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Abstract 

In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality 

globally. CVDs appear with minor symptoms and progressively get worse. The majority of people 

experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other 

symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital 

heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such 

as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods 

used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging 

(CMR) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled 

with all the advantages of CMR data, CVDs diagnosis is challenging for physicians due to many slices of 

data, low contrast, etc. To address these issues, deep learning (DL) techniques have been employed to the 

diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This 

review provides an overview of the studies performed in CVDs detection using CMR images and DL 

techniques. The introduction section examined CVDs types, diagnostic methods, and the most important 

medical imaging techniques. In the following, investigations to detect CVDs using CMR images and the 

most significant DL methods are presented. Another section discussed the challenges in diagnosing CVDs 

from CMR data. Next, the discussion section discusses the results of this review, and  future work in CVDs 



diagnosis from CMR images and DL techniques are outlined. The most important findings of this study are 

presented in the conclusion section. 
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1. Introduction 

CVDs are one of the most common causes of death and endanger the health of many people around the 

world annually [1-2]. According to the World Health Organization (WHO), CVDs are the leading cause of 

human death worldwide [3-4]. According to this statistics, 17.9 million people died from CVDs in 2016, 

accounting for 31% of all global deaths [5-7]. In addition, coronary heart disease and stroke are responsible 

for four out of five deaths from CVDs, and one-third of these deaths occur in people under 70 years [8-10]. 

Some of the most important CVDs include coronary arteries disease (CAD) [11-12], rheumatoid arthritis 

[13-14], myocarditis [15-17], cardiovascular diabetes [18-19], etc. Figure (1) shows the patients with 

cardiovascular diabetes in the world.  

 
Fig. 1. Patients with cardiovascular diabetes in the world. 

The human heart is responsible for pumping blood and circulating it throughout the body [18], so any 

abnormality in it results in CVDs [19]. CAD is considered the most common type of CVD [20-22]. CAD 

is the plaque accumulation in the arteries that supply oxygen-rich blood to the heart [20-22]. Plaque causes 

narrowing or blockage, which restricts blood flow and thus reduces blood oxygen to parts of the heart [20-

22]. Some of the most significant symptoms of CAD involve chest pain or discomfort and shortness of 

breath [20-22]. Cardiac arrhythmia is another of the most prevalent CVDs caused by atrial fibrillation and 

ventricular arrhythmias [23-24]. A cardiac arrhythmia occurs due to a non-uniform heartbeat. Weakness 

and pain in the chest area are the most important symptoms of arrhythmia [23-24]. Congenital heart disease 

(CHD) is another human CVDs.  There is a defect in the structure of the heart or large arteries are present 

by birth [25-26]. Signs and symptoms of CHD include rapid breathing, a blue tingein the skin (cyanosis), 



poor weight gain, and tiredness [25-26]. Figure (2) shows the common CVDs together with their details. In 

recent years, major advances in cardiac research have been made to improve the diagnosis and treatment of 

CVDs as well as decline their case fatality. 

 
Fig. 2. Common types of CVDs with details. 

Cardiac ultrasound or echocardiography (Echo) works by utilizing sound waves which is a non-invasive 

modality to image heart tissue [27-28]. In this method, ultrasound waves are taken advantage of to produce 

echocardiography images of the heart [27-28]. Echo helps physicians detect various types of CVDs by 

assessing the heart's structure, analyzing how the blood flows in them, and evaluating the heart's pumping 

cavities [27-28]. Advantages of echocardiography include readily accessible, portability, high temporal 

resolution, and no ionizing radiation [29]. 

CT is a non-invasive imaging technique that can be applied to detect a variety of CVDs, brain diseases, etc. 

[30-31]. In particular, cardiac CT provides the anatomical evaluation of the heart, especially CAD [32]. 

This imaging technique involves two techniques: non-contrast CT and contrast-enhanced coronary CT 

angiography (CTA) [30-31]. Non-contrast CT makes use of the density of tissues to generate the image so 

that various densities can be simply distinguished using different attenuation values [30-31] [33-34]. In 

addition, the amount of calcium in the coronary arteries can be calculated using non-contrast CT [30-31] 

[33-34]. In comparison, contrast-enhanced coronary CTA provides the ability to generate extraordinary 

images of the heart, arteries, and coronary arteries [30-31] [33-34]. Radiation exposure is one of the major 

weaknesses of cardiac CT imaging. Frequent exposure to radiation is associated with deleterious health 

effects, including an increased cancer risk [30-31] [33-34].  

CMR imaging offers an excellent quantitative assessment of cardiac chamber volume/function [374] and 

the extent of myocardial infarction/fibrosis [375]. It is a guideline-recommended modality for the diagnosis 

of diverse CVDs, including ischemic heart disease [37, 38], heritable or acquired cardiomyopathy [39], 

myocarditis [40], congenital heart disease [41], etc. For measurement of ventricular volume, function, and 

mass, accurate segmentation of the endocardial (and, in the case of myocardial mass, epicardial) contours 

on standard cine CMR images is a necessary prerequisite. Typically, the contours are drawn ―either 



manually or software-assisted―on a stack of contiguous parallel slices of two-dimensional (2D) short-axis 

time-series cine CMR images of the ventricles at desired phases of the cardiac cycle, e.g., end-diastole and 

-systole, to derive the corresponding time-aligned three-dimensional (3D) ventricular volumes using 

Simpson’s method of disc without the need for geometric assumption [376]. Indeed, cine CMR analysis is 

the gold standard for right ventricular (RV) volume/function measurement as the RV can be optimally 

visualized on CMR without being limited by issues of acoustic window access, as with echocardiography 

[377]. Late gadolinium enhancement (LGE) [378] is an established CMR imaging technique in which 

images acquired ten to twenty minutes after gadolinium-based contrast administration are used to define in 

granular detail regions of myocardial infarct, fibrosis, infiltrate, etc. Indeed, segmentation can also be 

performed to outline and quantitate areas of abnormal tissue, e.g., myocardial infarct [379], microvascular 

obstruction [380], and non-infarct fibrosis [381], which may have prognostic significance.  

In addition to quantitative measurements, CMR must be qualitatively interpreted by medical experts, which 

is time-consuming and subject to human bias. The presence of noise and imaging artifacts can further 

confound the interpretation, potentially resulting in misdiagnosis. However, CMRI data is the gold standard 

and most popular procedure for diagnosing cardiac diseases among physicians. To address CMRI 

challenges, researchers have proposed artificial intelligence (AI) techniques for the automatic diagnosis of 

CVDs using CMRI data [1-10]. In the presented papers, the main objective of the researchers is to achieve 

a tool for rapid detection of CVDs using CMRI images along with AI techniques. For this purpose, the 

researchers have conducted extensive research on ML-based approaches for diagnosing CVDs from CMRI 

data, including introducing various segmentation and classification approaches [42-44]. However, ML 

methods presented satisfactory results in early research on the diagnosis of CVDs. Nevertheless, due to 

high computational complexity, and inefficient performance with huge databases these methods were not 

able yield good performances. To tackle the challenges of ML methods, AI researchers introduced DL 

methods [45-47]. DL networks were able to overcome the limitations of  ML methods [45-47]. The DL 

models were employed in various medical applications, including the diagnosis of CVDs [4], and reported 

satisfactory results. Researchers hope that in the near future, an accurate software platform for diagnosing 

CVDs using MRI data and DL techniques will be realized. 

In this study, papers in diagnosis of CVDs using CMRI images and DL techniques were examined. The 

section 3 describes search strategy papers regarding preferred reporting items for systematic reviews and 

meta-analyses (PRISMA) guidelines [48]. In section 4, the conducted review papers in diagnosis of CVDs 

are studied. The computer aided diagnosis system (CADS) and their steps for diagnosis CVDs from CMRI 

images are provided in Section 5. This section discusses in datasets, preprocessing, and popular DL models 

for diagnosis of CVDs. Also, in this section, segmentation, classification, and fusion research based on DL 

methods are summarized in different Tables. Section 6 is allocated to the most important challenges in 

diagnosis of CVDs using CMRI data. The discussion of this paper, along with its details, is provided in 

section 7. Future work is also presented in section that suggest potential directions for future works. Finally, 

the conclusion and the findings of this study are discussed in the section 7. 

2. Search strategy  

This section searches papers based on PRISMA guidelines [48]. We have searched the papers published 

between 2016 and 2022 in the field of heart diseases using the general keywords "CVDs", "deep learning", 

"Segmentation", "classification", and "CMRI”. Keyword searches are performed in repositories such as 

Science Direct, Frontiers, MDPI, IEEE Xplore, Nature, Springer, ArXiv, and Wiley citation databases. 

The selection method of important articles for diagnosing CVDs with AI techniquesis presented in this 

section. The selection process of papers related to this field has been done in three levels. In Figure (3), the 



review process of papers based on PRISMA guidelines is provided. First, 324 articles were collected and 

then 38 articles were filtered out as they are not related to this area of research. In the following, 33 papers 

did not use the CMRI datasets and filtered. Finally, 21 articles were filtered out as they did not use DL 

techniques in their studies. Figure (3) displayed the PRISMA guidelines for diagnosis of CVDs from CMR 

images using DL methods. In addition, the exclusion and inclusion criteria used in this work are provided 

in Table (1). 

Table 1. Exclusion and inclusion criteria used for the diagnosis of CVDs. 

Inclusion Exclusion 

1. CMRI Images   1. Treatment of CVDs 

3. Different types of CVDs. 2. Clinical methods for CVDs treatment 

3. CVDs detection  3. Rehabilitation systems for CVDs detection (Without AI 

techniques) 

4. DL models (CNNs, RNNs, AEs, CNN-RNN, CNN-AE, 

GAN, Transfer Learning, etc.)  

 

  

 
Fig. 3. Literature search procedure. 



3.  Review studies on AI-enabled image segmentation   

Leiner et al. [11] reviewed advances in ML for image reconstruction, feature extraction, image analysis, 

and diagnostic evaluation of CMR images. They also highlighted important areas of research like image 

reconstruction, improving spatial and temporal resolution, perfusion analysis, and myocardial mapping.  

Segmentation of CMR images is an important area used for quantitative CMR assessment, including 

calculation of heart chamber volumes (and function) and delineation of abnormal myocardial tissues (e.g., 

myocardial infarct, fibrosis, etc.). Several review papers have been published on the use of AI for 

segmenting cardiac and vascular structures as well as tissues like fat and scars on different imaging 

modalities such as CMR, computed tomography, echocardiography, etc. [2] [6] [9]. Litjens et al. [9] 

reviewed 80 papers on the diagnosis of CVD using CMR and other modalities. In this review paper, we 

discussed the most important DL models, including convolutional neural networks (CNNs). In addition, we 

reviewed few novel DL models, such as generative adversarial networks (GANs).  

Studies on automated segmentation of the left ventricle (LV) on short-axis cine CMR images using ML 

[14] and DL [1] architectures have been reviewed in [14] and [1], respectively. In [10], 3D convolution 

architectures for handling volumetric LV CMR datasets were reviewed. Compared with 2D networks, 3D 

can capture the entirety of the spatial information while reducing the number of training data. Still, the high 

memory requirement limits the network depth and the filter's field of view. Wu et al. [8] also reviewed the 

papers on the segmentation of fibrosis and scars on late gadolinium enhancement (LGE) CMR images using 

DL models. In [4-5], AI methods for segmenting and quantitating regions of atrial fibrosis on LGE CMR 

images―which have diagnostic and prognostic implications in conditions like atrial fibrillation―were 

reviewed, and the challenges were discussed. The review papers published on image segmentation using 

AI methods are summarized in Table (2).  

Table 2. Summary of review papers on image segmentation using AI.   

