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ABSTRACT

Convolutional Neural Networks (CNNs) have advanced existing medical systems for automatic
disease diagnosis. However, there are still concerns about the reliability of deep medical diagnosis
systems against the potential threats of adversarial attacks since inaccurate diagnosis could lead to
disastrous consequences in the safety realm. In this study, we propose a highly robust yet efficient
CNN-Transformer hybrid model which is equipped with the locality of CNNs as well as the global
connectivity of vision Transformers. To mitigate the high quadratic complexity of the self-attention
mechanism while jointly attending to information in various representation subspaces, we construct
our attention mechanism by means of an efficient convolution operation. Moreover, to alleviate the
fragility of our Transformer model against adversarial attacks, we attempt to learn smoother decision
boundaries. To this end, we augment the shape information of an image in the high-level feature
space by permuting the feature mean and variance within mini-batches. With less computational
complexity, our proposed hybrid model demonstrates its high robustness and generalization ability
compared to the state-of-the-art studies on a large-scale collection of standardized MedMNIST-2D

datasets.

1. Introduction

Medical image classification is a critical step in medical
image analysis that uses different factors such as clinical
information or imaging modalities to differentiate across
medical images. A dependable medical image classifica-
tion may help clinicians evaluate medical images quickly
and with less error. The healthcare industry has signifi-
cantly benefited from recent Convolution Neural Networks
(CNNs) advancements. Such advancements have prompted
much research into the use of computer-aided diagnostic
systems [1-4] based on artificial intelligence in clinical
settings. CNNs are able to learn robust discriminative rep-
resentation from vast volumes of medical data to generate
accurate diagnostic performance in medical fields. They
validate their satisfactory prediction capabilities and obtain
comparable performance as clinicians.

However, the locality bias of CNNs makes it hard for
them to learn long-range dependencies in visual data. The
texture, shape, and size of many organs vary widely across
people, making it difficult to correctly analyze medical
data [5, 6]. As such, it is important to extract robust feature
representation which can model long-range dependencies in
different domains for medical image analysis. Recently, the
Transformer architectures have adopted the self-attention
mechanisms to model the long-range dependencies between
input images and have achieved promising results. Different
studies demonstrate their performance superiority compared
to CNN architectures [7, 8]. However, a sizable amount of
training data is crucial to their success. The construction of
a large-scale dataset needs a significant amount of time and
resources.
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Figure 1: Comparison between MedViTs and the baseline
ResNets, in terms of average ACC-Parameters and average
AUC-Parametrs trade-off over all 2D datasets.

Regarding the medical field, radiologist experts must
manually annotate and verify medical data, which is costly
and time-consuming. While the Transformer architecture
mitigates the shortcomings of CNNs, its computational
complexity grows quadratically with spatial or embedding
dimensions, therefore making it infeasible for most image
restoration tasks involving high-resolution images. That is
to say, the Transformer architectures address the long-range
dependency modeling in CNNs, yet their computational
complexity increases quadratically with the spatial dimen-
sion [9]. As a result, they cannot be used in realistic clinical
settings. Moreover, the state-of-the-art studies assume that
training and test data are identically distributed. Conse-
quently, on out-of-domain target domains, they often suffer
significant performance drops. The domain shift is more
pronounced in healthcare areas since medical images can be
captured by different devices at various sites. Consequently,
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due to different scanners and imaging protocols, their data
distribution can greatly vary. In addition, variations in epi-
demiology at different sites could impact the distribution of
ground truth labels between various populations [10, 11].

In this study, we aim to address the above-mentioned
challenges and propose a generalized Transformer archi-
tecture for medical image analysis. While recent studies
in medical image analysis work specifically on the pre-
determined medical test sets, our proposed model general-
izes to a wide range of medical domains such as CT, X-ray,
ultrasound, and OCT domains. To this end, we follow the
hierarchical hybrid architecture equipped with a patch em-
bedding layer and a series of convolution and Transformer
blocks in each stage with efficient computational complex-
ity. Inspired by recent advances, we cater out Transformer
architecture in such a way that each stage consists of two
efficient phases to long-term dependencies and model short-
term in visual data. In the first phase, we leverage a multi-
head convolutional attention block to learn affinity between
different tokens in representation subspaces for effective
local representation learning. The attention block allevi-
ates the high computational attention-based token mixer in
conventional Transformer architectures, thereby improving
inference speed.

Compared to the conventional Transformer architec-
tures that suffice to incorporate locality bias into the lower
layers of Transformer architectures through tokenization
and self-attention components (CvT [12], Co-Scale Conv-
Attentional [13], CMT [14]). We also propose a local feed-
forward network (LFFN) that encodes the local dependen-
cies between nearby pixels in feed-forward components of
Transformer architectures in all stages. For this objective,
a depth-wise convolution is applied to the reshaped 2D
feature map. While recent Transformer-based studies have
demonstrated a high capacity to learn long-range dependen-
cies between visual data, they fail to encode high-frequency
context in visual data. To mitigate this issue, in the second
phase of our proposed architecture, we first encode low-
and high-frequency feature representation separately with
an efficient multi-head self-attention block and a multi-head
convolutional attention block, respectively. Then, the com-
puted feature representations are fused and fed to the LFFN
to enhance global and local modeling capacity further. As
depicted in Figure 1, our model shows great superiority in
terms of accuracy-complexity against CNNs.

The adversarial attack is a serious security risk for deep
neural networks because it could trick the trained models
into making incorrect predictions via small, undetectable
perturbations. When it comes to healthcare, an adversarial
attack could also pose severe security concerns [15]. The
nature of medical data could provide an opportunity for
a higher attack success rate with imperceptibility. In this
paper, to enhance the adversarial robustness of our proposed
Transformer model, we make our model focus more on
global structure features (such as shape and style) rather
than texture information. Several works [16, 17] have found

that neural networks tend to rely upon texture informa-
tion for making predictions, which consequently makes
them vulnerable to out-of-distribution samples. Motivated
by these studies, we try to encourage our model to rely
more on global structure features rather than texture in-
formation to boost the generalization performance as well
as adversarial robustness. With this objective in mind, we
extract the mean and variance of training instances across
channel dimensions in feature space and interpolate them
with each other. It is worth pointing out that the decision
boundary is often sharp, and there is a significant portion
of the hidden representation space that is associated with
high-confidence predictions [18, 19]. With the proposed
interpolation, we can explore new useful regions of the
feature space, which are mainly relevant to global structure
features. This ultimately would enable us to learn smoother
decision boundaries, which are beneficial for adversarial
robustness and generalization performance.

