
  

Multi-modal Graph Neural Network for Early Diagnosis of 

Alzheimer's Disease from sMRI and PET Scans 

Yanteng Zhanga,b,  Xiaohai Hea,  Yi Hao Chanb,  Qizhi Tenga,  Jagath C. Rajapakseb,* 

a College of Electronics and Information Engineering, Sichuan University, Chengdu, 610065, China 
b School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore 

Abstract 

In recent years, deep learning models have been applied to neuroimaging data for early diagnosis of Alzheimer's disease 

(AD). Structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images provide 

structural and functional information about the brain, respectively. Combining these features leads to improved 

performance than using a single modality alone in building predictive models for AD diagnosis. However, current multi-

modal approaches in deep learning, based on sMRI and PET, are mostly limited to convolutional neural networks, which 

do not facilitate integration of both image and phenotypic information of subjects. We propose to use graph neural 

networks (GNN) that are designed to deal with problems in non-Euclidean domains. In this study, we demonstrate how 

brain networks can be created from sMRI or PET images and be used in a population graph framework that can combine 

phenotypic information with imaging features of these brain networks. Then, we present a multi-modal GNN framework 

where each modality has its own branch of GNN and a technique is proposed to combine the multi-modal data at both 

the level of node vectors and adjacency matrices. Finally, we perform late fusion to combine the preliminary decisions 

made in each branch and produce a final prediction. As multi-modality data becomes available, multi-source and multi-

modal is the trend of AD diagnosis. We conducted explorative experiments based on multi-modal imaging data 

combined with non-imaging phenotypic information for AD diagnosis and analyzed the impact of phenotypic 

information on diagnostic performance. Results from experiments demonstrated that our proposed multi-modal 

approach improves performance for AD diagnosis, and this study also provides technical reference and support the need 

for multivariate multi-modal diagnosis methods. 
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1. Introduction 

Alzheimer's disease (AD) is a degenerative disease of the 

central nervous system, largely manifested in the form of 

memory, language, cognition, and even emotional disorders. 

The state between normal control (NC) and AD is called mild 

cognitive impairment (MCI) and more than half of MCI cases 
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progress to AD [1]. Still, no cure or preventive drugs have 

been successfully developed for AD but early diagnosis of 

AD allows for early intervention measures that could delay 

the progression of the disease [2]. Therefore, early diagnosis 

and treatment of AD is of great significance to patients. At 

present, the clinical diagnosis of AD largely depends on a 

wide range of sources, including medical history, 

neurological assessments, behavioral tests, neuroimaging 



  

scans, etc. [3] 

Neuroimaging plays an important role in the identification 

of treatable causes of dementia and provides a stronger basis 

for the screening and early diagnosis of AD [4]. A variety of 

imaging methods including structural magnetic resonance 

imaging (sMRI) and positron emission tomography (PET) 

techniques for clinical image-assisted diagnosis, which 

provides information about brain structure and function, 

respectively. sMRI helps us to understand changes in brain 

structure features (such as volume and shape) and can be used 

to predict AD progression [5]. On the other hand, 18-

fluorodeoxyglucose PET (FDG-PET) is a molecular 

diagnostic method to visualize glucose metabolism. The 

functional analysis of PET image is carried out by studying 

the degree of glucose metabolism [6]. Both structural and 

functional information are important when studying 

biological systems. Studies performed on only one modality 

is unable to capture both structural and functional aspects of 

the brain. To make up for these shortcomings, several studies 

[7] have used multi-modal methods to enhance features, 

leading to better prediction performance.  

In recent years, deep learning methods have been proposed 

for the analysis and diagnosis of diseases related to cognitive 

impairment [8]. Although convolutional neural networks 

(CNN) can learn image representations effectively, they do 

not fully consider the correlation between the subjects. 

Furthermore, CNN provides limited extensibility for the 

integration of multi-modal datasets; one major downside is 

the need for all inputs to have the same dimensions if each 

channel represents a different modality. On the other hand, 

graph neural networks (GNN), which extends classical CNN 

to non-Euclidean space by using graph topology or feature 

propagation between neighborhood nodes [9], afford greater 

flexibility for multi-modal integration. Graph convolutional 

network (GCN) is a type of GNN that works directly on 

graphs and take advantage of relational information encoded 

in the graph structure [10]. For instance, when nodes are used 

to represent subjects (such as patients or healthy people), 

edges of the graph can store information about the similarity 

between nodes. GCNs can perform signal filtering and 

aggregate information from neighboring nodes to obtain 

improved feature representations, which in turn can be used 

for disease prediction and graph analysis [11][12]. The 

flexibility of choosing various combinations of data 

modalities for node vectors and adjacency matrices make 

GCN an ideal method to combine multi-modal images. 

GNN methods have achieved commendable performance 

for AD diagnosis. Ktena et al. [13] used graph similarity 

measures between brain connectivity maps of functional 

MRI (fMRI) to construct a multi-layer GCN filter for AD 

prediction. Song et al. [14] constructed a multi-class GCN 

classifier based on structural connectivity, performed multi-

class disease classification of four disease stages across the 

AD spectrum, and verified that the GCN classifier 

outperforms the SVM on a disease prediction task. Zhang et 

al. [15] proposed a GCN using multi-modal brain networks 

from various diffusion weighted imaging sequences to 

predict clinical indicators and verified the effectiveness of 

integrated multi-modal brain network in prediction tasks. 