Methods Segmentation Image input Year Work 

ML, DL  Chamber and vessel borders, tissue Multi-modal 2021 [6] 

DL Chamber and vessel borders, fibrosis Multi-modal 2020 [2] 

DL Chamber and vessel borders, fibrosis Multi-modal 2019 [9] 

ML  LV myocardial border Cine CMR 2018 [14] 

ML, DL  LV myocardial border Cine CMR 2022 [13] 

DL  LV myocardial border 3D cine CMR 2020 [10] 

ML, DL  LV and RV myocardial borders Cine CMR 2019 [3] 

ML,  DL  RV myocardial border Cine CMR 2021 [1] 

DL  LV and LA fibrosis LGE-CMR 2021 [8] 

DL  LA fibrosis LGE-CMR 2020 [4] 

ML, DL  LA fibrosis LGE-CMR 2022 [5] 

 

4. Computer-Aided Diagnosis for Heart disease 

Early detection of CVDs from CMR images extends patients' lifespan and quality of life. As mentioned in 

Section 3, many papers have been published for diagnosing CVDs using CMR images and AI methods. 

The main aim of research in CADS based on AI methods is to assist clinicians in interpreting CMR data 

for early detection of CVDs [1]. In general, researchers exploit ML and DL techniques in the 

implementation of CADS to diagnose CVDs [1-19]. DL models are state-of-the-art AI techniques that are 

evolving rapidly. For this purpose, the application of DL techniques in diagnosing CVDs has grown 

dramatically in recent years [8] [10]. The main objective of this study is to enhance the performance of 

CADS to assist  doctors in the accurate diagnosis of CVDs. The CADS based on DL networks for the 

diagnosis of CVDs consists of CMR datasets, preprocessing, DL models, and evaluation parameters steps. 

Figure (4) illustrates the block diagram for CVDs detection using DL methods. To achieve better 

performance using CADS, CMR images are pre-processed to remove artifacts, increase contrast, etc. In the 

next step, DL models are fed with  CMR images for diagnosis of CVDs. Ultimately, the evaluation criteria 

demonstrate the effectiveness of the proposed CADS for CVDs detection. As aforementioned, the diagnosis 



of CVDs is largely reliable on the physician's subjective interpretation. CADS based on DL can alleviate 

this subjectivity by improving the detection of CVDs and quantitative support for decision-making [14]. 

The following details of each CADS section for CVDs detection based on DL models are provided. 

 
Fig. 4. Illustration of  CVDs detection using DL methods. 

4.1. Datasets   

Datasets play an important role in the DL-based diagnosis of CVDs. To date, several datasets have been 

made available to researchers for CVD diagnosis, including ECG, echocardiography, and CMR. This 

section presents the most important available CMR datasets for CVDs detection. The remainder of this 

section describes the available datasets from CMR data. Also, a summary of CMR datasets available is 

summarized in Table (3).  

4.1.1. Sunnybrook Cardiac Data (SCD) 

The SCD dataset contains cine-CMR images of 45 individuals with four pathologies, namely, healthy, 

hypertrophy, heart failure with infarction and heart failure without infarction, and with medical 

interpretations [49]. In this dataset, images are acquired while the patient holds his breath for 10-15 seconds 

with a time resolution of 20 cardiac phases in the cardiac cycle [49]. The data is in DICOM format and 

includes Metadata parameters about the patient and the image. A set of contours is delineated manually for 

each patient record at end-diastolic (ED) and end-systolic (ES) slices [49]. These contours were drawn by 

Perry Radau of the Sunnybrook Health Science Center [49]. The data is provided for analysis by physicians 

without any pre-processing. In SCD, data is randomly split into three groups: 15 for training, 15 for testing, 

and 15 for an online challenge [49]. The training dataset contains CMR images and their ground truth for 

segmentation application. Furthermore, the test dataset does not involve ground truth for segmentation [49]. 

In 2009, a subset of the SCD dataset was first utilized in the myocardial segmentation challenge with CMR, 

held by a MICCAI workshop. The entire dataset is now available in the CAP [49].   

4.1.2. The Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017 Challenge 

The ACDC is a public dataset containing short axis view CMR images of 100 patients recorded in NIfTI 

format [50]. Contour images for the end-systole and end-diastole are provided for each patient [50]. The 

expert references are manually-drawn on 3D volumes of LV, RV, and myocardial cavities in ED and ES 

slices [50]. Recordings were performed using two CMR scanners with Siemens Area (1.5T) and Siemens 

Trio Tim (3T) specifications for 6 years. Cine CMR images were captured during breath-holding with a 



retrospective or prospective gating and an SSFP sequence in the short axis view [50]. More information on 

this dataset is provided in [50]. 

4.1.3. The Kaggle Data Science Bowl Cardiac Challenge 

Kaggle is made of 700 datasets for the training and validation phases and 440 datasets for the testing phase 

[51]. The Kaggle dataset does not provide standard gold LV contours. In addition, the goal and evaluation 

metric are based on the predicted LV volume at the end-diastole (ED) and end-systole (ES) [51]. More 

information on this dataset is provided in [51]. 

4.1.4. Left Ventricle Segmentation Challenge (LVSC) 

The LVSC dataset was made publicly available to researchers in MICCAI 2011 [52]. The LVSC dataset 

contains 200 CMR images of CAD and myocardial infarction patients from several institutions [52]. The 

primary sequences are cine short-axis steady-state free precession (SSFP) images. Long-axis SSFP cine 

images are available only for a subset of subjects [52]. The scanners and imaging parameters vary and offer 

a heterogeneous combination of spatial resolutions of 0.7 to 2.1 mm / pixel and matrix sizes of 156*192 to 

512*512. LVSC datasets fall into two groups [52]. The first group includes 100 annotated samples for 

training and testing. The second group consists of 100 samples without annotation for validation. The gold 

standard annotations include binary masks delineated by an expert indicating LV myocardium from basal 

to apical slices for all cardiac phases [52]. 

4.1.5. Right Ventricle Segmentation Challenge (RVSC) 

The RVSC dataset was presented as a section of the 2012 MICCAI workshop [53]. This dataset contains 

CMR images in DICOM format that have been recorded with the Symphony Tim (1.5T) device. The RVSC 

dataset consists of manual epicardium and endocardium segments in the ED and ES phases from 48 patients 

[53]. For this dataset, the data is split as follows: training of 16 patients, test 1 includes 16 cases, and test 2 

has 16 patients. For this dataset, ED and ES phases and basal and apical slices have been predefined [53].  

4.1.6. CMR Dataset from York University 

This dataset contains CMR images in DICOM format with ground truth segmentation of LV endocardial 

and epicardial [54]. CMR data were recorded from 33 subjects, where each subject's sequence consisted of 

20 frames and 8-15 slices along the long axis to make a total of 7980 images [54]. In this dataset, 

segmentation has been done on images in which both the endocardium and the endocardium of the left 

ventricle are visible [54]. Thus, there are 5011 segmented CMR images and 10022 contoursin the dataset 

[54]. Metadata is also available, including pixel spacing, spacing between slices along the long axis, and 

age and disease of each subject [54]. 

4.1.7. Left Ventricle Full Quantification Challenge MICCAI 2018 (LVQuan18) 

To accurately quantify LV, the STACOM 2018 workshop released the LVQuan18 dataset [55]. The training 

dataset includes processed SAX MR sequences of 145 subjects [55]. There are 20 frames for each subject. 

In addition, all ground truth values are provided for each frame [55]. The test dataset contains SAX MR 

processed sequences of 30 subjects [55]. For each subject, only SAX image sequences of 20 frames without 

ground truth values are provided [55]. 

4.1.8. Left Ventricle Full Quantification Challenge MICCAI 2019 (LVQuan19) 

The LVQuan19 dataset is the new version of LVQuan18 released at the STACOM 2019 workshop [56]. 

The training dataset comprises 56 subjects from the processed SAX MR sequences [56]. For each subject, 

20 frames are provided and all ground truth values. In the test dataset, the processed SAX MR sequences 



of 30 subjects are available [56]. At this stage, only the SAX image sequences of 20 frames are provided 

for each subject, while their ground truth values are not [56]. 

4.1.9. STACOM 

This dataset comprises CMR images of 100 patients with CAD and myocardial infarction [57]. The subjects 

of this dataset are randomly split into two parts: training and testing [57]. Sixty-six subjects were selected 

for training, while 34 subjects were used for testing, which resulted in 12,720 training images and 6972 test 

images [57]. This dataset has a high diverse. Different types of CMR scanners have been employed to 

record images, and this dataset's CMR image sizes range from 138 x 192 to 512 x 512 pixels [57]. Moreover, 

each CMR image has a ground truth for the blood cavity and myocardium [57]. 

4.1.10. STACOM 2017  

This dataset was published in a challenge STACOM 2017 for whole heart segmentation. The dataset 

comprises two parts: training and testing [58]. In the training section, there are 20 CMR images and 20 CT 

images with ground truth [58]. In the test step, 40 images were provided for each modality without ground 

truth [58]. CT images are taken from routine cardiac CT angiography and cover the whole heart, extending 

from the upper abdomen to the aortic arch. The CMR images were acquired using 3D balanced steady-state 

free precession (b-SSFP) sequences with an acquisition resolution of 2mm in each direction [58]. 

4.1.11. LASC STACOM 2018 

This dataset was part of the STACOM 2018 challenge for LA segmentation [59]. It contains 100 3D LGE-

CMRs recorded from patients diagnosed with atrial fibrillation (AF) [59]. A large proportion of data was 

provided by the University of Utah, while the rest were collected from multiple other institutions [59]. Each 

3D D LGE-CMR volume was recorded using a 3.0 Tesla Verio and 1.5 Tesla Avanto scanners. In this 

dataset, the ground truth binary mask for the LA cavity was annotated by experts for each data [59]. 

4.1.12. Multi-Modality Whole Heart Segmentation (MMWHS) challenge 

This dataset contains 20 CMR data obtained using a Philips Healthcare (1.5T) scanner [60]. The whole 

heart imaging CMR sequence is balancedsteady-state free precession (b-SSFP) [60]. This database also 

comprises 20 CT data. CT data were acquired using a Philips Medical Systems scanner [60]. CT images 

were obtained in axial view, covering the whole heart from the upper abdomen to the aortic arch. More data 

is provided in the reference [60]. 

Table 3. Details of dataset used for cardiovascular disease. 

Ref Dataset Number of cases Modality 
[49] SCD 45 CMR 
[50] ACDC 100 CMR 
[51] Kaggle 700 train, 440 test CMR 
[52] LVSC 200 CMR 
[53] RVSC 48 CMR 
[54] York University 33 CMR 
[55] LVQuan18 145 train, 30 test CMR 
[56] LVQuan19 56 train, 30 test CMR 
[57] STACOM 66 train, 34 test CMR 
[58] STACOM 2017 20 CMR and 20 CT for train, 20 

CMR and 20 CT for test 
CMR and CT-Scan 

[59] LASC STACOM 2018 100 3D LGE-CMRs CMR 
[61] UK Biobank 500,000 Image, non- image, biological samples, 

etc. 



[60] MMWHS 20 CMR, 20 CT CMR and CT-Scan 
 

 

4.2. Preprocessing techniques  

Preprocessing is one of the most substantial steps in CADS for diagnosing heart disease using CMR images. 

CMR images provide physicians important information about the structure of the heart and assist them in 

diagnosing CVDs quickly. Though beneficial, CMR data are affected by different artifacts. In addition, 

CMR images sometimes have low contrast.  Hence may lead to inaccurate diagnosis of CVDs from CMR 

images by specialist physicians. Several preprocessing algorithms have been proposed to address these 

problems to enhance the performance of DL-based CADS for CVDs detection. Generally, CMR images in 

DL-based CADS are pre-processed by low-level and high-level procedures. 

4.2.1. Low-Level Preprocessing  

Low-level techniques are exploited for primary preprocessing of CMR images. The low-level preprocessing 

plays a significant role in improving CADS performance in CVDs detection. Some of the most important 

low- level preprocessing techniques comprises of filtering [62], intensity normalization [63], resizing [64], 

histogram matching [65], cropping [66], segmentation [67], and ROI extraction [68]. Filtering is applied to 

remove various artifacts from CMR images. Some of the most important filtering algorithms include 

median and Gaussian filters used in cardiac research [69-70]. Intensity normalization is modifying the range 

of pixel intensity values and increasing the detection efficiency of CVDs using CMR images [63]. CMR 

images are normally recorded in high dimensions, so resizing approaches help reduce the CMR dimensions 

so that they can be fed to the input of DL models [64]. A histogram is another low-level preprocessing 

technique that aims to enhance the contrast of CMR images [65]. In low-level preprocessing, cropping and 

segmentation techniques extract important information from CMR images [66]. Then, ROI methods are 

taken advantage  to extract suspected disease areas from CMR images called ROI extraction [68]. 