2. Related Works

Convolutional networks. Convolutional neural net-
works (CNNs) have witnessed extraordinary contributions
to the vast fields of computer vision in recent years due
to their ability to extract deep discriminative features.
ResNet [20] introduced residual connections to CNN and
mitigated the vanishing gradient problem, which ensures the
model builds deeper to capture high-level features for image
classification. MobileNets [21] use pointwise convolutions
and depthwise separable convolutions to enhance CNN
efficiency. In DenseNet [22], skip connections were used
between each two layers, and summation was replaced
with concatenation for the dense connections of feature
maps. ConvNext [23] re-introduces core designs of Vision
Transformers and employs 7 X 7 depthwise convolutions to
design robust CNN architecture, which can achieve compa-
rable results with Transformers. ShuffleNet [24] performs
the channel shuffle operation to fuse separated channel
information using group convolution.

Vision Transformers. Since original Transformer ar-
chitecture achieved remarkable results in natural language
processing many attempts have been made to use Trans-
former architecture to vision tasks like image classifica-
tion [7], semantic segmentation [25], and object detec-
tion [26]. In particular, the Vision Transformer (ViT) of
Dosovistky et al. [7] shows that pure Transformer-based can
also achieve promising result on the image classification
task. ViT splits the image into patches (a.k.a., tokens)
and applies transformer layers to model the global rela-
tion among these patches for classification. T2T- ViT [27]
mainly improves tokenization in ViT by delicately gen-
erating tokens in a soft split manner, which recursively
aggregates neighboring tokens into one token to enrich
local structure modeling. Swin Transformer [28] performs
self-attention in a local window with the shifted window
scheme to alternately model in-window and cross-window
connection. PiT [29] follows a similar pyramid structure as
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Figure 2: Overall architecture of the proposed Medical Vision Transformer (MedViT).

CNNSs, which produces various feature maps through spatial
dimension reduction based on the pooling structure of a
convolutional layer. Nowadays, researchers are specifically
interested in efficient methods, including pyramidal designs,
training strategies, efficient self-attention, etc.

Hybrid Models. Recent works show that designing a
hybrid architecture of transformer and convolution layers
helps the model to combine the advantages of both architec-
tures. BoTNet [30] uses a slightly-modified self-attention in
the last three blocks of ResNet. CMT [14] block contains
depthwise convolution layers based local perception unit
and a lightweight transformer block. The CvT [12] inserts
pointwise and depthwise convolution before self-attention.

LeViT [31] uses the convolutional stem to replace the
patch embedding block and achieves fast inference image
classification. The MobileViT [32] introduces a lightweight
vision transformer by combining Transformer blocks with
the MobileNetV2 [33] block in series. Mobile-Former [34]
takes a bidirectional bridge between CNN and transformer
to leverage the advantage of global and local concepts.
Robustness Study. Due to the nature of convolutional
neural networks that rely on low-level features, their as-
sumptions are generally vulnerable to adversarial examples.
There are numerous studies on improving the adversarial
robustness of CNNs that aim to strengthen it in various
approaches. These include carefully designed model [35,
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36], strong data augmentation [37, 38], searched network
architecture [39, 40], improved training strategy [41-43],
pruning [44] of the weights, and quantization [45], acti-
vation functions [46] or better pooling [47, 48]. Although
the methods mentioned earlier perform well on CNNs,
there is no evidence that they also improve the adversarial
robustness of ViTs.

Following the success of Transformers and their vari-
ants in various computer vision tasks, several studies are
attempting to examine the robustness of Transformers. Early
research conduct the adversarial robustness of Transformers
on image classification tasks and compare their vulnerabil-
ity against the MLP and CNN baselines. The experimental
results illustrate that Transformers are more adversarially
robust than CNNs [49]. Additionally, the adversarial trans-
ferability between CNNs and Transformers is unexpectedly
low[50]. Furthermore, the robustness study [51] of ViTs
is extended to the natural distribution shift and common
image corruption, which demonstrate the superiority of
ViTs over CNNs in the robustness benchmark. Although
several studies have challenged the adversarial robustness
without carefully designing architecture, in this paper, we
do not make a simple comparison of adversarial robustness
between CNNs and ViTs, but take a step further by design-
ing a robust hybrid architecture family of MedViTs. Based
on the architecture of Transformer, we introduce a novel
Augmentation technique to further reduce the fragility of
Transformer models.

3. Method

We first give a brief overview of the proposed MedViT
in this section. Then, We describe the main body designs
within MedViT, which include the Efficient Convolution
Block (ECB), Local Transformer Block (LTB), and Trans-
former Augmentation Block (TAB). In addition, we provide
different model sizes for the proposed architecture.

3.1. Overview

MedViT aims to combine the convolution block and
transformer block in a novel approach to achieve a ro-
bust hybrid architecture for medical image classification.
As shown in Figure 2, MedViT is composed of a patch
embedding layer, transformer blocks and a series of stacked
convolution in each stage, which follows the hierarchical
pyramid architecture traditionally. The spatial resolution
will be gradually reduced with a total of 32X ratio by
[4%,2%,2X, and 2X] while the channel dimension will be
doubled after convolution blocks in each stage. Our purpose
in this section is first to explore the core blocks are respon-
sible for embedding multi-scale context and respectively
develop robust LTB and ECB to effectively capture long-
term and short-term dependencies in input data. LTB also
performs the fusion of local and global features, thereby
enhancing modeling capabilities. Also we study how to
integrate blocks of convolution and transformer technically.
Lastly, to further improve the performance and adversarial
robustness, we propose a novel Patch Momentum Changer
(PMC) data augmentation technique to train our models.

3.2. Efficient Convolution Block

We begin by discussing some traditional core blocks
of transformer and convolution network, as illustrated in
Figure 3. To show the effectiveness of the proposed ECB
and its superiority over previous methods. ResNet [20]
introduced skip connection and Residual block, which has
dominated a wide range of tasks in visual recognition for
a long time due to its compatible features and inherent
inductive biases for the realistic deployment scenario. Un-
fortunately, the performance of the Residual block is not
satisfactory compared to the Transformer block. The Con-
vNext block [23] constructed from the Residual block by
following the designs of the Transformer block without self-
attention. Although the ConvNext block enhances network
performance to some extent, inefficient components make
the model hard to capture high-level structures, such as 7x7
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depth convolution, GELU and LayerNorm. To overcome
this, the transformer block has been proposed to capture
high-level structures. Transformers have achieved excellent
results in various computer vision tasks, and their inherent
superiority is jointly conferred by the attention-based token
mixing operation [28]. However, these methods merely
focus on the model complexity and the standard accuracy.
The results demonstrate that the models are vulnerable
to adversarial attacks [52, 53], which are intolerable in
clinically relevant medical use cases.

