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Abstract

Objective: A digital twin of a patient can be a valuable
tool for enhancing clinical tasks such as workflow automa-
tion, patient-specific X-ray dose optimization, markerless
tracking, positioning, and navigation assistance in image-
guided interventions. However, it is crucial that the pa-
tient’s surface and internal organs are of high quality for
any pose and shape estimates. At present, the majority of
statistical shape models (SSMs) are restricted to a small
number of organs or bones or do not adequately represent
the general population. Method: To address this, we pro-
pose a deformable human shape and pose model that com-
bines skin, internal organs, and bones, learned from CT
images. By modeling the statistical variations in a pose-
normalized space using probabilistic PCA while also pre-
serving joint kinematics, our approach offers a holistic rep-
resentation of the body that can benefit various medical ap-
plications. Results: We assessed our model’s performance
on a registered dataset, utilizing the unified shape space,
and noted an average error of 3.6 mm for bones and 8.8
mm for organs. To further verify our findings, we con-
ducted additional tests on publicly available datasets with
multi-part segmentations, which confirmed the effectiveness
of our model. Conclusion: This works shows that anatomi-
cally parameterized statistical shape models can be created
accurately and in a computationally efficient manner. Sig-
nificance: The proposed approach enables the construction
of shape models that can be directly applied to various med-
ical applications, including biomechanics and reconstruc-
tion.

1. Introduction
A virtual patient model that incorporates anatomy and

physiology has the potential to enhance numerous medi-
cal diagnosis and therapy tasks. In particular, in the field
of minimally invasive image-guided procedures, a detailed
understanding of the patient being treated could facilitate
(semi-) automated treatments. Given that not all necessary

information about a patient is always available, a statistical
model of body shape can serve as a foundation for incorpo-
rating patient-specific information. Such a Statistical Shape
Model (SSM) of the human anatomy typically represents
the average shape of multiple subjects and their variation
in shape using a low-dimensional parameter space [1, 2].
Further, by incorporating kinematics, thereby the pose, the
model can realistically represent a human body during a
medical intervention.

The availability of such patient models opens up pos-
sibilities for automating clinical workflow steps entirely
based on simulations. For example, in interventional en-
vironments such a model can be used to estimate and re-
duce the X-ray dose distribution within the patient as well
as the dose the staff is exposed to due to scattered radia-
tion [3,4]. Other applications are the automated positioning
of the imaging system relative to a target region, such as an
organ, or the virtual display of X-ray images that would be
acquired based on the current system settings and position
and patient pose prior to any X-ray exposure. It was also
demonstrated such a generation of virtual X-ray images for
bony structures based on pre-existing 3D hip models which
are later iteratively fit to a patient’s X-ray [5, 6].

A virtual twin of the patient could be further employed
for enhanced segmentation of anatomical structures [7], if
(preoperative) images of a patient are available or are gen-
erated during the intervention. This would further facilitate
the (pre- or intraoperative) generation of a patient-specific
hierarchical model. It has been shown, that coupling a sta-
tistical knee model with a segmentation neural network a
more precise segmentation of the knee based on magnetic
resonance images can be achieved [8]. Shape models can
be beneficial for the segmentation of 3D volumetric im-
ages such as Computed Tomography (CT) or Magnetic Res-
onance Imaging (MRI) [9–11], as well as for 2D projec-
tion images such as X-rays [12]. This is because the prior
knowledge of the body shape can be used as a regularizer.
Employed on a full body patient model, this technique could
be applied online during image-guided (MR or X-ray) med-
ical interventions and might therefore facilitate navigation
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during the procedure. Additionally, shape models can be
used to generate synthetic data to train deep neural net-
works, allowing them to better generalize [13, 14] to new
subjects and overcome the limited anatomical variation of-
ten observed during domain translation.

Anatomic body models are similar to statistical shape
models in that they are both computer-generated models
of the human anatomy. However, anatomic body models
are designed to provide a highly detailed representation of
the anatomy of a single individual, while statistical shape
models aim to capture the variation in shape that occurs
across the population. Anatomic body models typically
include different body parts, such as bones, muscles, or-
gans, and vessels [15, 16]. They can be used for a variety
of purposes, including visualization of anatomy for educa-
tional purposes, understanding relationships between differ-
ent structures, and simulations of medical procedures. De-
spite their level of detail, the focus on a single individual’s
anatomy may limit their practicality in real-world applica-
tions. We hold the view that by leveraging the abundance
of data and the progress in deep learning, the gap between
statistical models and anatomical models can be bridged
through a data-driven approach.