Ultimately, the data obtained from ROI extraction is applied to the DL model input. Low-level 

preprocessing methods are used in all CVDs detection research on CMR using DL techniques. 

4.2.2. High-Level Preprocessing  

DL models' performance immensely declines when confronted with limited input data. In order to tackle 

the lack of input data and avoid overfitting, researchers use data augmentation (DA) techniques to increase 

the training dataset size [71]. Some of the most important DA methods include horizontal flipping and 

affine transformations rotation and have been investigated in CVDs detection studies [72-73]. GAN models 

are a new class of DL methods used for DA approaches [74-76]. In [74-76], GAN models have increased 

input data size. 

4.3. Deep Learning models  

This section describes the most significant DL models used for CVDs detection using CMR images. First, 

2D-CNNs [77] and 3D-CNNs [77] are presented with their details. In the following, pre-trained models are 

introduced, which are a particular mode of CNNs architecture [77]. GAN models [74-76] are an important 

class of DL models described in this section. U-Net [78-79] and FCN [80] models are two groups of CNNs 

used for image segmentation applications. A more detailed description of these methods is provided in this 

section. In another section, AEs and CNN-AEs models [81-82] are introduced to diagnose heart disease. 

Ultimately, the RNNs and CNN-RNNs models [83-84] are introduced. 

 



4.3.1. Convolutional Neural Network (CNN) 

In recent years, DL models have significantly grown in various fields, including medicine [85-90]. CNN 

architectures have fared exceptionally well in analyzing medical images. Convolutional, pooling, and FC 

layers are the essential components of a CNN model for the feature extraction and classification [77]. CNN 

models use supervised learning at the learning stage and encompass different models for classifying and 

segmenting medical images [91-93]. The most significant advantage of CNN models compared to ML 

algorithms is feature engineering. The increasing advancement of CNN models has led to increased 

computational complexity; therefore, hardware resources are also rapidly developing [91-93]. Pre-trained 

models, 2D-CNNs, and 3D-CNNs are some of the most important CNN models used for classification in 

the CMR images diagnose CVDs. Further, FCN and U-Net architectures are some of the most popular CNN 

techniques for CMR image segmentation to diagnose CVDs. Details of CNN models are discussed in the 

following sections. 

A) 2D-CNN 

In medical approaches, there are often many spatial dependences between the images, making feature 

extraction difficult [92]. Convolutional layers in CNN models function as spatial filtering [77]. This helps 

extract useful features by considering spatial dependencies in medical images. Therefore, using 

convolutional layers lead to automated feature extraction from medical images. The pooling layers in the 

CNN models  function similar to dimension reduction algorithms in ML [77]. Lastly, several fully 

connected (FC) blocks are used in the last CNN layersto classify input data [77]. , The high efficiency of 

2D-CNN models, has led to their massive popularity in studies of identifying CVD from CMR data. Figure 

(5) illustrates the working of 2D-CNN architecture for CMR image classification to diagnose CVDs.  

 

 
Fig. 5. A typical 2D-CNN for CVDs detection from CMR images.  

B) 3D-CNN 

Medical images such as brain CMR, CMR, CT, and ultrasound are recorded as 3D [94-95]. However, 3D 

images are highly complex, and it is often challenging for doctors to diagnose diseases based on these data. 

As a result, researchers have extended 2D-CNN models to 2D-CNNs to obtain more successful outcomes 

in disease diagnosis from 3D medial images [96-97]. In return, 3D-CNN models require a lot of input data 

for learning, and researchers often do not have access to datasets with many subjects [96]. Additionally, 

3D-CNN models have high computational complexity; hence implementing them requires high-power 

hardware resources [97]. This always impose challenges in disease diagnosis using 3D-CNN models. Figure 

(6) illustrates the block diagram of a 3D-CNN architecture for classification of CMR classification for 

diagnosing CVDs. 



 
Fig. 6. A typical 3D-CNN for CVDs detection from CMR images 

C) Pretrained Models  

The most significant challenge of studies on disease diagnosis using DL techniques is the lack of access to 

datasets with many subjects [86]. AI researchers have managed to overcome this challenge in medical 

studies by proposing deep pre-trained models [98]. Pre-trained models are a group of CNN architectures 

initially trained on the ImageNet dataset [99-100]. In the following, the weights of the layers have been 

saved so that researchers can use these architectures to diagnose diseases with fewer subjects [99-100]. For 

instance, numerous papers have deployed pre-trained models to diagnose CVDs based on CMR images, 

and researchers have obtained satisfactory results [143]. VGG, AlexNet, etc., are some of the most crucial 

pre-trained architectures [99-100]. Further, some pre-trained architectures for deep compact size CNNs 

[101-102] and transformers [103-104] have recently been introduced. Figure (7) illustrates the typical pre-

trained model used for CVDs detection from CMR images.  

 
Fig. 7. A typical pre-trained model used for CVDs detection from CMR images. 

4.3.2. GAN 

Generative models have always received much attention due to their ability to model the underlying 

distribution of data [74-76]. Usually, they consider a simpler family of distributions and try to minimize the 

KL divergence with the underlying distribution. GANs use a different data generation mechanism, allowing 

them to create high-quality images. The idea is to create a 2-network minimax game, one network aiming 

to distinguish between real and fake images and the other trying to fool the first one [74-76]. After training, 

the generative part (second network) in GAN usually creates realistic data [74-76]. They have been widely 

used in medical diagnosis tasks, and cardiovascular disease diagnosis. Figure (8) shows the typical GAN 

model used for CVDs detection using CMR images. 



 
Fig 8. A typical GAN model used for CVDs detection using CMR images. 

4.3.3. FCN 

Long et al. [105] introduced, FCN which is the most fundamental DL architecture used for image 

segmentation. It is a type of CNN family in which FC layers are not used [105]. Instead, an encoder-decoder 

structure is used in the FCN architecture for image segmentation [105]. In FCN, the input image is first 

received with the desired size, then output with the same input dimensions is produced. By applying an 

image to the input of the FCN model, the encoder first changes the input into high-level feature 

representation. At the same time, the decoder interprets feature maps and restores spatial details to image 

space for pixel prediction through a series of convolutional operations and upsampling [105]. Authors in 

[105]  provided more details for the FCN architecture. Figure (9) shows the typical FCN model used for 

CVDs detection using CMR images.. 

 
Fig. 9. A typical FCN model used for CVDs detection using CMR images. 

4.3.4. U NET 

Image segmentation is an important step in medical diagnosis, usually used for the localization of different 

diseases [78-79]. However, conventional CNNs fail to segment; as the image-sized mapping is required for 

the network's output. FCN and U-net are two famous networks suggested for segmentation [78-79] as  they 

have an encoder-decoder structure that ideally learns required information in the encoder part and encodes 

it into a latent space, and then decodes that to give a map of the segmented image as the output of the 

decoder [78-79]. Also, in U-Net, shortcuts between the encoder and decoder are introduced to increase 



information sharing and help the networks converge faster. These networks have also been used for 

cardiovascular diagnoses, such as [78-79]. Figure (10) shows the   typical U-Net model used for CVDs 

detection using CMR images. 

 
Fig. 10. A typical U-Net model used for CVDs detection using CMR images. 

4.3.5. Autoencoder Models   

Autoencoders (AE) are the oldest neural networks, but they are still used for many tasks and are even 

considered state-of-the-art in their domain [77]. The idea is simple; for many tasks, data space is too big, 

and dimensionality reduction can help dramatically solve the task [77]. Hence, two networks are put back 

to back, one for encoding the data into a smaller latent space and the other for taking the data back from 

latent space to the original space, aiming to minimize the re-construction loss [77]. Appropriately trained, 

AEs should learn to find a robust encoding that preserves the most critical information in data [77] [81-82]. 

AEs have many different types, such as denoising AEs, Sparse AEs, and Stacked AEs, all aim to resolve 

one of the challenges AEs face [77] [81-82]. Amongst all types of AEs, Convolutional Autoencoders (CNN-

AE) have been used widely in medical diagnosis [106-107]. The idea behind them is to exploit the 

convolutional abilities by changing the AE layers to convolution and encode spatial patterns into latent 

space. Figure (11) illustrates the block diagram of a CNN-AE architecture used to diagnose CVDs using 

CMR images.   

 
Fig. 11. A typical CNN-AE model for CVDs detection from CMR images 



 
Fig. 12.  A typical CNN-RNN model for CVDs detection from CMR images 

4.3.6. RNN Models  

When applying deep learning models to tasks such as natural language processing, some challenges, such 

as variable data length or lengthiness, are possible concerns [77]. Amongst these types of challenges, 

finding temporal patterns is arguably the most important and complicated one, given that these patterns can 

be of variable length, and previous DL methods have no mechanism to detect them [77]. RNNs, specifically 

long short-term memory (LSTM) and gated linear unit (GRU) models are built to resolve this issue [77] 

[83-84], and they are commonly used for signal processing [108], etc. Also, it is common to combine RNNs 

with other types of networks, such as convolutional ones, to take advantage of both. These models named 

as CNN-RNN are used to extract spatial and temporal and even Spatio-temporal information from 

sequential data [77] [83-84]. Figure (12) illustrates a block in the overall diagram of pre-trained CMR data 

classification architecture to diagnose CVDs.  

  
Fig. 13. Various DL models employed in automated segmentation for diagnosis of CVDs in CMR images.  

 



4.4. Applications of DL for segmentation of CMR images 

As aforementioned, to diagnose CVDs, DL-based segmentation and classification techniques are utilized. 

The summary of DL-based segmentation works done for CVDs diagnosis are summarized in Table (4). In 

Figure (13) shows  various DL models employed in automated segmentation of diagnosis of CVDs in CMR 

images. According to Table (4) and Figure (13), CNN models are the most commonly used in CVDs 

detection using CMR images.  

Table 4. Summary of DL-based segmentation works done using CMR image. diagnosis of CVDs using DL methods    
Ref Application Dataset Number of 

cases 

Preprocessing DNN Toolbox Performance 

[109] LV MICCAI 2009 45 Subjects DA 
2D-CNN NA 

DM=94.00% 
SAE 

[110] RV and LV 
MICCAI 2012 

-- ROIs Extraction  
2D-CNN NA DM=81.00% 

HD=7.79mm MICCAI 2009 SAE 

[111] RV 
MICCAI 2012 

 
48 Subjects ROIs Extraction  2D-CNN 

 

Keras 
 

DM for Endo=86.00% 

HD=6.9mm 

DM=84.00% 
HD=8.9mm 

EDV R=89.00, ME=7.1 

ESV: R=84.00, ME=9.6 

EF R=86.00, ME=7.5 

[112] 
LV, RV Endo, 
Epi, and LVM 

Sunnybrook 45 Subjects 

Different Methods 2D-CNN Caffe 
Sens=83.00% 
Spec=96.00% 

LVSC 200 Subjects 

RVSC 48 Subjects 

[113] 

 

Multi-slice LV 
 

MICCAI 2009 45 CMR DA RFCN NA 
Dice=93.50% 

APD=1.56 

[114] LVM York University  33 Subjects DA CNN Caffe DM=75.00% 

[115] Great Vessel  HVSMR 2016  20 CMR DA 
Deeply-supervised 

3D FractalNet 
Caffe 

DM=93.00% 

HD=4.643mm 

[116] 

 
 

 

MYO and 
blood  

MICCAI 2016  20 Scans ROIs Extraction 2D-Dilated CNN NA 

Blood Pool: 

DM=93.00% 

MYO: 

DM=80.00% 

[117] 
 

RV MICCAI 2012  48 Subjects DA 
2D-CNN 

NA 
DM= 82.50% 
HD=7.85mm SAE 

[118] 
 