In addition, long-range dependencies are crucial for
medical images because the background in medical im-
ages is generally scattered [54], thereby learning long-
range dependencies between the pixels corresponding to the
background can help the network in preventing misclassi-
fication [55]. It can be noted that there is still scope for
improvement in capturing global context as the shortcoming
of prior methods, which do not focus on this aspect for med-
ical image classification tasks. To address the adversarial
robustness and accurate medical classification, we introduce
an Efficient Convolution Block (ECB) that achieves out-
standing performance as a transformer-based block while
retaining the deployment advantage of the Residual block.
As illustrated in Figure 3 (a), The ECB follows the hybrid
architecture, which has been confirmed as necessary for uti-
lizing the multi-scale information. Meanwhile, an effective
attention-based token mixing module is equally important.
We design a Locally Feed Forward Network (LFFN) as an
efficient way of introducing locality into the network with
depth-wise convolution and a Multi-Head Convolutional
Attention (MHCA) as an effective token mixer. Inspired by
Robust Vision Transformer [56] that analyzed the effect of
each component of Transformers in the robustness, we build
ECB by combining LFFN and MHCA block in the robust
paradigm. The proposed ECB can be formulated as follows:

' = MHCA (Z/7') + /7!

(1)
z =LFFN (2') + 2/
where z/~! denotes the input from the / — 1 block, 2/
and z! are the outputs of MHCA and the / ECB. We will
introduce LFNN in detail in the next section.

3.2.1. Locally Feed-Forward Network

The feed-forward network, which is applied position-
wise to a sequence of tokens Z’, can be precisely repre-
sented by rearranging the sequence of tokens into a 2D
lattice, as shown in Figure 4 (c). As a result, the reshaped
features are represented as follows:

7" = Seq2Img(Z),Z" € R»wxd )

where h = H/p and w = W /p. Seq2I MG takes
a sequence and converts it into a feature map that can
be visualized. The tokens are placed at pixel locations on
the feature map, and each token corresponds to one pixel.

—

Img2Seq

1x1 Conv

Seqg2lmg

1x1 Conv

(a) (b) ()

Figure 4: Comparison between the feed-forward network in
vision transformers, (a) convolutional feed-forward network.
(b) inverted residual block. (c) Our finally utilized network that
brings efficient local mechanism into the transformer.

Through this perspective, it is possible to introduce locality
into the network by recovering the proximity between to-
kens. The fully-connected layers could be replaced by 1 X 1
convolution layers, i.e.

Y=f(Z®W)aW, 3
Y = Img2Seq(Y")

where W) € R4XrdxIxl and W) € RYdxaxIX1 are
reshaped from W; and W, and denote the kernels of con-
volutional layers. With I'mg2Seq, the image feature map is
converted back into a token sequence, which is then used by
the next self-attention layer by transforming it into the fused
token.

3.3. Local Transformer Block

While the local representation has been effectively
learned through the ECB, capturing global information is
urgent and needs to be addressed in this block. It is well
known that transformer blocks have the capability to capture
low-frequency signals, which are very useful for capturing
global information (e.g., global shapes and structures).
However, There have been a few related studies [57] that
have demonstrated that transformer blocks have a tendency
to deteriorate high-frequency information, such as informa-
tion about the local texture of objects, to some extent. It
is essential that signals in different frequency segments are
fused in order to extract essential and distinct features in the
computer vision system [58].

In response to these observations, we have developed
the Local Transformer Block (LTB) in order to capture
multi-frequency signals in a lightweight mechanism with
high efficiency. Moreover, LTB works as an effective multi-
frequency signal mixer, thus enhancing the overall modeling
capability of the network. As shown in Figure 3 (b), LTB
first captures low-frequency signals by utilizing an Efficient
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Table 1
Detailed configurations of MedViT variants. C and S denotes
number of channels and stride of convolution for each stage.

Stages  Output size Layers MedViT-T \ MedViT-L

Conv3x3,C=64,5=2

MedViTs |

i 3x3,C=32,5=
Stem H W Coc\a/%xﬁgon | Conv3x3,C s=1
a4 | Conv3x3,C=64,5=1
| Conv3x3,C=64,5=2
Patch Embedding | Conv 1x1,C =9
H_ W -
Stage 1 - X — MedViT
o el Block ‘ [ECBx3,96] x 1
patch | Avg_pool, § =2
E
| Conv 1 x1,C =192
Stage 2 H x w
88 MedViT ECBx3,192]
Block LTB x 1,256
patch | Avg_pool, S =2
| Conv 1 x1,C =384
Stage 3 LS X w
1616 MedViT ECB>x4.384| , | [ECBx4.384]  , | [ECBx 4,384
Block LTBx 1,512 LTBx 1,512 LTBx 1,512
Patch Avg_pool, 5 =2
E
Conv1x1,C =768
H W

Stage 4
MedViT

[
\

H W
Block ‘

ECBx2, 768] |
LTBx 1,1024| *

Self Attention (ESA), which can be formulated as follows:

ESA(x) = Concat (SA; (x;),SA; (x3),...,SA, (x,)) W°
SA(X) = Attention (X - W2, P, (X - WX) P (X -W"))
)

where X = [x[, Xx,, ..., x;] denotes to divide the input
feature X into multi-head form in channel dimension. W ©
is an output projection layer and A is the number of heads.
In order to reduce the spatial resolution of self-attention,
SA was derived from linear SRA [59]. Attention calculates
We WK WV linear layers in standard attention form as
Attention(Q,K,V) = softmax(QKT /\/d)V, in which
d is the transformer hidden dimension. The Ps operation
involves an avg-pool operation with a stride s parameter
for downsampling the spatial dimensions before the atten-
tion operation is applied to reduce the computation cost.
Furthermore, we observe that the number of channels in
the ESA module is also a major determinant of the time
consumption of the module. With the help of point-wise
convolutions, LTB enables further acceleration of inference
by reducing the dimension of the channel before it passes
to the ESA module. In order to reduce the number of
channels, a shrinking ratio r is introduced. Additionally, the
ESA module also utilizes Batch Normalization to make the
module’s deployment extremely efficient.

