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ABSTRACT

Breast cancer is the most commonly diagnosed cancer type worldwide. Given high sur-

vivorship, increased focus has been placed on long-term treatment outcomes and patient

quality of life. While breast-conserving surgery (BCS) is the preferred treatment strat-

egy for early-stage breast cancer, anticipated healing and breast deformation (cosmetic)

outcomes weigh heavily on surgeon and patient selection between BCS and more aggressive

mastectomy procedures. Unfortunately, surgical outcomes following BCS are difficult to pre-

dict, owing to the complexity of the tissue repair process and significant patient-to-patient

variability. To overcome this challenge, we developed a predictive computational mechanobi-

ological model that simulates breast healing and deformation following BCS. The coupled

biochemical-biomechanical model incorporates multi-scale cell and tissue mechanics, includ-

ing collagen deposition and remodeling, collagen-dependent cell migration and contractility,

and tissue plastic deformation. Available human clinical data evaluating cavity contraction

and histopathological data from an experimental porcine lumpectomy study were used for

model calibration. The computational model was successfully fit to data by optimizing bio-

chemical and mechanobiological parameters through the Gaussian Process. The calibrated

model was then applied to define key mechanobiological parameters and relationships in-

fluencing healing and breast deformation outcomes. Variability in patient characteristics

including cavity-to-breast volume percentage and breast composition were further evaluated

to determine effects on cavity contraction and breast cosmetic outcomes, with simulation

outcomes aligning well with previously reported human studies. The proposed model has

the potential to assist surgeons and their patients in developing and discussing individualized

treatment plans that lead to more satisfying post-surgical outcomes and improved quality of

life.
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1. INTRODUCTION

1.1 Background and Significance

Breast cancer is one of the most prevalent cancers affecting women today, with approxi-

mately 287,850 women in the United States alone being diagnosed in 2022 [  1 ]. Fortunately,

advancements in treatment technology and screening awareness have allowed for the breast

cancer death rate to decline 43% in the past 30 years [  2 ]. To date, the 5-year survival rate is

reported to be 90.6%, allowing for more attention to go toward bettering long-term quality of

life for patients after BCS [  2 ]. For treatment, the current standard of care is breast-conserving

surgery (BCS; otherwise known as lumpectomy) paired with whole breast radiation therapy

[ 3 ]. Surgeons performing BCS aim to preserve healthy breast tissue, excising only the tumor

along with a small margin of healthy tissue. This forms a breast tissue cavity that undergoes

the wound healing process leading to tissue contraction, scar formation, and breast defor-

mation. The alternative procedure is mastectomy, which is the removal of the whole breast.

However, patients who undergo mastectomy report worse cosmetic results and lower quality

of life compared to BCS patients [  4 ]. Furthermore, BCS has similar/improved survival and

recurrence rates while also having decreased risks of surgical complications [  5 ]–[ 8 ].

The choice of surgical procedure is a collaborative effort between the breast cancer patient

and their surgeon. This decision-making process can ultimately be challenging, multi-faceted,

and stressful due to the large number of unknowns associated with both options. Specifically,

treatment choice is typically weighed by surgeons based on the expected cosmetic result, as

good aesthetic outcomes are associated with patient psychological recovery and quality of

life [ 9 ], [  10 ]. However, the complexity of the tissue repair process along with variations in pa-

tient, tumor, and treatment-related factors make it extremely challenging, if not impossible,

for surgeons to predict healing, oncologic, and cosmetic outcomes of BCS. Specifically, it has

been reported that age, health status, breast size and consistency, tumor size and location,

and adjunct radiation or chemotherapy all factor into the final cosmetic result [  11 ]. With

these characteristics commonly intertwined, a predictive tool is needed to better understand

the mechanistic interplay between the contributing factors. Furthermore, the inability to

predict healing outcomes also stems from the complex interplay of biochemical and biome-
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chanical processes during wound healing. Therefore, it is important to accurately represent

mechanobiological aspects of the tissue repair process.

The wound healing response is made up of four overlapping phases: hemostasis, inflam-

mation, proliferation, and remodeling. This process is generally described for cutaneous

wound healing, however, a breast cavity is repaired through similar methods [  12 ]. One noted

difference is that the tissue cavity left after BCS is fully enclosed, which is unlike superficial

skin wounds which have an air-tissue interface. For breast cavities, hemostasis begins often

through the creation of a blood clot (hematoma) and/or serous fluid building up inside the

cavity. Platelets are deposited within an initial fibrin scaffold that has limited mechanical

integrity. However, it does allow for local tissue contracture while promoting inflamma-

tion and cellularization. The degranulation of platelets causes cytokine secretion, releasing

agents such as TGF-β or PDGF that are chemotactic for neutrophils and macrophages.

These inflammatory cells clean and eliminate pathogens, tissue debris, or other invading

microorganisms. The formation of a cytokine gradient within the cavity also promotes the

proliferation and migration of fibroblasts and endothelial cells into the wound space. Fibrob-

lasts and actively differentiated myofibroblasts break down the provisional fibrin scaffold and

deposit collagen to help build up the structural and mechanical framework of the extracel-

lular matrix (ECM). With this, fibroblasts and myofibroblasts exert a traction force on the

ECM, contracting the scaffold and realigning the collagen fibers. In turn, this causes the

creation of dense, stiff scar tissue within the contracted cavity. The process of scar formation

and remodeling takes place over an extended period of time, as the scar tissue properties

evolve, but never become as strong as healthy tissue.

The remodeling of the lost tissue and scar formation is the most unpredictable aspect

of healing following BCS. It has been reported that 15%-30% of BCS patients experience

hypertrophic scarring and severe contraction post-lumpectomy, which commonly results in

breast deformities and altered breast consistency [  13 ]–[ 16 ]. Denting, scarring, and breast

asymmetry are all poor cosmetic outcomes that women may face for the rest of their lives,

which can negatively impact women emotionally and psychologically [ 17 ]. This results in a

large portion of women turning to additional reconstructive surgery after undergoing BCS

[ 18 ], [  19 ]. Along the same lines, some patients and patients elect to use oncoplastic procedures
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and techniques, such as breast reshaping, volume displacement, or breast reduction while

the patient is having the tumor removed [ 20 ]. However, these methods are limited due to

the increased medical costs and the need for an extra surgeon with specialized training [  21 ],

[ 22 ].

To date, there are currently very few standard surgical tools that exist to help surgeons

preoperatively plan and predict oncologic and cosmetic outcomes. Instead, their judgment is

often dependent on the surgeons past training and experience. Past efforts have been made

in creating surgical decision models to help recommend treatment thresholds (i.e., when to

treat a patient with BCS versus mastectomy) based on tumor size and location [  13 ], [  23 ],

[ 24 ]. These models are developed based on correlative analyses of human BCS patient data,

including tumor-to-breast volume percentage, tumor location, quality of life surveys, and

cosmetic outcome assessments [  13 ], [ 23 ], [ 24 ]. Furthermore, two separate groups have also

aimed to develop computational tools with the goal of simulating breast cavity healing after

BCS and predicting post-surgical breast deformation. The creation of surgical computa-

tional tools has been a relatively new field with the goal of accurately modeling the patients

mechanobiological response to the procedure [  25 ]. Garbey et al. (2013) proposed the frame-

work for a two-dimensional (2D) multi-scale model that was used in later work to simulate

patient-specific breast deformations by calibrating the model to fit one-dimensional (1D)

Magnetic Resonance Imaging (MRI) profiles [ 26 ], [  27 ]. In 2016, Vavourakis et al. developed

a three-dimensional (3D) mechanobiological finite element model with an underlying frame-

work adapted from a prior cutaneous wound model [ 28 ]. Utilizing MRI data, they were able

to evaluate time-dependent wound healing while further validating the model by comparing

post-surgical surface scans to predictive simulations [  28 ]. For these current computational

models, both lack an experimentally informed, descriptive mechanobiological wound heal-

ing response. Although both modeling efforts implement nonlinear breast tissue mechanics,

they lack complex descriptions of tissue growth and remodeling. These areas are especially

important to capture, as the breast cavity will undergo large deformations and permanent

remodeling throughout the wound healing process, which is coupled with cellular activity.
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1.2 Organization of Thesis

For the work presented in this thesis, we address the gap by presenting the framework for

a computational mechanobiological model that aims to assist surgeons in creating individual-

ized treatment plans that better predict oncologic, healing, and cosmetic outcomes following

BCS. The coupled biochemical-biomechanical model focuses on multi-scale mechanics, in-

cluding large plastic deformation, cell contractility, and collagen remodeling. Through this,

the specific aim of the model was to use available preclinical and clinical data to calibrate

the model while also evaluating model parameters and patient-specific characteristics to find

their effects on breast healing and post-surgical cosmetic outcomes.

Following this introductory chapter, Chapter 2 details our initial efforts of adapting the

computational model that was fit for dermal wound repair and making it specific for healing

following BCS. Human clinical data from the literature was used to inform characteristics

such as breast tissue material properties, breast tissue composition, and cavity location. Due

to the extensive amount of information available about cavity contraction after irradiation

instead of directly after surgery, a unique generalized breast geometry reflective of these

studies was created. This allowed for the calibration of mechanobiological parameters by

fitting the model to this data using a machine learning technique known as the Gaussian

Process.

Chapter 3 represents a manuscript that is in preparation for submission for publication. It

builds upon the work by informing the biochemical portion of the model through histological

data from an experimental porcine lumpectomy study to find time-dependent changes in

fibroblast and collagen density. This allowed for further model calibration by optimizing

biochemical parameters to fit experimental fibroblast and collagen data through the Gaussian

Process. Further, the model was also fit to cavity contraction data that was reflective of the

wound healing process directly after surgery by tuning mechanobiological parameters. The

optimized model allowed us to give insight into how model parameters and patient-specific

characteristics contribute to post-surgical deformation and cosmetic outcomes.

Chapter 4 concludes this work with a discussion about the significance of our findings

and the next steps for the model. This project betters the mechanistic understanding of the
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breast healing process by effectively simulating fibroblast infiltration, collagen remodeling,

and breast permanent deformation. Although previous models of wound healing after BCS

have been developed, we advanced these efforts by implementing a detailed mechanobio-

logical model coupled with the nonlinear mechanics of breast tissue, including large plastic

deformation and collagen remodeling. This knowledge has the potential to help surgeons

better develop individualized patient treatment plans that lead to decreased post-surgical

complications, decreased surgical procedures (e.g., re-excision, revision, and/or reconstruc-

tion), and improved patient satisfaction and quality of life.

21



2. ADAPTATION OF A COMPUTATIONAL

MECHANOBIOLOGICAL CUTANEOUS WOUND MODEL TO

EVALUATE HEALING FOLLOWING BREAST-CONSERVING

SURGERY

2.1 Motivation

Breast cancer is one the most prevalent cancer in women today, with approximately

287,500 new cases in the United States each year [  1 ]. Although there have been a high

number of cases, fatality rates have decreased dramatically throughout the past few decades,

allowing the 5-year survival rate to be 90.6% [ 2 ]. This can be attributed to the higher

frequency of breast cancer testing along with the improvement in surgical technique and

screening technology.

In recent years, breast-conserving surgery (BCS; otherwise known as lumpectomy) has

replaced mastectomy (the removal of the entire breast) as the preferred standard of care for

breast cancer. This procedure better preserves the healthy breast tissue, as surgeons make

an excision to only remove the breast tumor along with a small margin of healthy breast

tissue surrounding the tumor. As the excision is closed, this leaves a tissue cavity inside the

breast. The void slowly heals over time through the wound healing process, with four over-

lapping phases: hemostasis, inflammatory, proliferative, and remodeling. Directly after the

surgery is the hemostasis stage, in which a blood clot and/or seroma builds inside the cav-

ity. Inflammatory cells cause the formation of a cytokine gradient within the cavity, which,

in turn, promotes fibroblast proliferation and migration into the wound space. Fibroblasts

and actively differentiated myofibroblasts are further guided by collagen deposition, fiber

realignment, and scaffold contraction, creating stiff scar tissue within the contracted cavity.

The remodeling stage continues this process over an extended period of time, as the collagen

network is built back to form scar tissue that has weaker mechanical properties compared

to healthy tissue.

As a result of the cavity and the wound healing process, there are potential negative

oncologic and cosmetic outcomes that are difficult for surgeons to predict before surgery.
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The patient-to-patient variability exacerbates this problem due to variations in breast size,

tissue composition, and tumor geometry and location. Approximately 30% of patients who

undergo BCS report having poor cosmetic outcomes, which can potentially be damaging

to the patients self-image and quality of life [  13 ], [ 17 ]. These outcomes can vary from

hypertrophic scarring, dents/deformation in the breast, or breast asymmetry.