Myocardial 
Sunnybrook  NA 

DA, ROIs 

Extraction 
Modified U-Net Keras DM=90.00% 

[119] LA and PPV  STACOM 2013 30 CMR DA CardiacNET TensorFlow 

Sens=90.00% 

Spec=99.00% 
DM=93.00% 

[120] LV Sunnybrook 45 Subjects Random Shuffled 2D-CNN Caffe 

DM=90.00% 

HD=5.43mm 
Sens=90.00% 

Spec=99.00% 

[121] 
LV, RV 

and  MYO 
MICCAI 2017 100 Subjects -- 2D and 3D-CNN NA DM=95.00% 

[122] 
RV and LV Endo 

and Epi 

MHH 502 Subjects 

DA V-Net TensorFlow Different Results 
DSBCC 1140 Subjects 

MICCAI 2009 45 Subjects 

RVSC 48 Subjects 

[123] LV MICCAI 2009 45 Subjects  ROI, DA DBN NA ADM=86.00% 

[124] 

 
LA 3D LGE-CMR 60 Subjects DA 2D-CNN TensorFlow 

DM=94.20% 

Sens=91.80% 

[125] 

 

Shape-Refined 

Bi-Ventricular 
Clinical 

Different 

Subjects  
DA SSLLN NA 

DM: 

LVC=96.00%, LVW=87.30% 
RVC=92.90%, RVW=75.50% 

[126] 

 

Cardiac Bi-

Ventricle 
Clinical 145 Subjects  ROIs Extraction  

Cardiac-DeepIED 

(ED+Conv-LSTM) 
Keras 

Acc LV=99.10% 

Acc MYO=97.60% 
Acc RV=98.20% 

[127] 

 
LV 

MICCAI 

 
45 Subjects ROIs Extraction  SegNet MATLAB -- 

[128] LV and RV UK Biobank 3078 Subjects ROIs Extraction  LV-Net TensorFlow DM LV-epi=92.30% 



[129] MYO and BV MICCAI 2017 150 Subjects    Acc=96.00% 

[130] BV MICCAI 2017 150 Subjects ROIs Extraction   CCGAN Keras Different Results  

[131] LV York University 33 Subjects ROIs Extraction  2D-CNN -- 
DM=87.24% 

Acc=98.39% 

[132] Scar Clinical 30 Subjects DA 2D-CNN TensorFlow 

Acc=96.83% 

Sens=88.07% 
DM=71.25% 

[133] LV and RV Endo Clinical 
90 Subjects 

 
Contour delineation, U-Net 

Keras 

TensorFlow 

DM=92.90 % 

JM=86.90% 

[134] LV MICCAI 2013 83 Subjects Resizing CapsNet TensorFlow DM=94.17 

[135] LV 

Clinical 900 Subjects 

Manual Expert 

Delineations 
 SegNet NA 

DM Endo=90.00%  
APD Endo=1.95% 

MICCAI 45 Subjects DM Epi=93.00% 

APD Epi=1.98% 

[136] LV MICCAI 2009  
Different 

Subjects 
NA DBN NA 

Endo AVP:2.08% 

Endo ADM:0.90% 

[137] LV, MYO, RV  

Free-Breathing 
CMR Data 

12 Subjects  
DA, Karhunen-

Loeve Transform 

Filter 

 

U-Net and ResNet Matlab 2019a 

DM LV=91.90% 

DM MYO=80.60%  
DM RV=81.80% MICCAI 2017 150 Subjects  

[138] 
LV, RV and 

MYO  

MICCAI 2017 150 Subjects Hough Transform, 
ROIs Extraction, 

Feature Selection, 

Feature Scaling, DA 

DFCN-C TensorFlow 
DM=91.00% 

HD=5.43mm 
LV-2011 200 Subjects 

2015 Kaggle 500 Subjects  

[139] LV and RV MICCAI 2017 150 Subjects  DA GridNet-MD Keras DM=91.00% 

[140] Bi-Ventricle MICCAI 2017 150 Subjects  DA C-cGANs 
Keras 

TensorFlow 

DM LV=96.50% 

DM RV=94.90% 

DM MYO=89.30% 

[141] LV  

Sunnybrook 45 Subjects  
ROIs Extraction, 

DA 
2D-U-Net Keras 

 

Different Results 

 
MICCAI 2017 100 Subjects 

[142] 
LV and 

RV 

Clinical 100  Subjects  

DA 

2D-U-Net 

Keras 

TensorFlow 
-- 

MICCAI 2009  100  Subjects 3D-U-Net 

Sunnybrook  45  Subjects 
DenseNet 

MICCAI 2012  16  Subjects 

[143] LV and RV  

MICCAI 2017 100 Subjects  

DA Proposed Method PyTorch 

DM RVC=90.30% 
DM LVM= 89.20% 

DM LVC=94.20% 

Clinical 100 Subjects  HD RVC=13.830mm 

HD  LVM= 8.786mm 
HD LVC=6.641mm 

[144] LV Clinical 100 Subjects -- FC- U-net PyTorch 
DM Epi=96.00% 

DM Endo=94.00% 

[145] LV York University  30 Subjects  -- 
U-Net and 
GoogleNet 

Keras DM=89.00% 

[146] LV 
MICCAI 2011 

Different 

Subjects DA 2D-CNN TensorFlow DM=88.00% 

MICCAI 2009 100 Subjects 

[147] LV  Sunnybrook  45 Subjects -- FR-net Caffe 
DM=93.00% 

APD=1.41 

[148] LV  MICCAI 2017 150 Subjects 
ROIs Extraction, 

DA 
2D-CNN2 PyTorch 

DM LV ED= 96.00% 

DM LV ES= 92.00% 

DM MYO ED=88.00%  

DM MYO ES=89.00% 

 
[149] 

Cardiac Walls Clinical 20 Subjects DA PC-U Net -- 
DM=88.50%  

HD=7.050mm 

[150] LV Clinical 33 Subjects CLAHE DT-GAN PyTorch 
HD=2.23mm 

DM=93.00% 

[151] 
 

CMR MICCAI 2017 100 Subjects DA DBAN NA 

DM=ED 96.00% 
DM ES=90.00% 

HD ED=6.7mm  

HD ES=8.1mm 

[152] 

 
Scar 

Clinical 155 Subjects 

DA ACSNet 
Keras 

TensorFlow 
Acc LV=96.00% MICCAI 2017 

245 Subjects  
Sunnybrook 

[153] 

 
MYO MICCAI 2020 150 Subjects  -- 3D U-Net PyTorch DM MYO=87.86% 



[154] 

 

LV, RV, and 

MYO  
MICCAI 2017 150 Subjects  

ROIs Extraction, 

YOLOv3 
LFCN TensorFlow 

DM LV ED=96.00% 
DM LV ES=91.00% 

DM RV ED=93.00%,  

DM RV ES=85.00% 

DM MYO ED=87.00% 
DM MYO ES=89.00% 

[155] 

 

Cardiac Multi-

task 
MyoPS 2020 45 Subjects  DA CMS-U-Net PyTorch DM MYO=58.10% 

[156] 
LV, RV, and 

MYO 
Clinical 175 Subjects DA 2D-CNN 

NA 
Acc=97.60% 

[157] 
LV blood pool 

and MYO 
MICCAI 2020  150 Subjects -- U-Net 

NA Acc=92.00% 

DM= 86.28% 

[158] 
LVM,  LV, and 

RV 
Different 
datasets 

350 Patients  DA U-Net 
NA 

DM= 85.48% 

[159]  36 Unique 

Datasets 
32 Subjects  DA U-Net 

Keras 

TensorFlow  
DSC=88.00% 

[160] LV and RV Clinical 
Different 
Subjects  

-- U-Net NA DM=95.00 

[161] 