It is significant to note that LTB has a multi-frequency
configuration that is designed to function in conjunction
with ESA and MHCA modules. Following that, we de-
sign a new attention mechanism that is based on efficient
convolutional operations for improving the efficiency of
the LTB. Inspired by the effective multi-head design in
MHSA [36], we build our convolutional attention (CA)
with multi-head paradigm, which jointly attends to infor-
mation from different representation subspaces at different
positions for effective local representation learning. The

proposed MHCA can be formulated as follows:

MHCA(X) = Concat (CA] (xl) ,CA2 (.X2> PPN ’CAh (xh)) WO

CA(X) = (W . T{l,]}) , where T{l,j} eX
®

where MHCA captures information from h parallel rep-
resentation subspaces and CA is single-head convolutional
attention. W is trainable parameter and T ; ;, are adjacent
tokens in input feature X. The CA is calculated by the inner
product operation of displaced vectors between adjacent
tokens Ty; ;; and trainable parameter W. Since the multi-
head self-attention (MHSA) in Transformers could capture
the global context, we propose the CA from the MHCA,
which can learn affinity between different tokens in the local
receptive. Notably, our implementation of MHCA involves a
point-wise convolution and a group convolution (multi-head
convolution), as shown in Figure 3 (a).

the output features of the MHCA and the ESA are
concatenated to produce a mix of high-low features. As
a final step, an MLP layer is borrowed at the end of the
process in order to extract the essential and distinct features.
In brief, the implementation of the LTB can be summarized
as follows:

z' =Proj (z/7")

' =ESA (') + 2

2l = Proj (£') ©
z! = MHCA (z') + 2/

2! = Concat (,'z'l, 21)

z! =LFFN (&) + ¢/

where z/ is the output of LTB from the /-th block, and
z!, 7! denote the output of MHCA and ESA, respectively.
Proj refers to the point-wise convolution layer associated
with the project channel. In order to provide efficient norm
and activation layers for LTB, the BN and the ReLU are
uniformly adopted instead of the LN and the GELU as the
efficient norm and activation layers. A major advantage of
the LTB over traditional transformer blocks is its ability
to capture and mix multi-frequency information in such a
lightweight mechanism, so the performance of the model is
greatly enhanced.

3.4. Transformer Augmentation Block

Image augmentation techniques apply geometric trans-
formation functions such as rotating, cropping, and flipping
or color space transformation functions such as edge en-
hancement, grayscale transformations, and color jittering on
an input image. Data augmentation is an important strat-
egy for ViTs because they suffer from data scarcity when
trained on relatively small-size datasets, while is a data-
space solution to the problem of limited data can be solved
by strong data augmentation [60]. Moreover, a rich data
augmentation also helps with robustness and generalization,
which has been verified in previous works [17, 61, 62].

O.N Manzari et al.: Preprint submitted to Elsevier

Page 6 of 14



e oB 00
CN RCTONK S T
520 08 :-9060
doBldens s L
LRSI ¥ R A
Qg ec e e e
PSP 0
EWL XL ey
L X e T X X
80 s D260 @
BloodMNIST

-k

RetinaMNIST

PathMNIST

TissueMNIST

¥
3

L
O“O
ok

e
-y
(30
s

-
-
by

PneumoniaMNIST

-

OrganMNIST gyjal OrganMNISTy,

&G D% e - - i OO
OrganMNIST oronal

=3
agital

Figure 5: MedMNIST-2D Classification. MedMNIST is a collection of 12 pre-processed medical image datasets. It is
designed to be educational, standardized, diverse and lightweight, which could be used as a general classification benchmark

in medical image analysis.

In order to improve the diversity of the augmented train-
ing data, we introduce Patch Momentum Changer (PMC)
augmentation for ViTs, which blends feature normalization
with data augmentation at training time for a pair of images
at token level. Our motivation stems from the fact that all
layers of ViTs have global receptive fields, so they are also
concerned with the local relationships that exist between
the tokens. We believe that the traditional augmentations,
which randomly transform the whole image in order to
enlarge the data, are sufficient for providing global context.
However, for ViTs that naturally capture global receptive
fields, conventional augmentations are less beneficial. In
order to increase the interactions between the tokens, PMC
laterally fuses intermediate feature maps and targets across
two training samples. It mixes two very different compo-
nents, the feature moments of one instance are combined
with the normalized features of another at token level. This
asymmetric composition in feature space helps Transformer
to improve robustness and generalization when predicting
medical image datasets.

At each stage, After feeding the word-level features
Z! into the Locally Feed-Forward Network, PMC could
take as input the feature representation Z!, which is a
2D tensor. Similar to Cutmix and Mixup, features of two
random training samples are fused with their labels, while
performing the feature normalization. Specifically, PMC
combine the normalized feature map of one sample with the
feature moments of another. This nonsymmetric combina-
tion in word-level feature aims to create robust targets and
smooth out the decision boundary of the trained classifier.
To normalize features at different stages inside the MedViT
model, function F is defined. This function takes the word-
level features Z l’ of the i — th input x; at stage / of MedViT
model and generates three outputs which include: the first-
moment y;, the second moment o;, and the normalized
word-level features | Z ll |, as follows:

F(zh =l 6,1Z). (7

Function F calculates the value of the first and sec-
ond momentum after feeding the word-level feature Z l’
through the LFFN module. This operation relatively re-
sembles PONO function [16] in the realm of CNNs. To
employ MedViT model, we randomly select two different
images x 4 and x g. The operation could apply at each stage
of the model, but it is more effective at the first stage.
Consequently, we drop the / superscript for notational sim-
plicity. Augmented features are generated from normalized
word-level features of the first image (x4 F(Z,) =
(Mg, 04,1Z 4])) that are combined with the moments of the
second image (xg : F(Zp) = (ug,0p,|Zp|)) as follows:

N2

(B)
7\ =¢
A B o4

+ Ups ®)

where ZI(L‘B) are augmented features and | Z 4|, p 4, 0 4 are the
normalized word-level features, the first-moment, and the
second moment of image A. In addition, yp and op are the
first and second moments of image B. The model continues
the forward pass from stage / until the output using these
features Z/(f). The lost function is modified to force the
model to pay attention to injected features of image x 5. The
mixed new loss function would be created as follows:

2P+ =228y, O

where 4 € (0, 1) is a fixed variable for setting the combi-
nation of the features and the moments. Also (y4,yp) are
labels of images, which are combined together for the final
loss.