To overcome these challenges, we are developing a predictive computational mechanobi-

ology model that simulates patient-specific breast healing following BCS.. The creation of

surgical computational models has been a relatively new field, aiming to model the patients

biological response to the procedure [  25 ]. These tools have the potential to be used alongside

surgeons to better predict oncologic and cosmetic outcomes of BCS, allowing for patient-

specific treatment plans. To date, there have been two other known computational models

that aimed to simulate the lumpectomy cavity [ 26 ], [  28 ]. Both models utilized patient-specific

breast and cavity geometries informed by imaging data (e.g., magnetic resonance and/or sur-

face). While the models do incorporate biochemical signaling to simulate the wound healing

response, they lack complex descriptions of tissue growth and remodeling. The goal of our

model is to simulate a unique generalized breast geometry that better captures large de-

formations through collagen deposition and remodeling using a coupled biochemical and

enhanced biomechanical model.

In this work, we look to transform and adapt a computational model that was fit to

simulate cutaneous wound healing and make it breast-specific. This was done by performing

an extensive literature review to create a generalized breast geometry and inform breast

material properties, breast composition, and tumor/cavity location. Clinical data depicting

the contraction of the breast cavity (volumetric cavity change) was also evaluated and used

to inform the model. This data was fit to the model by optimizing four mechanobiological

parameters: the contractile force of fibroblasts (tρ) and myofibroblasts (tρ,c), rate of plastic

deformation (τλp), and the saturation of mechanical force by collagen (Kt). These physiolog-

ically relevant parameters are not noted in the literature and are found to be dependent on

one another. Therefore, we use the machine learning method of the Gaussian Process (GP)

to better understand the relationship between these parameters and find the ideal range for

each parameter based on the time-dependent cavity contraction profile.
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2.2 Methods

2.2.1 Mechanobiological Model

The computational mechanobiological model is a custom solver made through C++ code

that has been developed previously to explore cutaneous wounds and the effects of a newly

developed collagen dermal replacement scaffold [ 29 ]–[ 31 ]. Our iteration of the model utilizes

a unique generalized breast geometry, created, and meshed in COMSOL (COMSOL Multi-

physics, Burlington, MA), that simulates BCS. Specific parameter values from the previous

3D cutaneous wound model have also been modified slightly to be specific to the breast.

An overview of the model can be seen below, with a more detailed description available in

the following papers [  29 ]–[ 31 ]. Corresponding parameter values and descriptions for each

equation can also be found in Tables  2.6 and  2.7 in the Appendix.

The fibroblast proliferation and cytokine transport equations can be seen in eqs. (  3.7 ) and

( 2.2 ). These equations are interdependent on each other and inform time-dependent changes

in both the fibroblast density (ρ) and cytokine concentration (c) throughout the model. For

the cavity domain, the fibroblast density is initially at a value of 0 cells/mm3 and steadily

increases before reaching a steady-state value of ρ0= 1000 cells/mm3. This happens through

the diffusion of the fibroblasts, as they are guided by the inflammatory response released

by the cytokines. The cytokine concentration is initially at a value of c0= 1 × 10−4 g/mm3

in the cavity, as cytokines are released in response to the void. Throughout the wound

healing process, the cytokine concentration decays in response to less inflammation due to

the ongoing presence of fibroblasts and myofibroblasts. The fibroblast and cytokine source

terms are shown in eqs. (  3.8 ) and (  3.9 ).

ρ̇ = −∇ · Dρ∇ρ − ∇ · Dρ,cρ∇c + sρ (2.1)

ċ = −∇ · Dc∇c + sc (2.2)

sρ =
(

pρ + pρ,c
c

Kρ,c + c

)(
1 − ρ

Kρρ

)
ρ − dρρ (2.3)
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sc = (pc,ρc)
(

ρ

Kc,c + c

)
− dcc (2.4)

Coupled with both the fibroblast and cytokine density is the collagen (φ) deposition

( 3.15 ). The production of collagen follows the same timeline as the fibroblast concentration

through a similar generation term. The fibroblast and cytokine component in the decay

term delays collagen creation during the inflammatory stage, as the cytokine concentration

during this period is high. As time progresses, and the cytokine concentration decreases,

this decay term decreases as well, allowing for an increase in collagen production.

φ̇ =
(

pφ + pφ,c
c

Kφ,c + c
+ pφeH(Je)

)(
ρ

Kφ,ρ + φ

)
− (dφ + cρdφ,c)φ . (2.5)

For the mechanics of the model, we assume mechanical equilibrium through the balance

of linear momentum in the absence of a body force (eq.  2.6 ). Further, the deformation

gradient, which describes local geometry changes, is split into two separate components to

capture the elastic and plastic deformation (eq.  3.1 ).

∇ · σ = 0 (2.6)

F = FeFp (2.7)

The total stress is divided into two components considering active and passive stresses

(eq.  3.11 ). The passive material response is assumed to be hyperelastic through the strain

energy function shown in eq.  3.12 . The strain energy function accounts for the behavior of

the isotropic non-collagenous matrix in the ECM through a neo-Hookean model while also

considering the anisotropic mechanical response of the collagen fibers. The active stress is

defined through eq.  3.14 and is dependent on fibroblast, cytokine, and collagen density.

σ = σact + σpas (2.8)
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Ψ = φ

(
k0(Ie

1 − 3) + k1

2 (Je − 1)2 − 2k0 log(Je)

+ kf

2k2
exp

(
[k2(κIe

1 + (1 − 3κ)Ie
4) − 1]2

))
(2.9)

σact = ρ

(
tρ + tρ,cc

Kt,c + c

)(
φ

K2
t + φ2

)
Â (2.10)

Heavily dependent on the collagen synthesis rate is the change in plastic deformation

shown in eq.  3.16 . Plastic deformation occurs independently in the three directions of the

orthonormal frame a0, s0, n0 (α = {a, s, n}). With this, plastic deformation only occurs

beyond the set threshold of λcrit.

λ̇p
α = φ̇+ 1

τλp

〈λe
α − λcrit〉 (2.11)

2.2.2 Breast Composition and Material Properties

The two major types of tissue that are heterogeneously distributed across the breast

are fibroglandular and fat tissue. To accurately model the mechanical field of deformation,

the material properties of both tissue types are necessary. Han et al. (2011) performed a

patient-specific study across five patients determining the Youngs modulus ratio between

fibroglandular and fat tissue along with the Poissons ratio [  32 ]. In assuming adipose was

a reference material with Efat = 10 kPa, they found that three patients had a fibroglan-

dular:fat tissue Youngs modulus ratio between 2.97 and 4.23 [  32 ]. Further confirmation of

these approximations came with a comprehensive study done earlier by Gefen and Dilmoney

(2007), where they evaluated multiple studies with a Youngs modulus ratio between 1 and

6.7 [  33 ]–[ 39 ]. From this, we estimated for the model that Efat= 10 kPa and Ef ibroglandular= 40

kPa. We are also assuming that breast tissue is a nearly incompressible material, therefore,

the Poissons ratio is υ= 0.49.
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With the dispersion of the fibroglandular and fat tissue varying patient-to-patient, the

models generalized geometry was simplified to make the two tissue types homogeneous. This

allowed Efat and Ef ibroglandular to be combined into one Youngs modulus value based on the

percent tissue composition in the breast. Nelson et al. (2008) reported that the average tissue

composition for women is approximately 30% fibroglandular tissue and 70% fat tissue [  40 ].

Through the rule of mixtures, the calculated homogeneous breast tissue Youngs modulus

was EBT =19 kPa. This value along with the Poissons ratio can further be used to inform

parameters k0 and k1 in the strain energy function (eq.  3.12 ). These parameters are the neo-

Hookean contribution for linear stiffness and compressibility, which can be calculated using

equations for the shear modulus and bulk modulus (eqs.  2.12 and  2.13 ) [ 32 ]. For the average

breast composition implemented in the model, k0= 6.376 × 10−3 MPa and k1= 0.317 MPa.

Table  2.1 shows a summary of possible parameters based on the percent composition of each

tissue. Breast composition is classified through BI-RADS, which considers the percentage of

fibroglandular tissue in the breast [  41 ].

Table 2.1. Calculated material properties of the generalized breast geometry
for different breast compositions.

BI-RADS Classification
of Breast Composition

Frequency of Breast
Composition from

Nelson et al. (2008) [ 40 ]

Fibroglandular:Fat
Tissue Ratio

EBT (kPa) k0 (MPa) k1 (MPa)

90%:10% 37 1.242 × 10−2 0.617Extremely Dense 27.3%
80%:20% 34 1.141 × 10−2 0.567
70%:30% 31 1.040 × 10−2 0.517
60%:40% 28 9.396 × 10−3 0.467Heterogeneously Dense 23.9%

50%:50% 25 8.389 × 10−3 0.417

40%:60% 22 7.383 × 10−3 0.367Scattered Areas of
Fibroglandular Density

44.3%
30%:70% 19 6.378 × 10−3 0.317
20%:80% 16 5.369 × 10−3 0.267Almost Entirely Fatty 4.5%
10%:90% 13 4.362 × 10−3 0.217

k0 = E

2(1 + υ) (2.12)

k1 = E

3(1 − 2υ) (2.13)
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2.2.3 Model Geometry

The model implements a generalized breast geometry that is not unique to any patient.

Breast and cavity volumes were determined through the evaluation of available clinical data

that analyzed the contraction of a breast cavity after whole-breast irradiation. With cavity

contraction being an important component in our model, replicating these clinical parame-

ters would ensure the models predictability and accuracy. However, the initial time point of

these studies is not directly after surgery, as radiation treatment is often performed weeks

later. Since there is limited clinical data that fit our desired time frame from post-surgery to

six weeks, the radiation studies were assumed to be a reasonable alternative. Table  2.2 dis-

plays a series of results from five clinical radiation studies, which use multiple computerized

tomography (CT) scans to predict the breast and cavity volumes across time.

From the collected radiation studies, the Oh et al. (2006) initial geometry parameters

were used to represent the models generalized breast geometry. With a breast volume of

774 cm3 and a tumor cavity volume of 32.1 cm3, these measurements fit within the broad

range seen from the studies in Table  2.2 [ 42 ]. Another reason for choosing this specific

study was the time between surgery and initial measurements, as an average of 60.9 days is

the longest duration out of the evaluated studies [ 42 ]. This entails that the initial surgical

cavity is farther along in the wound healing process, allowing for better isolation in wound

contraction due to only whole-breast irradiation. This relationship was also explored by Oh

et al. (2006) and Kim et al. (2008) who found that change in cavity volume across the

radiation treatment and time elapsed between surgery to initial measurements showed an

inversely proportional trend [  42 ], [  43 ].

The specific location of the cavity was determined through the analysis of several studies

characterizing the location of tumors across the breast. These studies classify tumor location

based on five specified areas. The central portion is around the area of the nipple, and the

remaining region is split into four separate quadrants across the breast, as shown in Figure

 2.1 . Table  2.3 shows a summary of clinical studies evaluating tumor locations. Across each

study, it is reported that tumors are found in the upper outer quadrant approximately 50%
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of the time [ 13 ], [  44 ]–[ 47 ]. Based on these findings, our model assumed the placement of the

tumor cavity within the upper outer quadrant of the breast.

Table 2.2. Breast and cavity volume clinical data from clinical radiation studies.
Oh et al.

(2006) [ 42 ]
Hurkmans et al.

(2009) [ 48 ]
Flannery et al.

(2009) [ 49 ]
Prendergast et al.

(2009) [ 44 ]
Tersteeg et al.

(2009) [ 50 ]
Average Breast Volume

[range] (cm3)
774 [596-951] [487-2736] 1029 [240-3429.1] 1324 [282-3101] Not Available

Average Initial Cavity Volume
[range] (cm3)

32.1 [25.1-39.2] 40 [14.9-58.4] 38.2 [4.1-363.8] 36.3 78.7 [1.1-236]

Average Final Cavity Volume
[range] (cm3)

25.1 [18.8-31.5] 28, 27, 25 [14.9-58.4] 21.7 [4.7-164.6] 15.8 29.7 [1.3-123.6]

Average % Decrease in Cavity Volume 22.5% 30%, 32.5%, 37.5% 32% 44.6% 62%
Average Time Between

Measurements [range] (days)
[28-42] 21, 35, 49 44 49 [35-81.3] 37 [29-74]

Average Time Between Surgery and
Initial Measurements [range] (days)

60.9 [20.3-259] 34.5 [20.7-59.1] 31 [4-59] 21 27 [12-74]

Figure 2.1. Classification of the breast when locating tumors (right breast displayed).

Table 2.3. Clinical results of tumor placement throughout the breast.
Vos et al.

(2018) [ 13 ]
Rummel et al.