LA, LV, RV 

Endo, and MYO, 

at ED and ES 

STACOM 100 Subjects  GCAM DR-U-Net 
Keras 

TensorFlow 

DM =92.80% 

HD=20.3mm 

ASD=1.38mm 

[162] 
LV,RV, and 

MYO  

MICCAI 2017 100 Subjects  
DA U-Net  NA DM=93.50% 

UK Biobank 100 Subjects  

[163] RVM and LVM MICCAI 2017 
1902 Cardiac 

MR Images 
DA 2D-CNN 

Keras 

TensorFlow 
DM=91.60% 

[164] 
LV Cavity, 

MYO, and RV 

Cavity  

UK Biobank  100 Subjects DA 2D-CNN 
Python, 

Theano 

DM LV=92.00%  
DM MYO=85.00%  

DM RV=89.00% 

[165] 
LV, RV, and 

MYO  
MICCAI 2017  150 Subjects DA 

2D-CNN 
PyTorch Different Results 

3D-CNN 

[166] LV 
- 45 Subjects 

DA 2D-CNN Theano 
CRPS =0.084 

RMSE =65.6 Kaggle 500 Patients 

[167] AS Clinical 20 Subjects  Different Methods SSAE -- AUC = 94.00% 

[168] LVM Clinical 8 Subjects -- ResNet-56 MXNet  
DM= 86.00% 
HD=4.01mm 

[169] LV 
LVSC 200 Subjects  

DA 
CPL Network Python, 

TensorFlow 

Sen=88.00% 

Spec=95.00% Kaggle 1140 Subjects  MB Network 

[170] LV Cavity  
York University 33 Subjects  

-- U-Net 
Keras, 

Theano 
DM=93.00% 

MICCAI 2009 45 Subjects 

[171] VS 

Automated 
Cardiac 

Diagnosis 

Challenge 2017 

100 Subjects  DA 3D FCN TensorFlow 
DM=82.27% 

Prec=89.81% 

[172] LA, PV, and AFS Clinical ??? Different Methods SSAE 
NA Acc=91.00% 

Sen=95.00% 

[173] LV, RV And LV  MICCAI 2017 100 Exams -- 3D-CNN 
NA DM=90.00% 

HD=10.4mm 

[174] LV 

Second Annual 

Data Science 

Bowl 

7 Subjects -- 2D-CNN MXNet  HD=3.70mm 

[175] LV, LVi, and RV  Clinical -- DA FastVentricle 
Keras, 

TensorFlow 
Different Results  

[176] LV  

SCD 

-- DA U-Net NA -- MICCAI 2017 

Kaggle 

[177]  Clinical 1,912 Subjects  DA CVAE TensorFlow DM=87.92% 

[178] RV  Clinical 26 Subjects  -- 3D CNN -- DM=82.81% 

[179] RV  MICCAI 12  -- -- Multi-Task DNN TensorFlow DM=87.20% 

[180] LV  Clinical 30 Subjects  -- U-Net PyTorch DM=94.00% 

[181] MYO Clinical 348 Subjects -- RSE-Net Model PyTorch DM=82.01% 

[182] LA and PV Clinical ??? -- Different Models TensorFlow 
Acc=99.70% 

DM=89.70% 

[183]  UK Biobank  220 Subjects DA ??? NA Different Results  

[184] Scar Clinical Subjects  DA 
Modified Version of 

ENet 
NA Acc=97.00% 

Sen=88.00% 



DSC=71.00% 

[185] LV  TWINS-UK 68 Subjects -- T-FCNN NA DM=98.15% 

[186] 
LV, MYO, and 

RV  
UK Biobank  5000 Images DA 

Syn-net 
PyTorch Different Results 

LI-net 

[187] Atrial  Clinical 3 Subjects DA Modified U-Net 
NA DM=94.88% 

HD=7.56mm 

[188] LV and MYO 

Clinical 75 Subjects 

DA 2D-CNN 

NA 

-- MICCAI 2018 145 Subjects 

MICCAI 2019 56 Subjects  

[189] LV MICCAI 2009 45 Subjects -- 
2D-CNN 

NA 
DM=95.10% 

HD=3.641mm U-Net 

[190] LV SCD 45 Images -- 2D-CNN NA 

Acc=94.00% 

Sen=94.11% 

DM= 94.00% 

[191] BV Clinical 145 Subjects -- Bi-DBN Theano different Results  

[192] LV 
STACOM  100 Subjects  

-- OF-net NA 
APD=0.90 

DM =95.00% MICCAI 2017 100 Subjects 

[193] LV MICCAI 2019 56 Subjects DA CNN 
Keras, 

TensorFlow 

DM Epi=96.10% 

DM Endo=94.90% 

DM MYO=86.70% 

[194] LV, LV, RV 
MICCAI 2017 

150 Subjects  -- 2D-CNN 
NA 

DM=90.00% 
 MICCAI 2017  

[195] LV MICCAI 2017 150 Subjects  -- SegAN + U-Net B  NA DM=95.87% 

[196] 
LV,RV, and 

MYO  
Clinical 45 Subjects  DA SRSCN  TensorFlow 

DM MYO=81.20% 

DM LV=91.50% 
DM RV=88.20% 

[197] Multi-Sequence MICCAI 2019 45 Subjects DA 

Dilated Residual U-

Shape Network and 
CNN 

Keras 

DM LV=82.40% 

DM MYO=61.00% 
DM RV=71.00% 

[198] Segmentation  
MICCAI 2017  150 Subjects  

DA 
Weighted-RNN-

GAN 

Keras, 

TensorFlow 
Different Results  

BraTS 2017 289 Subjects 

[199] LA Clinical 100 Subjects  Resizing 
CNN Inception V4 

with AE 

Keras, 

TensorFlow 

DM=93.10% 

HD=4.2mm 

[200] LA and RV 
Different 

Dataset 

Different 

Subjects 
ROIs Extraction  2D CNN, SAE 

NA 
Acc=98.66% 

[201] 
LV,RV, and 

MYO  
MICCAI 2017  150 Subjects  ROIs Extraction  

2D Residual CNN NA 
Different Results 

Bi-CLSTM NA 

[202] MYO Clinical 195 Subjects  -- CNN NA DM=81.37% 

[203] 
LV, RV, 

and LVM 
MICCAI 2017 100 Subjects ROIs Extraction  L-CO-Net 

NA DM LV=96.80% 

DM RV=93.30% 
DM LVM=89.50% 

[204] 
Left and Right 

Chamber 
Clinical 210 Subjects -- U-Net NA Different Results 

[205] BV MICCAI 2017 100 patients DA U-Net PyTorch 
DM RVC= 79.60% 
DM LVM=84.60% 

DM LVC=90.80% 

[206] LV Sunnybrook  
800 image 

slices 
-- CNN with U-Net 

NA 
F1-S=95.90% 

[207] RA Clinical 550 Images  DA U-Net 

NA DM=94.88% 

JM=90.33% 

HD=7.5625mm 

[208] RA Clinical  242 Subjects  -- U-Net NA HD=4.64mm 

[209] LV 

InCor  59  Subjects 

-- U-Net 

NA 
DM Endo=82.00% 

DM Epi=86.00% 

HD Endo=5.81mm 
HD Epi=6.69mm 

Sunnybrook  45 Subjects 

MICCAI 2017 150 Subjects 

MICCAI 2019 56 Subjects 

LVSC 2011 200 Subjects 

[210] LV and RV  
Clinical 63 Subjects 

DA U-Net  
Keras, 

TensorFlow 
Acc=97.00% 

MICCAI 2017 100 Subjects  

[211] 
LV Blood-Pool, 
MYO and RV 

Blood-Pool 

MICCAI 2017 100 Subjects  DA 
SegAN and 2D U-

Net 

NA 
Different Results 



[212] MYO Infarction 
Infarction 

Segmentation 

Challenge 

15 Subjects  Different Methods Chained U-Net 
NA 

DM=32.00% 

[213] MYO  Clinical 355 Subjects -- U-Net TensorFlow 

Keras 

DM MYO=94.34%  

Acc MYO=99.873% 

[214] LV Clinical 42 Female 

Breast Cancer 

Datasets 

SFP,  Zero-Crossing 

Edge Detection 

DeepLabV3+ 

DCNN 

NA Acc=97.00% 

Dice=89.00% 

[215] MYO HVSMR 2016 20 MR Images -- 3D FCNN Keras DM MYO=76.20% 

[216] LV, RV, and 

MYO 

Clinical 150  Subjects  ROIs Extraction, 

DA 

U-Net TensorFlow DM=92.00% 

HD=12.18mm 

Acc=92.00% 

[217] LV Clinical 150 Subjects  ROIs Extraction, 

DA 

2D FCN MATLAB DM= 93.00% 

Sen=98.00% 

Spec=94.00% 

[218] LV,RV UK Biobank 1000 Subjects  -- CNN NA -- 

[219] LV, RV, and 

MYO 

MICCAI 2017 150 Patients U-Net  For ROIs 

Extraction 

FCN, U-Net Keras 

TensorFlow 

DM LV=96.30% 

[220] LV, RV MICCAI 2017 100 Subjects -- U-Net NA Acc=90.00% 

 

[221]  

LV  

MICCAI 2009 45 Subjects -- LsU-Net TensorFlow DM LV Endo=92.15%     

DM LV Epi=95.42% 2012 RV 

Segmentation 

Challenges 

16 Subjects 

Clinical 17 Subjects 

[222] LV Myocardium Clinical 56 Subjects  Contrast 

Enhancement 

2D-Residual Neural 

Network 

PyTorch DM=85.43% 

[223] Four Cardiac 
Chambers 

Clinical 150 Subjects  DA U-Net CNN MATLAB DM=89.00% 

[224] LV, RV-LV Clinical 108 Subjects  DA U-Nets TensorFlow DM=87.00% 
HD=5.9mm 

[225] Blood Pool And 

Myocardium 

HVSMR 

 

10 Subjects 

 

NA GCEFG-R2Net PyTorch DM Blood Pool=95.80% 

DM MYO=83.60% 

[226] LV and MYO Kaggle 1140 Subjects DA U-Net (ResNet34 
Backbone) 

PyTorch, 
FastAI 

DM LV=90.00% 
DM MYO=79.10% Clinical  22 Subjects 

[227] LV, RV, and 

MYO 

imATFIB 20 Cases ROIs Extraction, 

DA 

U-Net, 

DeepLabV3+ 

NA DM=92.90% 

[228] LV Sunnybrook 805 Images of 
45 Cine‑CMR 

-- ROR‑Unet Keras Different Results  

[229] FCEA Tissue Clinical 100 Subjects 

 

DA U-Net TensorFlow DM=77.00% 

[230] Pathology MICCAI 2020 45 Subjects DA TAU-Net PyTorch DM=63.60%  

[231] RVC,LVC,LVM MICCAI 2017 150 Subjects 
ROIs Extraction  

U-Net TensorFlow Acc=92.00% 

Acc=91.00% 

[232] LV Clinical NA 

ROIs Extraction  

U-Net NA DM Epi= 94.07% 

DM MYO=88.27% 

DM Endo=91.77% 

[233] LV, RV DBI Different 
Subjects 

ROIs Extraction, 
DA 

U-Net TensorFlow DM LV=96.1% 

[234] LV MICCAI 2017 100 Subjects 

 

Data Enhancement MMNet PyTorch DM=95.10% 

HD=7.00mm 

[235] RV Clinical 45 Subjects DA FCDL TensorFlow DM=87.00%  
HD=7.55mm 

[236] Different 
Segmentation 

2019 
MSCMRSeg 

45 Subjects DA Proposed Method NA Different Results 

 

 
 

[237] 

 

 
 

LV,RV, and 

MYO 

MICCAI 2017  

 
 

150 Subjects  

 

 
 

DA 

 

 
 

Proposed Method 

 

 
 

PyTorch 

ED: 

DM LV=89.67% 
DM RV=81.46%  

DM MYO=72.60% 

ES 

DM LV=81.33% 
DM RV=70.80% 

DM MYO=76.56% 

[238] MICCAI -- ACSNet DM LVM=79.00% 



MYO And 
Scar/Fibrosis 

Cardiac MR LV 
Segmentation 

Challenge 

Different 
Subjects 

Keras 
TensorFlow 

HD LVM=6.70mm 

[239] RV RVSC 48 Subjects DA TSU-net Keras 

TensorFlow  

DM Endo=86.00% 

DM Epi=90.00% MMWHS 80 Subjects 

[240] CMR MM-WHS 
Challenge 2017 

60 CMR,60 CT 
Images 

GAN GBCUDA NA DM=59.20% 

[241] LV Clinical 33 Subjects ROIs Extraction  GAN, U-Net PyTorch DM=96.97% 

[242] LV LVSC 200 Subjects -- Attention U-Net Keras 
TensorFlow 

Sen=87.00% 
Spec=92.00% 

[243] CMR Clinical 3333 Frames -- MIFNet PyTorch DM=97.23% 

Sen=93.55% 

[244] LV MICCAI 2017  150 Subjects  DA FCN-MSPN and 

Co-Discriminators 

Keras 

TensorFlow   

Different Results  

[245] MYO MyoPS 2020 45 Subjects  DA AWSnet PyTorch DM=72.00% 

[246] LV, RV, and 
MYO 

York University Different 
Subjects 

 

Gamma 
Transformation 

BLU-Net 
 

PyTorch Different Results 

 MICCAI 2009  

MICCAI 2017 

[247] CMR Images MICCAI 2018 145 Subjects 
ROIs Extraction  

U-Net, MC-Seg PyTorch DM=88.60% 

HD=4.21mm 

[248] CMR Images MICCAI 2009 45 Subjects -- U-Net Backbone Keras, 

TensorFlow 

DM LV=93.41% 

DM RV=89.74% 

DM MYO=89.74% 
MICCAI 2017 100 Subjects 

[249] LV, RV, and 
MYO 

MICCAI 2017 100 Subjects  DA U-Net NA DM LV=72.00% 
DM RV=53.00% 

DM MYO=69.00% 

[250] LV, Scar Clinical 34 Subjects  DA CTAEM-Net Keras a 
TensorFlow 

Acc LV=86.43% 
Acc Scar=90.18% 

[251] LA LASC 20 Subjects -- 3D SR-Net NA DM=93.29% 

F1-S=82.37% 

[252] LV MICCAI 2009 45 Subjects  DA FCDA-Net PyTorch DM ED= 93.59%  

DM EP=94.81% 

HD ED= 4.95% 
HD EP=3.18% 

[253] MYO Clinical 60 Subjects  -- U-Net, Dense Nets, 

Attention Nets 

Keras, 

TensorFlow 

Different Results 

 

 
Fig. 14. Deep learning methods in classification of CMR images for Diagnosis of CVDs  

 



4.5. Applications of DL for classification of CMR images 

In this section, CVDs diagnosis papers using DL classification models are presented. A primary objective 

of these papers is to diagnose CVDs from HC. A summary of papers about CMR-based CVD diagnosis 

using DL classification models is presented in Table (5). Additionally, the number of DL classification 

models used to diagnose CVDs is depicted in Figure (14). As shown in Figure (14) and Table (5), CNN 

models are most exploited in classifying CMR images to diagnose CVDs. CNN models have performed 

extremely well in various medical applications to diagnose CVDs. 

