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Abstract

Genome data are crucial in modern medicine, offering significant potential for diagnosis and treatment.
Thanks to technological advancements, many millions of healthy and diseased genomes have already been
sequenced; however, obtaining the most suitable data for a specific study, and specifically for validation
studies, remains challenging with respect to scale and access. Therefore, in silico genomics sequence gen-
erators have been proposed as a possible solution. However, the current generators produce inferior data
using mostly shallow (stochastic) connections, detected with limited computational complexity in the train-
ing data. This means they do not take the appropriate biological relations and constraints, that originally
caused the observed connections, into consideration. To address this issue, we propose cancer-inspired ge-
nomics mapper model (CGMM), that combines genetic algorithm (GA) and deep learning (DL) methods to
tackle this challenge. CGMM mimics processes that generate genetic variations and mutations to transform
readily available control genomes into genomes with the desired phenotypes. We demonstrate that CGMM
can generate synthetic genomes of selected phenotypes such as ancestry and cancer that are indistinguishable
from real genomes of such phenotypes, based on unsupervised clustering. Our results show that CGMM out-
performs four current state-of-the-art genomics generators on two different tasks, suggesting that CGMM
will be suitable for a wide range of purposes in genomic medicine, especially for much-needed validation
studies.

Keywords: in silico sequence generation; biomarker detection; validation; bioinformatics deep learning
model.

1 Introduction

Genetic data plays a central role in the new age of medicine, providing promising abilities in both diagnostics
and treatment, thanks to advances in genetic sequencing technology [1H3]. However, current practices in medical
genetics rarely allow robust genomics analysis, due to an insufficient amount of available data [4].

Multiple computational methods have been developed to analyze genomics datasets in order to explore
germline and somatic genetic variants that are associated with phenotypic traits and diseases in a population
[5H7]. While the scientific community, funding bodies, companies, and the public, recognize the importance of
free and open access to genomics data for scientific research and medical progress [8,[9], in practice, there is
insufficient or overly complicated sharing of genomics data and associated metadata [10]. Several projects have
attempted to address this challenge. For example, the Personal Genome Project (PGP) [11] makes all its data
available under open access. The Cancer Genome Atlas (TCGA) [12] and the International Cancer Genome
Consortium (ICGC) [13] make different parts of their data available under two tiers, open and controlled access.
Moreover, lack of data diversity (e.g. underrepresentation of rare diseases, of populations of non-European-
descend and of ethnic minorities) hampers the development of many phenotype- and population-specific models
required to make genomic medicine as egalitarian as possible.

To address these limitations, three main solutions have been developed. First, Data Simulators that simulate,
in silico, genotype and phenotype data |[14H17]. While these tools provide a solution for the lack of data problem,
they do not adequately reflect the complexity of the data. Second, Data Generators generate the same type of



data using more advanced statistical methods to extract genomic signatures but largely result in only slightly
altered versions of the input data |[18-H20]. Both methods lack mathematical formalization limiting the level of
complexity they can handle. This is mainly due to the small parameter space considered and the limited size
of the feasible operations these models utilize.

Another type of genomic generative method using machine learning (ML) approaches to extract complex
patterns, which are later used to generate genome sequences that satisfy these patterns [2123]. These methods
can learn extremely complex patterns and signatures in the data, however, they are often inapplicable as they
require a large input dataset to work properly (which is typically not available).

To tackle these issues, we developed CGMM, a novel mathematical framework for generating synthetic
genome sequences, even from scarce input data. Unlike other models, that aim to capture signatures in a
single set, our approach focuses on capturing the evolutionary and mechanistic dynamics of how mutations and
variants modulate a control genome into a case genome. This way, our cancer-inspired genomics mapper model
(CGMM), is able to exploit the availability of a large number of genomes as a control set and learn to map it
to a small case set of genomes with the desired phenotype. The model is then able to apply the mapping it
learned to convert independent control genomes into realistic case genomes.