(2015) [ 45 ]
Prendergast et al.

(2009) [ 44 ]
Darbe

(2005) [ 46 ]
Kroman et al.

(2003) [ 47 ]
Number of Patients 69 980 36 212,677 35,319

Upper Outer Quadrant 47.8% 51.5% 50.0% 52.5% 50.0%
Upper Inner Quadrant 20.3% 15.6% 25.0% 14.6% 12.9%
Lower Outer Quadrant 18.8% 14.2% 8.0% 9.8% 17.0%
Lower Inner Quadrant 4.3% 8.1% 11.0% 6.4% 6.4%

Central Portion 8.7% 10.5% 6.0% 16.8% 7.3%
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These clinical findings were enough to create a final version of the visualized breast

geometry, shown in Figure  2.2 . The shape of the breast was assumed to be a hemisphere

while the cavity was approximated to be a sphere. In addition to the breast domain, a 2 cm

thick chest wall is also utilized for the application of the Dirichlet boundary condition.

Figure 2.2. Geometry and meshing of the generalized breast geometry show-
ing key geometry features, parameter values, and boundary conditions.

2.2.4 Gaussian Process

The Gaussian Process (GP) is a machine learning method that incorporates past collected

data, allowing for the prediction of non-tested parameter sets [  51 ]. In this case, the GP is

trained with a curve that tracks the volume of the cavity across time (wound contraction

curve), simulated using the coupled mechanobiological model, and visualized in ParaView

(ParaView, Clifton Park, NY). The corresponding four parameter values that were used to

create each curve were also used as input for the GP. The wound contraction was tracked for

six weeks, starting at the initial point of surgery, with 100 training points being taken from

each curve throughout the interval. This was used to find the underlying distribution for

each training curve, as the distribution updates as new training points are observed. These

fittings allow for the creation of a predictive regression line with a corresponding average

and variance for any combination of parameter inputs within their respective ranges, shown

in Table  2.4 [ 51 ].
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Table 2.4. Parameter and initial ranges used in the GP.
Parameter Description Initial Range

tρ (MPa) Contractile Force of Fibroblasts [7.5 × 10−7, 2 × 10−5]
tρ,c (MPa) Contractile Force of Myofibroblasts [2 · tρ, 10 · tρ]

Kt (-) Saturation of Mechanical Force by Collagen [0.05, 0.5]
τλp (hr) Rate of Plastic Deformation [0.00485, 0.2425]

To assure that we were capturing every aspect of the parameter space for the wound

contraction training curves, we used the Latin hypercube sampling algorithm (LHS). This is

a method of random sampling that effectively distributes samples across the parameter space,

which can be efficient in reducing the number of runs necessary to capture the parameter

space. LHS was performed four separate times, with 25 parameter sets per run. For all

sampling done with LHS, only tρ, τλp , and Kt were varied in their respective ranges, while

tρ,c was constant at 10 · tρ. We then varied tρ,c at the two values of 2 · tρ and 5 · tρ, while

keeping all other parameter values constant. Values of tρ, τλp , and Kt were selected based

on existing combinations found through the prior LHS sampling. This method produced

25 more training curves. In combining the two methods, a total of 97 training curves were

simulated, as all simulated curves that failed to converge before reaching the six-week time

frame were not used. Following the proper training of the GP, predictive regression lines

can be created confidently through the selection of any parameter combination within the

ranges.

The morphology of the contraction curves was further analyzed to see if they fit within

the targeted solution based on results from Oh et al. (2006). This study found the average

decrease in the cavity volume to be 22.5%, as shown in Table  2.2 [ 42 ]. As we modeled

our breast geometry from this study, a similar contraction level should be shown in the

targeted predictive curves. Due to this, we have the target steady-state wound contraction

between a 20% and 25% cavity volume decrease. Another trend that is shown across each

contraction curve is the contraction dip. The contraction dip is calculated as the difference

between the steady-state contraction value and the maximum contraction level across the six
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Table 2.5. Target parameter value ranges found using the GP.
Parameter Description Initial Range Target Range

tρ (MPa) Contractile Force of Fibroblasts [7.5 × 10−7, 2 × 10−5] [3.5 × 10−6, 2 × 10−5]
tρ,c (MPa) Contractile Force of Myofibroblasts [2 · tρ, 10 · tρ] [2 · tρ, 10 · tρ]

Kt (-) Saturation of Mechanical Force by Collagen [0.05, 0.5] [0.05, 0.243]
τλp (hr) Rate of Plastic Deformation [0.00485, 0.2425] [0.00485, 0.07275]

weeks. From collected clinical data and literature, a severe contraction dip has never been

reported throughout the healing of a breast cavity [  12 ], [  48 ]. Therefore, our targeted wound

contraction dip is any value less than 15%. The steady-state wound contraction and the

contraction dip were recorded for every predictive wound contraction curve. Any predicted

curve that had a predictive variance above 0.001 was deemed untrained and excluded from

the results.

2.3 Results and Discussion

2.3.1 Target Parameter Range

The desired parameter values for the outputted predictive curves were found by linearly

spacing each of the four parameters in intervals of eight, creating the combination to allow

for 4096 predictive wound contraction curves. When categorizing these curves based on

steady-state contraction and the contraction dip, only 24 curves fit within the target steady-

state contraction values (0.75-0.80) and the target contraction dip values (≤0.15). The four

varying parameter values were captured for each target curve and were used to narrow down

the initial parameter range (Table  2.4 ). The found target parameter range can be seen in

Table  2.5 . In comparison to the initial range that was used for the GP, it can be seen that

to fit the target morphology, tρ must not have a value in the lower end of the initial range,

τλp and Kt must be on the lower end of their respective ranges, and tρ,c was found to have

the exact same target range as the initial set range.
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2.3.2 Parameter Relationship

To better define the relationships between the parameters, the predictive contraction

curves, and their corresponding morphology was displayed in two-dimensional (2D) contour

plots. This was done by linearly spacing only two parameters in intervals of 50, creating

the combination to allow for 2500 predictive wound contraction curves. The two unvaried

parameters were kept constant at a value that fits well within the target range from Table

 2.5 .

Figure  2.3 displays the morphology contour plots when varying Kt and tρ. It was found

that both cavity contraction and contraction dip increase as tρ increases. With this, in-

creasing Kt resulted in decreasing cavity contraction and contraction dip. These opposite

effects result in high cavity contraction and contraction dip for high tρ and low Kt values.

Furthermore, large decreases in both cavity contraction and contraction dip were more prone

to occur for lower values of Kt. This evidence suggested that neither parameter is dominant

over the other, as both play pivotal roles in characterizing the steady-state contraction and

contraction dip.

The contour plots varying Kt and tρ,c are shown in Figure  2.4 . The relationship with Kt

and the corresponding morphology is very similar to the contour shown in Figure  2.3 . With

this, tρ,c is found to have similar tendencies as tρ. This means as tρ,c increases, both the

cavity contraction and the contraction dip increase. The difference comes with the influence

of tρ,c, as contours seem to be more horizontal compared to Figure 4. This shows that the

influence tρ,c has on the morphology is not as significant as tρ.

The next contour plot evaluated was the relationship between τλp and tρ, shown in Figure

 2.5 With the impact of tρ on the morphology already analyzed, the focus of this contour is

on the trends shown with τλp and its impact on the morphology. The contour plots show a

vertical relationship between the parameters, meaning that tρ has a clearly greater influence

compared to τλp . In these contours, as τλp increases, the cavity contraction decreases slightly,

and the contraction dip increases.

To better show the influence that τλp has, Figure  2.6 displays the contour plots between

τλp and tρ,c. The steady-state contraction contour displays a clear positive slope while the
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Figure 2.3. Contour plots and corresponding reference wound contraction
curves varying the force of fibroblasts (tρ) and the saturation of mechanical
force by collagen (Kt) with constants τλp= 0.0388 and tρ,c=10 · tρ.

contraction dip shows a negative sloping contour, supporting the fact that both τλp and tρ,c

have a very similar influence on the curve morphology. One interesting coupling shown is

that the contraction dip is also more sensitive to changes in tρ,c for higher values of τλp .

2.4 Conclusion

We were able to successfully calibrate the computational model using human clinical data

from the literature and effectively simulate the breast healing response following BCS. Fur-

thermore, by using the GP to gain insight into the uninformed parameter space and identify

target morphology for the wound contract process, we successfully narrowed down the range

of each parameter while obtaining a deeper understanding of the parameter relationships.
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Figure 2.4. Contour plots and corresponding reference wound contraction
curves varying the force of myofibroblasts (tρ,c) and the saturation of mechan-
ical force by collagen (Kt) with constants tρ=6.25 × 10−6 and τλp= 0.0388.

Increasing the contractile force of the fibroblasts and myofibroblasts (tρ and tρ,c) was found

to increase cavity contraction and contraction dip while the saturation of mechanical force

by collagen (Kt) had the opposite effect. Finally, increasing the rate of plastic deforma-

tion (τλp) decreased the cavity contraction and increased the contraction dip. With this, tρ

and Kt were found to be very influential on cavity contraction when compared to tρ,c, and

τλp . The clear definitions of the parameters showed that machine learning processes, like

the GP, provide a useful and computationally inexpensive method for prioritizing and defin-

ing mechanobiological healing parameters for use in the computational BCS model. Future

efforts of the model will focus on the further calibration of the model based on available
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Figure 2.5. Contour plots and corresponding reference wound contraction
curves varying the force of fibroblasts (tρ) and the rate of plastic deformation
(τλp) with constants Kt=0.15 and tρ,c=10 · tρ.

patient-specific BCS data in the presence and absence of radiation therapy and preclinical

animal data evaluating new breast restoration (e.g. soft tissue filler) therapies.
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Figure 2.6. Contour plots and corresponding reference wound contraction
curves varying the force of myofibroblasts (tρ,c) and the rate of plastic defor-
mation (τλp) with constants tρ=6.25 × 10−6 and Kt=0.15.
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2.5 Appendix

Table 2.6. Parameters for the biochemical model. Parameters listed as esti-
mated were selected in this work or modified from our previous wound healing
models [  30 ], [  31 ].

Parameter Description Value Reference
Dρ [mm2/hr] Cell Diffusion Coefficient 0.0833 [ 52 ], [  53 ]

Dρ,c [mm3/mol/hr] Chemotaxis Coefficient 1.66 × 10−4 [ 30 ], [  54 ]
Dc [mm2/hr] Cytokine Diffusion Coefficient 0.01208 [ 54 ]–[ 56 ]

pρ [1/hr] Fibroblast Proliferation 0.017 [ 52 ]
pρ,c [1/hr] Cytokine-Increased Fibroblast Proliferation pρ/2 [ 31 ]

Kρ,c [-] Proliferation Saturation due to Cytokine 1 × 10−5 [ 30 ]
pρ,e [1/hr] Mechanoregulation of Fibroblast Proliferation pρ/2 [ 31 ]

Kρ,ρ [-] Fibroblast Division Saturation 10, 000 [ 52 ]
dρ [1/hr] Fibroblast Death Rate pρ(1 − ρphys/Kρρ) [ 52 ]
pc,ρ [1/hr] Fibroblast Secretion of Cytokine 9 × 10−19 [ 30 ]
pc,e [1/hr] Mechanoregulation of Cytokine 3 × 10−18 [ 30 ]

Kc,c [mol/mm3] Cytokine Saturation 1 [ 30 ]
dc [1/hr] Cytokine Death Rate 0.01 Estimated

ρ0 [cells/mm3] Nominal Fibroblast Density 1000 [ 57 ], [  58 ]
c0 [g/mm3] Initial Cytokine Concentration Inside Cavity 1 × 10−4 [ 30 ]

Table 2.7. Parameters for the fully coupled mechanobiological model. Pa-
rameters listed as estimated were selected in this work or modified from our
previous wound healing model [  30 ], [  31 ].
Parameter Description Value Reference
k0 [MPa] Linear Stiffness 6.375 × 10−3 Estimated
k1 [MPa] Compressibility 0.317 Estimated
kf [MPa] Fiber Stiffness 0.015 [ 59 ]

k2 [-] Nonlinear Stiffening 0.048 [ 59 ]
γe [-] Mechanoregulation of Fibroblast Proliferation 5 [ 30 ]
ϑe [-] Fibroblast Division Saturation 2 [ 30 ], [  60 ]

Kt,c [ − ] Traction Saturation due to Cytokine 1 × 10−5 [ 30 ]
Kφ,c [ − ] Collagen Production Saturation due to Cytokine 1 × 10−4 [ 30 ]
pφe [1/hr] Collagen Production Activated by Stretch pφ [ 30 ]
Kφ,ρ [ − ] Collagen Production Saturation due to Collagen Fraction (ρ0 ∗ pφ)/dφ − 1 [ 30 ]
dφ [1/hr] Collagen Degradation 9.7 × 10−4 [ 61 ]
dφ,c [1/hr] Collagen Degradation Activated by Cytokine 4.85 × 10−4 [ 61 ]