Table 5. Research in classification of CMR imagers for in diagnosis of CVDs using DL methods    
Ref Application Dataset Number of 

cases 

Preprocessing DNN Classifier Toolbox Performance 

[254] LV ADSB 937 Subjects Gabor Filter 2D-CNN FC Keras Different Results  

[255] 
End-Diastole and 

End-Systole 

Frames 

Clinical 420 Subjects DA  TempReg-Net FC layer Caffe 
ADF ED=0.38 
ADF ES=0.44 

[256] LV DSBCCD 1140 Subjects 
ROIs Extraction, 

DA 
2D-CNN FC Layer Keras -- 

[257] Classification ILSVRC 2012 215 Subjects DA 
CaffeNet, 

CardioViewNet 
Different Caffe 

F1-S=97.66% 

Recall=97.62% 

[258] MYO Ischemia MICCAI 2009  21 Subjects ROIs Extraction CNN  
NA 

NA 
Acc=86.39% 

Sen=90.00% 

[259] 
End-Diastole and 

End-Systole 

Frames 

Free-Breathing 
CMR Data 

10 Subjects 
DA 2D-CNN 

NA 

Caffe  Acc=76.50% 

STACOM2011  200 Subjects 

[260] 
Heart and right 

ventricle 

Clinical 65 Subjects 
DA NF-RCNN  Softmax -- 

AUC=98.00% 

Recall=96.00% York University 33 Subjects 

[261] LV  DSBCCD 1140 Subjects ROI Extraction CNN FC layer Keras 
EDV R2=97.40 
ESV R2=97.60  

EF R2=82.80 

[262] LV  
Sunnybrook, 

Kaggle 
1140 Subjects 

LBP Cascade 
Detector, DA 

HFCN Softmax -- 
RMSE=13.20 

ESV RMSE=9.31 

[263] Dense Thickness 

Estimation 

MICCAI 2017 100 Subjects -- U-Net-k NA NA MSE=14.30 

MAE=28.50 
Synthetic Different 

Subjects 
 

MICCAI 2019  

MS-CMRSeg 

[264] 
Detection Clinical 363 Subjects BBoxes, 

Visualization 

2D-CNN NA NA AUC=89.10% 

[265] 

Detection Clinical  350 Subjects ROIs Extraction 2D-CNN Softmax Keras Acc=94.84% 

Sen=92.73% 
Spec=94.27% 

[266] 
Classification MICCAI 2017 150 Subjects Feature Extraction  Modified 2D 

and 3D U-Nets 
Ensemble 
Learning  

-- Acc=92.00% 

[267] 
Classification of 

MYO  
Clinical 200 Subjects -- 

Pretrained 

Models  
Softmax -- Acc=82.10% 

[268] 
Classification and 

Prediction 
Clinical 

198 HCM 

Subjects 
-- 

DeeplabV3 
LSTM 

Model 
Keras Different Results InceptionResnet

V2  

[269] Cardiac view Clinical 
Different 

Subjects 
-- AE Softmax -- Acc=96.70% 

[270] 
Multitype cardiac 

indices estimation 
Clinical 145 Subjects 

ROIs Extraction 
DCAE ????? Caffe NA 

[271] LV Clinical 26 Subjects 

ROIs Extraction 

AE -- -- 
Acc=97.50% 
Sens=84.20% 

Spec=98.60% 

[272] MYO  Clinical 566 Subjects -- CNNEC  FC layer -- Acc=95.30% 

[273] 
Cardiac 

Contraction 
UK Biobank 12000 Subjects -- CGAN Softmax -- 

DM=89.00% 

4.6. Applications of DL for CMR images (other approaches)  

This section discusses other applications of DL on CMR images. Table (6) presents DL applications using 

CMR data. Some of the most important applications of DL on CMR images comprises reconstruction [294], 



automatically computing cardiac views, generating CMR slices, and motion artifact correction. The number 

of DL models used for this are displayed in Figure (15). As can be seen, CNN models have gained great 

popularity in medical imaging.  

 
Fig. 15. Deep learning methods used for different approaches in CMR images.  

 

Table 6. Deep leering models used in CMR images for different approaches.  
Ref Application Dataset Number of cases Preprocessing DNN Classifier Toolbox Performance 

[274] 

Identifying the 

Missing Apical 
and Basal 

Slices 

UK Biobank  100 Subjects Global mask 2D-CNN Softmax NA 
Pec=81.61% 
Pec=88.73% 

[275] 

 
Incomplete LV 

Coverage 

 

UK Biobank  3400 Subjects --  SCGANs SVM TensorFlow 

Ac=92.50% 

Prec=87.60% 
Rec=90.50% 

[276] MRCA Clinical 10 Subjects ROIs Extraction DLR -- 
NA DLR-HR-

MRCA:11.3 

[277] Left Ventricle York University 33 Subjects 
Pyramid of 

Scales  
2D-CNN Softmax 

NA Acc=98.66% 

Sen=83.91% 
Spec=99.07% 

[278] 

LV and RV on 

short-axis CMR 

Images, LA, and 
RA 

UK Biobank 4875 Subjects DA 2D-CNN Softmax TensorFlow Different Results  

[279] LV classification 
 SCD 

140 Subjects DA 2D-CNN Softmax Keras DM=90.00% 
CAP 

[280] Identifying  Clinical Different Subjects  
DA, ROIs 
Extraction 

U-Net -- NA DM=76.00%  

[281] LV 
STACOM18 

LVQuan  
145 Subjects DA U-Net -- PyTorch Different Results  

[282] 

 
 

Cardiac Cavity 

Segmentation 
Task 

MICCAI 2017 200 CMR Images 

DA XCAT-GAN -- 

NA 

Different Results  

York University 33 CMR Images 

XCAT 

Simulated 
66 CMR Images 

SCD 45 CMR Images 

Clinical CMR 156 CMR Images 

[283] 

 

Accurate 

Ventricular 
UK Biobank 4848 Subjects -- I2-GAN -- 

NA 
CC LV=99.91  



Volume 
Measurements 

[284] 

 

Accelerated 
Multi-Channel 

CMR 

Publicly 

available 

abdominal 

28 Subjects 
Undersampling PIC-GAN Softmax TensorFlow Different Results  

Knee 20 Subjects 

[285] NA 
2019 MS-

CMRSeg 
45 Subjects -- 

 

STN 
-- NA Different Results  

[286] Reconstruction Clinical 58 Subjects  FCN -- PyTorch R2=95.00% 

[287] Reconstruction Clinical 35 Subjects -- U-Net -- NA 
ESV=0.1 ml 

EDV= −0.9 ml 

[288] 
Reduce Motion 

Artifacts 

MICCAI 2017 159 Subjects 
 

2D FFT RNN -- PyTorch 
SSIM=88.40 
PSNR=28.51 Cedars 

[289] 
Enhance Spatial 

Detail  
Clinical 367 Subjects -- 2D-CNN -- 

Keras 

TensorFlow 
LV EF=64 

[290] 
Reduce Scan 

Time 
Clinical 108 Subjects  NUFFT, IFFT MD-CNN -- PyTorch 

SSIM=87 
MSE=11 

DM LV=98% 

[291] Reconstruction 
3D LGE 

CMR  
219 Subjects 3D IFFT  CNN -- PyTorch 

SSIM=87.6 

MSE=7.7 

[292] 

Spatial 

Resolution of 

CMR 

Clinical 

Different Subjects  DA, IFFT 4DFlowNet Sigmoid TensorFlow Flow Rate= 10.7 
MICCAI 2012  

[293] Reconstruction Clinical 22 Subjects DA DL-ESPIRiT -- TensorFlow -- 

[294] Reconstruction MICCAI 2013 
Different Datasets 

with Subjects  

Using IFT and 

UFT Transform 
 NISTAD -- NA SSIM=98 

[295] Automatically 
Compute Cardiac 

Views 

Clinical 391 Subjects  -- 
3D Extension of 

the 2D ENet 
-- NA Different Results  

[296] Reconstruction Clinical 10 Subjects  ?? 
Deep Cascade 

of CNNs 
-- NA -- 

[297] Reconstruction Clinical Different Subjects  ?? MoDL-STORM -- TensorFlow -- 

[298] 
Produce CMR 

Images 

MICCAI 2017 2980 Slices 

DA 

 

Proposed Model  

 

-- NA Different Results  
Sunnybrook  714 Slices 

[299] 
Artefact 

Detection 
UK Biobank  3465 CMR Images 

ROIs 

Extraction, DA 

3D Spatio-

Temporal CNNs 
Softmax 

Keras 

TensorFlow 

Acc= 98.20% 

Prec= 80.90% 

[300] 
Super Resolution 

CMR 
Clinical 64 Subjects DA  LSRGAN -- NA -- 

[301] 

Motion 

Correction in 

CMR  

Clinical 192 Subjects ??? 

Adversarial 

Autoencoder 

Network 

-- TensorFlow -- 

[302] 

Analysis of 

MYO Native T1 
Mapping Images 

Clinical 665 Subjects 
ROIs 

Extraction, DA 
FCN Softmax TensorFlow DM=85.00% 

[303] 

Undersampling 

Artefact 
Reduction 

Clinical 19 Subjects -- Modified U-Net -- 

NA 

-- 

[304] 
LV volumes and 

function 
Clinical 50 Subjects -- 

Inspired by U-

Net 
-- 

NA LV ESV=73.1 

LV SV=78.8 

LV EF=52.2 

[305] Reconstruction Clinical  4 Subjects -- MoDL‐SToRM  -- TensorFlow -- 

[306] Reconstruction Clinical 178 Subjects -- 
Cascaded 

CNN Models  
-- NA Different Results 

[307] LV segmentation Sunnybrook 15 Subjects -- P-GAN, U-Net -- TensorFlow -- 

[308] 
Cardiovascular 

MR Scans 
Clinical 

159 LGE CMR 

Scans 
DA 

ScarGAN 

U-Net 
-- NA 

DM: 
LV End=89.90% 

LV Epi=90.60% 

[309] Reconstruction MICCAI 2013 Different Subjects -- DA-FWGAN -- 
Python and 

TensorFlow 
Different Results 

[310] 
4D Semantic 

CMR Synthesis  
MICCAI 2017 100 Subjects -- SPADE GAN  -- 

NA 
-- 



[311] generating CMR 
Slices  

UK Biobank 402 Subjects --  SPSGAN -- 
NA 

-- 

[312] Medical 
synthetic images 

Clinical 292 Subjects ROIs Extraction 
E-GAN and 

SimGAN 
ResNet-50 and 

Xception 
TensorFlow 

Keras 
Acc=88.00% 

[313] 
Congenital heart 

disease 
Clinical 345 Subjects DA PG-GAN  Softmax TensorFlow 

DM LV: 97.80% 

 

[314] 

Simulation for 

cardiac fiber 
structure 

Clinical  246 Subjects  ??  DCGAN -- NA -- 

[315] 
motion artifact 

correction 
Clinical 60 Subjects  DA ResNet 

Sigmoid + 

Convolution 
PyTorch PSNR=31.22 

[316] 
MYO infarction 

Classification 
Clinical 73 Subjects  -- SDAE SVM PyTorch 

Acc=87.60% 

Prec=86.20% 

[317] 
Full LV 

Coverage 

UK Biobank 800000 volumes 
DA 

Fisher-

Discriminative  

3D-CNN 

Fisher  

NA 

Prec:91.81%  
Sunnybrook  1120  volumes 

[318] Cardiac Indices MICCAI 2019  56 Subjects  -- 
 U-Net and 

DenseNet 
-- 

NA 
DM=93.00% 

[319] Reconstruction Clinical 45 Subjects 2D IFFT DeepT1  FC NA -- 

[320] 

LV cavity, 

RV, MYO at ED 

and ES 

MICCAI 2017  100 Subjects DA DCNN -- PyTorch -- 

[321] 
CMR 

Orientation and 

Segmentation 

MyoPS 45 Subjects 
-- CMRadjustNet -- NA 

Acc=98.70% 

MICCAI 2017 100 Subjects  

[322] LV Segmentation Sunnybrook 45 CMR Images  -- 
Registration 

Network 
-- TensorFlow 

DM=93.00% 

 
Fig.16. Deep learning conducted for diagnosing CVDs from multimodality data.  

4.7. Applications of DL for diagnosis of CVDs based on multimodal data   

Much research is currently being conducted using multimodality to diagnose various diseases. In clinical 

research, multimodality has proved successful in diagnosing diseases. To this end, research has been 

presented in the field of CVDs diagnosis by combining CMR data with other medical imaging methods. In 



Table (7) and figure (16), the papers on diagnosing CVDs based on multimodalities using DL techniques 

are reported. As can be seen, to achieve high diagnostic accuracy for various CVDs, researchers have 

combined the CMR modality with other medical imaging modalities such as CT.  

Table 7. Summary of deep learning studies conducted  for diagnosing CVDs from multimodality data. 