Specifically, CGMM is built upon a genetic algorithm that optimizes the mapping of control genomics
samples into case genomics samples. The genetic algorithm uses a fitness function that is inspired by the
evolutionary mechanisms that drive cancer progression, including mutation, selection, and adaptation. The
fitness function incorporates multiple features of the genomic data, including sequence alignment, quality scores,
and structural variations, to accurately map the synthetic reads. Afterward, CGMM incorporates a machine
learning component that uses a recurrent neural network to learn and predict the optimal mapping mutation
steps. The neural network is trained on a large dataset of simulated mutation patterns to learn the relationship
between the genomic features and the optimal mapping parameters.

We evaluated CGMM on two datasets, demonstrating its ability to reliably multiply the desired sample
count, by generating synthetic genomes associated with the case set. We compare the resulting synthetic sam-
ples to those produced by four current state-of-the-art genome generative models, demonstrating that CGMM
outperforms them.

The rest of the paper is organized as follows. In Section. 2 we provide an overview of the latest compu-
tational and mathematical models for in silico DNA generation, including the relevant information inspiring
the construction of CGMM. Section. [3] formally introduces CGMM. In Section. 5] we describe two in silico
experiments to evaluate the performance of CGMM compared to other genomics generator models. Finally,
Section. [6] concludes the results and proposes possible future work.

2 Related Work

This section reviews the latest methods used to generate synthetic DNA sequences, as well as the natural
evolution patterns of cancer cells and the advantages of GA in bioinformatics (which CGMM mimics and
implements).

2.1 Generation of in silico DNA sequences

The generation of in silico DNA sequences based on diverse assumptions originated from previous findings
of patterns in similar pathogens and samples. In particular, one defines a distribution of Single-nucleotide
polymorphism (SNP) by processing available data or requesting the user to provide them, which are then
randomly sampled to generate new sequences [24,/25]. Moreover, multiple simulators assume a linear and
independent connection between the SNPs [1626]. For instance, [27] proposed multi-trait, multi-locus phenotype
simulations in quantitative genetics, based on a linear mix of models in a mathematical framework that takes into
consideration four components: genetic variant effects, infinitesimal genetic effects, non-genetic-covariate effects,
and observational noise effects as properties of N samples and p traits. This approach allows the simulator to
capture realistic covariate structures. However, the model is limited by its linear mathematical nature.

Such assumptions are known to be invalid in practice since biologically, the SNPs are not randomly sampled
across the genome and unnecessarily have a linear and independent relationship between them [28-30]. For
example, [31] show a non-linear accumulation of structural and numeric chromosomal aberrations as well as of
gene mutation during cancer progression. Therefore, several models relax these assumptions to obtain a more
accurate representation of the genomics dynamics [32-34].



[35] proposed an epistasis simulation pipeline that can generate dichotomous, categorical, and quantitative
phenotypes which can simulate non-linear interaction in the distribution of SNPs while understanding observa-
tion bias. The simulation is constructed from four sequential computational processes: generating a genotype
corpus, subsumption of SNPs sets, applying the epistasis model to the sampled SNPs sets, and subsampling the
set of individuals. One limitation of the model is that it requires the user to declare the set of SNPs one wants
to simulate specifically.

[36] presented a simulator that aims to balance the realism and computation speed for genotype data.
In particular, the simulator is based on randomly sampling genetic markers as quantitative trait nucleotides
(QTNs) from the whole genome or user-specified genomic area in either a normal or a geometry distribution.
The proposed model allows dynamic changes in the QTNs due to the previous allocation of QTNs in different
areas of the genome. This dynamic constraint allocation allows complex, non-linear dynamics but requires
knowing them during the design phase rather than extracting them from the inputted data.

[37] developed a simulator that simulates GWAS phenotype data based on user-supplied genotype data for a
population and considers several biological properties such as heritability, dominance, population stratification,
and epistatic interactions between SNPs. The authors divided the interaction between the SNPs into a causal
sampling of the one-dimensional distribution of SNPs, and the latter in the pipeline enriched these dynamics
by computing the inter-SNPs interactions. Afterward, the simulator introduces phenotype habitability in the
population and population stratification to obtain case and control phenotype genomes.