Overall, these studies have shown the effectiveness of GCN 

in the diagnosis of brain related diseases.  

In the above works that relied on GCN, fMRI and diffusion 

tensor imaging (DTI) data are usually used for graph analysis 

tasks [16][17]. There are established methods to construct 

individual brain networks from these modalities but there is 

no clear way to do so directly by regions-of-interest (ROI) 

features for modalities such as sMRI and PET (which are 3-

dimensional, as compared to 4-dimensional fMRI and DTI 

data). This makes it challenging to construct a GCN based on 

sMRI and PET images. To solve this problem, we adopt a 

method of generating brain networks [18] via brain ROI 

features to obtain individual features of subjects. Then, we 

draw inspiration from the flexibility of graph-based analysis 

by combining the use of graph nodes to represent the 

individual features of subjects with the use of a sparse 

population matrix built using phenotypic information. 

Finally, a population-based GNN is constructed for the early 

diagnosis of AD based on sMRI and PET images via the 

multi-modal GNN framework. We propose combining of 

sMRI and PET information both at the level of node vectors 

as well as at the adjacency matrices. We show that our 

proposed approach led to improvements in model 

performance for both AD detection and prediction of sMCI 

versus pMCI. Furthermore, we perform ablation studies on 

the demographic features used and found that combining 

MMSE score has a great impact on AD detection.  

The contributions of this study are as follows: (1) we adapt 

a technique to generate specific individual features from 

indirectly constructed brain networks based on sMRI and 

PET data, making it possible to use GNN to model these data 

modalities; (2) The association between individual features 

and subjects in the population is represented by combining 

imaging data with phenotypic data, and we discussed the 

effect of phenotypic information on GNN diagnostic 

performance; (3) To use the complementary relationship 

between image information ignored in graph construction, 

the adjacency matrices constructed by different imaging 

features are fused to realize edge weight sharing; (4) Through 

a combination of a late fusion strategy, our proposed 

multimodal GNN framework is further improved in AD 

diagnosis performance. 

2. Dataset and Materials 

The data used in this work are from the Alzheimer's 

Disease Neuroimage Initiative (ADNI) database [19], which 

is publicly available (www.loni.ucla.edu/adni). We used the 

MPRAGE sMRI and FDG-PET (six 5-min frames 30-60 min 

post injection) from the ADNI-1 and ADNI-2 baseline for 

AD assessment, acquiring paired multimodal images from 

the same subject and from the closest acquisition date. The 



  

detailed description of image protocols and acquisition can 

be found at adni-info.org. Except for AD and NC subjects, 

the obtained MCI data are divided into progressive MCI 

(pMCI) and stable MCI (sMCI): MCI subjects who 

developed AD within 3 years were classified as pMCI and 

those who did not convert to AD were classified as sMCI. In 

total, the dataset has 792 subjects, including 215 AD, 246 NC, 

331 MCI (120 MCI converters (pMCI), and 211 MCI non-

converters (sMCI)). The MMSE is a cognitive scale with 

scores ranging mainly from 10-30, with 30 indicating normal 

cognitive impairment and lower scores indicating more 

severe dementia. The gene data apoe4 in our study includes 

three genetic types tagged as 0, 1 and 2. Table 1 shows the 

key demographic statistics for each category of subjects in 

this study.  

Table 1. The demographic information of dataset used in this study 

 Numbers Gender(M/F) Age(yrs) MMSE(score) 

AD 215 126/89 74.9±7.7 23.21(±2.13) 

NC 246 125/121 74.1±5.8 29.02(±1.21) 

sMCI 211 125/86 72.5±7.4 28.01(±0.71) 

pMCI 120 74/46 74.4±7.1 27.15(±1.81) 

 

We used conventional procedures for brain image 

preprocessing, correction, and affine registration; the data 

preprocessing workflow is shown in Fig. 1. Specifically, all 

sMRI data underwent anterior commissure-posterior 

commissure correction and affine alignment via SPM12. The 

N4 algorithm [20] was applied to correct the non-uniform 

tissue intensities and affine alignment to MNI152 space [21] 

was done to align the sMRI with the normalized template. 

PET images were co-registered to the corresponding N4 bias-

corrected sMRI images by using rigid and non-linear for co-

registration routine by Clinica platform [22][23]. The 

resolution of processed images was 121×145×121. After that, 

we extracted 116 sMRI ROI features and 116 PET ROI 

features based on the AAL atlas [24], respectively. For sMRI, 

the volumetric information of gray matter (GM), white 

matter (WM), and cerebrospinal fluid (CSF) in brain ROI 

regions were obtained. For PET, the standardized uptake 

value ratio (suvr) [25][26] in brain ROI regions was obtained. 

The calculation of suvr is relative to each individual brain 

region. We divided the data according to the ID No. of 

subjects, with the first n-1 numbered subjects used for 

network training, and half of the data after n used for 

validation and the other half for testing. To avoid data 

leakage [27], all brain images in each modality dataset were 

not from the same subject. 