τω [hr] Time Constant for Reorientation 10/(Kφ,ρ + 1) [ 30 ]
τκ [hr] Time Constant for Dispersion 1/(Kφ,ρ + 1) [ 30 ]
γκ [-] Shape of Dispersion Rate Curve 2 [ 30 ]
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3. COMPUTATIONAL MECHANOBIOLOGY MODEL TO

ASSIST WITH PREDICTION OF HEALING AND COSMETIC

OUTCOMES FOLLOWING BREAST-CONSERVING

SURGERY

3.1 Introduction

Breast cancer is the most common cancer in women, with approximately 287,850 women

in the United States alone being diagnosed in 2022 [  1 ]. Increased awareness, early detection

with frequent screenings, and expanded treatment options have improved breast cancer sur-

vival rates over time, with recent 5-year survival rates reported to be 90.6% [  2 ]. Given these

high survival rates, increased focus has been placed on long-term outcomes and patient qual-

ity of life after treatment. At present, the lowest rates of cancer recurrence are associated with

surgical treatment options [  62 ], [ 63 ]. As a result, breast cancer patients and their surgeons

are often faced with choosing between breast-conserving surgery (BCS; otherwise known as

lumpectomy) or mastectomy (removal of the whole breast), a decision-making process that

is challenging, multi-faceted, and stressful. In recent years, BCS has replaced mastectomy as

the preferred standard of care for early-stage breast cancer, since BCS has similar or improved

survival rates and decreased risk of complications compared to mastectomy [ 5 ]–[ 8 ]. With the

goal of preserving healthy breast tissue and breast appearance, BCS involves the removal of

the cancerous tissue along with a small margin of healthy tissue. As shown in Figure  3.1 ,

the resulting tissue cavity undergoes a wound healing process that ultimately leads to vari-

able levels of tissue contraction, scar tissue formation, and breast deformation (i.e., cosmetic

defects, including dents, distortions, and asymmetries between breasts). The prognosis of a

good cosmetic outcome typically weighs heavily on physician and patient selection of BCS

over mastectomy, since good aesthetics has been associated with improved patient psycho-

logical recovery and quality of life [ 9 ], [  10 ]. However, the complex nature of the tissue repair

process as well as significant variations in patient-specific characteristics, make it extremely

challenging, if not impossible, for surgeons to predict post-surgical healing, oncologic, and

cosmetic outcomes. The inability to predict healing and breast deformation outcomes stems
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from the complex interplay between tissue mechanics, inflammatory-mediated biochemical

and cellular signaling, and (myo)fibroblast mechanobiology during the tissue repair process.

Therefore, there is a need for an improved mechanistic understanding of the multi-scale

breast healing process along with definition of critical patient-specific characteristics that

affect BCS outcomes. With this knowledge, surgeons and their patients can better develop

individualized treatment plans that lead to decreased post-surgical complications, decreased

surgical procedures (e.g., re-excision, revision, and/or reconstruction), and improved patient

satisfaction and quality of life [  5 ].

Figure 3.1. Schematic of cavity healing process following removal of breast
tumor by lumpectomy. Tumor is excised along with a small margin of sur-
rounding healthy tissue, forming a fluid-filled cavity. The surgical void un-
dergoes the normal wound healing process, with hemostasis and inflammatory
phases resulting in the creation of a cytokine gradient within the cavity. In
turn, cytokines induce fibroblast proliferation, resulting in collagen deposition
and scar formation through collagen fiber alignment. Fibroblast differentiation
into myofibroblasts further promotes contraction of the cavity and surround-
ing tissue, which may contribute to breast deformities.

Given that few objective criteria and limited surgical decision-making tools exist, pre-

operative predictions of healing, oncologic, and breast cosmetic outcomes remain largely

dependent on a surgeons past training and experience [  64 ]. BCS surgical planning has been

an evolving area over the past several years, as physicians work to further inform and stan-
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dardize the process. In 2014 and 2016, the Society of Surgical Oncology (SSO), the American

Society of Radiation Oncology (ASTRO), and the American Society of Clinical Oncology

(ASCO), published consensus guidelines on adequate surgical margins when treating various

types and stages of breast cancer with BCS and whole breast irradiation [  3 ], [  65 ]. Addi-

tionally, surgical decision trees have been developed based on correlative analyses of human

BCS patient data, including tumor-to-breast volume percentage (TBVP), tumor location,

breast cosmetic outcome assessments, and quality of life surveys [  13 ], [  23 ], [  24 ]. While these

decision-making tools provide recommendations on treatment thresholds (i.e., when to treat

a patient with BCS versus mastectomy) based on tumor size and location, they have yet to

receive widespread adoption. Feedback regarding patient satisfaction and quality of life, as

provided through BREAST − QT M questionnaires and other patient surveys, has informed

surgeons of other patient-specific factors affecting BCS outcomes [ 66 ]. More specifically, re-

sults from multivariable clinical analyses revealed that increased excised breast volume per-

centage (EBVP), decreased breast density (as measured by BI-RADS rankings), increased

patient age and body mass index, breast irradiation, and concomitant adjuvant chemother-

apy and radiotherapy often negatively influence surgical outcomes and patient satisfaction.

[ 14 ], [  15 ], [  67 ]–[ 69 ]. In summary, since patient-specific characteristics are intertwined and

significantly affect post-lumpectomy healing and cosmetic outcomes, there is a need for a

predictive tool to better understand the mechanistic interplay between these contributing

factors.

Computational models provide useful tools that can assist with informing, predicting,

and simulating wound healing outcomes, including surgical wounds associated with BCS. In

general, wound healing can be modeled as four, overlapping phases: hemostasis, inflamma-

tion, proliferation (or granulation), and remodeling [  29 ]. To date, numerous numerical-based

approaches have been developed to describe healing of superficial skin layers, including the

epidermis and/or the dermis [  70 ]. However, unlike skin wounds, which have an air-tissue

interface, BCS yields a fully-enclosed cavity or void that resides relatively deep within the

breast tissue. Healing of these deep, soft tissue wounds begins immediately following cavity

creation, with blood clots (hematomas) and/or serous fluid (seromas) often filling the void

[ 12 ]. The fibrin matrix, with its limited persistence and mechanical integrity, serves as a
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provisional scaffold, allowing local tissue contraction while promoting inflammation and cel-

lularization. Platelet degranulation and cytokine secretion by inflammatory cells contributes

to the formation of a cytokine gradient within the cavity, which, in turn, promotes fibroblast

proliferation and migration into the wound space. Fibroblast proliferation, migration, and

differentiation into myofibroblasts are further guided by fibrillar collagen deposition, and

scaffold reorganization/contraction, ultimately creating a dense, stiff scar tissue within the

contracted cavity. Scar tissue formation and remodeling over time are perhaps the most

unpredictable aspects of BCS, since it is known to contribute to pain, breast deformations,

and altered breast consistency, all of which negatively affect women emotionally and psy-

chologically [ 17 ].

In recent years, computational models have also been developed for the purpose of pre-

dicting specific surgical outcomes following BCS. For example, Garbey and collaborators

proposed a two-dimensional (2D) model to predict time-dependent changes in breast shape

following lumpectomy [  26 ], [ 27 ]. This model was calibrated using 1D MRI (magnetic res-

onance imaging) profiles obtained for a single patient [ 27 ]. Vavourakis and collaborators

developed a 3D finite element model to predict breast deformation following BCS. Model

validation was performed using a combination MRI and optical surface scans for 4 patients

obtained before and 6 to 12 months after BCS [  28 ]. Unfortunately, computational models

developed to date lack a thorough calibration against experimental or clinical breast healing

data. Additionally, present-day models do not fully capture the complex couplings between

cellular mechanobiological activity, extracellular matrix (ECM) deposition and remodeling,

and cavity and breast plastic deformation over time. Descriptions of collagen deposition,

granulation tissue formation, and remodeling are especially important to capture, as the

breast cavity and surrounding tissue will undergo large deformations and permanent con-

tracture.

In this paper, we work to address this gap in wound mechanobiology modeling following

BCS by presenting a theoretical and computational framework calibrated against animal

model and clinical data. Here, we adapt our previously developed experimentally-calibrated

model of dermal wounds that accounts for couplings between cellular mechanobiological ac-

tivity, plastic deformations, and tissue remodeling [  31 ], [ 71 ]. This informed 3D finite element
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model is then used to inform a machine learning surrogate model in order to evaluate the

effect of specific mechanobiological parameters and patient-specific characteristics on healing

and breast deformation outcomes. The proposed model has the potential to assist surgeons in

creating an individualized treatment plan for patients that better predict oncologic, healing,

and cosmetic outcomes.

3.2 Methods

The computational breast mechanobiological model represents a custom finite element

solver implemented in C++. The link to the code repository is provided at the end of

the manuscript. The software builds upon and extends our previous dermal wound healing

models [ 29 ]–[ 31 ]. An overview of the model and associated adaptations is discussed below,

with more detailed descriptions available in our previous work [  30 ], [  31 ]. Detailed parameter

descriptions and values are included in Tables  3.3 and  3.4 in the Supplementary Material.

3.2.1 Geometry

We considered the two breast lumpectomy geometries shown in Figure  3.2 . Both geome-

tries were created and meshed in COMSOL (COMSOL Multiphysics, Burlington, MA). One

geometry (Fig.  3.2 A) corresponded to a generalized porcine breast based on a preclinical

porcine lumpectomy study by Puls et al. (2021) [ 12 ]. Available ultrasound and explant

images were used to estimate the dimensions of the ellipsoidal cavity (a = b = 1.5 cm,

c = 0.6 cm) along with a cavity depth of 1.15 cm. The cavity represented approximately

one-quarter of the total breast volume (quadrantectomy). The breast was assigned the shape

of a half-ellipsoid (a = b = 2.32 cm, c = 2 cm), enclosed within a rectangular region (15 cm

by 15 cm by 2 cm) of connective tissue.

An idealized human breast lumpectomy geometry was developed based on average breast

and cavity sizes reported in a human clinical study by Prendergast et al. (2009) [  44 ]. As

shown in Figure  3.2 B, the breast was modeled as a hemisphere with a radius of 8.58 cm and

the cavity was modeled as a sphere with a radius of 3.02 cm. Since the upper outer quadrant

is reported to be the most prevalent tumor location [  13 ], [  44 ]–[ 47 ], this cavity location was
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assumed in the model. Breast cavity contraction over a four-week period following BCS, as

quantified by Prendergast and co-workers, was also used for model calibration.

Figure 3.2. Meshing, initial conditions, and boundary conditions for the (A)
porcine and (B) human breast geometries. For the porcine geometry, the breast
was assumed to be a half-ellipsoid (22.60 cm3) and the cavity was assumed to
be an ellipsoid (5.65 cm3), with both dimensions based on a quadrantectomy.
The tissue external to the breast was modeled as connective tissue. For the
human geometry, the breast was assumed to be a hemisphere with a volume of
1,324 cm3 and the cavity was assumed to be a sphere with a volume of 115.5
cm3. The Dirichlet boundary condition was applied to the interior surface of
the 2-cm thick chest wall while the exterior surface of the breast was a free
boundary.

3.2.2 Kinematics

The reference geometries displayed in Figure  3.2 are described with material coordinates

X ∈ B0 ⊂ R3. Through the deformation mapping ϕ, the time-dependent configuration,
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Bt, is obtained as x = ϕ(X, t). The fibroblast density, cytokine concentration, and collagen

density are ρ(x, t), c(x, t), φ(x, t), respectively. The collagen matrix is further defined through

the fiber dispersion κ(x, t) and the preferred fiber orientation a0(x, t). The deformation

gradient F = ∂x/∂X, which describes local geometry changes, can be split into two separate

components capturing the elastic and plastic deformation

F = FeFp . (3.1)

Furthermore, the plastic deformation tensor is described with three scalar fields

Fp = λp
aa0 ⊗ a0 + λp

ss0 ⊗ s0 + λp
nn0 ⊗ n0 , (3.2)

where vectors a0, s0, n0 form an orthonormal basis around the preferred fiber orientation

a0.

3.2.3 Constitutive and Balance Equations

The change in the fields introduced in the previous section are classified into three cate-

gories. The biological fields ρ, c satisfy mass balance in the form of reaction-diffusion partial

differential equations (PDEs). The microstructural fields φ, λp
a, λp

s, λp
n, κ, a0 do not have a dif-

fusion component and their change is local. The microstructural fields are directly coupled

to the mechanical field of deformation ϕ, which satisfies momentum balance.