2.2 Natural mutation process in cancer cells

Cancer is a complex disease that arises from the accumulation of genetic and epigenetic alterations in cells
that drive uncontrolled proliferation and invasion [38]. The evolution of cancer cells from healthy ones is a
multi-step process that involves the acquisition of various mutations in genes that regulate critical cellular
functions, including cell cycle progression, DNA damage repair, and cell death [39,/40]. Once a cancer cell
acquires the initial mutations, it undergoes clonal expansion and further accumulates additional mutations,
leading to the emergence of subclones with distinct phenotypes and genetic profiles [41]. Thus, from the cancer
cells’ population point of view, the amount of mutations is an ever-increasing quantity, if not treated. During the
mutation process, the healthy cells that become cancer cells are bounded in the way they mutate, as unwanted
mutations that are detectable by the immune system would be removed from the body [42,/43]. In a similar
manner, cells that mutate at a high enough rate in a short period of time are also usually detected by the
immune system and removed from the body [44]. In total, cancer cells increase their mutation rate during the
process while being bounded in each mutation step. In our model, we utilize this evolutionary approach in the
form of an accelerated-bounded mutation operator as part of a genetic algorithm scheme.

2.3 Genetic algorithms for bioinformatics

A genetic algorithm (GA) is an optimization method inspired by the evolution theory [45]. In particular, GA
simulates the process of ”evolving” through natural selection, where solutions (also referred to as ”genes”) that
obtain a better score from the fitness function are considered more adapted. Therefore, these genes have a higher
probability to pass their information to the next generation. This evolution jump between one generation to
the other is performed by three stochastic processes: mutation [46], crossover [47], and feasibility test [48].

GAs have been used in multiple fields such as engineering [49], medicine [50], and economy [51]. [48] tackled
the task of process planning optimization that is based on sequences of machines and the operations they
perform. The authors used GA to obtain feasible processes for a start and later found the optimal process from
the set of feasible processes. [47] explored and analyzed the usage of GA with various constraints in process
route sequencing and astringency. The authors reconstructed the GA, including the establishment of the coding
strategy, the evaluation operator, and the fitness function, showing that the new GAs can meet the requirement
of sequencing work and can meet the requirement of astringency.

In the context of genomics data, several bioinformatic challenges have been tackled using GA. For in-
stance, |52] show promising results studying different genetic algorithm operators for the assembly of Deoxyri-
bonucleic acid (DNA) sequence fragments into a consensus sequence corresponding to the parent sequence,
from a parent clone whose sequence is unknown. Additionally, [53] analyzed gene expression for several cancer
types, including ovarian, prostate, and lung cancer. The authors proposed an integrated gene-search algorithm
for gene expression data analysis, that is based on the GA approach with correlation-based heuristics for data



preprocessing. This algorithm obtained 89% accuracy in classifying 44 DNA samples into three types of cancer.

Overall, GA has demonstrated promising results in bioinformatics research [54H57],and especially in genomics-
related tasks [58/59]. Thus, GA poses a promising computational approach to the task of generating synthetic
DNA sequences.

3 Model Definition

The usage of CGMM, like many other data-driven models, is divided into two phases: training and inference.
During the training phase, CGMM solves several optimization tasks to obtain the weights of inner machine
learning components that construct CGMM. Afterward, CGMM accepts new, previously unseen, samples as
part of the inference phase and makes its prediction. A schematic view of CGMM is provided in Fig.[1] outlining
the main computational steps in both the training and inference processes.