3. Methods 

In this study, we propose a multi-modal GNN architecture 

to perform early detection of AD. The architecture is 

composed of multiple branches of GCN, one for each data 

modality. Nodes in the adjacency matrix used in the GCNs 

represent single modality features from a single subject. The 

scores of all subjects are computed through the decision-

making output of a softmax layer in each branch, which are 

then combined for the final prediction. To better capture the 

relationships between subjects with image features, we 

propose to construct a brain network for each subject from 

ROI features extracted from imaging data, instead of directly 

using the ROI features from the brain. The edges of the 

adjacency matrix are defined by combining features from the 

brain networks constructed with the phenotypic information 

of subjects, which reveals the similarity between the features 

of each subject. This bears some similarity with the 

population graph approach which has become popular 

recently [12]. A key difference and novelty in our proposed 

approach is the application to multimodality of images and 

the method of fusing graphs generated from each data 

modality.  

3.1. Individual Feature extraction 

In the population graph, each node represents features of 

a subject. Due to slight differences between ROI features 

from sMRI and PET images, using these features in an input 

matrix leads to suboptimal model performance. Instead, we 

construct a brain network to extract more contrasting features 

so as to achieve better performance. 

3.1.1. Individual features based on PET 

For PET ROI features, it is unclear how to construct brain 

networks since ROI features are in the form of a vector 

(unlike fMRI, which is a 4-dimensional data and it is 

straightforward to see how a correlation matrix can be built). 

Therefore, we construct a brain network [18] for every 

subject indirectly by comparing them to a group of normal 

subjects.  

First, we calculate the weighting matrix based on the 

interregional effect size differences of average intake 

between individual subjects and mean NC subjects. The 

connectivity E(i, j) of a subject in the i-th ROI and j-th ROI 

is expressed as:  

 

Fig. 1. The preprocessing pipeline of sMRI and PET scans. The raw brain 

images were aligned to MNI152 space and then ROI features were extracted 

for each modality image, using AAL atlas. 
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where fi represents the metabolic information suvr of a person 

in the i-th ROI; and fNC,i represents the average metabolic 

information of all NC patients in the i-th ROI. In formula (1),  
2 2( , ) ( ) / 2p i js i j s s= +  where si represents the standard 

deviation of the metabolic information of all NC subjects in 

the i-th ROI. 
The expression of correlation coefficient value R(i, j) 

between the i-th and j-th ROIs is obtained based on Fisher 

transform [28]: 
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the value of R(i, j) ranges between 0 and 1, and decreases 

with the increase of E(i, j). Then, the weighting matrix W(i, 

j) of a single subject is expressed as：  

                                 ( , ) 1 ( , )W i j R i j= −                             (3) 

The weighting matrix W of a subject is then multiplied by 

the connectivity matrix of the NC group to obtain the 

connectivity between the i-th ROI and the j-th ROI of a 

subject. The brain network matrix {B(i, j)} is expressed as: 

      ( , ) ( , ) ( , )NCB i j W i j M i j=                        (4) 

where MNC(i, j) is the value of row i and column j in the 

correlation coefficient matrix made by each ROI of all NC 

subjects and ⊙ indicates Hadamard product.  A flow chart 

of the process of creating individual brain matrix and feature 

extraction is shown in Fig. 2. 

Finally, through the feature extraction from the subject's 

brain matrix B, we use the values on the upper triangle of 

matrix B as the subject's individual features. Taking the 

subject with P brain ROIs as a reference where the dimension 

of the connectivity matrix B is P×P. Then the dimension of 

the individual features is given by (P×(P+1))/2. 

3.1.2. Individual features based on sMRI 

The ROI features obtained from sMRI images include gray 

matter (GM), white matter (WM), and cerebrospinal fluid 

(CSF). Therefore, we can construct the corresponding 

individual brain network separately by using several ROI 

features (GM, WM, or brain matter (GM+WM)) extracted 

from sMRI in accordance with the above method (3.1.1). 

Furthermore, we need to explore the specificity of different 

features obtained by above method to provide more effective 

input features for the multi-modal GNN. 

3.2. Graph construction 

The performance of GCN is greatly influenced by how its 

adjacency matrix is constructed [29]. In this work, each node 

in the graph is represented by the feature vectors of its 

corresponding subject, and the edge weights between nodes 

represent the similarities between the subjects [9][12]. We 

define an undirected graph G(V, E, A) with a set of vertices 

vn∈ V (n=1,2,…,N) where n represents the number of 

subjects. Each vertex vn is represented by the subject 

associated with the features from the upper half matrix of 

each brain network and the edges (vn, vm)∈E, (vn, vm) = anm 

= amn, amn∈A where each element of A is an edge weight. A 

is a normalized adjacency matrix describing the connectivity 

of all vertices. The normalized graph Laplacian is defined as: 

1/2 1/2L I A I D WD− −= − = − , where i iji j
D diag w


 =
   is 

the diagonal degree matrix. Generally, we can obtain the 

adjacency matrix A by computing the similarity. For a total 

of N subjects, each subject is represented as a node, where 

each node is assigned a label l∈{0, 1} corresponding to its 

class. The two-layer GCN can be described by the formula:  

               
(0) (1)softmax( ReLU( ) )Z A AXW W=                 (5) 

 

Fig. 2.  The flow chart of individual brain network and feature extraction from PET image. We obtained the ROI features (suvr) of brain regions from PET, 

then derived the mean and standard deviation of ROI features based on a group of normal health subjects, and obtained the brain matrix by our computational 

process, and finally flattened the upper triangular matrix into a one-dimensional individual features. 



