary words. While many dictionary words can have the same edit distance,
replacing words based solely on Levenshtein distance [146] does not result in
higher accuracy. Correcting misspelt words with those the language model sug-
gests significantly improves accuracy. Since medical texts use a distinct language
than other texts, language models developed using general English do not work
well in this case.

Shannon’s Noisy Channel Model [147] is the most effective development in
NLP in terms of recent advances in medical spelling correction. This technique
uses an extensive dictionary built from numerous sources. This model predicates
named entity recognition so that misspellings are not incorrectly corrected. This
spell checker was applied to three distinct forms of free-text data: clinical notes,
allergy entries, and pharmaceutical orders. The efficacy of this model is that it
is capable of high-performance spelling correction in various clinical narratives.
To the best of our knowledge, no suitable tools for medical spelling checking
have yet been widely produced; therefore, it is essential to build further tools,
such as Shannon’s noisy channel model [147], to overcome the highlighted issues.

On the other hand, a linguistic phenomenon known as negation causes sen-
tences to have their meanings reversed. The negation term determines if a
finding in the clinical narrative has to be annotated as a finding or should be
excluded. For example, Kundeti et al. [148] demonstrated that the significance
of the findings is altered by the use of qualifiers and negation terms. For in-
stance, a cyst is a finding in the statement ”cyst detected in the lungs,” but it
is no longer a finding in the sentence ”No cyst identified in the lungs.” Another
example NegEx developed by Mehrabi et al. [149]. NegEx is an algorithm for
negation detection that has proven effective in clinical NLP. NegEx fails to ac-
curately determine the negation status of concepts in complex phrases because
it disregards the contextual relationship between words inside a sentence.

5.2.3 Lack of Medical Data

Data shortages have become a significant obstacle for medical NLP research [150].
Adopting supervised ML models successfully solves a variety of healthcare chal-
lenges, and sufficient training data is a precondition for deploying supervised
machine learning algorithms. However, many health systems are hesitant to
share confidential patient data due to ethical, privacy, and liability concerns.

Most of the study data in studies we reviewed were acquired directly from
hospitals rather than from more convenient and accessible online repositories
such as Kaggle or the UCI Machine Learning Repository; hence, data scarcity
is now a hurdle for the scientific community, particularly for clinical NLP re-
search. Therefore, modern techniques such as transformer-based models and
cutting-edge deep learning algorithms are not commonly utilised in this field.
This leads us to the following question: how much data is required to perform
research in medical NLP? The minimum amount of data needed for an AI study
cannot be established with any degree of accuracy. It goes without saying that
the nature of a project significantly impacts how much data is needed. Text,
images, and videos, for instance, typically require considerable data. To gen-
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erate an accurate estimate, however, additional criteria, such as the number of
anticipated categories and model performance, must be addressed.

5.2.4 Sensitivity of Medical Data and Privacy

Clinical notes contain detailed information about patient-physician interactions.
During these exchanges, patients reveal their health difficulties, eating habits
and potentially stigmatising disorders. The Health Insurance Portability and
Accountability Act (HIPAA) privacy law guarantees the privacy of personal
medical information in the United States. In addition, the European Union’s
General Data Protection Regulation (GDPR) establishes regulations for using
health data for scientific purposes. These legislative moves have immediate im-
plications for NLP research, with informed consent from individuals and saniti-
sation of sensitive data categories being paramount. The GDPR outlines broad
principles regarding the processing of confidential data, including that the pro-
cessing must be fair, transparent, and lawful (i.e., with consent), carried out
for specific and legitimate purposes, and the data should be retained for no
longer than is required. This is known as data minimisation, which includes
sanitisation. ”Special categories of personal data are primarily employed in the
scientific analysis.” The processing of private information is only permissible
with the subject’s express consent or after the person has made the information
public. Generally, ”scientific usage” refers to basic, applied, privately funded
research and technological innovation.

Methods of sanitisation are frequently regarded as the bare minimum for
protecting the privacy of individuals when collecting data. The goal is to utilise
a technology that generates entirely new copies of the dataset that appear real
for data analysis while protecting the privacy of the individuals in the dataset
to a certain extent, depending on the technique. The sanitisation approach has
been criticised for numerous reasons, even though it is a vital step in protecting
patient privacy. Initially, both the data’s value and integrity are compromised.
Second, while sanitisation promotes data access and sharing, achieving this is
not always adequate. This is primarily due to the possibility that the deductive
discovery could result in the re-identification of the original sensitive data.

5.3 Future Research Directions

This sub-section highlights gaps and provides future research directions for var-
ious aspects of natural language processing in electronic health records.