During the training phase, CGMM performs four main steps. The first step is acquiring the necessary
inputs of a control set and a case set of Variant Call Format (VCF) file format. The control and case set samples
are divided in some user-defined ratio into two, where one part is for the training phase, and the second part
is left for the inference phase. In addition, the user may provide SNPs associated with the case group, to be
used during the training of CGMM. Afterward, according to some pairing approach (IT) chosen at the discretion
of the user, CGMM generates pairs of control and case samples from the training dataset. Roughly divided,
there are three possible pairing approaches one can take: 1) A brute-force approach where each sample in the
control set is paired with all the samples in the case set. This approach results in the most amount of pairs
and, therefore, with the largest training dataset. However, at some point, the marginal contribution of each new
pair becomes insignificant, which leads to unnecessary computations. 2) A individual-centric approach, where
pairs of the control and case samples are obtained from the same individual. This enables the preservation of
personal traits in the resulting synthetic DNA sequence containing the case mutations. 3) A reduced brute-force
approach, where one can use any subset of the pairs group generated by the brute-force approach. In particular,
as the end goal is to learn pairing from the control to the case sets, one can take z € N random case samples,
in a uniform manner, for each control case. While this approach introduces another level of randomness to
the model, appropriate usage of if removes the disadvantages of the brute-force approach while preserving its
advantages. Therefore, this approach is the default of CGMM.

Once pairs of control and case samples are obtained, CGMM implements the second training step, using
the Reversed bioprocess genetic algorithm (RBGA) to generate a set of possible mutation processes from the
control to the case samples. Formally, the RBGA is an instance of a GA algorithm with several modifications.
Overall, GA follows the same computational framework with four main operators: stop condition, selection,
crossover, and mutation. First, A GA would generate a random population of solution candidates. Then,
the stop condition operator indicates the GA to stop once met. Otherwise, the GA would execute the other
three operators in an iterative manner. The selection operator is the stage in which individual members are
chosen from a population for the next iteration. This operator aims to stochastically use a fitness function to
find and generate a new population of solutions that, on average, are better suited to a task in hand. The
crossover operator is used to combine the information of two members to generate new members, mimicking
the reproduction and biological crossover. Finally, the mutation operator introduces random changes to the
members of the population. There are multiple implementations for each one of these operators that directly
define the GA. For the case of RBGA, we set the fitness function to be the MASH metric [60] between the
member of the population and the case sample. Following this decision, the stop condition operator is set to be
% Yoien MASH (p;, C) <&, where N € N is the size of the GA’s population which denoted by P, p; € P is each
member in the current GA’s population, C is the case sample, and ¢ € RT is a threshold value set by the user.
The selection operator (also known as the next-generation operator) is implemented to be the ” tournament with
royalty” [47]. We choose this selection operator as multiple studies show it performs better than other operators
and is able to converse in complex and multi-dimensional optimization tasks such as ours [61]. For the crossover
operator, we choose at random (in a uniformly distributed manner) pairs of members from the GA’s population
and a pivot point, generating two new members for the GA’s population. These members replace the original
two by crossing the two parts of each from the original members, as defined by the random pivot point [46].
Lastly, we propose a novel mutation process inspired by the way cancer mutates. Similar to how cancer cells
(representing case samples) evolve from healthy cells (representing control samples), CGMM removes, adds, or
edits SNPs in the control DNA sequence, while maintaining similarity to its origin. To do so, we adopt the
decreasing learning rate approach from the adaptive gradient descent algorithm [62], while also bounding the



total distance the changes can cause in a single mutation step. Precisely, let u € RT and o € RT be the mean
and standard deviation of a normal distribution stochastic variable ¢ ~ N(u,0?). In addition, let us define a
discount factor A € (0,1). Now, the accelerated-bounded mutation operator operates as follows. For the i,
generation of the GA, we choose a random number of mutations ¢; that distributed N(u - A%, 02 - \?). Then, we
apply (; changes to the member reflected by random SNPs. If the MASH metric distance between the member
after the mutation and the sample before the mutation is larger than a pre-defined threshold 8 € R*, the
mutated member is considered infeasible, and the process repeats. Moreover, at this stage, if the user provided
SNPs associated with the case group, the distribution of these SNPs in the case group is calculated and used
as the distribution function for the mutation operator (replacing the uniform distribution function).