  

3.2.1. Edge connections and weights 

Edge connections and edge weights are key features in 

GCN as they determine which nodes are used to perform 

convolution and corresponding convolution coefficients. 

Edge weights are calculated in different ways in various 

studies [12][15]. In this work, we combined non-imaging 

information to construct the graph that established edge 

connections for assigning larger edge weights among 

subjects.  

In graph theory, the initial similarity can be used to 

construct the edge weights for convolution filtering. We 

estimate the similarity S between subjects v and u by 

calculating the correlation distance. The S is defined as: 
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where ρ is the correlation distance, σ is the width of the kernel, 

and Fv and Fu are the feature vectors of the subject v and 

subject u. 

To this end, we further consider the non-imaging 

information (such as gender, gene and MMSE score, etc.) to 

construct an adjacency matrix A(v, u), which is calculated as:  

( , ) ( , ) ( ( , ) ( , ) ( , ))v u G v u P v u M v uA v u S F F r G G r P P r E E=  + +  

    (7) 

In formula (6), the rG, rP and rM are defined as: 
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where rG represents the distance for their gender information 

and rE represents the distance for their apoe4 information and 

rM represents the distance for their MMSE score. When the 

corresponding two subjects have the same gender or same 

apoe4 or similar MMSE socre, the edge weight is doubled, 

otherwise it is set to 0 as shown in formula (8), (9) and (10). 

 

 
Fig. 3.  The flow chart of  the constructing of adjacency matrix combined 

with phenotypic information weighs. 

 

The constructing of adjacency matrix combined with 

phenotypic information weights is shown in Fig. 3. The 

above approach of constructing the adjacency matrix A 

works for a single modality but it does not describe how to 

deal with multiple modalities. We address this issue in the 

next two subsections. 

3.2.2. Integration mechanism for adjacency matrices  

Due to the complementarity of structural and functional 

information, we further construct an integrated adjacency 

matrix that combines the adjacency matrix from individual 

modalities. Based on the above construction method of 

adjacency matrix A(v, u), we can obtain the adjacency matrix 

As based on sMRI features and the adjacency matrix Af based 

on PET features respectively, and then the integrated 

adjacency matrix Aim is calculated by Hadamard product:  

                              im s fA A A=                                 (11) 

3.2.3. Fusion mechanism for node vectors 

According to (6), we estimate the similarity S between 

subjects v and u by calculating the correlation distance 

between feature vectors. To fuse the two modality features to 

obtain a shared adjacency matrix, we concatenate the 

individual features of two images to calculate the correlation 

matrix. Then S can be expressed as: 
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where Fvc and Fuc are the concatenated feature vectors of two 

modality images of subject v and subject u. Then the 

adjacency matrix Afm based on fusion mechanism can be 

calculated by using (7).  

3.2.4. Integrated fusion mechanism 

Through the above two mechanisms, we further construct 

a shared adjacency matrix to fuse the adjacency matrices of 

each modality. Based on the construction methods of the 

above two adjacency matrices Aim and Afm, the integrated 

fusion adjacency matrix Aif is calculated by Hadamard 

product: 

                                 if im fmA A A=                                 (13) 

3.3. Chebyshev GCN 

In GCNs, spectral theory improves the adjacency matrix 

by applying Fourier transform and Taylor expansion to 

obtain an excellent filtering effect. The spectral domain 

convolution on graphs [9] can be expressed as the operation 

of signal x with the filter gθ = diag(θ) by:  

   
0

( ) ( )
KT

k kk
g x Ug U x T L x  

=
 =   =      (14) 

where U is the eigenvector matrix and calculated by the 

formula 
1/2 1/2 T

NL I D AD U U− −= − =  . IN and D is the 

identity matrix and diagonal degree matrix, respectively. The 

truncated expansion of Chebyshev polynomials is well 

approximated to gθ(Λ) of K-order [30]. θk is the vector of 

Chebyshev coefficients, Tk is the Chebyshev polynomial 



  

function, and max2 / NL I=  − . Different filtering effects 

can be obtained by adjusting the polynomial order K, the best 

performance is achieved when K is set to 3 or 4 [12]. 

3.4. Multi-modal network architecture 

Our multi-modal network framework consists of two 

branches of Chebyshev GCN (CGCN), one for each modality. 

Each branch consists of a two-layer CGCN where hidden 

layers are activated by ReLU function, the number of units in 

hidden layer is L (L=32). In each branch, the output layer is 

followed by a softmax function. The trained GNN marks the 

unlabeled nodes on the test set and outputs the scores by 

softmax. We use dropout after the ReLU activation of each 

layer to reduce overfitting. The softmax function for N class 

probabilities output of the sub network is as follows: 
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where zj in the above (13) represents the j-th value of the 

output vector in network. N is the number of categories, the 

calculated softmax(zj) value is between (0, 1).  

After the softmax function in each branch, we get the final 

prediction result by the decision fusion of the output 

probability of softmax: 

0 1
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where zj0 is from the first branch and zj1 is from the second 

branch. 

Our multi-modal network architecture is illustrated in Fig. 

4. In the population-based GNN, the training set is a labeled 

subset of graph nodes and the trained GNN produces 

classification labels for the unlabeled nodes in the test set. 