Ref Application Dataset Modalities Number of cases Preprocessing DNN Classifier Toolbox Performance 

[323] 
Multi-task 

Image 

Segmentation 

OASIS project CMR and CT Different Subjects  -- 2D-CNN Softmax -- -- 

[324] 
LV 

Segmentation 

CETUS 

Challenge 2014 
Echo 45 Subjects  ROIs Extraction 

SAE,GVF-

Snake 
-- -- 

DM ED=11.20% 

DM ES=16.00% 

[325] 
Direct LV 
Estimation 

Clinical 3D Echo 150 Subjects -- 
CDBN 

RF -- 
Different Results  

[326] 

Cardiac 

substructures 
segmentation 

STACOM 2017 CT and CMR 

20 MR and 20 CT 

Images for Training, 
40 Test Images 

DA 
MO-MP-

CNN 
Softmax TensorFlow 

Sen=83.10% 

Spec=99.90% 
Prec=86.80% 

[327] 
Whole Heart 
Segmentation 

MMWHS 
Challenge  

CT and CMR 

20 Contrast-

Enhanced CT Scans 

and 20 CMR 

-- U-Net -- 
Keras, 
Theano 

Different Results  

[328] Segmentation MICCAI 2017 CT and CMR 20 CMR and 20 CT  DA 
 PnP-

AdaNet 
Softmax -- DM=63.90% 

[329] 

Estimating 
Multitype 

Cardiac 

Indices 

NA CT and CMR 
2360 CT and 2900 

CMR 
     

[330] 
Anatomically 

Plausible 

Segmentation 

 JSRT, 

Sunnybrook 

X-ray and 

CMR 

247 X-ray and 45 

CMR 
DA Post-DAE  RF Keras DM=47.00% 

[331] 
Cardiac 

Segmentation 

MICCAI 2017 CMR and 

Ultrasound 

150 Subjects  
-- cVAE  -- -- -- 

CAMUS 500 Subjects  

[332] Segmentation MM-WHS 2017 CT, CMR 20 CMR and 20 CT  -- GANSA -- NA DM=80.10% 

5. Challenges 

This section discusses the challenges faced during the CVDs diagnosis from using CMR images and DL 

techniques. Researchers constantly confront multiple challenges when presenting new approaches for 

diagnosing CVDs, including datasets, DL models, explainable AI, and hardware resources. 

5.1. Datasets  

Datasets are an essential part of DL-based CADS for detecting CVDs. Previously publicly available datasets 

of CMR data were introduced in Section 4.1. The available datasets of CMR images suffer from a scarcity 

of subjects, which hinders researchers using state-of-the-art DL models in CVDs diagnosis. Available 

datasets with CMR image segmentation applications contain confined subjects. In these datasets, there are 

limited ground truth images for each class. As a result, researchers face challenges when deploying 

advanced DL models to precisely segment CMR images. There are many types of heart disease for which 

early diagnosis is of pivotal significance. However, there are no available datasets of CMR modalities for 

different types of CVDs, which is another challenge.  

5.2. Multimodality Dataset  

CMR imaging is one of the most important screening methods to diagnose CVDs. In clinical applications, 

it is challenging for physicians to diagnose some CVDs from CMR images. To this end, physicians take 

advantage of multimodality imaging to diagnose CVDs. In this procedure, medical specialists exploit CMR 

images and other imaging techniques such as echo to diagnose CVDs. In [333-334], researchers have 



indicated that the utilization of multimodality imaging methods to obtain a more accurate diagnosis of 

CVDs. 

In [326-332], to the diagnosis of CVDs, researchers have exploited multimodality datasets. It may be noted 

that there are multimodal datasets available for the diagnosis of CVDs. However, these datasets have limited 

subjects and few CVDs. Therefore, restricted access to multimodal datasets with various diseases and a 

large number of subjects is another associated challenge in the dataset section. 

Due to these challenges in this field, until now, researchers have not been able to incorporate advanced DL 

methods using multimodality imaging to diagnose CVDs. Therefore, providing multimodality imaging 

datasets based on CMR images with a large number of subjects could facilitate valuable research in the 

field of CVDs diagnosis. Additionally, the availability of multimodality imaging datasets with a large 

number of subjects allows researchers to develop state-of-the-art DL methods to aid specialist physicians 

in diagnosing various types of CVDs.  

5.3. Limitation CMR Data for Training of DL Models  

Researchers have advanced in developing DL models, but there are still many challenges in achieving a 

real tool for diagnosing CVDs using these approaches. As discussed in the previous sections, many studies 

have been presented to diagnose CVDs from CMR images using DL techniques. However, achieving real 

diagnosis software requires the development of DL models based on CMR images. The lack of access to 

huge CMR datasets for researchers is an important challenge. Some papers have used pre-trained [98-100] 

or DA [71-73] models to overcome these challenges. Although pre-trained and DA techniques have an 

array of advantages, there are also challenges associated with them. For example, pre-trained models are 

trained on ImageNet data [98-100]. Researchers have employed these architectures in many works on 

medical images such as CMR and have achieved satisfactory results [268]. To enhance the effectiveness of 

pre-trained models, it is better to train them first on grayscale medical images and then use them to diagnose 

CVDs. In addition, DA methods play an important role in the generation of synthetic medical data for 

training DL models [71-73]. GAN models are very popular in synthetic data generation, such as CMR data 

[307]. Although these models have been largely successful in training the model and preventing overfitting 

of DL models, they need further development for real-world applications in diagnosing CVDs. 

5.4. DL Models  

This paper reviewed researches on the diagnosis of CVDs from CMR images using DL techniques. This 

section introduces the challenges associated with DL models in CVDs diagnosis research. Standard CNN 

models are often utilized in papers on CVD diagnosis based on CMR images. CNN models  include 

segmentation and classification architectures in two dimensions [96-97]. Meanwhile, some papers have 

exploited 3D-CNN models which need a lot of input data for training and have more complex training 

compared to 2D-CNN models [96-97]. Besides, 3D-CNNs models require strong hardware resources for 

training [96-97]. Considering these cases, researchers face various challenges in developing 3D-CNN 

models to diagnose CVDs from CMR images. The lack of trust by physicians in the results of DL models 

about CVDs is another challenge. DL models normally yield high evaluation parameters (such as accuracy) 

in diagnosing CVDs from CMR images. The use of uncertainty techniques and explainable approaches can 

increase the trust of physicians in DL models to diagnose CVDs. 

 5.5. Explainable AI Models  

To date, researchers have applied various DL models to diagnose CVDs. As previously discussed, various 

segmentation and classification techniques based on DL are employed to diagnose CVDs from CMR 

images. DL-based segmentation techniques are used to extract CVD-related areas from CMR images. DL-



based classification models are also used to diagnose CVDs based on CMR images. One of the challenges 

of DL models in diagnosing CVDs is the failure to identify areas suspected of CVDs in the early stages and 

indicate them to physicians. Meanwhile, physicians require AI techniques that can diagnose CVDs in the 

early stages from CMR images. For this purpose, explainable AI methods have been presented by some 

researchers, which show disease diagnosis in the early stages using medical images [335-336]. For instance, 

explainable AI has been presented in research to display the early stages of brain tumors from CMR images 

[337-338]. Providing explainable AI techniques in conjunction with DL models can help specialists to more 

accurately diagnose CVDs using CMR images. 

5.6. Hardware Resources 

In this section, hardware resources for the implementation of DL models are presented as another challenge. 

As discussed above, implementing DL methods requires suitable hardware resources. Although a variety 

of high-performance hardware is offered for various applications, including the implementation of DL 

models, their high cost has made it impossible for all researchers to use them in research. For example, 

detecting CVDs from 3D data requires high hardware resources. Due to the lack of access to appropriate 

hardware resources, researchers convert 3D data to 2D. Additionally, they employ 2D models to detect 

different types of CVDs. Because implementing 3D DL models has several challenges, including memory 

shortage, increasing computational load, hardware cost, etc. [96-97]. Although Google and Amazon provide 

researchers with computing servers to implement advanced DL models [339-340], these tools are not 

suitable in real-time applications for detecting CVDs from CMR images. 

6. Discussion  

This study accomplished a comprehensive review of CVDs diagnosis research through CMR images using 

DL methods. CVDs diagnosis using CMR images based on DL techniques is summarized in Tables (4) to 

(7). A description of each paper is provided in Tables (4) to (7), including the application, dataset, number 

of samples, preprocessing methods, DL model, implementation tool, and evaluation parameters. A complete 

comparison is made between all studies in this field in terms of applications, datasets, DL models, and 

implementation tools. In addition, the current review paper compared with other related works.  

6.1. Comparison of our work with other review papers 

Review papers on diagnosing CVDs using ML and DL is summarized in Table (2).  It can be noted from 

Table (2) that, some researchers have analyzed ML, DL, and ML-DL papers for the segmentation of 

different parts of the heart. Further, few researchers have proposed review papers on diagnosing CVDs 

through ECG signals using DL techniques. In this work, papers on the diagnosis of cardiac diseases from 

CMR images using DL schemes are reviewed. In our paper, all free and publicly available CMR datasets 

were first reported and then summarized in Table (2). The papers on segmentation, classification and other 

applications from CMR images using DL models were reviewed. In similar review papers, CMR papers for 

different applications have not been reviewed so far. Meanwhile, we have reviewed all the research in this 

field. Additionally, in our review paper, the challenges of diagnosing CVDs from CMR data using various 

DL methods are discussed in detail. Furthermore, the main future directions in our study are explained in 

detail, but they are not fully discussed in other reviews. In Figure (17), our work is compared with other 

review papers in the diagnosis of CVDs using AI methods.  



 

Fig. 17. Comparison of our study with other review papers published on CVDs detection using AI techniques.   

6.2. Applications  

In this section, various applications of DL on CMR data are introduced. The most important section of this 

paper deals with the presentation of segmentation and classification models based on DL for diagnosing 

CVDs from CMR images. In Tables (4) and (5), research on CVDs diagnosis using DL-based segmentation 

and classification techniques were presented, respectively. Other applications of DL models on CMR 

images are summarized in Table (6). Table (6) indicates few most important applications of DL on CMR 

images, including reconstruction [296], automatically computing cardiac views [295], and motion artifact 

correction [301]. Besides, CVDs diagnosis research on the multimodal dataset using DL techniques is also 

reported in Table (7). The types of DL applications on CMR images are shown in Figure (18). As shown 

in Figure (18), it can be perceived that the DL-based segmentation methods are the most widely exploited 

in CVDs diagnosis using CMR images. 



 
Fig. 18. Deep learning methods used in different applications with CMR images.   

6.3. Datasets  

In section 4.1, a variety of free and publicly available datasets of CMR images were described. It was 

observed that multiple CMR images datasets have been provided for segmentation and classification 

applications for diagnosing CVDs. The datasets used in the CVDs research are presented in a part of the 

Tables (4) to (7). Accordingly, the datasets used for research in this field are shown in Figure (19). Figure 

(19) illustrates that the researchers focused most on the MICCAI 2017 dataset. 

6.4. Deep learning models  

DL-based applications for CMR images are discussed in this section. An overview of the famous DL 

models, such as CNN's, RNNs, AEs, GANs, U-Nets, and FCNs, are presented in this review paper. In the 

following, the types of DL models in CVDs detection research are summarized in Tables (4) to (7). Figure 

(20) displays the types of DL models used in this field. According to Figure (20), CNNs models are the 

most commonly used in this field of research. CNN models perform well on medical gray-scale images. As 

a result, researchers take advantage of CNNs models on CMR images due to their benefits. Additionally, 

Figure (20) shows that CNN-based segmentation models are highly popular for diagnosing CVDs in CMR 

images. 



 

Fig. 19. CMRI dataset used in diagnosis of CVDs using DL methods.   

 

 

Fig. 20. Deep learning models used for diagnosis of CVDs from CMR images.  

6.5. Toolboxes  

To date, various toolboxes have been developed for implementing DL models. The toolboxes exploited to 

implement DL models are listed in Tables (4) to (7). TensorFlow, Keras, PyTorch, Theano, and Caffe are 

the most important toolboxes in DL applications for CMR images. In Figure (21), the types of DL toolboxes 

are displayed. According to Figure (21), the TensorFlow toolbox has been applied in most researches to 



implement DL models. Due to its efficiency and simplicity, many researchers employed the Keras Toolbox 

to implement DL models in CMRI research. 

 

Fig. 21. Deep learning toolboxes used in the diagnosis of CVDs using CMR images. 