While prior studies in shape modeling focused primarily
on specific anatomical regions (few bones or organs), this
research aims to develop a comprehensive model represent-
ing the entire human body. Numerous works have proposed
various solutions to create personalized anatomical mod-
els, such as Meng et.al.’s realistic spine model, which was
learned from partial scans [17]. Kadlecek et.al. proposed
personalized anatomical models for physics-based anima-
tion using only the surface 3D scans of skin [18]. However,
the bone structures in these models are based on uniform
scaling, which may not accurately represent the true struc-
ture. While the individual components of the BASH model
provide accurate representations of kinematics and skin sur-
face, combining them using linear interpolation may not
fully capture the true anatomy. The most similar model to
our work is likely the recent OSSO model, which combines
a skin and bone model [19]. OSSO is a data-driven model
that infers the shape of the skeleton from a given human sur-
face scan. However, it is important to note that the skeleton
model in OSSO is learned solely from 2D data, even though
the method is data-driven.

In the field of patient modelling, the most prominent
approach describing whole body anatomies is based on
4D extended cardiac-torso (XCAT) [20] employing nonuni-
form rational B-spline (NURBS). The underlying model is
based on male and female CT scan from the Visible Hu-
man dataset [21] which were manually segmented on a
fixed pose. The model was extended to incorporate cardiac
and respiratory motions as a parametric function, based on
cardiac- and respiratory-gated multislice CT data. To en-

hance the model’s representation, it was further extended to
handle CT scans from individuals of varying age, height,
and body mass [22, 23]. However, this process is compu-
tationally expensive since each segmented CT scan must
be registered to a template, followed by large deformation
diffeomorphic metric mapping between the initial XCAT
model and the registered scan. Furthermore, the robust-
ness of this method decreases when patients are in different
poses.

Various techniques have been introduced to create realis-
tic models of human skin for individuals using captured 3D
range scans that modify a generic 3D skin template to fit the
particular person. For instance, Allen et al. employed non-
rigid template fitting to compute correspondences between
human body shapes in similar poses [24]. This method has
been extended to work for varying poses [25,26]. A dataset
of varying shapes and poses can be utilized to create a data-
driven model for building a human skin surface shape model
that incorporates these variations [1, 2, 27]. These mod-
els represent the variations in human shape identity using a
PCA space, and variations due to pose using an articulated
skeleton-based skinning approach.

As these methods have shown promising results for the
human skin, in this paper we extend the existing method
based on SMPL [1] to combine skin, skeleton and internal
organs as one parameterized full body model. We start by
creating an articulated template mesh for skeleton and or-
gans. Followed by registration of the individual structures,
which is then pose-normalized to a rest pose. The shape
space is then learnt on the rest pose. This is the first joint
model for bones, organs and skin covering the full body.
This demonstrates the applicability of the concepts of statis-
tical shape models to a full-body scale, encompassing mul-
tiple layers. Such a comprehensive model enables holistic
image processing and we expect it to be highly valuable to
improve image acquisition and understanding.

2. Methodology
Our statistical model is based on a set publicly available

whole body as well as partial CT scans (total ≈ 300). We
performed automatic segmentation on them to isolate skele-
tons, internal organs and skin surfaces to model those com-
ponents individually. Unlike SMPL or other well known
statistical parametric models, the availability of a pose-only
dataset is not feasible as we cannot subject a patient with
unnecessary radiation. Usually while modelling the human
skin, the pose-dataset is primarily used to learn the pose re-
lated shape variations, such as the bulging of the muscles.

2.1. SMPL Introduction

We provide necessary background on the SMPL frame-
work, which forms the basis of our work [1]. The SMPL
model is a statistical parametric function M(β,θ, t;Φ),



where β are the shape parameters, θ are the pose param-
eters, t represents the global translation and, Φ represents
the learned model parameters. The output of this func-
tion is a triangulated surface mesh with N = 6890 ver-
tices. The shape parameters β are represented as low-
dimensional PCA coefficients, learned from a standard
shape dataset [28] with BS(β) : R|β| 7→ R3N represent-
ing offsets to a mean template mesh T̄ in the rest pose.

The pose of the model is defined by a kinemat-
ics chain with a set of relative rotation matrices R =
[R1, . . . ,RK ] ∈ R3×3 made up of K = 24 joints. Each
set of rotation matrices is a function of the pose parame-
ters θi ∈ R3 which represents the axis-angle rotations rel-
ative to the joints. Deforming the template model from its
rest pose to a desired pose based on the relative rotations
is known as forward kinematics. Let tk ∈ R3 represent
the joint locations of the rest pose template. The new joint
locations qk ∈ R3 of the deformed model are determined
by

qk = Gk(tk − tp(k)) + qp(k),

where Gk=RkGp(k) ∈ R3×3 are the global rotation of
each joint k calculated recursively based on the kinematic
tree. Here, p(k) represents the parent joint for joint k.
For more in depth description and implementations refer
to [1, 29].