4. Experiments and Results 

4.1. Experimental design 

Our models were implemented in PyTorch and ran on a 

Windows x86-64 computer equipped with Intel(R) Xeon(R) 

@3.60GHz, NVIDIA Quadro P620 and 32GB memory. In 

experiments, the training set, validation set and test set was 

obtained by partitioning the dataset of proportions 70%, 15% 

and 15%. In our population-based GNN, the training set and 

verification set were labeled while the test set was unlabeled 

with a mask. The labels of the test set are unknown during 

the network optimization, the test set is predicted after 

training and compared with the correct labels to derive the 

performance measures. Due to the limited access to medical 

images compared to other fields, especially in the case of 

multi-modality data for the same subject, current studies [16] 

[27] are mainly based on ADNI, the most world widely used 

database. However, the ADNI does not specify a fixed test 

set. To show that our method still has some generalization, 

our experiments were conducted on four different sub-

datasets (the test set of four sub-datasets do not include the 

same subjects) and calculated the average accuracy to report 

as the final diagnostic result. Further, we selected two sub-

datasets to evaluate the stability of model by a five-fold 

cross-validation strategy. 

The hyperparameters were determined empirically as 

follows: dropout rate was 0.5, weight decay was set to 5e-4, 

and learning rate was set to 1e-3. The order K in CGCN was 

 
Fig. 4.  The network architecture of our multi-modal GNN method. We incorporate phenotypic information into the graph, where the nodes represent subjects 

and it associates the subject's imaging features. There are two layers composed in the graph network and finally decision is derived by late fusion mechanism, 

each score in branch network corresponds to the diagnostic result of the corresponding subject. 



  

set to 3. The network was trained for 100 epochs for 

convergence, and we compared with the GCN architecture 

trained for 300 epochs. The cross-entropy loss function was 

used to optimize the model parameters. To compare the 

validity of proposed method, the training hyperparameters 

were fixed in all methods. In addition to the AD vs. NC 

classification for disease exclusion, the prediction of MCI 

conversion is of great importance for the early treatment of 

AD patients. Therefore, we conducted the classification tasks 

of AD vs. NC and sMCI vs. pMCI, and evaluated the 

performance based on accuracy (ACC), sensitivity (SEN), 

specificity (SPE) and the area under curve (AUC). 

We divided the experimental section into the following 

parts. Firstly, we carried out experiments on GCN model 

based on single modality images (i.e., separate experiments 

for sMRI and PET), and compared the diagnostic 

effectiveness of brain network features constructed based on 

several brain features. Secondly, we experimented with 

several multi-modal methods and compared it with the single 

modality approach. Finally, we carried out the explorative 

experiments by constructing the adjacency matrix combined 

with gender, apoe4, MMSE, etc. information. Using 

phenotypic information can further improved the diagnostic 

performance of GNN, and discussed the impact of 

phenotypic information on AD diagnosis. In addition, we 

compared the state-of-the-art method to prove the 

effectiveness of our proposed method. 

4.2. Experimental results and discussion 

First, the GCN model based on sMRI features was used for 

ablation experiments and the impact of sMRI features for AD 

diagnosis was explored. Features obtained through brain 

networks (BN) and directly extracted ROI features were used 

as inputs for GCN in this part. We know that in sMRI, 

cognitive impairment is mainly related to atrophy of GM, 

WM and brain structure [31][32]. For this reason, first we 

obtained individual features in this way (Section 3.1.2) based 

on three kinds of ROI features (GM, WM and brain matter) 

separately, as well as the way [12] of ROI features extracted 

directly from MRI, then carried out classification 

experiments based on GCN model. Results from these 

experiments are summarized in Table 2. Compared with the 

GM ROI features from MRI, the individual features we 

obtained through the brain network have better specificity, 

allowing the GCN model to perform better clustering 

performance with a considerable improvement in accuracy. 

Moreover, from the experimental results, it is seen that 

models using GM features produced the best result in AD vs. 

NC classification, with an average accuracy of 87.71%. The 

models using brain matter features produced the best result 

in sMCI vs. pMCI classification, with an average accuracy of 

72.40%. This also reflected that in AD symptoms, the 

biomarkers of gray matter are more specific, while in MCI 

period, the atrophy of gray matter is not obvious compared 

with AD.  

Secondly, we carried out the similar experiments based on 

PET metabolic features. The results of ablation GCN 

 

Table 2. The classification results of GCN model based on various imaging information from sMRI and PET 

Features AD vs. NC sMCI vs. pMCI 

 ACC SEN SPE AUC ACC SEN SPE AUC 

GM ROIs 81.62 78.74 83.83 81.28 65.00 31.18 85.99 59.42 

GM+WM BN 85.15 81.17 88.51 84.84 72.40 48.15 87.47 67.81 

WM BN 77.14 69.56 83.62 76.59 67.20 36.74 87.50 62.12 

GM BN 87.71 83.95 91.43 87.63 71.20 41.33 88.40 64.87 

PET ROIs 82.45 74.22 87.81 82.02 66.23 42.22 81.56 61.89 

PET BN 88.00 86.54 89.37 87.95 73.20 53.26 82.96 68.06 

BN (Brain Networks) 

 
Fig. 5.  The four figures are the difference of individual brain network matrix between AD and NC subjects. The matrices from left to right are based on 

brain matter features, WM features, GM features and PET features respectively. 