After a predefined number of pairs (or all of them, if not set otherwise) produce the mutation processes,
CGMM initiates the third step of the training phase, in which a model of AutoEncoder (AE) with a self-
attention layer is trained. Formally, the AE accepts a mutation process in the form of a list of numbers, which
indicate the index in the genome array and one of the 12 possible SNP mutations. The AE is generated using
the AutoKeras automatic deep learning library, to find the near-optimal AE architecture [63] for the specific
inputs inserted. To do so, the AutoKeras framework aims to minimize the mean square error between the input
and the reconstructed samples, using Bayesian optimization on the size of the encoding layer [64]. Once the AE
model is obtained, each step in the mutation processes generated during the RBGA is converted into an encoded
vector. This results in a set of vectors with the same dimension (i.e., the AE’s encoding layer’s dimension),
describing a possible mutation process that links a specific pair of control and case samples.

In the fourth and final step of the training phase, CGMM uses a recurrent neural network (RNN) architecture,
with a long-short term memory layer (LSTM), to predict the next step in a possible mutation process between
pairs of control and case samples. This RNN component of CGMM is denoted as the Next Mutation Predictor
(NMP). The NMP works as a time-series predictor, similar to the way Large Language Models learn to predict
the next word in a sentence [65]. In particular, it is generated using the model architecture proposed by [66], as
it showed promising accuracy on the next-word prediction task while keeping the model’s size relatively small,
and therefore, less computationally expensive. Like the work of [66], the NMP receives a special token indicating
the mutation process is over every time it reaches the end of an encoded representation vector. This indicates
to the NMP that the specific mutation process has ended and prevents it from attempting to predict the next
step in the process indefinitely.

Finally, the trained NMP and the AE models are saved for later usage in the inference phase.

During the inference phase, CGMM performs three main steps, this time on the input of a € Ncontrol
samples that were set aside for inference. In the first step, CGMM implements the Encoder part of the AE
generated during training, to encode the samples into encoded vectors. In the second step, the encoded vectors
are passed to the NMP model, where their respective mutation process into case samples are predicted. Finally,
the resulting predictions are decoded in the Decoder part of the AE, converting them back into VCF format
sequences. This results in a set of o synthetic case samples.

4 Experimental design

We tested CGMM on three tasks, to demonstrate its capability to reliably increase the readily available DNA
sequences of the case set. To do so, we collected genomics sequences from public repositories and divided them
into the desired case set, which we needed to enrich with synthetic data, and the control set of DNA sequences,
that we used for this task. Specifically, for the first two experiments (Exps. 1 and 2), we used 300 samples from
the Personal Genomics Project (PGP), from three countries: the United Kingdom (120 samples), Canada (110
samples), and the United States (70 samples). The samples were manually divided into 200 European-dominant
DNA sequences, acting as the control set, and 100 African-dominant DNA sequences, acting as the case set. In
order to make sure the tagged ancestry is valid, we verified that the tags of all the samples correspond both to
a PCA-based ancestry classification and to the ancestry self-reported by the examined individuals [67]. For the
final experiment (Exp.3), we used 90 control samples from PGP corresponding to healthy individuals from the
United Kingdom, and 30 case samples were obtained from Genomic Data Commons (GDC), corresponding to
individuals with skin melanoma.

To demonstrate the balance between the conversion rate of control samples into case samples, and the
absolute number of successfully converted control samples, we used a 50%-50% training and testing ratio for
Exp. 2, compared to a 70%-30% ratio for Exps. 1 and 3. The resulting sample counts for each phase are
presented in Table. [T}
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Figure 1: A schematic view of the model’s training and inference phases. First, the input data is divided,
leaving a specified part of the control samples (z samples) for inference. The rest of the input data proceeds
into the training phase, where: 1) The evolution processes linking each pair of control and case samples are
estimated (RBGA process). 2) Each step in the process is encoded to a smaller, latent space (AE component).
3) A predictive model is trained to predict the next encoded step of an evolution process (NMP component).
During the inference phase, the z control samples are used to generate encoded vectors of the first step in an
evolution process (Encoder part). Then, the trained NMP component predicts a series of mutation steps, until
reaching the desired genomic signatures. Finally, the last predicted step, representing an encoded, synthetic,
case sample, is decoded into VCF format (Decoder part).