Biochemical Model

The fibroblast and cytokine concentrations satisfy standard advection-diffusion transport

equations

ρ̇ = ∇ · Qρ + sρ (3.3)

ċ = ∇ · Qc + sc , (3.4)
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where Qρ, Qc are flux terms akin to Fickian diffusion

Qρ = −Dρ(φ, c)∇ρ (3.5)

Qc = −Dc∇c . (3.6)

While the diffusion coefficient for the cytokine is assumed constant, cell diffusion (migra-

tion) is affected by both cytokine and collagen concentrations,

Dρ = dρ,φ

v2
ρ(φ)
6 + dρ,c

c

Kρ,c + c
+ dρ,0 (3.7)

with parameters dρ,φ, dρ,c, dρ,0. The first term in eq.(  3.7 ) reflects the direct dependence

of fibroblast speed on collagen density, while the second and third terms are related to

the baseline diffusion coefficient for cells in native tissue and their change in diffusivity

with c considering Michaelis Menten kinetics. The initial profile for vρ(φ) was estimated

through available in-vivo wound healing data [  12 ], [ 72 ]. The expression was then modified

through a parameter ∆, which skews the collagen concentration associated with maximum

fibroblast speed. Additional information about vρ(φ) and ∆ can be found in Figure  3.11 in

the Supplementary Material.

The source terms sρ, sc are

sρ =
(

pρ + pρ,c
c

Kρ,c + c
+ pρ,eH(Je)

)(
1 − ρ

Kρρ

)
ρ − dρρ (3.8)

sc = (pc,ρc + pc,eH(Je))
(

ρ

Kc,c + c

)
− dcc , (3.9)

with parameters pρ, pρ,c, Kρ,c, pρ,e, Kρρ, dρ for the fibroblast source, and pc,ρ, pc,e, Kc,c, dc

for the cytokine. The values of all parameters are listed in Table S1 in the Supplementary

Material.

Note that most dependencies of the biological fields are on other biological fields, but

some couplings exist in the microstructural and mechanical fields. For instance, cell migra-

tion in eq. ( 3.7 ) depends on the microstructural field φ through vρ defined in the Supple-
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mentary Material. The biological fields are also coupled to the mechanical field through the

mechanosensing logistic function, H(Je) in eqs.  3.8 and  3.9 described below.

Mechanical Model

Balance of linear momentum in the absence of body force is reduced to the standard

equation

∇ · σ = 0 . (3.10)

However, here the total stress is split into two separate components for active and passive

stress contributions

σ = σact + σpas . (3.11)

The active stress is described in the following section devoted to the mechanobiological

couplings. In this section, we focus on the passive part. The passive material response is

assumed hyperelastic with the strain energy function

Ψ = φ

(
k0(Ie

1 − 3) + k1

2 (Je − 1)2 − 2k0 log(Je)

+ kf

2k2
exp

(
[k2(κIe

1 + (1 − 3κ)Ie
4) − 1]2

))
(3.12)

parameterized by k0, k1, k2, kf . It is also a function of the microstructure fields φ, κ, and

of the elastic invariants of the deformation Ie
1, Je, Ie

4. Note that only the elastic part of the

deformation contributes to the strain energy. Based on the split eq.(  3.1 ), the elastic volume

change is Je = det(Fe), the first isotropic invariant is the trace of the elastic right Cauchy

Green tensor Ie
1 = tr(Fe>Fe), and the fourth invariant describes the deformation in the

preferred fiber direction Ie
4 = a0 · Fe>Fea0 = a · a, with a representing the deformed fiber

orientation.

The parameters k0 and k1, which correspond to a neo-Hookean contribution, were deter-

mined using the rule of mixtures assuming that human and porcine breast tissue, on average,
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is composed of 70% adipose tissue and 30% fibroglandular tissue [  40 ]. Han et al. (2011) and

several other studies were used to inform material properties for adipose and fibroglandular

tissue, as we estimated Young’s modulus for adipose and fibroglandular tissue to be 10 kPa

and 40 kPa, respectively [  32 ]–[ 39 ], [  73 ]. The parameter kf denotes collagen fiber stiffness for

the scar tissue [  59 ]. Mechanical parameter descriptions and values are included in Table  3.4 

in the Supplementary Material.

Mechanobiological Coupling

As mentioned before, the biological fields are linked to the mechanical deformation by

the logistic function H(Je) in eqs.  3.8 and  3.9 . This function encodes a mechanosensing

activation as the deformation deviates from homeostasis

H(Je) = 1
1 + exp(−γe(Je − ϑe)) , (3.13)

with parameters γe, ϑe. Another coupling that appeared already in eq. (  3.11 ) is the

active stress, which is defined as

σact = ρ

(
tρ + tρ,cc

Kt,c + c

)(
φ

K2
t + φ2

)
Â (3.14)

which depends on the fibroblast density ρ, the cytokine c, the collagen density φ, and the

preferred fiber orientation through the structure tensor Â = A/tr(A), A = I+(1−3κ)a⊗a.

The parameters of the active stress eq. (  3.14 ) are tρ, tρ,c, Kt, Kt,c, with parameter descriptions

and values provided in Table  3.4 in the Supplementary Material.

The other mechanobiological coupling that was introduced earlier is the fibroblast mi-

gration dependence on collagen density in a non-monotonic fashion through vρ in eq. (  3.7 )

[ 31 ].

The last set of equations needed to close the model are the rate equations for the mi-

crostructural fields. Collagen deposition is encoded by

φ̇ =
(

pφ + pφ,c
c

Kφ,c + c
+ pφeH(Je)

)(
ρ

Kφ,ρ + φ

)
− (dφ + cρdφ,c)φ , (3.15)
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with dependence on both cell density and cytokine concentration. Descriptions and

values of parameters pφ, pφ,c, Kφ,c, pφe , Kφ,ρ, dφ, dφ,c) in eq. ( 3.15 ) are included in Table  3.4 

in the Supplementary Material. The change in plastic deformation occurs independently in

all three directions

λ̇p
α = φ̇+ 1

τλp

〈λe
α − λcrit〉 (3.16)

where α = {a, s, n} are the three directions of the orthonormal frame a0, s0, n0. The term

φ̇+ in eq. ( 3.16 ) is the positive part of the rate of change of collagen (i.e., the new collagen

deposition rate), which contributes to deformation plastification. The Macaulay brackets 〈•〉

specify that plastic deformation only occurs beyond some threshold deformation λcrit.

Lastly, the change in preferred collagen fiber orientation and dispersion are based on the

eigenvalues of the deformation

ȧ0 = λ1

(
2πφ̇+

τω

)
(I − a0 ⊗ a0)e1 , (3.17)

where λ1, e1 are the largest eigenvalue and corresponding eigenvector, respectively. Eq.

( 3.17 ) essentially reorients the principal fiber direction to the direction of maximum principal

stretch, with time constant τω dependent on collagen deposition φ̇+. The fiber dispersion

change

κ̇ = φ̇+

τκ

(
1
3

λγκ
2

λγκ
1

− κ

)
(3.18)

depends on the ratio of the first two eigenvalues with a power law parameterized by γκ

and the time constant τκ.

3.2.4 Experimental Data

Time-dependent changes in fibroblast and collagen densities were informed by histopatho-

logical data from the porcine lumpectomy study [ 12 ]. Hematoxylin and eosin (H&E) stained

cross-sections of breast explants were analyzed 1 week, 4 weeks, and 16 weeks following

lumpectomy and compared to normal porcine breast tissue (Fig.  3.3 ). An image of each
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cross-section was post-processed in Aperio ImageScope (Leica Biosystems, Vista, CA) and

25 individual regions (500 x 500 µm2) spanning the cavity domain were extracted. These re-

gions were further processed in ImageJ (National Institutes of Health, Bethesda, MD), where

multiple color balance filters were applied to quantify the number fibroblasts, red blood cells

(RBCs), and immune cells per region. Fibroblast number per area was used to calculate

fibroblast volume density, assuming a tissue section thickness of 4 µm. Additional details of

this image analysis process are provided in the Supplementary Material. The H&E stained

cross-sections were also used to determine collagen density by correlating collagen density

with the intensity of eosin-stained collagen fibers. Eosin intensity for a region of interest

was determined using ImageJ and normalized to connective tissue values within adjacent

healthy breast tissue values. When calculating normalized collagen densities, an average

breast composition of 70% adipose tissue and 30% fibroglandular tissue was assumed [ 40 ].

Temporal changes in cytokine concentration were informed by prior human clinical studies

that evaluated cytokine levels in seroma fluid, which commonly fills the breast void following

surgery. Seroma fluid is known to be composed of cytokines that impact the inflammation

and proliferation phases of healing [ 16 ]. It has also been reported that seromas formed

following BCS resolve within approximately 4 weeks [  74 ]. Based on this, it was assumed

that cytokine levels decayed exponentially over approximately a 4-week time period.

3.2.5 Model Calibration Using Gaussian Processes

The finite element model defined in previous sections is computationally expensive and

impractical for tasks such as model calibration or sensitivity analysis. Therefore, to calibrate

the model against experimental porcine data and human clinical data, we leveraged Gaussian

process (GP) surrogates [  51 ]. The methodology for GP model calibration is illustrated in

Figure  3.4 . Calibration was performed with two separate GPs. First, a submodel consisting

only of the biological fields ρ, c and the microstructural field φ was isolated out of the

complete set of equations with the goal of fitting the porcine histology data (i.e., fibroblast

and collagen densities). A second GP was constructed for the fully coupled mechanobiological

model. This two-stage approach was used to i) inform biological parameters that could, in

50



Figure 3.3. Overview of histological image analysis process used to quan-
tify fibroblast and collagen densities within (A) normal porcine breast tissue
and porcine breast tissue undergoing progressive healing at (B) 1 week, (C) 4
weeks, and (D) 16 weeks following simulated lumpectomy (quadrantectomy).
Individual regions (500 x 500 µm2) of H&E-stained cross-sections (top left in-
set) were processed using a particle analyzer (top right inset) for identification
and enumeration of fibroblasts (blue), RBCs (red), and immune cells (green).
Collagen density was determined by normalizing regional eosin intensity values
for connective tissue within healing breasts to eosin intensity in normal breast
connective tissue.

turn, be compared with other computational models lacking mechanobiological couplings,

and ii) calibrate the mechanobiological coupling terms, for which limited prior information

exists.

For the first GP surrogate, 5 parameters Θb = {pρ,c, dρ,φ, ∆, pφ, pφ,c} were sampled from

the ranges reported in Table  3.1 using Latin Hypercube Sampling (LHS). All other parame-

ters affecting the submodel {ρ, c, φ} were assigned values from literature or calculated in order
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Figure 3.4. GP methodology used to identify optimum biochemical and
mechanobiological parameters that best fit porcine lumpectomy histology re-
sults and human clinical contraction data. The computational model was run
several times, sampling across the entire parameter space to train the GP.
Once well-trained, the GP was then used to evaluate a large number of pa-
rameter combinations spanning the entire parameter space. By comparing GP
generated simulations to experimental and clinical data through RMSE, spe-
cific model parameters were optimized.

to satisfy a physiological steady state. In other words, the 5 parameters Θb were identified

as the adjustable parameters for model calibration. To train the GP, 100 different parameter

combinations of Θb were generated and applied to the finite element submodel, with fibrob-

last and collagen density values at the center of the cavity ρC(t), φC(t) representing model

outcomes of interest. A total of 196 time steps were extracted from the simulation, covering

the time t ∈ [0, 16] weeks. Following calibration, the GP model was used for minimization
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Table 3.1. Biochemical and mechanobiological parameters with established
initial ranges that were evaluated and optimized using the biochemical or
mechanobiological GP.

Parameter Description Range Optimized Value
Biochemical GP Parameters (Θb)

pρ,c [1/hr] Cytokine-Increased Proliferation [0.0092641, 0.04632] 0.015314
dρ,φ [-] Fibroblast Diffusion Scaling Constant [62.6793, 12472.9067] 1582.3
∆ [-] Skewness of Fibroblast Speed vρ(φ) [0, 1] 0

pφ [1/hr] Collagen Production [3.633 × 10−9, 3.633 × 10−7] 1.4 × 10−8

pφ,c [1/hr] Collagen Production Activated by Cytokine [3.633 × 10−9, 3.633 × 10−7] 7.0 × 10−8

Mechanobiological GP Parameters (Θm)
tρ [MPa] Contractile Force of Fibroblasts [9.08244 × 10−8, 5.44947 × 10−7] 2.33548 × 10−7

tρ,c [MPa] Contractile Force of Myofibroblasts [1 · tρ, 5 · tρ] 3.28571 · tρ

Kt [-] Saturation of Mechanical Force by Collagen [0.1, 0.5] 0.2
τλp [1/hr] Rate of Plastic Deformation [0.00485, 0.2425] 0.05

of root mean square error (RMSE) by comparing GP predictions for ρ̂C(Θb, t), φ̂C(Θb, t)

against porcine histopathological data. After minimization, regions of the parameter space

Θb with lower RMSE and higher predicted variance were used to select new Θb parameter

combinations to further train the GP model. Subsequent RMSE minimization with the GP

model yielded the optimal parameter values Θb.