7. Future work 

This section outlines potential directions for future research on CVDs diagnosis from CMR images using 

DL techniques. The challenges related to CVDs detection using CMR data were discussed in the previous 

section. In this section, suggestions are made to overcome the challenges faced in diagnosing CVDs using 

DL techniques. Future work in this area includes dataset, multimodal datasets, DL models, explainable AI, 

and hardware resources. Addressing any challenges in the CVDs diagnosis field can lead to providing real 

software to assist specialists in the future. 

7.1. Future works in datasets 

This section is dedicated to future work on CVDs datasets containing CMR images. As mentioned earlier, 

researchers lack access to free datasets with large number of subjects of CMR images for diagnosis of 

CVDs. As a future work, providing available datasets with many cases from CMR images will bring about 

important research in CVDs. Additionally, for future work, providing available datasets of CAD, 

Arrhythmia, cardiomyopathy, CHD, mitral regurgitation, and angina can lead to more applied research.  

By providing CMR datasets belonging to large  number of subjects, can help to diagnose CVDs using state-

of-the-art DL techniques. Also, datasets of CMR images with many subjects have not been made available 

to researchers to predict various types of CVDs, and this issue can be considered another future work. A 

discussion of the available datasets for the segmentation of CMR images is presented in Section 4.1. These 

datasets are provided to diagnose few CVDs. On the other hand, these datasets have limited number of 

subjects with few CVDs. As another future insight, researchers' access to CMR segmentation datasets with 

a large number of subjects could yield invaluable research in diagnosing CVDs. 

 



7.2. Future Works in Multimodality Datasets  

As previously discussed, the diagnosis of diseases by multimodality medical imaging techniques is of 

particular significance for specialist doctors. A medical imaging method often does not provide all the 

information necessary to diagnose a disease in full detail. Therefore, multimodality imaging techniques 

minimize doctors' errors when diagnosing CVDs. In references [333-334] few researchers have taken 

advantage of multimodality cardiac imaging methods for diagnosing CVDs and obtained promising results. 

For multimodality imaging research, various datasets available for detecting CVDs are not provided. For 

future work, researchers' access to datasets of multimodality cardiac imaging methods with many subjects 

can bring about worthy research to diagnose CVDs using DL techniques. For example, CMR-CT, CMR X-

ray, and CMR-Ultrasound datasets have not yet been provided to the diagnosis of myocarditis disease. As 

a result, the provision of these datasets can yield valuable research in diagnosis of myocarditis disease with 

DL architectures. 

7.3. DL Models 

This section presents future works for DL methods in diagnosing CVDs using CMR images. As shown in 

Tables (4) to (7), the researchers used standard DL techniques for CVDs detection. In these studies, 

researchers have often applied the CNNs, RNNs, AEs, U-Nets, and FCNs models and  improved models. 
Some state-of-the-art DL models include attention mechanism [341-343], transformers [344-345], GANs 

[74-76], graph CNNs [346-347], and deep reinforcement learning (RL) [348-349]. In the following, details 

of the state-of-the-art DL methods are discussed. 

7.3.1. Deep Attention Mechanism  

The attention mechanism is one of the newest areas of DL and has received attention from researchers in 

diagnosing various diseases [350-351]. These procedures use important input information to predict outputs 

[341-342]. Attention models are widely diverse, some of the most important of which comprise Attention 

CNNs [352], attention AEs [353], graph attention [354], and attention RNNs [355]. Researchers can utilize 

attention mechanism models in CVDs diagnosis using CMR images for future work. 

7.3.2. Transformers 

Recently, researchers introduced a novel class of DL models called transformers and exploited them in 

various applications. According to the reference [344], transformer techniques consist of two parts: decoder, 

and encoder, and use the self-attention architecture [344-345]. ViT is the most significant transformer 

architecture and has been employed in research for various disease diagnosis using medical data [356-357]. 

Graph transformers [358], polar transformers [359], and Vit transformers [360] are among the most 

important models. 

7.3.3. Generative Adversarial Networks (GAN) 

Another direction that can be investigated in the future is the applications of novel models of GANs in the 

diagnosis of CVDs. Recent variations of GANs can be used in various possible ways, for example, 

disentangled representation learning GAN (DR-GAN) and information maximizing GAN (InFoGAN) for 

representation learning [74-76]. Alternatively, researchers can use GANs for style transfer and unpaired 

image-to-image translation with Gated-GAN and CycleGAN [74-76]. Moreover, networks such as super-

resolution GAN (SRGAN) have introduced methods for improving the quality of data [74-76], which can 

be used in CADS to help clinicians in their diagnosis. 

 



7.3.4. Graph CNNs 

Graph is one of the most popular fields of AI that is of great interest to researchers in ML and DL 

applications [346-347]. Until a few years ago, graph-based techniques were widely used in ML. However, 

DL-based graph approaches have recently been introduced, and satisfactory results have been achieved in 

various aspects [346-347]. DL-based graphs enjoy considerable diversity, some of the most important of 

which include graph CNNs [346-347], graph RNN [361], etc. In the future, Graph models can be used to 

diagnose CVDs. 

7.3.5. Deep Reinforcement Learning (RL)  

This field combines RL and DL and is used to address various problems such as medicine [362-363]. Deep 

RL models show impressive performance when dealing with large input data and can make optimal 

problem-solving decisions. Deep Q network (DQN) [364], deep deterministic policy gradient (DDPG) 

[365], and double DQN (DDQN) [366] are some of the most popular deep RL architectures.  

7.4. Explainable AI  

As mentioned in the previous section, DL models exploit segmentation or classification methods for 

diagnosing CVDs. However, physicians  tend to distrust DL methods to diagnose CVDs using CMR images 

in the early stages. Because DL models are not efficient at detecting CVDs in the early stages from CMR 

images. To address this issue, explainable AI methods have been presented, which can be used as a post-

processing step in DL-based CADS to the diagnosis of diseases. In future, explainable AI techniques [335-

336] can be used to visualize the decisions made by AI by visualizing the abnormality. Hence, it helps to 

provide confidence to the clinicians in the automatic diagnosis of CVDs from CMR images using DL 

techniques. 

7.5. Hardware Resources  

In the previous section, lack of access to hardware resources was presented as an important challenge. To 

deal with this issue, researchers have proposed several techniques for the efficient implementation of DL 

models. The utilization of quantization and compression techniques for DL networks can be introduced as 

future work in this field [367-368]. Quantization and compression techniques greatly reduce the demanded 

computations in DL models [367-368]. This leads to deploying the proposed DL model on a computer, 

requiring fewer hardware resources. Recently, deep compact-size CNNs techniques have been introduced 

that do not require more powerful hardware resources to be implemented [369]. The most important models 

of deep compact-size CNNs are TinyNet [370] and MobileNets models [371]. 

8. Conclusion and findings 

CVDs cause an adverse impact on the structure and function of the heart muscle, endangering human health 

worldwide. CAD, arrhythmia, heart failure, myocarditis, and HCD are the most critical CVDs [1-6]. CVDs 

are conditions affecting the heart or blood vessels and are usually due to the accumulation of fatty deposits 

inside the arteries and an increased risk of blood clots [9-11]. Uncontrolled high blood pressure can lead to 

hardening and thickening of the arteries and narrowing the vessels through which blood flows [14]. 

According to the Centers for Disease Control and Prevention (CDC), CVDs are the leading cause of death 

in the United States [15-17]. 

To date, various screening approaches for CVDs diagnosis have been introduced by specialists. ECG [19], 

Echo [27], exercise stress test [cite], carotid ultrasound [28], CT-Scan [32], and CMR images [35-36] are 

among the most significant methods for diagnosis of CVDs. On account of its merits, in recent years, CMR 



imaging has been recognized as one of the best diagnostic techniques used for CVDs by specialist 

physicians [35-36].  

To examine the structure of the heart, physicians use CMR images in CVDs diagnosis. The advantages of 

CMR data involve the absence of ionizing radiation, superior soft tissue contrast resolution, and high 

resolution [35-36]. However, despite the advantages mentioned above, CMR images are affected by 

different artifacts [36]. Additionally, analyzing CMR data is highly time-consuming and labor-intensive for 

specialist physicians due to the large number of slides recorded. To alleviate these challenges, extensive 

research is being conducted on the detection of CVDs on CMR images using DL models. This literature 

investigated the detection of  CVDs from CMR images using DL models. 

In the introduction section, a comprehensive discussion of CVDs, diagnostic methods in conjunction with 

advantages and disadvantages, the importance of DL techniques in CVDs diagnosis, and, ultimately, the 

structure of the review paper are discussed. This section discusses the merits and demerits of using medical 

imaging techniques such as CMR data to diagnose CVDs. 

In the search strategy section,  according to the PRISMA guidelines three levels of analysis were performed 

to select the papers. Additionally, the inclusion and exclusion criteria for selecting papers on the diagnosis 

of CVDs were summarized in Table (1). 

In section 3, review papers published on detecting CVDs from CMR images were investigated using AI 

methods. First, each review paper was briefly described, and then their details were summarized in Table 

(2). At the end of this section, the novelty of our review paper is compared with other published works. 

Section 4 introduced DL-based CADS to diagnose CVDs using CMR images. First, CADS steps were 

presented, including datasets, preprocessing techniques, and DL methods. In the following, the research on 

the diagnosis of CVDs from CMR data are summarized in four Tables: 1) segmentation, 2) classification, 

3) other research, and 4) fusion research. According to this section, it was observed that researchers have 

carried out the most research in the field of CMR image segmentation to the diagnosis of CVDs. 

The most important challenges for the diagnosis of CVDs from CMR images were reported in Section 5. 

This section discusses the challenges of datasets, multi-modality, DL models, explainable AI, and lack of 

hardware resources accessibility in diagnosing CVDs. Addressing existing challenges allows researchers 

to access applications to detect CVDs from CMR images. 

The discussion section contains several subsections and important information on CVDs detection research 

is reported based on Tables (4) to (7). This section includes datasets, types of CVDs, applications, DL 

models, DL implementation tools, and classification techniques. 

Section 7 is dedicated to future work on the detection of CVDs  from CMR images using DL methods. 

Future directions are outlined for datasets, DL models, explainable AI, and hardware resources. A complete 

explanation is introduced for each of the future tasks, along with few novel approaches. This section allows 

researchers to exploit new ideas for datasets, DL models, and hardware resources in future research. 

In recent years, invaluable research has been conducted to detect CVDs from CMR images using various 

AI techniques. Research shows that it will be possible to achieve real CVDs detection tools based on DL 

algorithms in the near future. We feel that, state-of-the-art technologies such as telemedicine [372] and 

IoMT [373] need to be applied with DL models to diagnose CVDs accurately. 

 

 

 

 

 



Appendix A: Performance metrics 

Accuracy is the ratio of correctly predicted observations to the total number of observations [88].  

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
 

Sensitivity, or recall, is the ratio of the number of correctly predicted positive observations to the total 

number of cases with the condition of interest [88]. 

𝑆𝑒𝑛 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

Specificity is the number of correctly predicted negative observations to the total number of negative 

observations [88].  

𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

Precision, or positive predictive value, is the number of correctly predicted positive observations to the total 

number of positive observations [88].  

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F-score is the harmonic mean of precision and recall. F-core is preferred for datasets with imbalanced 

numbers of cases with and without the condition of interest [88].  

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

The dice coefficient, or Sørensen–Dice index, measures the similarity between two datasets [4-5]. 

𝐷𝑖𝑐𝑒 =
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Hausdorff distance, or Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are 

from each other [4-5]. 

𝐻𝐷(𝐴𝑠, 𝐵𝑠) = 𝑚𝑎𝑥 {max
𝑎∈𝐴𝑠

min
𝑏∈𝐵𝑠

𝑑(𝑎, 𝑏), max
𝑏∈𝐵𝑠

min
𝑎∈𝐴𝑠

𝑑(𝑏, 𝑎)} 

The Jaccard index, or the Jaccard similarity coefficient, measures the similarity and diversity of sample sets 

[4-5]. 

𝐽𝐴𝐶(𝑅, 𝐺) =
|𝑅 ∩ 𝐺|

|𝑅 ∪ 𝐺|
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