PMC is performed entirely at the feature level inside
the transformer vision network and can be readily com-
bined with other augmentation methods that operate on
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Table 2

Overview of MedMNIST v2 [63] dataset. MedMNIST2D consists of 12 biomedical datasets of 2D images. Some of the notations
used in datasets include OR: Ordinal Regression. MC: Multi-Class. ML: Multi-Label. BC: Binary-Class.

Name Data Modality Task (# Classes / Labels)  # Samples  # Training / Validation / Test
MedMNIST2D

ChestMNIST Chest X-Ray ML (14) BC (2) 112,120 78,468 /11,219 /22,433
PathMNIST Colon Pathology MC (9) 107,180 89,996 /10,004 / 7,180
OCTMNIST Retinal OCT MC (4) 109,309 97,477 /10,832/ 1,000
DermaMNIST Dermatoscope MC (7) 10,015 7,007 /1,003 / 2,005
RetinaMNIST Fundus Camera OR (5) 1,600 1,080/ 120/ 400
PneumoniaMNIST Chest X-Ray BC (2) 5,856 4,708 / 524 / 624
BreastMNIST Breast Ultrasound BC (2) 780 546 /78 /156
TissueMNIST Kidney Cortex Microscope MC (8) 236,386 165,466 / 23,640 / 47,280
BloodMNIST Blood Cell Microscope MC (8) 17,092 11,959 /1,712 / 3,421
OrganAMNIST Abdominal CT MC (11) 58,850 34,581/6,491 /17,778
OrganCMNIST Abdominal CT MC (11) 23,660 13,000/ 2,392 / 8,268
OrganSMNIST Abdominal CT MC (11) 25,221 13,940/2,452/ 8,829

the raw input (pixels or words). We explicitly encourage
the transformer to encode better long-range dependency
to correctly classify the image with the feature of another
image combined inside. We show that our approach can
lead to consistent accuracy gain when used in MedViT, and
also enhances the adversarial robustness of the transformers.
Besides, we evaluate the efficacy of PMC thoroughly across
several datasets.

4. Experiments

4.1. Datasets

MedMNIST datasets include a set of 12 pre-processed
datasets that include CT, X-ray, ultrasound and OCT im-
ages. These datasets are used in various classification tasks
including multi-label, ordinal, multi-class, regression, and
binary. The size of the data in this collection varies from at
least 100 to more than 100,000. As shown in Table 2, the
diversity of these datasets has created a favorable criterion
for classification tasks. The pre-processing and split of the
datasets into training, validation and test subsets have been
done according to [63].

PathMNIST is adapted from a dataset based on kather’s
work [64]. This dataset contains 100,000 image patches
that are manually divided into 9 different classes. It is
also adapted from another dataset that contains 7180 non-
overlapping image patches in the classes of fat loss, back-
ground, debris, lymphocytes, mucosa, smooth muscle, nor-
mal colon mucosa, cancer-related stroma, and epithelium.

ChestMNIST is adapted from a dataset consisting of
chest x-ray images [65]. The dataset consists of 112,120
frontal X-ray images from a total of 32,717 patients. This
dataset contains 14 different classes of diseases, which is a
multi-class dataset in the MEDMNIST collection. We used
benchmark standards to split and resize data.

DermaMNIST is based on HAM10000 [66], a large
collection of multi-source dermatoscopic images of com-
mon pigmented skin lesions. The dataset consists of 10015
dermatoscopic images of a size of 450 x 600. It consists
of 7 diagnostic categories as follows: Melanocytic Nevi

(NV), Melanoma (MEL), Basal Cell Carcinoma (BCC), and
Intra-Epithelial Carcinoma (AKIEC), Actinic Keratosis, Be-
nign Keratosis (BKL), Vascular lesions (VASC), Dermatofi-
broma (DF). All formulated as a multi-class classification
task.

OCTMNIST is built on the back of a prior set [67] of
109309 valid optical coherence tomography (OCT) images
that were collected for retinal diseases. 4 types are involved,
leading to a multi-class classification task.

PneumoniaMNIST is adapted from a prior dataset [68].
This dataset consists of 5856 pediatric chest X-ray images
on just two classes. The task is to categorize pneumonia into
two binary classes, pneumonia and normal.

RetinaMNIST is based on DeepDRiD (Deep Diabetic
Retinopathy) [69], the dataset provides 628 patients data
including 1600 retina fundus images. The task is ordinal re-
gression for 5-level grading of diabetic retinopathy severity.

TissueMNIST is adapted from the Broad Bioimage
Benchmark Collection [70]. This dataset is categorized into
8 classes of human kidney cortex cells, which contains
236,386 segmented images from different reference tissue
specimens.

BloodMNIST is adapted from a prior blood collec-
tion [71]. The dataset is categorized into 8 classes and
contains a total of 17,092 normal blood cell images.

BreastMNIST is based on a dataset [72] of 780 breast
ultrasound images. It is categorized into 3 classes: benign,
malignant, and normal. Because low-resolution images are
used, the task are simplified into binary classification by
combing normal and benign as positive, and classify them
against malignant as negative.

OrganMNIST {Axial, Coronal, Sagittal} is taken from
3D computed tomography (CT) images by the Liver Tumor
Segmentation Benchmark (LiTS) [71]. As a way to get the
organ labels, bounding-box annotations of 11 body organs
from another study have been used [70]. As a result of
translating the Hounsfield-Unit (HU) of the 3D images to
greyscale and with an abdominal window, it is then possible
to produce 2D images by selecting slices in the axial,
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Figure 6: Visual inspection of MedViT-T and ResNet-18 using Grad-CAM on MedMNIST-2D datasets. The green rectangles
are used to show a specific part of the image that contains information relevant to the diagnosis or analysis of a medical
condition, where the superiority of our proposed method can be clearly seen.

coronal, and sagittal directions within the bounding boxes
of the 3D images. The view is the only difference between
OrganMNIST and LiST. The images are resized into 1 x 28
x 28 to function as targets for multiclass classification of
11 organs of the body. The training and validation sets are
comprised of 115 and 16 CT scans from the source training
set, respectively. The 70 CT scans from the source test set
are also considered the test set.