  

experiments based on PET ROI features and the features 

from the brain network (Section 3.1.1) are also shown in 

Table 2. From the classification results in Table 2 based on 

sMRI and PET features, the method of constructing 

individual brain network of PET features has better 

performance. Meanwhile, the accuracy of diagnosis based on 

brain network features is much higher than that based on ROI 

features. Brain ROI feature methods are often based on 

traditional machine learning such as support vector machines 

(SVM), which needs to achieve better performance with 

effective feature selection [35][36], but this also requires 

more processes and is usually effective on smaller samples. 

Our features acquisition from brain network shows better 

advantages in terms of performance and efficiency.  

Furthermore, the value of using GM features can be 

demonstrated by visualizing and comparing the brain 

matrices built using various imaging features. As seen in Fig. 

5, the difference between AD and NC is the greatest for GM 

amongst structural image features. Also, PET shows an 

obvious difference between AD and NC that were even larger 

than those seen in GM. This might explain why models using 

PET did better than models that used sMRI features. This 

result is consistent with the established clinical knowledge. 

PET can detect the functional brain changes and specific 

pathologies of AD at the early stage than sMRI.  

By the correlation coefficients of brain regions in our 

constructed brain network based on sMRI features and PET 

features in AD diagnosis, we selected five key regions. Fig. 

6 shows the visualization of the key ROIs in brain for AD 

diagnosis based on sMRI and PET in our study. In sMRI, 

specifically, these ROIs are Temporal_Pole_Sup, Rectus, 

Lingual, Hippocampus and Amygdala. In PET, specifically, 

these ROIs are Frontal_Sup, Frontal_Sup_Medial, 

Occipital_Mid, Occipital_Inf and Temporal_Mid. It can be 

seen that some of these brain regions are mainly concentrated 

in memory regions, which are correlated with cognitive 

disorders in some clinical studies [35][36]. 

In the subsequent experiments on multi-modal datasets, 

we will therefore focus on models that use GM features as 

the structural imaging modality. The similarity only is used 

to construct the adjacency matrix and we use both types of 

GNN models for comparative tests, including GCN and 

CGCN. To test whether the combination of multi-modal 

imaging features can improve diagnostic performance, we 

experimented with several multi-modal mechanisms in this 

study. We first create a baseline where the two GCN 

branches are simply combined, which we call dual GCN 

(DGCN), that is, each branch uses its own adjacency matrix. 

Then, we designed different multi-modal fusion techniques 

that constructs a shared adjacency matrix in three different 

ways: integration DGCN (IDGCN) from Section 3.2.2, 

fusion DGCN (FDGCN) from Section 3.2.3 and integrated 

 
 

Fig.6. Visualization of the key ROIs in brain for AD diagnosis. In the top 

row we show the key ROIs in the coronal and sagittal views of brain MRI 
image. In the bottom row we show the key ROIs in the coronal and sagittal 

views of brain PET image. 

Table 3. The classification results of several multi-modal methods based on GCN model 

Methods AD vs. NC sMCI vs. pMCI 

 ACC SEN SPE AUC ACC SEN SPE AUC 

DGCN 89.65  87.94 91.13 89.53 73.50 51.83 85.99 68.91 

IDGCN 90.36 86.47 93.87 90.17 74.00 51.03 87.78 68.67 

FDGCN 90.71 87.94 93.12 90.55 75.00 52.05 85.34 68.69 

IFDGCN 91.07 88.72 93.25 90.98 75.50 50.25 88.13 68.45 

The methods in this table are based on GCN, DGCN means Dual GCN, IDGCN means Integration Dual GCN, FDGCN means Fusion Dual GCN, IFDGCN means Integrated Fusion Dual GCN. 

 
Table 4. The classification results of several multi-modal methods based on Chebyshev GCN model 

Methods AD vs. NC sMCI vs. pMCI 

 ACC SEN SPE AUC ACC SEN SPE AUC 

DCGCN 90.00  88.60 91.12 89.86 74.50  48.29 87.67 65.01 

IDCGCN 90.72  89.41 91.86 90.63 75.00  49.43 88.02 68.72 

FDCGCN 91.07  90.15 91.86 91.00 75.50 50.43 88.02 69.22 

IFDCGCN 91.07  90.22 91.87 91.04 75.50 49.90 88.70 69.30 

The methods in this table are based on CGCN (Chebyshev GCN), DCGCN means Dual CGCN, IDCGCN means Integration Dual CGCN, FDCGCN means Fusion Dual CGCN, IFDCGCN 

means Integrated Fusion Dual CGCN. 



  

fusion DGCN (IFDGCN) from Section 3.2.4. The results 

based on GCN are shown in Table 3, and the results based on 

CGCN are shown in Table 4. In the binary classification of 

AD vs. NC, IFDCGCN achieves the best accuracy of 91.07, 

sensitivity of 90.22, specificity of 91.87 and AUC of 91.04. 

In the binary classification of sMCI vs. pMCI, IFDCGCN 

achieves the best accuracy of 75.50, and its corresponding 

sensitivity of 49.90, specificity of 88.70 and AUC of 69.30 

are also improved as compared to single modality methods.  