The deformation process requires additional parameters
such as the joint regressor J (.), blend weights W and
pose-dependent shape variations BP (.). The joint regres-
sor J (β) computes the new joint location tk for differ-
ent body shapes in the rest pose. The blend weights and
pose-dependent shape variations are learned from a pose
dataset consisting of multiple subjects in various poses. The
smoothing function of rotating vertices around a given joint
is determined by the blend weightsW , using a given blend
skinning function W (.). The pose-dependent shape varia-
tions BP (θ) : R|θ| 7→ R3N represents the offsets to a tem-
plate mesh in the rest pose. Provided a template mesh T̄, a
morphed model can be represented as

M =W (T̄ +BS(β) +BP (θ),θ,J (β),W). (1)

In order to achieve smooth deformations, the Linear
Blend Skinning (LBS) W (.) method is used. This works
by assigning blend weights W to each vertex of the mesh,
which determine how much each segment of the skeleton af-
fects the vertex’s rotation. The resulting transformed vertex
position vi′ is given by the sum of the contributions from
each segment

v′i =
K∑
k=1

wk,iGkvi

Here, wk,i is an element of the blend weightsW that corre-
sponds to segment k and vertex index i, and Gk=[Gk|qk] is
the global transformation of joint k.

2.2. Data

In this study, 3D CT images of nearly 300 patients were
used for the statistical modeling. Due to the limited pub-
lic availability of whole body CT scans, we relied on two
types of datasets, whole-body scans and partial-body scans.
Whole-body scans typically consists of the entire human
body from head to toe with a exceptions missing parts
around the arm regions. In total, 42 valid scans from the
Visceral dataset [30] make up the whole-body scans with
an average voxel resolution of 0.87 × 0.87 × 2.0 mm. The
partial-body scans, on the other hand, predominantly cover
scan areas ranging from the neck to the femur region. This
set comprises 58 valid scans from the Visceral dataset [30],
and 206 valid scans from the QIN-HeadNeck dataset [31]
with an average voxel resolution of 0.91 × 0.91 × 1.5 mm
and 0.97×0.97×2.0 mm, respectively. Additional metadata
such as the height and weight of the patient during the CT
acquisition was available for the QIN-HeadNeck dataset.
On both datasets we have only included patients who have
12 thoracic vertebra and 5 lumbar vertebra as we are inter-
ested in the general population who can modeled based off
the template skeleton model. Hence, we cannot account for
varying amount of bones. In addition we excluded all pa-
tients with significant metallic implants as they cause imag-
ing artifacts which degrade the quality of the segmented CT
images. We further rejected patients with missing organs
such as the kidneys. In total, we make use of 306 CT scans
for building the model.

We anatomically segmented the 3D scans into 3 distinct
sets, namely skin, bones and organs. This was automati-
cally performed using the AI-Rad Companion Organs RT1
software (Siemens Healthcare GmbH, Erlangen, Germany).
Note that we use the term organs loosely in this context as
it refers to a combined representation of lungs, liver, heart,
kidneys, bladder, rectum, esophagus, aorta, and the bowel
region. From the segmented volumes we extracted skin Sis,
bone Sib, and organ Si,ko surface meshes using the Marching
Cubes [32] algorithm. Here i ∈ [1, |S|] represents the vol-
ume index and k represents the organ index. Fig. 1 shows
an example surface mesh of a patient. Further, we manu-
ally annotated around 60 landmarks Lij both on the skin and
on the bones with the bone’s structure as reference guides.
This also acts as a guide in determining the availability of
segments such as the arms and legs.

2.3. Skin Model

In order to create a consolidated human model, it is fun-
damental that we establish dense correspondence between
all scans in the dataset. The typical approach of achiev-



(a) (b)

Figure 1. Example surface mesh with landmarks (depicted in the
image with a blue cross) from the Visceral dataset [30] of (a) skin
and (b) bone-organ obtained from a segmented CT scan.

ing this is to start from a common template mesh which
ensures identical mesh topology for all the scans [26, 33].
This is accompanied by a skeleton-based deformation of the
template to estimate the rough pose and shape of the scan.
Subsequently a non-rigid deformation technique is tasked to
fit the template to the surface scan. The two stage process
of registering reduces the convergence speed and improves
accuracy drastically. To avoid falling onto a local minima
we make use of previously described manual landmarks to
achieve the initial pose deformation of the template.

2.3.1 Skin Registration

With the availability of a trained SMPL model, the registra-
tion process is simplified due to the preexistence of a SSM.
Hence, the pose and shape can be optimized simultaneously
by minimizing Elm + Edata, where Elm is the landmark-
loss (Eq. 4) and Edata the data-loss (Eq. 2).