5.3.1 Model Assessment and Point of View of Adopted Models

The existing literature did not validate their proposed models using model val-
idation indicators, such as K-Fold Cross Validation, as the first point in this
regard. A model may contain both generalisation and overfitting errors. When
a model is overfitted, it performs exceptionally well on the training data but
fails when presented with new data. Generalisation is the term used to describe
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a model’s performance on new data. Therefore, evaluating ML models before
applying them to an algorithm is essential. Note that K– Fold Cross Valida-
tion is an effective method for mitigating these underlying problems [151]. The
K– Fold Cross Validation method is used to develop an ML model on multiple
subsets of the same dataset, resulting in different prediction accuracy for each
subgroup. This approach allows us to assess how much the accuracy perfor-
mance of a model differs for distinct data and the average accuracy of other
data. Cross Validation has distinctive characteristics, such as the fact that
different folds have various efficacy, so it is possible to estimate how well a pro-
posed model will perform overall, and overfitting can be eliminated using this
technique [152]. Also, regularization strategies like as dropout, L1/L2, capacity
reduction, and early stopping are primarily used to combat overfitting.

In contrast, TF-IDF and BOW approaches were used in many of the re-
viewed research articles to extract features from the free text in EHRs, indi-
cating that relatively little research has utilised cutting-edge word embedding
techniques. The word2vec method was utilised in a few articles, but its preva-
lence was negligible compared to traditional feature extraction methods. Given
conventional feature extraction methods, acquiring semantic information is chal-
lenging; however, this difficulty can be mitigated by introducing other advanced
word embedding methods such as FastText, Glove, and BERT.

In recent years, this has been a top priority for clinical note analyses, in-
cluding the identification of goal-of-care documentation in EHRs and suicide
prediction from large-scale clinical records. A number of deficiencies must be
addressed in order to improve the adopted solutions, despite the satisfactory
performance achieved in these contexts. Concerning the identification of goal-
of-care discussions in EHRs, it is evident that algorithms with extremely high
positive predictive values may not achieve sufficient positive predictive values.
Future research should consider using a word- or phrase-level annotation of
training data (such as identifying specific sections of a note containing docu-
mentation of goal-care), developing ontologies to interpret goal-care discussions,
and investigating cutting-edge techniques to eliminate training data biases that
differ from real-world data.

Regarding suicidal prediction, a multitude of obstacles has hindered under-
standing, forecasting, and preventing suicidal behaviour. First, there is a lack
of knowledge regarding the actual suicide predictors [38]. Numerous risk factors
have been identified, including mental illness, youth, and a history of suicide
behaviour. However, these characteristics have limited predictive accuracy for
suicidal conduct and account for a minor percentage of the variance. Second,
there is no recognised model for identifying the relationship between risk fac-
tors and suicide conduct. Apart from these, rarity of suicide - rare events is
harder to predict. It’s important to make a distinction between suicide and
suicide attempts, which re more common but might not share the same predic-
tors. This is an issue for researchers and clinicians because there is no technique
that doctors can use to combine data when determining if a patient is likely to
attempt suicide in the near future. Medical practitioners must rely on intuition,
which is no more reliable than random chance in predicting suicide behaviour.
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On the basis of the above discussion, it is necessary to obtain longitudinal data
from large data samples that can be used to create and test novel models of
suicide risk. However, if suicide researchers examine the notion, it will indicate
a possible new direction for future research and clinical treatment.

5.3.2 Perspectives on ML integration and AutoML

Various businesses hire data scientists for data processing and decision-making
[153]. Data scientists sometimes lack interdisciplinary experience, particularly
in clinical natural language processing [154]. It is uncommon to find experts
with such insight.

Although AI-integrated tools are widely accepted, several flaws, such as busi-
ness challenges and security, have been identified. Security is one of the most
frequently discussed areas of research in AutoML. Regarding the security of
AutoML, businesses are investigating various technological solutions, such as
automatic machine learning for privacy protection, automated multi-party ma-
chine learning, automated federation, etc. However, the current implementation
does not support laws, regulations, and industry standards. Specifically, fed-
erated learning, also known as collaborative learning, is an ML technique that
uses several distributed edge devices or servers that store local data samples to
train an algorithm without transferring the data samples. Multi-Party Comput-
ing (MPC) is a cryptographic technique that allows multiple parties to perform
computations using combined data without revealing their inputs. Currently,
these methods address various privacy and security concerns [155]. Therefore,
organisations must encourage developing and enhancing standards for federated
learning and secure multi-party computing.