4.2. Implementation Details

Our experiment on medical image classification is con-
ducted on the MedMNIST dataset, which is composed of
12 standardized datasets from comprehensively medical
resources covering a range of primary data modalities rep-
resentative of medical images. To make a fair and objective
judgment, we follow the same training settings of the
MedMNISTv2 [63] without making any changes from the
original settings. Specifically, we train all of the MedViT
variants for 100 epochs on NVIDIA 2080Ti GPUs, and use
a batch size of 128. The images are first resized to a size
of 224 x 224 pixels. We employ an AdamW optimizer [73]
with an initial learning rate of 0.001, the learning rate is de-
cayed by a factor set of 0.1 in 50 and 75 epochs. Moreover,
we introduce MedViT models at three different network
sizes MedViT-T, MedViT-S, and MedViT-L, as shown in
Table 1. All of them adopt the best settings investigated
in section 2 and are trained for each dataset separately.
For MedViT*, we add augmentation in the training phase.
The PMC uses the mixture feature normalization with data
augmentation at training time for each input image patch.

4.3. Evaluation metric

We report Accuracy (ACC) and Area under the ROC
Curve (AUC) as the standard evaluation metrics. In contrast
to AUC, which is a free threshold metric used to evaluate
continuous prediction scores, ACC uses a threshold-based
metric to evaluate discrete prediction labels. Therefore,
ACC is more sensitive to class discrepancy than AUC.
Because our experiments have many datasets of different
sizes and data variety, both ACC and AUC could serve
as comprehensive metrics. Although there are many other
metrics, to establish a fair comparison, we select ACC and
AUC for the benchmarking methods reported in the original
publications [63, 74]. We report the results of ACC and
AUC for each dataset in table 3. Similar to [63], we average
the results over MedMNIST2D and report the average AUC
and ACC scores in table 5.

5. Evaluation Results

5.1. Results on Each Dataset

The comparison of the proposal method with previ-
ous state-of-the-art (SOTA) methods in terms of the AUC
and ACC on each dataset of MedMNIST-2D is shown
in Table 3. MedViT outperforms previous SOTA methods
by a large margin. Compared to AutoML methods, our
MedViT-S shows superior learning ability on both evalua-
tion metrics, observing an increase of 2.3% (AUC) and 3.0%
(ACC) in RetinaMNIST and an increase of 1.1% (AUC)
and 2.8% (ACC) in TissueMNIST compared to Google
AutoML Vision and AutoKeras, respectively. Concretely,
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Table 3

Comparison results of the proposed method on the MedMNIST2D in metrics of AUC and ACC. White background shows CNN-
based and AutoML methods, while the proposed MedViT are colored in blue. Also blue indicates the best result, and red
displays the second-best.

Methods PathMNIST ChestMNIST DermaMNIST OCTMNIST PneumoniaMNIST RetinaMNIST

AUC  ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC
ResNet-18 (28) [20] 0.983 0.907 || 0.768 0.947 || 0917 0.735 || 0.943 0.743 0.944 0.854 0.717  0.524
ResNet-18 (224) [20] || 0.989 0.909 || 0.773 0.947 || 0.920 0.754 || 0.958 0.763 0.956 0.864 0.710  0.493
ResNet-50 (28) [20] 0.990 0.911 0.769 0.947 || 0.913 0.735 || 0.952 0.762 0.948 0.854 0.726  0.528
ResNet-50 (224) [20] || 0.989 0.892 || 0.773 0.948 || 0.912 0.731 0.958 0.776 0.962 0.884 0.716  0.511
auto-sklearn [75] 0.934 0.716 || 0.649 0.779 || 0.902 0.719 || 0.887 0.601 0.942 0.855 0.690 0.515
AutoKeras [76] 0.959 0.834 || 0.742 0.937 || 0.915 0.749 || 0.955 0.763 0.947 0.878 0.719  0.503
Google AutoML [77] 0.944 0.728 || 0.778 0.948 || 0914 0.768 || 0.963 0.771 0.991 0.946 0.750  0.531
MedVIT-T (224) 0.994 0.938 || 0.786 0.956 || 0.914 0.768 || 0.961 0.767 0.993 0.949 0.752 0.534
MedVIT-S (224) 0.993 0.942 || 0.791 0.954 || 0.937 0.780 || 0.960 0.782 0.995 0.961 0.773  0.561
MedVIT-L (224) 0.984 0.933 || 0.805 0.959 || 0.920 0.773 || 0.945 0.761 0.991 0.921 0.754  0.552
Methods BreastMNIST BloodMNIST TissueMNIST OrganAMNIST OrganCMNIST OrganSMNIST

AUC  ACC AUC ACC AUC  ACC AUC ACC AUC ACC AUC ACC
ResNet-18 (28) [20] 0.901 0.863 || 0.998 0.958 || 0.930 0.676 || 0.997 0.935 0.992 0.900 0.972 0.782
ResNet-18 (224) [20] || 0.891 0.833 || 0.998 0.963 || 0.933 0.681 0.998  0.951 0.994 0.920 0.974 0.778
ResNet-50 (28) [20] 0.857 0.812 || 0.997 0.956 || 0.931 0.680 || 0.997 0.935 0.992 0.905 0.972 0.770
ResNet-50 (224) [20] || 0.866 0.842 || 0.997 0.950 || 0.932 0.680 || 0.998 0.947 0.993 0.911 0.975 0.785
auto-sklearn [75] 0.836 0.803 || 0.984 0.878 || 0.828 0.532 || 0.963 0.762 0.976 0.829 0.945 0.672
AutoKeras [76] 0.871  0.831 0.998 0.961 0.941 0.703 || 0.994 0.905 0.990 0.879 0.974 0.813
Google AutoML [77] 0.919 0.861 0.998 0.966 || 0.924 0.673 || 0.990 0.886 0.988 0.877 0.964 0.749
MedVIT-T (224) 0.934 0.896 || 0.996 0.950 || 0.943 0.703 || 0.995 0.931 0.991 0.901 0.972 0.789
MedVIT-S (224) 0.938 0.897 || 0.997 0.951 0.952  0.731 0.996  0.928 0.993 0.916 0.987 0.805
MedVIT-L (224) 0.929 0.883 || 0.996 0.954 || 0.935 0.699 || 0.997 0.943 0.994 0.922 0.973 0.806

MedViT steadily improve the performance of visual classifi-
cation tasks in the MedMNIST-2D benchmark, particularly
for PathMNIST, ChestMNIST, DermaMNIST, Pneumoni-
aMNIST and BreastMNIST.