After calibration of the {ρ, c, φ}-submodel, a similar approach was performed to calibrate

the mechanobiological parameters Θm = {tρ, tρ,c, Kt, τλp}. For the second GP model, a total

of 100 simulations were run after LHS sampling of Θm within the specified ranges in Table

 3.1 . The trained GP was used to minimize the RMSE with respect to the cavity contraction

data from the human clinical study [  44 ]. As described previously, initial minimization was

followed by subsequent finite element model parameter evaluations and training of the GP

model.

3.3 Results

3.3.1 Pathophysiologic Findings Through Porcine Histology Analysis

Analysis of breast histological cross-sections from a longitudinal porcine lumpectomy

study informed fibroblast and collagen densities within the breast cavity at 1, 4, and 16

weeks after surgery. Table  3.2 summarizes values for each post-surgical time point compared
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Table 3.2. Fibroblast and collagen densities (mean ± SD) quantified from his-
tological cross-sections of normal, healthy porcine breast tissue and explanted
breast tissue at 1 week, 4 weeks, and 16 weeks following lumpectomy. Post-
surgical values represent the cavity center.

Time Point Fibroblast Density
(Mean ± SD) [cells/mm3]

Collagen Density
(Mean ± SD) [φ/φ0]

Healthy Tissue 55,051 ± 15,527 1 ± 0
1 Week Post-Surgry 0 ± 0 0 ± 0

4 Weeks Post-Surgery 377,504 ± 94,279 1.35 ± 0.25
16 Weeks Post-Surgery 215,893 ± 45,150 2.33 ± 0.35

to healthy breast tissue. Given that hematomas or seromas were observed grossly and

histologically 1 week following lumpectomy (Fig.  3.3 B), fibroblast and collagen densities

were assumed to be zero for this time point. By 4 weeks, fibrovascular scar tissue was evident

within the contracted cavity (Fig.  3.3 C), with fibroblast and collagen density values roughly

7 and 1.3 times healthy breast tissue values, respectively. By 16 weeks, the fibrous scar

tissue increased in collagen density (approximately 2.3 times healthy breast tissue values),

appearing as differentially oriented swirls of parallel-aligned fibers (Fig.  3.3 D). Although

fibroblast density decreased between 4 and 16 week time points, values remained high at

roughly 4 times those for healthy breast tissue.

3.3.2 Calibration of the {ρ, c, φ} submodel

Fibroblast and collagen density values reported in Table  3.2 were successfully fit to the

{ρ, c, φ} submodel by optimizing the (Θb). Predicted fibroblast and collagen density values

fell within experimentally-determined standard deviation ranges for all time points (Fig.  3.5 ).

Finite element simulations for the optimized submodel are shown in Figure  3.5 , illustrating

spatiotemporal changes in fibroblast density, collagen density, and cytokine concentration.

Fibroblast and collagen densities within the cavity center were roughly zero at week 1

of the simulation (Fig.  3.5 ), successfully modeling hematoma and/or seroma formation and

the lack of fibroblast infiltration observed histologically (Fig.  3.3 B). Contour plots showed
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modest increases in fibroblast and collagen density, respectively, at the cavity-tissue interface

(Fig.  3.5 ), which also matched histological findings (Fig.  3.3 B). Fibroblast density increased

sharply between weeks 1 and 4 (Fig.  3.5 ), effectively simulating fibroblast proliferation

and migration. An increase in collagen density followed thereafter (Fig.  3.5 ), which is

consistent with progressive collagen deposition by fibroblasts during the proliferation phase

of healing. As shown in Figure  3.5 , simulation results reached a maximum fibroblast density

of 3.95 × 105 cells/mm3 at roughly 4.5 weeks, after which time fibroblast density steadily

declined to match histological outcomes. As fibroblast number declined between 4 and

16 weeks, the rate of collagen deposition declined, with collagen density values plateauing

within experimentally measured ranges (Fig.  3.5 ). Simulated cytokine concentration within

the cavity started at the maximum nominal value and showed a rapid decay over the first

four weeks (Fig.  3.5 ). Such results are consistent with events and phases of wound healing

as reported in the literature [  74 ], [  75 ].

Figure 3.5. Simulation results of the {ρ, c, φ} submodel using optimized pa-
rameters ΘB. Plots display time-dependent changes in fibroblast density, col-
lagen density, and cytokine concentration at the cavity center as determined
from simulations and histology. Corresponding contour plots from breast cav-
ity healing simulations are shown for weeks 1, 4, and 16.
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3.3.3 Calibration of the Fully Coupled Mechanobiological Model

Human breast cavity contraction data estimated from Prendergast et al. (2009) was

fit with the coupled mechanobiological model by optimizing mechanobiological parameters

(Θm) listed in Table  3.1 . Results from the calibrated finite element simulation, including

cavity contraction, permanent deformation, and breast surface deformation, are displayed

in Figure  3.6 . Consistent with human data, the simulated post-surgical breast cavity con-

tracted to approximately 66.49% of its original cavity volume within 1 week. The cavity

volume continued to decrease, contracting to 20.90% of its original volume in just 16 days

following surgery. By 4 weeks, the cavity showed a modest increase in volume to reach

31.43% of the excised volume. The overall shape of the contraction curve was similar to

porcine lumpectomy study findings as well as cavity contraction in human patients following

BCS and whole-breast irradiation [ 12 ], [  48 ].

Permanent deformation (Jp) was also visible across the cavity domain and surrounding

tissue, leading to breast surface deformations (Fig.  3.6 B). At the time of tumor removal

(t = 0 week), no change in tissue volume is observed across the entire geometry (Jp = 1).

Immediately thereafter, permanent contracture (Jp < 1) becomes prevalent at the tissue-

cavity interface, with Jp = 0.85 for this region at the 1-week time point. This permanent

deformation contributed to a modest surface asymmetry in the upper outer quadrant breast

(Fig.  3.6 B). By week 4, severe permanent contracture (Jp = 0.3) was observed within

the cavity while tissue surrounding the cavity was experiencing tensional forces (Jp > 1)

directed perpendicular to the cavity surface. Such observations are consistent with tissue

repair and scar formation, as newly deposited collagen fibers within the cavity are contracted

and reoriented by fibroblasts and myofibroblasts and the surrounding tissue ECM is drawn

in tension [ 31 ], [  71 ]. This permanent contracture contributed to an obvious breast surface

deformity adjacent to the cavity (Fig.  3.6 B).

3.3.4 Mechanobiological Parameter Sensitivity Analysis

A major goal associated with the calibration of our detailed mechanistic model of breast

healing after BCS is to better define key parameters and relationships that influence healing
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Figure 3.6. Mechanobiological model outcomes using optimized parameters
informed by the mechanobiological GP. (A) Simulated post-surgical cavity
contraction over time compared to clinical data. (B) Contour plots displaying
time-dependent changes in permanent tissue deformation for simulated breast
cavity healing (top) and associated breast surface deformation (bottom).

and cosmetic outcomes. In particular, mechanobiological model calibration, as described

in previous sections, allowed optimization of parameters Θm for which there is little direct

experimental or clinical information. An important next step was to explore the sensitivity

of model predictions with respect to these parameters. To analyze Θm parameter effects,

2500 predictive cavity contraction curves were generated with the calibrated GP by sampling

Θm values within ranges reported in Table  3.1 . The normalized cavity volume at week 4

(V4/V0) was probed, with Figure  3.7 A-D showing four 2D contour plots where the force of

fibroblasts (tρ), force of myofibroblasts (tρ,c), saturation of mechanical force by collagen (Kt),

and rate of plastic deformation (τλp) were varied.

As shown in Figure  3.7 A, cavity contraction was highly dependent on the fibroblast force

tρ, with increasing force leading to larger contraction. Although Kt had a less pronounced

effect, increasing the saturation of mechanical force by collagen was found to decrease cavity

contraction. Due to this inverse relationship, low Kt values and high tρ values produced the
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largest contractions, with the cavities contracting to less than 25% of their initial volume by

week 4. Cavity contraction also increased with increasing myofibroblast force tρ,c; however,

an interesting coupling was identified between Kt and tρ,c (Fig.  3.7 B). Evaluation of tρ and

Kt pairings (Fig.  3.7 A) clearly showed that fibroblast force was the dominant parameter.

By contrast, results for tρ,c and Kt pairings (Fig.  3.7 B) suggested that collagen saturation

(Kt) had a more pronounced effect coupled to tρ,c at lower Kt values. For example, when

Kt = 0.1, cavity contraction values ranged between 25% and 30% for tρ,c ∈ [1 · tρ, 2.5 · tρ]. A

broader cavity contraction range was observed for Kt = 0.5, with values varying from 50%

to 37.5% across tρ,c ∈ [1 · tρ, 2.5 · tρ].

The rate of plastic deformation (τλp) was inversely related to cavity contraction. In other

words, lower values of τλp supported larger cavity contraction. The contour plot showing

τλp and tρ pairings (Fig.  3.7 C) revealed that cavity contraction was less sensitive to τλp

for lower tρ values. However, as tρ increased, the rate of plastic deformation became more

influential on contraction outcomes. For the τλp versus tρ,c contour (Fig.  3.7 D), it was

found that myofibroblast force was tightly coupled to the rate of plastic deformation, with

cavity contraction becoming more severe for lower τλp and larger tρ,c values. Interestingly,

the greatest cavity contraction (between 20% to 25%) occurred when both τλp and tρ,c had

larger values.

3.3.5 Effect of cavity-to-breast volume percentage (CBVP)

Since the mechanobiological model was informed based on human BCS cavity contrac-

tion data, it can be applied to predict how patient-to-patient variability in breast and tumor

characteristics affect healing and cosmetic outcomes. For example, the effect of CBVP

was evaluated to identify trends in spatiotemporal cavity contraction and breast deforma-

tion. This model application involved adding CBVP as an input variable to the established

mechanobiological GP. Similar to the initial GP model calibration, LHS sampling of the

parameters Θm and CBVP was performed. Following GP model re-calibration, 2,500 GP

predictive contraction curves were then used to evaluate the 4-week post-surgical cavity con-

traction and breast deformation for CBVP values between 0.43% and 8.7% (Fig.  3.8 A).
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Figure 3.7. Plots showing relationships between uninformed parameters tρ,
tρ,c, Kt, and τλp . Plots were created based on predictive cavity contraction
curves generated using the mechanobiological GP by varying two of the four
parameters (constants used: tρ= 1.5 × 10−5 MPa, tρ,c = 2.5 · tρ MPa, Kt= 0.3,
and τλp= 0.1 hr) and evaluating the change in cavity volume at week 4. Gray
regions on the plots represent regions in the parameter space that were not
well informed by the mechanobiological GP.

This CBVP range was based on geometric constraints of the assumed breast geometry and

captures the wide range of reported breast tumor sizes [ 76 ].

Simulation results showed that smaller cavities contract at a faster rate compared to

larger cavities, which is consistent with previously reported human wound contraction out-

comes [  77 ], [  78 ]. Additionally, larger CBVP values showed a greater reduction in cavity

volume (i.e., greater contracture). Finite element simulations were also conducted for spe-
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cific CBVP values of i) 8.7%, ii) 4.5%, iii) 1.0% to verify accuracy of GP predictions and

visualize breast deformations (Fig.  3.8 B). As expected, permanent changes in breast volume

and shape increased with cavity size, with similar permanent deformation values within the

cavity centers ( 3.8 B). Overall, larger breast surface deformation occurred with increasing

CBVP. For instance, for a relatively small CBVP of 1.0%, there was no visible breast surface

deformation 4 weeks post-surgery (  3.8 B). Increasing the CBVP to 4.5% resulted in moderate

surface deformation, which became more severe for CBVP of 8.7% (  3.8 B). These results are

consistent with reported clinical outcomes [  15 ], [  79 ], [  80 ].

Figure 3.8. Effect of CBVP on cavity contraction and breast surface defor-
mities. (A) Plot was created using optimized mechanobiological parameters
while varying CBVP and assessing time-dependent cavity contraction. (B)
Breast contour plots displaying permanent tissue deformation and breast sur-
face deformation 4 weeks following lumpectomy for CBVPs of (i) 8.7%, (ii)
4.5%, (iii) and 1.0%.