In addition to these issues, AutoML typically encounters problems with data
and model applications. For instance, insufficient high-quality labelled data and
data inconsistencies will hurt offline data analysis. Automating the process-
ing of unstructured and semi-structured data by machine learning is necessary
but technically challenging. The current optimisation objectives for the Au-
toML system are predefined. Multiple purposes, such as differentiating between
decision-making and cost, frequently present a challenge. This multi-objective
investigation has limited analysis options before yielding effective results. The
actual business may have specialised data processing requirements for the exist-
ing machine learning process. In the current Black Box AutoML solution, such
conditions are poorly handled. Consequently, it may be necessary to adopt a
new solution capable of mitigating the shortcomings of the current Black Box
system.

On the contrary, many studies indicate that researchers frequently concen-
trate on developing a model rather than deploying it in a production environ-
ment. Implementing a simulation and deploying it in production are two distinct
processes, as a model may perform well during the simulation phase but contain
numerous errors when analysing real-time data. Therefore, model deployment
is essential for determining the efficacy of proposed models. If an End-to-end
model can be developed, it will significantly contribute to clinical settings and

35



provide an effective tool for more efficiently analysing complex patient data.

5.3.3 Medical Data Imbalance and Data Shortage

In Table 3, we demonstrate that researchers did not specify which text prepro-
cessing pipeline settings were selected to handle unstructured EHRs. This is an
essential deficiency in reporting this type of research, as cleaning medical text
differs significantly from cleaning other data. For example, text normalisation
or stop word removal methods are available that perform correctly, but due to
various abbreviations and terms in medical free text, applying current stop word
or normalisation approaches is somewhat challenging and limits the ability to
obtain accurate results. Likewise, when working with any text data, an imbal-
anced dataset creates several issues [156]. Typically, ”imbalanced data” refers
to a categorisation issue in which the classes are not represented equally. Before
applying the data to the ML system, it is recommended to address the imbal-
ance issue in clinical free text in EHRs. The problem of data imbalance can be
alleviated by utilising techniques such as the Synthetic Minority Oversampling
Technique (SMOTE). This can increase the number of cases from the dataset
and reduce the medical data imbalance problem by combining oversampling
and undersampling [157]. In addition, Class disparity can be addressed through
cost-sensitive training and sampling technique. However, a significant deficiency
in the reviewed literature was that the solutions to address these issues were
not described.

On the other hand, the scarcity of medical data is one of the current ob-
stacles. Utilising synthetic data is a possible solution [158, 159, 160]. It may
provide a safer method of development for clinical data. Synthetic data is fre-
quently employed when there is insufficient actual data or not enough to identify
specific patterns. Both training and testing datasets utilise it in the same man-
ner. Transfer learning techniques can be used as a substitute when there is an
absence of training data for the target domain, and there are few or no exact
matches between the source and target domains. Lastly, the Naive Bayes al-
gorithm, one of the simplest classifiers, should be more widely recognised for
its utility when dealing with clinical data, as it learns surprisingly well from
relatively small data sets.

5.4 Limitations of the study

A limitation of our study is that we did not consider grey literature, which
consists of academic papers such as theses and essays, research and committee
reports, official reports, conference articles, and ongoing research [161]. Com-
pared to scientific research, grey literature publications might be a more detailed
source of information as they can be longer and include more information be-
cause a typical structure does not constrain them. Due to the heterogeneity
of the papers, no meta-analyses were included in this review. Another ma-
jor weakness of this study is the failure to assess publication bias which can
occur for several reasons. Some researchers may decide not to publish their
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findings if they discover that the data sets do not support their hypothesis.
In this case, they prefer to present study reports that support their incorrect
hypothesis. When publication bias becomes widespread, favourable results are
overrepresented in the scientific literature, impairing our comprehension of any
systematic investigation. Comparing the findings of published and unpublished
research on the same subject is an efficient method for identifying publication
bias. Comparing results can reveal if there is a positive result bias across stud-
ies. As understanding current clinical NLP challenges and the techniques used
to analyse EHRs was our primary objective, we did not assess publication bias
at this stage.

6 Conclusion

This study finds that recent advancements in Machine Learning and Deep Learn-
ing models can facilitate health informatics tasks on Electronic Health Records
(EHR). We have concentrated on conducting a thorough analysis of natural lan-
guage processing in electronic health records. We reviewed recent research on
the following EHRs-NLP tasks: patient risk analysis/prediction, state-of-the-
art architectures for analysing EHRs, medical text summarisation, and other
NLP applications such as clinical named entity recognition, blockchain-based
EHRs, mental health research, goals of care conversations, clinical chart review,
negation identification, and medical language translation. In addition, we pro-
vide a list of automated ML-enabled tools used by the healthcare industry and
medical experts to support EHR-NLP research. The highlight of our findings
are as follows:

1. Physiological disorders, such as dementia and geriatric mental health, have
been identified as promising research areas and are the subject of ongo-
ing research in which various models and methods for extracting features
suited to these tasks are being explored.