Although a specific architecture designed for a special
image format is more accurate in one area, we have designed
MedViT by combining efficient blocks to extract local
and global features for generalized medical image classi-
fication. Also, MedMNIST-2D contains different types of
images, including CT, ultrasound, X-ray, and OCT, which
are colour or grayscale with different content in the medical
domain. Results in Table 3 show that our MedViT performs
the classification of medical images well for MedMNIST
datasets. Besides, the efficiency in terms of the number of
parameters is indicated in Table 5, which will be discussed
in the following sections. These results demonstrate that
the proposed MedViTs design has effectiveness and good
generalization ability.

5.2. Comparison with State-of-the-art Models

We compare our MedViT with the latest state-of-the-
art methods (e.g. ViTs, CNNs and hybrid networks) with
similar model sizes in Table 4. We achieve a favorable
trade-off between complexity and accuracy. Specifically,
our MedViT-T achieves a 70.3% Top-1 accuracy compared
with CNN models, which is better than EfficientNet-B3
and ResNet-18 with more parameters. Similarly, MedViT-S
achieves 73.1% Top-1 accuracy, 5.1% higher than ResNet-
50, 2.6% higher than EfficientNet-B4, and 0.5% higher than

ConvNext-T, which are famous CNNs. Moreover, MedViT-
L outperforms the ConvNext-B by 0.8%, which has approx-
imately two times more parameters than ours. Furthermore,
compared to the pure ViTs, MedViT-T also outperforms
PVT-T by a large margin of 6.9%, while the model com-
plexity is much lower. MedViT-S surpasses Twins-SVT-S
by 1% with similar number parameters. Finally, compared
with recent hybrid methods, MedViT-T beats RVT-Ti by
0.7%. Compared to CvT-13, MedViT-S improve perfor-
mance by 1.5% while the complexity is similar. MedViT-
L also obtains a 0.6% performance gain over RVT-B while
enjoying less computation complexity. Experimental results
illustrate that the proposed MedViT can effectively handle
the classification task.

5.3. Average performance

We compare our method with the average AUC and av-
erage ACC over all datasets reported in Table 5. Our models
shows average AUCs 93.6%, 94.2%, 93.5% and average
ACCs 84%, 85.1%, 84.2% in the total of twelve different
datasets obtained by MedViT-T, MedViT-S and MedViT-
L, respectively. MedViT-S outperforms all the baseline
ResNets and AutoML methods in both average AUC and
average ACC by a large margin, demonstrating the advan-
tage of using transformer vision to classify medical image.

In Table 5, we also compare the numbers of parame-
ters of our proposed method with baseline ResNets. Our
MedViT shows great superiority in terms of performance
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Table 4
Classification performance compared with MedViTs and
recent state-of-the-art methods on TissueMNIST.

Network | Image Size | Param (M) FLOPs (G) | Top-1 (%)
ResNet-18 [20] 224 11.7 1.8 68.1
EfficientNet-B3 [78] 300 12.0 1.8 69.0
DeiT-Ti [79] 224 5.7 1.3 59.5
PiT-Ti [29] 224 4.9 0.7 62.1
PVT-T [8] 224 13.2 1.9 63.4
RVT-Ti [56] 224 8.6 1.3 69.6
MedViT-T 224 10.8 1.3 70.3
ResNet-50 [20] 224 25.6 41 68.0
EfficientNet-B4 [78] 380 19.3 4.2 70.5
ConvNeXt-T [23] 224 29.0 45 72,6
DeiT-S [79] 224 22.0 4.6 67.0
Swin-T [28] 224 29.0 4.5 7.7
PiT-S [29] 224 235 29 66.9
PVTS [8] 224 25.4 4.0 66.7
Twins-SVT-S [80] 224 24.0 29 721
PoolFormer-S36 [81] 224 31.2 5.0 71.8
CoaT Tiny [13] 224 55 44 69.3
CvT-13[12] 224 20.1 4.5 71.6
RVT-S [56] 224 221 4.7 71.2
MedViT-S 224 23.6 4.9 73.1
ResNet-152 [20] 224 60.2 11.3 67.5
ConvNeXt-B [23] 224 88.0 15.4 69.1
DeiT-B [79] 224 87.0 17.5 66.9
Swin-B [28] 224 87.8 15.4 68.5
PiT-B [29] 224 73.8 12.5 68.1
PVT-L [8] 224 61.4 9.8 66.8
Twins-SVT-B [80] 224 56.0 8.6 68.7
PoolFormer-M36 [81] 224 56.1 8.8 67.6
CoaT Small [13] 224 22.0 12.6 66.5
CvT-21[12] 224 32.0 71 67.8
RVT-B [56] 224 86.2 17.7 69.3
MedViT-L 224 45.8 13.4 69.9
Table 5

Average performance comparison in standard metrics of
average ACC and average AUC over all MedMNIST-2D.

Params Avg.
Methods (M) AUC  ACC
ResNet-18 (28) [20] 11.2 0.922 0.819
ResNet-18 (224) [20] 112 | 0.925 0.821
ResNet-50 (28) [20] 23.5 0.920 0.816
ResNet-50 (224) [20] 23.5 0.923 0.821
auto-sklearn [75] - 0.878 0.722
AutoKeras [76] - 0.917 0.813
Google AutoML [77] - 0.927 0.809
MedViT-T (224) 10.2 0.936 0.840
MedViT-S (224) 23 0.942 0.851
MedViT-L (224) 45 0.935 0.842

while the model complexity of ours is on par with baseline
ResNets.

5.4. Visual inspection of MedViT

To further verify the property of our MedViT, we apply
Grad-CAM [82] on the ESA’s output in the last ECB to
qualitatively inspect MedViT. We visualize the heat maps of
the output features from ResNet-18 and MedViT-T in Fig-
ure 6. Compared with the baseline ResNet-18, our MedViT
covers the relevant locations in the images more precisely
and attends less to the background. Moreover, MedViT
can better handle the scale variance issue as shown in
Derma, Oct and Path. That is, it covers target area accurately

whether they are small, medium, or large in size. In the
Retina dataset, it can be seen that our model in the heat map
of retinal fundus image can well recognize the direction and
area of the specific lesion. Our model well-localized a focal
infected area by bacterial infection in the heat map of Chest
dataset, while it was also able to delineate the multi-focal
lesions in periphery of both upper lungs in the heat map of
Pneumonia dataset, which is typical findings for pneumonia.