Edata = λd1Ed(S
i
s,Ms) + λd2Ed(Ms,S

i
s) (2)

Ed(S,M(β,θ, t;Φ)) =
∑

mj∈(M)

pjρ
(
||mj −N (S)||22

)
(3)

Elm =
∑

lj∈L(M)

‖lj − Lj‖1 (4)

The data loss accounts for the distance between the skin
SMPL model M and the surface Sis. As correspondence is
not present implicitly, we select the nearest neighbourN in

Sis for any given vertex in M for Ed(Ss,Ms) and inversely
for Ed(Ms,Ss). For robustness, we discard matches where
the angle between the corresponding normals are above a
threshold of 30◦ and when the distance between the points
are greater than 30 mm by setting pj in (3) to either 1 or 0.
We make use of the robust Geman-McClure function [34],
represented by ρ to handle noisy data. The data-loss alone
could fit the two surfaces if they are close and and on com-
parable poses, else the optimization process may get stuck
in a local minima. The landmark-loss penalizes misalign-
ment between the set of manually annotated landmarks Lij
of each scan with the corresponding vertices L(M) of the
skin model. In addition to Elm and Edata we further add
regularization in the form of poseEθ, shapeEβ , weightEw
and height prior Eh. The pose prior is the same as Eq. 5
from [35]. Un-natural poses especially for the arms could
lead to lower data error, hence these terms tries to keep the
poses in a realistic range. We make use of the Gaussian
mixture model provided by [35] for the pose prior. As the
patient are lying on a table in a supine position, whereas
the SMPL model was trained on standing pose we further
add an exponential pose loss along the sagital plane for the
joints near the thorax and abdomen region. The shape prior
Eβ =

∑
‖β‖ forces the shapes to be close to the mean

shape. For the partial-body scans, we add additional prior
loss Eh and Ew, when the patients height and weight are
known. The height and weight of the skin model are mea-
sured in the rest pose for a given shape parameter β. The
height is measured from the head to toe, whereas the weight
is measured as function of the mesh volume V (M) as de-
scribed in [36].

Ew = ||(V (M i
s) + 4.937)/1.015− wi||22. (5)

We optimize the following energy term

argmin
β,θ,t

(Elm+Edata+Eθ+Eβ+Ew+Eh), (6)

to obtain an initial fit Ṽi
s. The weight terms λx associated

with the energy term Ex is omitted for easier readability.
The initial fit is obtained by first by minimizing the global
translation t, followed by the pose θ, shape β and finally all
three parameters simultaneously.

If the scans Sis were in a standing pose, registration
would be achieved under the assumption that the SMPL
model represents an adequate space of human shape vari-
ations. However, the model we would like to represent are
the ones in a supine position, taken during a CT procedure.
This usually causes the backs to become flat, stomach to
be depressed and the chest bulged out. Hence, we perform
non-rigid registration on the initial fit Ṽi

s. Similar to the
works from [24,37], we represent a set of 3×4 affine trans-
formation matrices Ai

j associated with each vertex of the



initial fit Ṽi
s,k, with the aim to align the vertices to the scan

Sis. This is achieved by minimizingElm+Edata+Es+Eo,
where Es and Eo are smoothing and orthogonality con-
straints [37] respectively. To achieve local rigidity, the
affine transformations applied on the vertices Ṽi

s,k need to
be close to the transformations on the neighbouring vertices
Ṽi
s,k ∈ N (Ṽi

s,j). Therefore, the smoothness term Es(Ṽ
i
s)

can be defined as

Es(p) =
∑

{j,k|{pj ,pk}∈edges(p)}
cij ‖Ajpj −Akpk‖22 . (7)

Here, cij represents the Laplacian cotangent edge weights,
which tries to make changes on the transformation matrices
Ai
j over the mesh as smooth as possible [38]. The orthog-

onality constraint additionally preserves local rigidity dur-
ing registration by enforcing the affine transformation to be
close to a rigid transformation by

Eo =
∑
j

∥∥Ai
j −Ri

j

∥∥2
F
. (8)

Here Rj is the closest projection of Aj onto the rotation
matrix group. This can be extracted by performing Singu-
lar Value Decomposition on the transformation matrix. All
energies are minimized to obtain a final non-rigid fit Vi

s us-
ing a gradient-based LBFGS [39] minimization method and
make use of automatic differentiation packages.

The main advantage of the two step process of registra-
tion is that it can handle scans with missing data or holes.
Missing data here refers to the non-availability of scans sec-
tions such as the arms or legs from the partial-body dataset.
Missing data is identified by the non-availability of land-
marks for a given scan. As the SMPL model is divided into
24 sections, we can prevent pose deformation and data loss
minimization on those sections. Using a SSM reduces the
search space, and can provide shape in the realm of proba-
ble human shapes.