Exp.1 Exp.2 Exp.3

Control  Case | Control Case | Control Case
Train 140 70 100 50 60 20
Test 60 30 100 50 30 10

Table 1: The sample count of control and case samples used during the training and inference phases. For
inference, only the control samples are needed for CGMM’s operation, whilst the listed case samples are used
to evaluate the reliability of the results.

Once the dataset was divided, the model was trained using the hyperparameters listed in Table. [3], provided
in the Appendix.

To demonstrate that CGMM is capable of learning the correct relation and genomics signatures associated
with each case set, we repeated each experiment twice: once without any knowledge integration, then with
outside knowledge in the form of ancestry-related SNPs from ForenSeq™ DNA [68] (Exp.1-2), or in the form of
skin-melanoma-related SNPs from [69].

To evaluate the performance of CGMM, we used hierarchical clustering following the CLINK algorithm [70],
and computed the distances between samples using the MASH metric [60]. While there are many other metrics,
such as the Jensen-Shannon divergence (JSD) [71] and the Kullback-Leibler (KL) divergence metrics [72], we
decided to use MASH due to its popularity and well-established validation in bioinformatics. We then report
the conversion rate, meaning the percentage of control samples that were classified as case samples out of the
total control samples used during inference. The results of CGMM for each experiment are compared to those
obtained by four other models, considered as state-of-the-art genomics generators [27}36}37.(73].

5 Results

Table. [2| presents the conversion rate of control samples into reliable case samples, as achieved by the five
examined models. As expected, the results indicate that the more training samples obtained, the easier it



becomes for the models to detect the genomic signatures associated with each case set. Therefore, Exp.1
leads to the highest conversion rates for all models (neglecting cases where SNPs are included). However, once
SNPs’ knowledge is integrated, the effect of the training sample count reduces significantly. Additionally, in
all experiments CGMM is the least affected by the addition of SNPs knowledge, gaining only a 15.6% + 10.2%
increase in conversion rates for Exp.1-3, compared to a 36% + 2.8% increase observed in the rest of the models.

Test configuration CGMM G2P [36] Zhou et al. [73] PhenotypeSimulator [27] GEPSi [37]

E; 78.3% 38.3% 31.6% 40.0% 56.6%
E; with SNPs 85.0% 71.6% 68.3% 83.3% 81.6%
Ey 73.3% 31.6% 26.6% 38.3% 41.6%
E5 with SNPs 86.6% 68.3% 73.3% 81.6% 78.3%
FEjs 46.6% 23.3% 16.6% 36.6% 30.0%
E'3 with SNPs 73.3% 53.3% 46.6% 66.6% 70.0%

Table 2: Comparison of the conversion rate of control samples into case samples, as achieved by CGMM and
four state-of-the-art models.

Fig. 2] demonstrates the increase in the sample count of the resulting case dataset of DNA sequences in
Exp.1-2. Although both experiments started with the same baseline count of samples (blue), and Exp.2 led to
smaller conversion rates for all models (see Table. , models achieved a more optimal result in Exp.2 than in
Exp.1. In other words, they all resulted in a larger sum of reliable synthetic DNA sequences (either with SNPs
knowledge (yellow) or without (red)).

M Real M Synthetic 7 Additional Synthetics using SNFs
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e
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0 20 40 60 80 100 120 140 160 180 200

Figure 2: The resulting sample count of the case set DNA sequences, comprised of the original, real samples
(blue), the synthetic samples produced without any SNP knowledge (red), and the additional synthetic sample
count that was achieved with knowledge integration (yellow). The results of CGMM are compared to those
achieved by GEPSi (M1), PhenotypeSimulator (M2), G2P (M3), and Zhou et al. (M4).