2. The literature review performed in this work shows that SVM, boosting
techniques, LR, LSTM, RNN, and CNNs are appropriate for analysing
unstructured free text data for downstream EHRs applications.

3. We find that while deep learning algorithms have achieved great success
in the NLP sector, their application in the biological realm remains dif-
ficult. In contrast to classic ML models, which are frequently used for
health records, DL models present a number of disadvantages relating to
data availability, the difficulty of domain-specific textual data, and inter-
pretability. Notable is that DL-based algorithms require a large amount
of data to outperform other methods, as well as expensive GPUs and
hundreds of workstations.

4. Cutting-edge NLP methods, such as transformer-based models for free
text analysis, are yet to be used extensively, and conventional methods are
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currently preferred. Therefore, we wonder if transformer-based techniques
will become the de facto standard for clinical NLP.
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Table 9: Commonly utilised technical terms used in this systematic review

Technical Terms Definition

ROC-AUC
Receiver Operating Characteristics-Area Under The Curve (ROC-AUC).
These curve plots the true positive ratio against the false positive rate at
different threshold values.

K– Fold Cross Validation ML models are created by creating multiple subsets of the same dataset using K– Fold Cross Validation.

Traditional ML
Traditional ML models can utilised used to resolve classification, regression, clustering, dimension
reduction problems. For examples: linear regression, logistic regression, naive bayes.

AutoML
Automated machine learning-enabled tools are used to complete a variety of tasks,
especially from clinical tasks to other classification and prediction tasks.

Feature Extraction It is used for transforming raw data into numerical features
Word Embedding Word embedding is used for the representation of words for text analysis

TF-IDF, Word2vec, Glove
Term Frequency-Inverse Document Frequency (TF-IDF).
Global Vectors for word representation (Glove).
These are used to convert text data to numeric form to to apply the ML algorithm.

FastText
Fasttext is an open source, free of charge, lightweight library that lets users learn text representation
and text classification.

BOW Bag of Words (BOW) is a classical word representation technique.
Free Text Free text of electronic medical notes is considered a rich source for healthcare operations and research

Overfitting and Underfitting
Overfitting indicates that a model performs satisfactorily in training data, but performs poorly
in new data. However, underfitting works poorly on both datasets.

Bayesian Optimisation Bayesian optimisation methods are effective because they choose hyper parameters in a known manner.

Stop Words
In the case of classifying text documents, some terms do not contain the actual meaning
to be used in the classification model. For example: {”a”, ”however moreover”, ”is the”, ”afterwards”,”again”, etc. .}
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Table 10: List of the abbreviations used in this manuscript

Abbreviations Meaning
ROC-AUC Receiver Operating Characteristics-Area Under The Curve
ML Machine Learning
DL Deep Learning
NLP Natural Language Processing
TF-IDF Term Frequency-Inverse Document Frequency
Glove Global Vectors for word representation
BOW Bag of Words
GDPR General Data Protection Regulation
HIPAA The Health Insurance Portability and Accountability Act
BERT Bidirectional Encoder Representations from Transformers
CNN Convolutional Neural Network
TL Transfer Learning
ResNet Residual Neural Network
LSTM Long Short-Term Memory
BI-LSTM Bidirectional Long ShortTerm Memory
RNN Recurrent Neural Network
GRU Gated Recurrent Units
RL Representation Learning
LR Logistic Regression
SVM Support Vector Machine
XGBoost eXtreme Gradient Boosting
RF Random Forest
LR Linear Regression
NB Näıve Bayes
GB Gradient Boosting
DT Decision Tree
ICD-9 The International Classification of Diseases, Ninth Revision
ICD-10 International Classification of Diseases, 10th Revision
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
ICU Intensive Care Unit
ABLSTM Gated Attention incorporated Bi-Directional Long Short-Term Memory
FCNN Fully Connected Neural Network
MIMIC Medical Information Mart for Intensive Care
D2V Document to Vector
CUIs Concept Unique Identifiers
CAM Confusion Assessment Method
LDA Latent Dirichlet Allocation
HIV Human Immunodeficiency Virus
LASSO Least Absolute Shrinkage and Selection
SMI Serious Mental Illness
EHR Electronic Health Record
XML Extensible Markup Language
CRIS Clinical Record Interactive Search
AMIA American Medical Informatics Association39
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