Such observations demonstrate that introducing the in-
trinsic IBs of locality and scale-invariance from convolu-
tions to transformers helps MedViT learn capable of simul-
taneously capturing high-quality and multi- frequency sig-
nals. Compared to the conventional approach, our method
mitigates the background bias significantly.

5.5. Augmentation and Robustness Evaluation

To evaluate our model against the adversarial attack
benchmarks, we adopt a common gradient-based attack
method FGSM [83] and a powerful multi-step attack PGD [41]
with a step size of 4/255 = 0.015 and steps n;;,, = 5. For
both attackers, the magnitude of the adversarial noise is € of
8/255 = 0.031. Results in Table 6 demonstrate that different
blocks of MedViT architecture have a strong correlation
with the adversarial robustness. The proposed MedViT-T
and MedViT-T* represent high adversarial robustness under
both attack benchmarks. This is ascribed to the Efficient
Convolution Block and Patch Momentum Changer, which
aims to improve the robustness of medical diagnostic.
In ECB, adding depth-wise convolution into feed-forward
networks help model to better capture local dependencies
within tokens. Moreover, the PMC module utilizes implicit
data augmentation at token-level, which forces ViTs to pay
special attention towards local features at different stages.
We show empirically that MedViT by using these blocks
is consistently able to improve robustness and classification
accuracy across medical datasets.

The proposed MedViT-T* model achieves superior per-
formance on both admired PGD and FGSM attacks in
compared ResNet and baseline MedViT. In detail, MedViT-
T* considerably outperforms the counterparts in TissueM-
NIST with gains of 38.4%, 6.1% on FGSM attack and
gains of 30.2%, 7.5% on PGD attack compared to ResNet-
18 and MedViT-T, respectively. MedViT-T* also achieves
outstanding standard performance (ACC) consistently on
four MNIST dataset. Specifically, the Transformer Aug-
mentation Block module brings significant improvements
(1.5%,3.1%, 1.1% and 0.7%) on the Oct, Tissue, Retina and
Path MNIST datasets, respectively. This advance is further
expanded by our Locally-FeedForward and PMC augmen-
tation. Nonetheless, our MedViT-T* model generally yields
the best accuracy/robustness tradeoff.

5.6. Ablation Study

We conduct various ablation experiments to investigate
the effectiveness of the critical blocks of our architecture.
Firstly, we study the impact of Efficient Convolution Block
on robust and clean accuracy in comparison with the most
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Table 6

The performance of MedViT-T, MedViT-T* and ResNet-18 on four MedMNIST-2D and two robustness benchmarks. Except for
MedViT-T* architecture, we do not make use of any specialized modules or additional fine-tuning procedures.

Methods OCctMNIST I TissueMNIST I RetinaMNIST PathMNIST
[TACC FGSM PGD || ACC FGSM PGD | ACC FGSM PGD || ACC FGSM PGD
ResNet-18 (224) 0.763 0.238 0.201 0.681 0.096 0.090 || 0.493 0.167 0.117 || 0.909 0.406 0.108
MedViT-T (224) 0.767 0.272 0.249 0.703 0.419 0.317 0.534 0.168 0.145 0.938 0.562 0.224
MedViT-T* (224) 0.782 0.304 0.297 || 0.734 0480 0.392 || 0.545 0.197 0.180 || 0.945 0.585 0.245
Table 7 Table 8

Impact of Efficient Convolution Block. Performance of
clean accuracy and adversarial robustness under FGSM
attack on TissueMNIST.

Effect of PMC in Different Stages. Performance (%) of
clean accuracy and adversarial robustness under FGSM
attack on TissueMNIST. Place of PMC is indicated by vin

different stages.

Block type Model Complexity Clean | Robust
Params (M) Flops (G) | Acc(%) | Acc(%)
Residual Block [20] 10.9 1.3 68.1 22.3
ConvNeXt Block [23] 11.2 1.4 69.7 37.5
PoolFormer Block [81] 10.7 1.1 68.9 291
LSA Block [80] 12.7 21 69.2 31.8
ECB (ours) 10.8 1.3 70.3 41.9

Augmentations
Stage 1 | Stage 2 | Stage 3 ‘ Acc | Rob. Acc
X X X 70.3 41.9
v X X 73.4 48.0
X v X 72.9 454
X X v 71.5 441

well-known components. Afterwards, we individually eval-
uate Patch Moment Changer block at different stages of
our architecture. It is important to note that all of our
ablation experiments are based on the MedViT-T model on
TissueMNIST.

Impact of Efficient Convolution Block. To analyze the
effectiveness of our ECB for improving robustness/accuracy
of Transformers, we substitute ECB in MedViT with famous
blocks, including ConvNext [23] block, Residual block in
ResNet [20], PoolFormer Block [81], and LSA block in
Twins [80]. We constantly keep other components of our ar-
chitecture unchanged to build different models under similar
complexity. As illustrated in Table 7, our architecture with
ECB block achieves the best robustness/accuracy in com-
parison with prior blocks. In particular, ECB outperforms
the ConvNext block (runner-up) by 0.6% in clean and 4.4%
in robust accuracy with lower model complexity.

Effect of PMC in Different Stages. To find the best
place for Patch Moment Changer in our model, we combine
the efficient blocks with PMC in different stages. PMC is
applied to 3 different stages of MedViT-T on TissueMNIST
to find the best setup. As illustrated in Table 8, PMC
works best when applied after the first stage of the 4-stage
MedViT-T. We assume PMC helps transformers to capture
local information and has a significant advantage at the early
stages. In contrast, the last stages already contain a lot of
information, which is less impacted by the effect of PMC.
In this paper, we adopt PMC augmentation in the first stage.

6. Conclusion

In this paper, we introduce a family of MedViT, a
novel hybrid CNN-transformer architecture for medical
image classification. Specifically, we combine the local

representations and the global features by using robust
components. Furthermore, we have devised a novel patch
moment changer augmentation that adds rich diversity and
affinity to training data. Experiments show that our MedViT
achieves state-of-the-art accuracy and robustness on the
standard large-scale collection of 2D biomedical datasets.
We hope that our model can encourage more researchers
and provide inspire for future works on realistic medical
deployment.
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