In the population-based GNN method for AD diagnosis, 

the effective expression of individual features can lead to 

better prediction performance. From the results in Table 3 

and Table 4, we demonstrated that our proposed multi-modal 

fusion framework can further improve the accuracy of AD 

diagnosis. The effectiveness of our multi-modal method can 

be attributed to the following three points. Firstly, it is 

evident that the late fusion mechanism helped to improve the 

accuracy of the model prediction. The late fusion combines 

the decisions of two independent branches of GNN, which is 

consistently observed in both GCN and CGCN models. 

CGCN performs better in accuracy as compared to GCN. 

Also, CGCN has the advantage of stability as the standard 

deviation of its results is smaller. In Fig. 7, we showed the 

training curves, loss curves and validation curves of the 

IFDGCN and IFDCGCN multi-modal methods for AD 

prediction. Seen from the validation curves, the accuracy of 

the fusion decision is higher than that of the two separate 

branches when the network training reaches a certain epoch. 

According to the training, validation curves and epoch, 

CGCN converges faster, and the prediction is more stable. 

Secondly, the multi-modal mechanisms we proposed are 

more effective than the simple late fusion approach in DGCN. 

This shows the value of creating a shared adjacency matrix 

constructed based on multi-modal data. The way adjacency 

matrices are constructed has a direct impact on the 

performance of the GNN models.  

 
Fig. 8. The accuracy of classification results based on single modality and 

multi-modal methods. 

 

Fig. 8 summarizes the comparisons between single 

modality methods and multi-modal methods in a box plot 

showing classification accuracy. While multi-modal methods 

are clearly superior to single modality approaches, we note 

that the choice of integration mechanisms does not lead to 

huge differences in model performance. In addition, the 

multi-modal method of CGCN has better performance in the 

choice of GNN models, and the stability of CGCN is much 

better than that of GCN. Overall, our proposed IFDCGCN 

produced the best results in terms of classification 

performance and stability. 

 
Fig.7.  The figures from left-to-right are the training curve, loss curve and verification curve based on IFDGCN (above) and IFDCGCN (below) multi-modal 

method, respectively. 



  

In addition, some non-imaging information has also been 

found to be associated with AD in some studies [37][38][39], 

such as genes, gender, age, MMSE, etc., which have 

important references in the diagnosis of cognitive 

impairment. With the accumulation and richness of imaging 

and non-imaging multi-source data, how to fuse multi-source 

and multimodal data is the trend for accurate AD evaluation 

in the future. Therefore, this work aims to further fuse non-

imaging information based on the use of multi-modal GNN 

framework to achieve more accurate AD diagnosis.   

The results of the ablation experiments on AD vs. NC and 

sMCI vs. pMCI diagnostic tasks were further explored based 

on our validated multi-modal GNN (IFDCGCN) 

incorporating various phenotypic information as shown in 

Table 5, and the Fig. 9 summarizes the corresponding 

comparisons in a box plot. We found that the adjacency 

matrix combined with gender, gene, and MMSE score 

information benefited or improved the diagnostic 

performance of the model, especially combining MMSE (in 

formula (7), rG=0 and rP=0) obtained a very significant 

improvement in AD vs. NC diagnosis. The best results were 

obtained by MMSE, gender, and gene all weighted 

information in sMCI vs. pMCI diagnosis. With the 

information based on MMSE scores, it made the weighting 

more pronounced in AD vs. NC subjects, while both sMCI 

and pMCI belong to MCI patients, so their MMSE scores 

were close, both almost in the range of 27-29 score, this made 

the inter-subject weights insignificant to the extent that the 

improvement in GNN classification performance is limited. 

But also obtained better prediction of MCI conversion with 

the combining of several phenotypic information. In contrast, 

combining age information (age difference within 1 year 

weighted as 1, otherwise 0) in our GNN approach did not 

have any improvement or even a decrease in disease 

prediction. In the graph, the weights of non-imaging 

information are associated with the imaging features, the 

combination of effective phenotypic information allows to 

target a few subjects with marginal imaging features to be 

judged correctly. In this part of the explorative experiments, 

e.g., gender information also plays a role in the construction 

of the adjacency matrix on the performance of the GCN, 

which is consistent with some results of study [12]. Some 

phenotypic information is more clinically accessible, which 

has an advantage for GNN-based AD diagnosis methods. For 

the age information, the effect is not ideal. We infer that it is 

difficult to find a direct correlation with the features of 

subjects because of the wide range of age distribution. 

However, age information is helpful for the diagnosis of AD 

in clinical practice, which is also what needs further research 

in future.  

On a fixed two sub-test set, our IFDCGCN method 

combining the MMSE information was again experimented 

with 5-fold cross-validation in the tasks of AD vs. NC, and 

the results shown in Fig. 10. The average accuracy was 98.00% 

and 96.29% with standard deviations of 0.78 and 0.78, 

respectively. The AUCs were 98.06 and 96.58 with standard 

deviations of 0.90 and 0.72, respectively. The above results 

indicate that our proposed multi-modal GNN is stable. 