3.3.6 Effect of Breast Composition

To determine the effect of breast composition on BCS outcomes, the GP surrogate was

further informed by running additional simulations including breast composition as an input
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variable. Specifically, recall that the material parameters k0, k1 were assigned based on

the assumption of 70% adipose tissue and 30% fibroglandular tissue [ 40 ]. When evaluating

the effect of breast composition, k0, k1 were modified according to the rule of mixtures by

varying the percent of adipose to fibroglandular tissue. Following re-calibration, the GP

model was used to predict 4-week post-surgical cavity contraction as a function of breast

composition (Fig.  3.9 .A). Clinically, breast composition is measured with the BI-RADS

ranking system which reports the percentage of breast fibroglandular tissue [  41 ]. As shown

in  3.9 A, cavities created in low density breasts (i.e., breasts consisting primarily of soft fatty

tissue or scattered small regions of fibroglandular tissue) contracted more rapidly and to a

greater extent than those in high density breasts (i.e., breasts consisting of heterogeneously

or extremely dense fibroglandular tissue). Lower density breasts also gave rise to higher

magnitudes of permanent contracture within the cavity, causing the surrounding breast

tissue to be drawn in higher tension (Fig.  3.9 B). Interestingly, permanent contracture was

positively correlated with breast surface deformation, as lower breast densities were more

prone to breast asymmetry (Fig.  3.9 B). These results are consistent with clinical findings

[ 14 ], [  67 ], [  68 ], [  81 ].

3.4 Discussion

Understanding the mechanobiology of breast cavity healing after lumpectomy is essential

for improved prediction of post-surgical outcomes and individualized treatment planning

for breast cancer patients. At present, there is a relatively high incidence of BCS-related

breast deformities, with approximately one-third of women developing dents, distortions,

and asymmetry between breasts [ 13 ]–[ 16 ], which negatively impacts survivor self-esteem or

quality of life [  5 ]. While the significance of this problem has been recognized by the breast

surgical community, there remains a fundamental lack of mechanistic and objective tools

that define how various patient-to-patient factors affect post-surgical cavity healing and

cosmetic outcomes. In this study, we developed a detailed finite element model of breast

cavity healing after BCS that was calibrated using experimental porcine lumpectomy and

previously published human clinical data. The computational model incorporated biological,
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Figure 3.9. Effects of breast density on cavity contraction and breast surface
deformities. (A) Plot was created using optimized mechanobiological parame-
ters while varying breast density and assessing time-dependent cavity contrac-
tion. (B) Breast contour plots displaying permanent tissue deformation and
breast surface deformation four weeks post-surgery for breast densities of (i)
85%, (ii) 50%, and (iii) 15%.

microstructural, and mechanical variables that describe fundamental breast healing processes

and relationships. The finite element model was designed to define how the coupling of

mechanobiological cues and patient-specific breast characteristics (geometry, consistency,

and biomechanics) contributes to temporal changes in cavity contraction and associated

breast volume and surface deformations. Therefore, this model has the potential to help

both surgeons and patients anticipate BCS healing and cosmetic outcomes.

Computational and mathematical descriptions of wound healing processes and outcomes

have been a focus area of investigation for over three decades, with the majority of models

describing cutaneous (skin) repair [ 70 ], [ 82 ]. The first wound healing model, proposed by

Sherratt and Murray (1990) [  83 ], did not consider mechanobiology or tissue mechanics when

describing re-epithelialization of skin. For this early model, activation and proliferation of
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epithelial cells was assumed to occur along a 1D wound in response to chemical cues. Such

models have been refined over time to include more complex cellular and chemical reaction-

transport phenomena associated with inflammation and angiogenesis [  52 ], [ 56 ]. Increasing

attention has also been given to fibroblast and myofibroblast activity and their impact on

collagen deposition and remodeling [  84 ], [  85 ]. Coupling to nonlinear tissue mechanics has

been explored extensively by our group and others in recent years [  29 ]–[ 31 ], [  52 ], [  54 ]–[ 56 ],

[ 86 ]. Specifically, our published models have leveraged prior modeling efforts and focused

on adding detailed descriptions of local mechanobiological couplings between (myo)fibrob-

last activity and collagen remodeling to explain the observed macroscale changes in tissue

mechanics and elastoplastic deformation. Our extensive work on the calibration of the 3D

dermal model based on data from rat excisional wounds showed the model’s ability to pre-

dict a large set of experimental observations including treatment with collagen scaffolds,

providing confidence in the fundamental relationships encoded in the model [ 31 ].

Here, we describe a finite element model of breast cavity healing following BCS that builds

upon our previously published computational mechanobiological models of cutaneous wound

healing [  29 ]–[ 31 ]. At present, there are few models describing the healing of deep wounds,

such as those associated with BCS, with the majority being adapted from early skin wound

models. For example, with the goal of predicting wound healing following lumpectomy, Gar-

bey and co-workers developed a 2D cellular automata model linked to a PDE describing

cytokine signaling within skin wounds [  26 ], [ 86 ]. Likewise, Vavourakis et al. adapted a fi-

nite element model of inflammation and angiogenesis initially introduced by Sherratt and

Murray, coupling it with a finite element model of soft tissue biomechanics [ 28 ], [  87 ]. In

the present study, we modified our 3D dermal wound model [  31 ] to include more realistic

fibroblast migration, with dependence on both cytokine concentration and collagen den-

sity. We also implemented a generalized breast geometry that was based on human clinical

data and adjusted tissue mechanical properties based on the literature. Biochemical and

mechanobiological model parameters that were not well defined in the literature were tuned

and optimized, allowing the computational model to be fit to experimental porcine lumpec-

tomy data describing time-dependent changes in fibroblast migration and collagen deposition

and human clinical data depicting the volumetric breast cavity changes that occur after BCS.
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The calibrated model was designed to provide a new and useful tool for supporting future

hypothesis generation, surgical visualization, and surgical decision-making. More specifi-

cally, we applied the model to define how patient-to-patient variability in breast and tumor

characteristics affected breast contracture and breast surface deformation. When evaluating

CBVP, model simulations predicted that larger cavities, specifically located within the outer

quadrant of the breast, would contract more slowly but to a greater extent than smaller

cavities. Additionally, as CBVP increased from 1.0% (13.24 cm3 volume; 2.94 cm diame-

ter) to 8.7% (115.5 cm3; 6.04 cm diameter), resultant tissue permanent deformation profiles

contributed to more severe breast distortions. These model predictions aligned well with

previously published clinical perspectives that state that tumor size, breast tissue volume

excised, and EBVP are major determinants of BCS cosmetic outcomes. Maximum tumor

diameters between 2 cm and 4 cm are commonly used as selection criteria for BCS [  80 ], [ 88 ].

Moreover, EBVP is highly correlated with breast cosmesis assessment scores and patient

satisfaction following BCS. Specifically, more than 80% of women were very satisfied with

breast aesthetic outcomes when their EBVP was less than 10% [  15 ], [ 79 ], [ 80 ]. By contrast,

EBVP greater than 20% led to high levels of patient dissatisfaction [  15 ], [  79 ], [  80 ]. Tumor

location is an important determinant of cosmetic outcomes and patient satisfaction following

BCS, with proposed recommendations for maximum EVBP including the following: 18-19%

for the upper-outer quadrant, 14-15% for the lower-outer quadrant, 8-9% for the upper-inner

quadrant, and 9-10% for the lower-inner quadrant [  24 ]. Such findings have led to proposed

surgical decision-making algorithms, where breast volume, clinical tumor size, and tumor

location serve as major determinants when choosing between breast surgical procedures to

achieve satisfactory breast cosmesis and quality of life [ 13 ], [  24 ]. While these algorithms are

currently being evaluated in randomized controlled trials in patients who are candidates for

both BCS and mastectomy, they fail to incorporate other important patient-specific factors,

for example coupling to breast consistency.

Model simulations were also used to determine how breast tissue density affected breast

tissue contracture and breast shape following BCS. Human breasts, as well as other mam-

malian mammary glands, are composed of a heterogeneous mixture of fibroglandular and

adipose tissue, which contributes to differences in consistency and biomechanical properties.
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Reported Young’s modulus ranges for human breasts vary from 0.7 to 66 kPa, depending

on breast composition (e.g., percentage of fibroglandular to adipose tissue) [  33 ], [ 73 ]. Model

simulations evaluated breast densities representing 15% (EBT = 14.5 kPa), 50% (EBT = 25

kPa), and 85% (EBT = 35.5 kPa), spanning the range of soft breast consisting primarily

of fatty tissue to firm (stiff) breast consisting primarily of fibroglandular tissue. Our sim-

ulations predicted that cavities within low density, fatty breasts exhibit larger contracture

compared to high-density, firm breasts. As a result, breast surface deformities were larger

and more pronounced as breast density decreased. These results are in agreement with hu-

man clinical findings, as many studies have correlated through patient surveys and clinical

analysis that patients with low breast density have higher chances of poor cosmetic results

and low patient satisfaction after BCS [  14 ], [  67 ], [  68 ], [  81 ].

Mechanobiological parameters influencing cell contractility and plastic deformation were

also proven to greatly impact cavity contracture and cosmetic outcomes. Through the sen-

sitivity analysis shown in Figure  3.7 , we were able to learn more about plausible parameter

ranges and gain insight into complex parameter relationships. The parameters that were

deemed to be the most sensitive to the mechanobiological response and contracture were tρ

and tρ,c. Therefore, it is important to ensure model accuracy regarding these two parame-

ters. Both tρ and tρ,c were optimized based on clinical data evaluating time-dependent cavity

volume changes. Compared to dermal wound healing models that considered fibroblast trac-

tion based on experimental evidence, our model’s optimized value for tρ was on the lower

end of the established range [  30 ], [  31 ], [  52 ], [  55 ], [  56 ], [  85 ], [  86 ]. Relative to the contractility

of fibroblasts, the optimized tρ,c value for our model was also well within the broad range

of values in other wound healing models [ 30 ], [  31 ], [  52 ], [  55 ], [  56 ], [  85 ], [  86 ]. To potentially

reduce model uncertainty, future experimental studies could be conducted to measure and

validate the contractile force of fibroblasts and myofibroblasts post-lumpectomy.

The present study was made possible by leveraging machine learning techniques to re-

place the high-fidelity computational model with inexpensive but accurate surrogates. In

particular, GP surrogates were used to predict cell density, collagen density, and cavity con-

traction over time as a function of model parameters [ 89 ]–[ 91 ]. While a single simulation with

the fully coupled model takes on the order of 20-72 hours to run (depending on model pa-
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rameters), the GP evaluation can be performed in milliseconds. Therefore, this 107 speed-up

was crucial to perform the parameter optimization and sensitivity analysis. Although many

machine learning techniques exist, the GP was applied due to its Bayesian construction

which allows the estimation of both the desired quantity of interest and expected epistemic

uncertainty (i.e., it provides an estimate of the confidence for a given prediction) [  51 ]. This

differentiates GP approaches from other popular tools such as artificial neural networks [  51 ].

The prediction of the variance by the GP guided the selection of parameter combinations

for which to evaluate the finite element model, akin to other active learning strategies using

GPs [  92 ].

The study is not without limitations. For the computational model, we implemented

a generic human breast geometry that was informed through several clinical studies. Fur-

ther, the model was calibrated by tuning mechanobiological parameters to fit clinical data of

time-dependent cavity volume changes reported as an average of 34 patients. Future model

iterations will incorporate more patient-specific data, which includes application of patient-

specific breast geometries, tumor or cavity shapes and locations, and heterogeneous breast

tissue compositions. Individual healing outcomes can then be compared to model predic-

tions to further validate the model. Figure  3.10 shows an example of how the generalized

human breast geometry can nonetheless be used to forecast possible poor cosmetic outcomes

that patients may experience. The model also fails to incorporate other factors that can

affect breast healing. For example, radiation therapy, which is commonly applied to patient

breasts shortly after BCS, is not accounted for in the model. This is an area we hope to

capture in future work. Addition of radiation therapy to the computational model would re-

quire changes cell death, inflammation, collagen deposition, and (myo)fibroblast contraction,

ultimately leading to changes in mechanical properties and breast deformation. Although

the mechanobiological model is able to accurately predict healing outcomes, the complex-

ity of the model can be further expanded to include additional specific cellular players and

processes such as neovascularization, various types of immune cells (e.g., macrophages or

neutrophils), and edema related osmotic pressure and poroelastic response. Future model

applications also include the design of therapeutic approaches (e.g., regenerative breast tis-
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sue fillers), enabling the promise of in silico trials for BCS before animals or human subjects

are involved.

Figure 3.10. Comparison in the cosmetic outcomes after BCS between (A)
a patient 5 years removed from BCS and (B) the generalized human breast
geometry simulated 16 weeks post-surgery. (A) is reprised from Adamson et
al. (2020) [  93 ].