2.4. Bone-Organ Model

Unlike the skin model, publically available SSMs for
bones and organs do not exist. For this purpose we create a
deformable model from scratch. A template mesh is derived
from an existing polygon data BodyParts3D, which was ex-
tracted from full body MRI images [40]. The bone model is
made up of 70 segments, including skull, femur, humerus,
forearm, lower leg, scapula, clavicle, sternum, hands, feet,
vertebra, ribs, and pelvis. The organ model includes lungs,
liver, kidneys, spleen, heart, bladder, rectum, esophagus,
and aorta. We also incorporate the bowel region containing
the stomach and intestines. However, segmentation for the
individual bowel components are not available, rather a hull
enclosing the stomach and intestines. The entire bone-organ
template is made up of 104, 546 vertices and 209, 418 faces,

Figure 2. Template bone-organ model, consisting of lungs, liver,
kidneys, spleen, heart along with aorta and bladder

of which 65, 617 vertices are made up of the bone section
and the remaining for the internal organs.

On top of the template, we define a kinematics chain
made up of Nb = 63 joints comprising 63 segments.
Though we start with 70 individual segments, we consider
femur-patella and all cervical vertebrae as combined seg-
ments. Linear blend skinning is adopted on femur-patella-
tibia and cervical section to achieve a smooth deformable
bone model. The blend weights are set to 1 for the rigid
entity with respect to their own segments, whereas for the
composite structure it is evenly distributed between the par-
ent and child segment. The initial blend weights for the
organs are set only with respect to the vertebral section. We
make use of Blender [41] to automatically generate these
weights.

We rigidly deform the vertebra of the bone-organ mesh
model to one of the segmented CT volumes of comparable
shape and size, such that the mesh represents a person lay-
ing in supine pose. Similarly, we define the skin template
T̃s in supine pose by re-posing the non-rigid skin model to
a T-pose of the same CT volume. Additionally, we also ro-
tate the arms and legs of the bone-organ model, such that
they lay inside and follow the same T-pose as the skin from
the SMPL model. The final template bone-organ template
mesh T̃bo is shown in Fig. 2 .

2.4.1 Bone Registration

The registration process in general follows the methodology
as described in Sec. 2.3. However, estimating the rough
pose followed by non-rigid registration is not feasible by
virtue of the complex thin structure of bones. This problem



is particularly evident on the scapula and clavicle, which
leads to incorrect poses for the rest of the template. To ad-
dress this, we simultaneously estimate a rough shape and
pose. The shape variations are achieved by applying a scale
transform along a segment in world coordinates. Conse-
quently, the joint locations along the kinematic chain are
also scaled by the same amount.

Hereby a simplistic deformable bone model can be ex-
pressed as M b(β̂b,θb, tb;Φb), where β̂b ∈ R63×3 repre-
sents the scaling parameters, θb ∈ R63×3 represents the
pose parameters, tb ∈ R63×3 represents the individual seg-
ment translation parameters, and Φb represent the model
parameters comprising of the kinematic chain and the ini-
tial blend weights.

Figure 3. Example of the virtual edges between two vertebral seg-
ments to prevent mesh overlap during non-rigid registration. Blue
and Orange lines represent inter-segment and intra-segment virtual
edges respectively.

Similar to the skin registration from Sec. 2.3, registration
of the bones can be performed with a few minor changes as
described

argmin
β̂b,θb,tb

(Elm+Edata+Eθb+Eβ̂b
+Etb+E

s
lm). (9)

The bone surface scans, represented by Sib, are made up
of 26 separate segments including 24 ribs, the sternum, and
the rest of the skeletal structure. The set of vertices cor-
responding to a respective segment on the surface scans
and template mesh are represented by ss and sm respec-
tively. The data loss Edata term from Eq. 4 is replaced
with Eq. 10. The pose Eθb=

∑
||θjb−θ

p(j)
b || and shape

Eβ̂b
=
∑
||β̂

j

b−β̂
p(j)

b || prior loss forces the registered model
maintain the original template shape and prevent unnatu-
ral poses. Here, p(j) denotes the parent joint of joint j.
The pose prior is defined only for the vertebral section. As
the shape here represents a scaling function, the shape prior
forces the scaling to be similar to that of its parent segment.
The incorporation of individual translation t allows free
floating segments such as the sternum, scapula, etc. to move
freely. However, we add a translation prior Etb=

∑
||tjb||

that prevents large translation movement far away from its
initial position. In addition to the landmark error Elm, we
include a skin-based vicinity landmarks Eslm. This helps to

generate an estimated fit of the bones in the case of missing
data around the leg and arm regions. Here, we use a learnt
mapping between the skin vertices and joints of skeletons
J (Ms), in particular for the arms, legs, hand and feet. The
mapping is learnt on the set of registered scans where afore-
mentioned sections where present in the CT data. Using the
registered skin as a reference, we minimize the loss between
the predicted joint locations J (Ms) and the joint locations
obtained from the skeleton model M b(βb,θb).