In this work, the adjacency matrix can be constructed 

based on a combination of similarity matrix and non-imaging 

data. To better demonstrate the advantages of multi-modal 

mechanisms and to explore the differences in constructing 

adjacency matrices based on phenotypic information, Fig. 11 

compares the visualizations of the adjacency matrices 

constructed using MMSE and GAM 

(Gender+Apoe4+MMSE) information based on IFDCGCN 

method in two diagnostic tasks. In these visualizations, we 

rearranged the rows so that subjects in the same category 

were grouped together to make the differences between 

categories more apparent. The group similarity matrices 

Table 5. The classification results of Multi-modal GNN framework combining the phenotypic information 

sMRI+PET AD vs. NC sMCI vs. pMCI 

 ACC SEN SPE AUC ACC SEN SPE AUC 

Similarity 91.07 90.22 91.87 91.04 75.50 49.90 88.70 69.30 

Aope4 91.07 88.56 93.17 90.86 75.50 50.03 88.80 69.42 

Age 88.93 86.43 91.08 88.76 74.50 48.06 88.80 68.93 

Gender 91.79  90.15 93.19 91.67 76.50 51.81 89.70 70.76 

MMSE 96.68 99.19 94.49 96.84 76.00 51.03 88.80 69.92 

G+M 95.00 93.09 96.71 94.90 77.00 51.90 89.37 70.63 

G+A+M 93.21 90.19 95.98 93.08 78.00 54.96 89.37 72.16 

G+M means the combining of gender and MMSE. G+A+M means the combining of gender, apoe4 and MMSE. 

 
Fig. 9. It summarizes the comparison of diagnostic accuracy based on multi-

modal GNN combined with various phenotypic information. 



  

constructed based on our integrated fusion mechanism in 

combination with MMSE showed a very significant intra-

group correlation for the AD vs. NC subject group, resulting 

in an average accuracy of 96.68%. In contrast, the 

combination based on multiple phenotypic information had 

relatively better intra-group correlations in sMCI vs. pMCI 

diagnosis. However, MCI conversion prediction needs to be 

continuously explored, and since both sMCI and pMCI 

belong to the MCI category, the low sensitive features of both 

types also contribute to the lower prediction accuracy. We 

infer that it is more important to acquire or construct 

individual features that are more perceptive.   

In addition to analyzing the parameters that affect the 

prediction performance of GNN, we also compared it with 

several different state-of-the-art methods based on ADNI 

database to verify the utility of our proposed method. The 

comparative studies are based on sMRI, PET and multi-

modal methods. The results include AD vs. NC classification 

in Table 6 and sMCI vs. pMCI classification in Table 7. It 

can be observed that our proposed method has achieved 

satisfactory performance. In addition to a better prediction 

accuracy, it also has an advantage or comparable 

performance in terms of diagnostic specificity. Another 

notable point is our method also outperforms some multi-

modal CNN methods.  

In summary, the changes of brain structure and metabolic 

characteristics of AD patients are different, which makes 

multi-modal images provide more complementary 

information. But existing GNN analysis based on multi-

modal image features are mostly limited to DTI and fMRI 

[16][17]: it is clear how to present these 4-dimensional data 

as brain networks and construct the topology of nodes for 

them in GNN analysis because the brain regions in fMRI or 

DTI imaging have the characteristics of sequential signals or 

fiber connection directions. However, it is not obvious how 

GNN can be used on sMRI and PET data. In addition, many 

research based on GNN methods focus on the improvement 

of network architecture and the optimization of adjacency 

matrix, while ignoring the importance of individual features. 

To solve the above shortcomings, we obtain specific 

individual features via constructing brain networks with ROI 

features respectively, and then construct GNN with the 

method of nodes representing subjects, which solves the 

problem of difficulty in constructing graph neural networks 

based on sMRI and PET features.  

In our approach, we further play the advantages of multi-

modal data information and improved diagnostic 

performance was achieved through the combination of multi-

modal features, multi-modal adjacency matrices and late 

decision fusion. Compared with fMRI and DTI data, the 

preprocessing process of sMRI and PET is relatively simpler, 

while GNN has the advantage of being fast, flexible and more 

parameter efficient as compared to CNN, and easier to 

integrate multi-source and multi-modal data. Therefore, our 

work could have considerable application prospects in the 

task of early diagnosis of AD.  

5. Conclusion 

In this study, we proposed a population-based and multi-

modal GNN to predict early Alzheimer's disease using image 

features and phenotypic information. Our method obtained 

specific individual features by constructing brain networks 

and combined imaging data with phenotypic data to represent 

 
Fig. 11. It shows the adjacency matrices combining non-imaging data based 

on the IFDCGCN in AD detection (left column) and MCI prediction (right 
column). Our method has significant intra-group correlation and provides 

obvious contrast between the classes especially combining the MMSE 
information (top row) in AD detection (left column). 

Similarity + MMSE

Similarity + GAM (MMSE&GENDER&APOE4)

         

Fig. 10.  The five test ACC and AUC results by 5-fold cross-validation based on IFDCGCN multi-modal GNN on two sub-datasets, respectively. 



  

the data association between individual features and subjects 

in potential populations. In addition, we further combined it 

with shared adjacency matrix and decision-making 

mechanism to achieve better multi-modal GNN diagnosis 

performance. Through several experiments, our proposed 

multi-modal method achieves improved prediction results on 

ADNI datasets especially in AD detection. Compared with 

several state-of-the-art methods, our proposed method shows 

better or equivalent diagnostic performance, including in the 

relatively challenging sMCI versus pMCI prediction task. 

Our study was mainly explorative on using ADNI dataset and 

further validation may be necessary using additional datasets 

to confirm the findings.  
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