6 Discussion and conclusion

In this study, we proposed a novel cancer-inspired genomics mapper model (CGMM) that combines a genetic
algorithm with a unique cancer-like mutation process, a deep learning AutoEncoder, and a next-word prediction
model, to capture the non-linear dynamics linked to the mutation process between two genomics samples. Using
our CGMM model, we were able to generate synthetic genomes while maintaining the personal traits of the
input samples. This was done by learning the possible mutation evolution process between the pairs of samples
and bounding each evolutionary step with logical assumptions that mimic the evolution of cancer cells. Thus,
CGMM is able to receive an input genome and mutate it until some desired property is achieved. Therefore,



our computational approach differs from current synthetic genomics models, which try to capture the unique
statistical properties on the genomics level, given a dataset of genomes with a desired property (such as ancestry
or pathogen). Opposed to them, we aim to capture the statistical mutation dynamics between a dataset of control
samples, that are more readily available, and a dataset of case samples, that possess the desired property we
want. This way, CGMM is able to take advantage of genome samples that are found in abundance in order to
reliably enrich a different, smaller dataset of genome samples, with synthetic samples.

In order to evaluate CGMM’s performance compared to other synthetic genome generation models 2713637,
73], we conducted three experiments that aim to generate genomes with a desired property (Exp. 1-3). For that,
we used two datasets, one of European and African-dominant ancestries, and the other of healthy individuals
and individuals with skin melanoma. In all experiments, as shown in Table. [2, CGMM outperformed the other
models, generating a higher conversion rate of control samples into reliable, synthetic case samples.

We repeated each experiment, integrating outside knowledge in the form of SNPs. The results show that the
integration of knowledge further improves the performance of CGMM, however, at a much smaller rate than
that of all other models (as seen in Table. 2] and Fig. [2). This leads to comparable results of CGMM and the
rest of the state-of-art models if knowledge is integrated. Thus we argue that: 1) The results demonstrate that
CGMM, opposed to the other models, is capable of learning the correct relation between the control and case
set. Hence, the integration of knowledge has a relatively low effect on it. 2) CGMM seems to be able to capture
SNP signatures partially. This is a promising outcome as with a proper adoption, CGMM can be used for SNP
signature detection as well. 3) Without knowledge of SNP signatures, CGMM may achieve better results than
the other models, even on small datasets. This is because the mutation path approach of CGMM can extend
the training set to a much larger cohort, by pairing the case samples with multiple control samples. This, in
turn, increases the number of mutation processes available for the training of CGMM, easing the deduction of
synthetic case samples.

Additionally, Fig. [2| shows that one has to balance the need for a large training set (which aids in achieving
a higher conversion rate), and the need to preserve samples for the generation of synthetic ones. Thus, we
show that although a higher conversion rate is achieved in Exp.1, a larger, absolute increase in sample count is
achieved in Exp.2 (i.e., CGMM generated in Exp.2 31 more reliable synthetic samples than in Exp.1 although
it was trained on a smaller dataset of samples).

This study has several limitations that should be addressed in future work to improve further the performance
and usability of CGMM. First, the AutoEncoder component in CGMM is designed to optimize an encoding
task, as obtained by using the auto deep learning approach, but does not utilize any domain knowledge that
can be helpful [74]. Second, the current method is not explainable, which may limit its usage in the clinical
domain [75,(76]. Third, due to the lack of freely available genomics data, the experiments were conducted
on relatively small datasets. While these experiments represent important usage configurations, a test on a
statistically larger dataset can allow obtaining a more robust evaluation of CGMM.
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Appendix

The proposed model’s hyperparameters descriptions and values have been used as part of the presented exper-
iments. These values are chosen throughout the trial and error process during the development of CGMM for
a subset of the samples used in the presented Exp 1.

Parameter definition Value

Pairing approach [1] Subset approach with
10 pairs for each case
samples

Number of generations in RBGA [1] 100

Initial mutation rate in the genetic algorithm [1] 251072

Mutation rate decrease factor in the genetic algorithm [1] 1-107°

Royalty rate in the genetic algorithm [1] 0.05

The threshold value, ¢, for the stop condition [1] 1.5-10°

Bounding factor, 3, for the accelerated-bounded mutation operator [1] 4.5-103

AutoEncoder’s encoding layer dimension [1] 8192

Table 3: The description of the model’s hyperparameters and their values.
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