Edata =
∑

{smk,ssk∈segments(Mb,Sb)}
(λd1Ed(smk, ssk) + λd2Ed(ssk, smk))

(10)

Similar to the skin, non-rigid registration is performed
for the bones by minimizing Elm +Edata +Es +Eo. Un-
like skin, the bones are narrow structures, resulting in se-
vere mesh overlap when using the same formulation. To
prevent this, we create inter-segment and intra-segment vir-
tual edges on the template mesh as shown in Fig.3. These
virtual edges are defined based on a distance threshold and
direction of the vertex normals. For inter-segment edges the
normals between two set of vertices need to be facing each
other whereas for the intra-segment edges the normals need
to be facing away from each other.

Organ registration is a straightforward process that is
similar to skin registration. The initial fit is obtained during
the rigid registration of the bones. The non-rigid registra-
tion is accomplished through affine transformations applied
directly to individual translations. To avoid mesh overlap,
we include virtual edges between organs. However, the
bowel region presents a challenge because there is no dis-
tinct segmentation, only a boundary. To address this, we use
a higher regularizer loss and a penetration loss. The pene-
tration loss calculates if any vertices of the bowel are inside
another body region and penalizes the distance to the near-
est boundary. Examples of registered scans are presented in
Figure 4.

2.5. Model Formulation

With the availability of registered scans Vs and Vbo in
the common mesh topology, we can now formulate the de-
formable shape model for the skin and internal body. It is
necessary that all scans are normalized to the rest pose as
defined by their respective templates T̃s and T̄bo in order
to remove variance related to body articulation. We first
perform the unposing (transforming to rest pose) operation
on the skin, followed by the internal body. Unposing the
skin first, allows us to use the skin as a guide for unposing
the internal body later. From the pose-normalized models,
it is then possible to learn a joint shape-space of the skin-
bone-organ model.



Figure 4. Examples of registered patients.

2.5.1 Skin Unposing

We unpose the registered skin mesh Vi
s to the rest pose Ui

s,
defined by the template skin mesh T̃s. As we prefer the
patient skin model to operate similarly to that of the original
SMPL model, we optimize for a new joint regressor Js,
blend weights Ws and pose related shape variations BPs

.
This is done by minimizing the distance between the skin
model vertices and the registration vertices as described in
the following equation

argmin
Ui

s,θ̃
i
s,BPs ,Js,

Sn∑
i

∥∥∥W (Ui
s+BPs(θ̃

i

s), θ̃
i

s;Js,Ws)−Vi
s

∥∥∥2 .
(11)

During optimization, we initialize Js,Ws and BPs
with

the original SMPL parameters. The rest pose vertices Ui
s

are initialized M(βi) with only the shape parameters βi

obtained from the initial rigid skin fit. Similarly, the poses
θ̃
i

s are initialized with the poses θi obtained from the initial
rigid skin fit. To stabilize the optimization, we make use of
multiple regularizers based on various assumptions.

As, the pose normalized subjects Ui
s needs to be aligned

to the template mesh T̃s, we add an edge loss of the form∑Sn

i ||Ui
s,e−T̃s,e||, where Ui

s,e,T̃s,e ∈ edges(T̃s) repre-
sents the normalized direction vector for a pair of neigh-
bouring vertices. We further add constraints on θ̃

i

s, Js,Ws

and BPs
in the form of L2 loss, to not deviate too much

from its initial values. In the original SMPL model, the joint
regressor was computed using non-negative least squares,
with a constraint that the weights add up to 1. We maintain
similar setting during the joint optimization by normalizing

the joint regressor as |Js|/|||Js|||1. During the optimiza-
tion, we further add a regularizing term defined as

Sn∑
i

||Js(W (Ui
s, θ̃

i

s, BPs
,Js))− J (Ṽi

s)||2,

on the joint locations, such that it is close to the joint loca-
tions from the original rigid fit.

Symmetry regularizer is applied on the pose-normalized
mesh vertices Ui

s and on its joint locations Js(Ui
s) to en-

force symmetry along the sagittal plane defined as

Sn∑
i

||Ui
s−m(Ui

s)||+ ||Js(Ui
s)−m(Js(Ui

s))||2, (12)

where m denotes the mirror vertices or mirror joints.

2.5.2 Bone-Organ Unposing

Similar to the skin model, we perform unposing of the bone-
organ registered mesh Vi

bo to the rest pose Ui
bo. However,

performing exactly the same would lead to incorrect skeletal
localization and mesh overlap of the internal body and the
skin.

The objective function defined in Eq. 13 is to unpose the
body-organ model by minimizing the distance between the
model vertices V̄i

bo=W (Ui
bo, θ̃

i

bo;Jbo,Wbo) and the regis-
tration vertices. Additionally, the objective function defined
in Eq. 13 maintains the distance P between the skin and
bone-organ model among both posed and unposed states as
shown in Eq. 14. We do this with pose-only θ̄ibo deforma-
tion of the unposed model Ūi

bo=W (Ui
bo, θ̄

i
bo;Jbo,Wbo).