3.5 Conclusions

The presented computational model proved to effectively simulate the breast healing

response following BCS, including fibroblast infiltration, collagen remodeling, and breast

permanent deformation. Preclinical porcine data and human clinical data were used to

inform time-dependent trends for fibroblast density, collagen density, and cavity volume

change. The model was fit to this data by optimizing model parameters enabled by GP

regression. Although previous models of wound healing after BCS have been developed, we

advanced these efforts by implementing a detailed mechanobiological model coupled with

the nonlinear mechanics of breast tissue, including large plastic deformation and collagen

remodeling. Therefore, our model is uniquely suited for the prediction of scar tissue formation

and breast deformation after BCS, which allowed us to gain insight into how key parameters

and patient-to-patient variability with respect to breast and tumor characteristics factor

into the post-surgical cosmetic outcome. With this work presenting the foundation of the

computational model, future efforts can be shifted to focus on patient-specific cases, addition
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of radiation therapy effects, and the design of therapeutic approaches (e.g., regenerative

breast fillers).
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3.6 Appendix: Supplementary Material

The finite element model is available in the following repository:  https://github.com/

zharbin/CBM_2023_BCS  .

Table 3.3. Parameters for the biochemical model. Parameters listed as esti-
mated were selected in this work or modified from our previous wound healing
models [  30 ], [  31 ].

Parameter Description Value Reference
Dc [mm2/hr] Cytokine Diffusion Coefficient 0.01208 [ 54 ]–[ 56 ]
dρ,c [mm2/hr] Cytokine-Increased Fibroblast Diffusivity 6.12 × 10−3 Estimated
dρ,0 [mm2/hr] Baseline Fibroblast Diffusivity 6.12 × 10−5 [ 85 ]

pρ [1/hr] Fibroblast Proliferation 9 × 10−4 Estimated
Kρ,c [-] Proliferation Saturation due to Cytokine 1 × 10−5 [ 30 ]

pρ,e [1/hr] Mechanoregulation of Fibroblast Proliferation pρ/2 [ 31 ]
Kρ,ρ [-] Fibroblast Division Saturation 550, 512.6 [ 52 ]

dρ [1/hr] Fibroblast Death Rate pρ(1 − ρphys/Kρρ) [ 52 ]
pc,ρ [1/hr] Fibroblast Secretion of Cytokine 1.635 × 10−18 [ 30 ]
pc,e [1/hr] Mechanoregulation of Cytokine 5.45 × 10−18 [ 30 ]

Kc,c [mol/mm3] Cytokine Saturation 1 [ 30 ]
dc [1/hr] Cytokine Death Rate 0.005 Estimated

ρ0 [cells/mm3] Nominal Fibroblast Density 55051 Estimated
c0 [g/mm3] Initial Cytokine Concentration Inside Cavity 1 × 10−4 [ 30 ]

Table 3.4. Parameters for the fully coupled mechanobiological model. Pa-
rameters listed as estimated were selected in this work or modified from our
previous wound healing model [  30 ], [  31 ].

Parameter Description Value Reference
k0 [MPa] Linear Stiffness 6.375 × 10−3 Estimated
k1 [MPa] Compressibility 0.317 Estimated
kf [MPa] Fiber Stiffness 0.015 [ 59 ]

k2 [-] Nonlinear Stiffening 0.048 [ 59 ]
γe [-] Shape of Mechanosensing Curve 5 [ 30 ]
ϑe [-] Midpoint of Mechanosensing Curve 2 [ 30 ], [  60 ]

Kt,c [ − ] Traction Saturation due to Cytokine 1 × 10−5 [ 30 ]
Kφ,c [ − ] Collagen Production Saturation due to Cytokine 1 × 10−4 [ 30 ]
pφe [1/hr] Collagen Production Activated by Stretch pφ [ 30 ]
Kφ,ρ [ − ] Collagen Production Saturation due to Collagen Fraction (ρ0 ∗ pφ)/dφ − 1 [ 30 ]
dφ [1/hr] Collagen Degradation 9.7 × 10−4 [ 61 ]
dφ,c [1/hr] Collagen Degradation Activated by Cytokine 8.81 × 10−5 [ 61 ]

τω [hr] Time Constant for Reorientation 10/(Kφ,ρ + 1) [ 30 ]
τκ [hr] Time Constant for Dispersion 1/(Kφ,ρ + 1) [ 30 ]
γκ [-] Shape of Dispersion Rate Curve 2 [ 30 ]
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Figure 3.11. Fibroblast speed with respect to collagen density (vρ(φ)) and
its dependency on ∆. Example vρ(φ) curves are shown with ∆= 0 (red), 0.5
(green), 1 (blue). The function vρ(φ) was initially informed through [ 12 ], [  72 ]
through 5 data points displayed on the line ∆ = 0 while assuming vρ(φ) = 0
for φ= 0 and 1. Due to the limited data and uncertainty, parameter ∆ was
created to shift the 5 data points and skew the interpolated function. ∆ was
further investigated in the biochemical GP, where it was determined that the
optimum value was ∆ = 0.

70



Histological Image Analysis Methodology

Quantifying Fibroblast Density

1. Count Red Blood Cells (RBC)

(a) Adjust Color Balance ([Minimum, Maximum])

i. Red: [0,0]

ii. Green: [0,100]

iii. Blue: [0,0]

(b) Convert Image Type From RGB Color to 32-bit

(c) Apply Threshold ([0,∼ 220])

(d) Apply Watershed Segmentation

(e) Analyze Particles for RBC Count

i. Cell Size ([Minimum, Maximum]): [4,∞]

2. Count All Cells

(a) Adjust Color Balance ([Minimum, Maximum])

i. Red: [70,220]

ii. Green: [0,0]

iii. Blue: [0,0]

(b) Convert Image Type From RGB Color to 32-bit

(c) Apply Threshold ([0,∼ 245])

(d) Apply Watershed Segmentation

(e) Analyze Particles for All Cell Count

i. Under "Set Measurements" Select Original Slide Under "Redirect to:"

ii. Cell Size ([Minimum, Maximum]): [4,∞]

(f) Evaluate Modal Gray Value (≤∼125) to Isolate and Count Immune Cells

3. Fibroblast Count = All Cell Count - RBC Count - Immune Cell Count

71



Figure 3.12. Result of post-processing individual regions (500 x 500 µm2)
obtained from porcine lumpectomy histology slides. (A) Regions were cap-
tured through Aperio ImageScope sampling across the entire cavity domain.
Pictured is an example region from a histology slide 16 weeks post-surgery.
(B) Using the procedures described above, regions were processed in ImageJ
to quantify the number of fibroblasts (blue), red blood cells (red), and immune
cells (green).
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Calculating Collagen Density

1. In the 500 x 500 µm2 histology region, select a small rectangular area (∼100 µm2) that

contains no cells.

2. Measure for average pixel intensity in the small rectangular area. Note: Pixel intensity

varies between 0 (black) and 255 (white).

3. Repeat steps 1 and 2 for a 500 x 500 µm2 histology region that contains healthy breast

connective tissue.

4. Calculate the estimated collagen density through the following equation:

(φ/φ0)est. = Iscar−255
0.3∗(Iconnective−255)

where Iscar is the intensity of the scar tissue at the analyzed week and Iconnective is the

intensity of the connective tissue.
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4. CONCLUSION

4.1 Summary

Breast cancer impacts millions of women across the world. The current standard of care

for breast cancer, breast-conserving surgery, preserves healthy breast tissue by only removing

the cancerous tumor surrounded by a small negative margin. This creates a breast cavity

that undergoes the wound healing process, leading to scar formation and the contraction of

the cavity. As a result, BCS patients often experience post-surgical breast deformities, such

as breast asymmetry or the shaping of a divot/dent, which can negatively affect the patient’s

quality of life. However, due to the complexity of the wound healing process and patient-to-

patient variability, it can be difficult for surgeons to preoperatively predict negative healing

outcomes. As a solution, our goal was to develop an informed, predictive computational

mechanobiology model that simulates breast healing following BCS. The work in this thesis

bridges the gap between computational modeling and clinical evidence to help better inform

surgeons and patients of oncologic, healing, and cosmetic outcomes post-lumpectomy.

The computational mechanobiological model was initially designed to explore 3D cuta-

neous wound healing but was adapted and modified for this work to be breast-specific. This

was done through an extensive literature review, as we used clinical data to inform the breast

tissue material properties, breast tissue composition, and cavity location. Furthermore, a

unique generalized breast geometry was created based on available clinical data that analyzed

the contraction of a breast cavity after whole-breast irradiation. Mechanobioloigcal param-

eters were informed through the Gaussian Process by fitting the model to data evaluating

time-dependent cavity volume changes post-irradiation. These results provided definition

of key model parameters and relationships, allowing for proper calibration of breast cavity

contraction.

Next, we evaluated histological cross-sections from an experimental porcine lumpectomy

study to find time-dependent changes in fibroblast and collagen density. This information

was used for further model calibration by optimizing biochemical parameters to fit exper-

imental fibroblast and collagen data through the GP. Mechanobiological parameters were

then informed through a similar process as before, but with the use of human clinical post-
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surgical cavity contraction data beginning directly after surgery. With the optimized model,

we were able to give insight into how model parameters and patient-to-patient variability

regarding breast and tumor characteristics contribute to the post-surgical cosmetic outcome.

Overall, the validity of the model with respect to preclinical and clinical data allowed

for accurate finite element simulations evaluating the breast healing response following BCS,

including fibroblast infiltration, collagen remodeling, and breast permanent deformation.

The mechanistic nature of the model and its fit to porcine and human data are encouraging

for future work and applications.

4.2 Future Work

4.2.1 Patient-Specific Applications

For the presented computational model, we implemented a generic human breast geom-

etry that was based on averages from specific clinical studies. Through this, we were able to

run finite element simulations using the geometry to fit the study’s reported time-dependent

cavity volume changes, which allowed for the tuning of mechanobiological parameters. For

future iterations of the model, we wish to use more patient-specific data, which includes ap-

plying a patient-specific breast geometry, individual tumor/cavity shape and location, and

heterogeneous breast tissue composition. This would allow for further model validation by

comparing patient-specific healing and cosmetic outcomes to the model predictions.

4.2.2 Whole-Breast Irradiation

In future work, we also plan to investigate outside factors that can possibly affect the

wound healing process. Specifically, we will look to integrate whole-breast irradiation, which

is commonly undergone by patients shortly after BCS, into the model. Irradiation treatment

can greatly impact the normal process of wound healing, causing additional cell death, a

decrease in collagen deposition, and stimulating cytokine secretion. Furthermore, it can also

cause dramatic changes in the extracellular matrix, thus causing changes in breast tissue

material properties. On top of the contraction due to the normal healing process, whole-
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breast irradiation causes further contraction of the cavity. This topic was explored in-depth

in Chapter 2 through a comprehensive literature review.

4.2.3 Preclinical and Clinical Model Validation

We also aim to continue to use preclincial and clinical data to continue to validate and

inform the computational model. For example, two mechanobiological parameters that were

found to be sensitive to the mechanobiological response and cavity contracture were the

contractile force of fibroblasts and myofibroblasts. Therefore, it is important to ensure

model accuracy regarding these two parameters. In the current iteration of the model, both

parameters were optimized based on clinical data evaluating time-dependent cavity volume

changes. To potentially reduce model uncertainty, future experimental studies could be

conducted to measure and validate the contractile force of fibroblasts and myofibroblasts

post-lumpectomy. We also wish to use the computational model to explore the design of

therapeutic approaches (e.g., regenerative breast fillers), enabling the promise of in silico

trials for BCS before animal or human subjects are involved. By using data obtained from

the porcine lumpectomy study performed by our group, the model could be calibrated to

replicate wound healing results using a collagen filler compared to the standard untreated

defects.

4.3 Conclusion

The work in this thesis presented the framework for a computational mechanobiological

model aimed to simulate breast healing following BCS. In using preclinical porcine data and

human clinical data, model parameters and geometry characteristics were informed, which

allowed for the calibration of the model. The computational model coupled with nonlinear

mechanics of breast tissue, such as plastic deformation and collagen remodeling, made it

uniquely suited for the prediction of oncologic, healing, and cosmetic outcomes after BCS.

This allowed for the evaluation of model parameters and patient-specific breast and tumor

characteristics and their impact on the post-surgical cosmetic outcome. Future modeling

efforts look to build upon the presented work by continuing to increase the model complexity
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in hopes of capturing an accurate representation of patient-specific cavity healing. In the

future, the computational model has the potential to become a tool to inform both surgeons

and patients through the creation of individualized patient treatment plans that lead to

decreased post-surgical complications and improved patient quality of life.
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