For each skin vertex of the registered skin mesh Vi
s, we find

at most 6 bone vertices from the registered bone-organ mesh
Vi
bo based on empirically chosen distance (based on human

size and the particular bone segment) and vertex normal
(skin and bone normal within 30 deg) thresholds. However,
we ignore skin vertices around the complex shoulders, el-
bows and knees joints, along with bone vertices for scapula
and clavicle. This avoids any pose related influences during
optimization around these regions.

argmin
Ui

bo,θ̃
i
bo,Jbo,Wbo

Sn∑
i

∥∥V̄i
bo−Vi

bo

∥∥2 ; (13)

argmin
θ̃
i
bo,θ̄

i
bo,Jbo,Wbo

Sn∑
i

||P(Ūi
bo,U

i
s)− P(V̄i

bo,V
i
s)|| (14)

We start off by initialising the joint regressor Jbo on the
template bone-organ model Tbo based on the joint locations
from its initial kinematic chain. The joints are always lo-
cated between 2 bone segments. We randomly sample 50
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Figure 5. The first three principal components of body shape are shown, varying about 2 standard deviations after normalizing the variance.
One could infer that the height and weight of the patient are mostly explained by the first two components

closest vertices to the joint from both segments where the
vertex normals approximately faces the vertex-joint direc-
tion. The joint regressor Jbo is learnt using a least square
fit for the sampled vertices. The rest pose vertices Ui

bo are

initialized M bo(β̂
i

b) with only the scale parameters β̂
i

b ob-
tained from the initial rigid bone fit. Similar to the skin
model, the blend weightsWbo and poses θ̃

i

bo are initialized.
During unposing of the bone-organ model, we define that
the motion of ribs, sternum and pelvis are a function of
shape rather than a function of the pose. Hence, we ini-
tialize the pose to zero for these particular segments. Note
that, only the ribs and sternum are leaf nodes in our kine-
matic chain, i.e. there are no child segments. However, for
the femur, we additionally include the pelvis rotation, as it
is its parent node.

To stabilize the optimization we make use of similar reg-
ularizes defined in the skin model for both the objectives
functions. For the edge loss, we additionally incorporate
the virtual edges from the registration process with lower
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Figure 6. Cumulative variance of the skin-bone-organ model shape
space.

weightage to reduce mesh interpenetration. Symmetry reg-
ularizer is applied only to the bone structures. Regularizing
the joint locations of bone and skin along the arms and legs
are done by minimizing the following equation:

||Jbo(Ui
bo)− Js(Ui

s)||2.
We alternate between optimizing Eq. 13 and Eq. 14,

while carrying the optimized parameters between them. For
optimization of Eq. 14, we initialize the pose θ̄ibo with zero,
and regularize them towards zero. While alternating to op-
timize Eq. 13, we initialize unposed vertices Ui

bo with the
obtained vertices Ūi

bo after optimizing Eq. 14.

2.5.3 Shape Space

From the unposed skin Ui
s and bone-organ Ui

bo volume, we
learn the shape components with the aid of mean and prin-
cipal shape components. We do not have complete registra-
tions around skulls, arms and legs for some of the volume.
Hence, we use a publicly available implementation 1 of
Probabilistic Principal Component Analysis (PPCA) [42],
which can handle missing data. By performing PPCA, we
obtain a mean skin Ts

µ, bone-organ Tbo
µ and vertex offsets

to the mean in the form of shape space for skin Bs
µ and Bbo

µ

bone-organ.

3. Evaluation
In Fig. 5, we visualize the first three shape components,

while Fig. 6 displays the cumulative variance of the full
model. The first 10 shape components captures 88% of the
variance, and the first 20 components capture 92% of the
variance. Although the shape space of the skin and bone-
organ are coupled, the kinematic model is separated to ac-
count for differences in skeletal posture. We use a neutral

1https://github.com/allentran/pca-magic
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Figure 7. (a) Box-plot of model generalization on the registered ACRIN dataset using 10 and 50 shape components. (b) Box-plot of model
generalization on the registered ACRIN dataset by only using the metadata and skin surface as a guide to determine the internal body shape.
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Figure 8. Residual error on ACRIN dataset with respect to the dif-
ferent number of shape components. The centroid represents, the
mean error of the centre of mass for individual segments between
reconstructed and registered models.

model rather than separating into two genders on basis of
the number of CT volumes available. We map the gender,
height, and weight of the registered patients where available
to the shape space coefficients using a linear regressor. We
provide qualitative results of random samples generated in
Fig. 11.

To demonstrate the effectiveness of the skin-bone-organ
model we perform evaluations on multiple datasets. First
we assess the model generalizability on a registered test set.
We then demonstrate model completion from metadata such
as height, weight, or surface scans. We finally evaluate the
model performance on various public datasets, where seg-
mentations of organs or bones are provided.

3.1. Model Generalization

We register the skin, bones and organs on separate held
out test set. For the test set we use CT volumes from
ACRIN-NSCLC-FDG-PET [43]. We ignore all volumes
where the z-spacing is greater then 3.27 mm, while retain-
ing volumes greater than 2.5 mm only if clear separation
of the vertebra is visible. In total we test on 78 scans,
which were registered to its segmentations as described in
the methodology section.

We minimize the vertex-to-vertex error between the re-
constructed model and the registration while regularizing
the process with shape and pose priors. The shape prior
keeps the reconstructed model close to its mean, while the
pose prior restricts individual vertebrae from deviating too
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Figure 9. Model generalization on VerSe dataset using 10 and 50
shape components.
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(c) Abdomen1k

Figure 10. Model generalization on various datasets using 10 and 50 shape components.

much from their parent and child nodes. It’s important to
note that we do not translate individual segments, and all the
shape variations are accounted for only by the shape space
of the model. In the case of the ACRIN dataset, regions
such as the legs, arms, and part of the skull are not avail-
able, so we exclude these regions while measuring metrics
and during reconstruction.

In Figure 7a, we present the box plot illustrating the er-
ror in individual segments for 10 and 50 shape components.
The vertebra includes all vertebral sections, the pelvis in-
cludes the pelvis and sacral, and the skeleton comprises the
remaining bone structures. In Figure 8, we display the gen-
eralization error across different numbers of shape compo-
nents. The results indicate that the bones can be generalized
well, with an error of 3.66 mm at 25 components. However,
the errors for individual organs are significantly higher, as
we optimize the model for the entire body rather than indi-
vidual organs. This is expected since the shape space ac-
counts for variations in organ shapes and locations. Using
only 25 components, we achieve an average organ error of
8.83 mm, which can provide a starting point for downstream
tasks involving organ shape and placement. We also mea-
sure the mean centroid error for each segment, which rep-
resents the center of mass error. With 25 components, we
observe a mean centroid error of 2.52 mm.

Fig. 7b displays the ability of our model to estimate the
shape of inner organs and skeleton using patient metadata
or skin surface. For estimating with metadata, we use the
linear regressor with patient’s gender, weight, and height to
determine the model shape coefficients. On the other hand,
when using the skin surface, we only use the shape coef-
ficients of our skin model that fit the target skin. In both
cases, we optimize only for the pose while using the previ-
ously determined shape coefficients. We observe an average
overall error of 8.11 mm and 8.68 mm using metadata and
skin surface, respectively.

3.2. Model Generalization on Public Organ Seg-
mentations

We evaluate the generalization of our model on public
datasets containing multiple organs or bones. Specifically,
we test our model on Verse [44] for vertebra, CTPEL [45]
for pelvis and sacral, Abdomen1K [46] for liver, kidney, and
spleen, and StructSeg [47] for lungs and heart. For all meth-
ods, we follow a similar registration process. To register to
each dataset, we obtain a surface mesh of the segmented
volume using marching cubes [32], and then minimize the
chamfer loss between the vertices of our model and the tar-
get surface mesh. For regularization we use the same pro-
cedure as defined in Sec. 3.1 by using pose and shape prior
with no individual translations, i.e. the combined shape
model has to best represent all target surfaces. The final
errors presented are the bidirectional point-to-surface dis-
tance [17].

The model’s generalization performance for the verte-
brae region on the Verse dataset is presented in Fig.9. The
full Verse dataset, including the train, test and validation
sets, was used for testing. However, volumes containing L6
and T13 vertebrae, which are not represented by our model,
were excluded. The generalization errors for the pelvis and
sacral region in CTPEL, for the liver, kidney, and spleen in
StructSeg, and for the lungs and heart of the Abdomen1k
dataset are presented in Fig. 10. In the Abdomen1k dataset,
volumes containing incomplete liver were excluded from
the analysis. The results obtained on these datasets are con-
sistent with those observed on the ACRIN dataset.

4. Conclusion
A digital twin of a patient can be a valuable tool to

improve multiple clinical tasks, such as automating clini-
cal workflows, estimating patient-specific X-ray dose ex-
posure to patient and medical staff, positioning, markerless
tracking and navigation assistance in image-guided inter-
ventions. For the first time, we provide a joint model with
an accurate estimation of shapes and poses of the patient



Figure 11. Random samples drawn from the model.

surface, skeleton and internal organs. We propose a de-
formable shape and pose human model devised out of indi-
vidual segments such as the skin, internal organs and bones,
learnt from surfaces extracted from segmented whole-body
CT images. With surface errors of 3.66 mm for bones and
an average organ error of 8.83 mm, we believe that the sta-
tistical model will allow many automation tasks in clinical
workflows and lays the basis for fast intraoperative model
personalisation given patient-specific information.

Disclaimer
The concepts and information presented in this article

are based on research and are not commercially available.
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