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Abstract

The widespread emergence of smart devices for
ECG has sparked demand for intelligent single-
lead ECG-based diagnostic systems. However,
it is challenging to develop a single-lead-based
ECG interpretation model for multiple diseases di-
agnosis due to the lack of some key disease infor-
mation. In this work, we propose inter-lead Multi-
View Knowledge Transferring of ECG (MVKT-
ECG) to boost single-lead ECG’s ability for multi-
label disease diagnosis. This training strategy can
transfer superior disease knowledge from multi-
ple different views of ECG (e.g. 12-lead ECG)
to single-lead-based ECG interpretation model to
mine details in single-lead ECG signals that are
easily overlooked by neural networks. MVKT-
ECG allows this lead variety as a supervision
signal within a teacher-student paradigm, where
the teacher observes multi-lead ECG educates
a student who observes only single-lead ECG.
Since the mutual disease information between
the single-lead ECG and muli-lead ECG plays a
key role in knowledge transferring, we present a
new disease-aware Contrastive Lead-information
Transferring(CLT) to improve the mutual dis-
ease information between the single-lead ECG
and muli-lead ECG. Moreover, We modify tradi-
tional Knowledge Distillation to multi-label dis-
ease Knowledge Distillation (MKD) to make it
applicable for multi-label disease diagnosis. The
comprehensive experiments verify that MVKT-
ECG has an excellent performance in improving
the diagnostic effect of single-lead ECG.
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ing \icmlaffiliation. . AUTHORERR: Missing
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1. Introduction
Electrocardiogram (ECG) is a commonly used, non-invasive,
and convenient diagnostic method for detecting Cardiac ar-
rhythmia and other cardiovascular conditions (Holst et al.,
1999). It can be divided into two categories: Multi-lead (12-
lead system standard in clinical) ECG and single-lead ECG.
Multi-lead ECG is acquired by several electrodes arranged
on the patient’s chest wall and limbs, which can be seen as
visualizing the heartbeat signals in multiple different views
(Figure 1(a)) (Chen et al., 2021b; 2022). Under the strong
ability of deep learning, many multi-lead-based deep ECG
interpretation models are widely used in practice. Previ-
ous models focused on extracting discriminative features
(Kiranyaz et al., 2016; Ribeiro et al., 2020; Wang et al.,
2019b). Subsequently, the residual connection is widely
used in deeper convolutional network structures to increase
the expressive power of the model(Ribeiro et al., 2020). To
exploit the properties of different leads, a series of deep
neural networks are proposed to establish an attention mech-
anism between leads (Xia et al., 2019; Liu et al., 2021).
More recently, faced with the shortage of high-quality ECG
datasets, many self-supervised approaches focus on mining
effective information from unlabeled data (Kiyasseh et al.,
2021; Chen et al., 2021a; Sarkar & Etemad, 2020). However,
this kind of high-quality multi-view ECG data is provided
by an environment with strong observation equipment (e.g.
hospital) (Hong et al., 2018).

Single-lead electrocardiograms have attracted much atten-
tion recently due to the emerging smart ECG devices, such
as Apple Watch and Alivecore, which bring great conve-
nience for people. In recent years, many single-lead ECG
signals have been produced with the popularization of in-
telligent ECG devices, raising high expectations for robust
intelligent multi-label disease single-lead ECG diagnostic
systems. However, the poor observation equipment always
provides low-quality and single-view ECG signals (Hong
et al., 2018). Due to the lack of views, research on the
intelligent diagnosis of single-lead ECG still focuses on a
few diseases(Rizas et al., 2022; Hong et al., 2019) (such
as atrial fibrillation). Single-lead ECG records the heart’s
electrical activity from only one perspective, which can be
seen as one partial view of a 12-lead ECG. A large gap in
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Figure 1. (a): A standard 12-lead ECG signal by depicting heartbeat from 12 different views. Mul-view ECG can record the heart’s
activity more comprehensively, as it includes rich disease information from various perspective. (b): Lead III of this ECG signal shows
the disease STD, while other leads are all normal (only four leads are shown), so judgment based on lead I or other lead (except lead III)
alone is likely to lead to missed detection.

arrhythmia diagnosis still subsists between single-lead and
multi-lead, indicating that the number of leads plays a key
role in achieving better results (see Table. 2).

Recently, Knowledge Distillation methods are proposed
to improve single-lead ECG’s performance (Sepahvand &
Abdali-Mohammadi, 2022; Hong et al., 2018), where the
teacher model was already developed through multi-lead
ECG signals and the student model was developed through
single-lead ECG signals. Since the student is educated under
the supervision of the teacher to mimic the output space and
inner feature or attention maps of its teacher, the internal fea-
ture maps to be processed must be strictly consistent. And
this method can only diagnose ECG with single-label. It is
noted that mutual information plays a key role in improving
single-lead ECG’s potential. So limiting consideration on
the information relationship between single-lead ECG and
multi-lead ECG, just forcing the same output of student with
the teacher does not guarantee the robustness of the student.

In this paper, in order to efficiently stimulate the single-lead
ECG signals’ potential, we propose a novel and efficient
architecture to transfer multi-view information of ECG for
multi-disease label classification — Multi-View Knowledge
Transferring of ECG (MVKT-ECG). We adopt the teacher-
student paradigm and extend it to a more general inter-lead
knowledge transfer approach. Since mutual information is
the key to improving single-lead ECG’s ability, we formu-
late a new objective to maximize the mutual information
of the feature representations between teacher and student
— Contrastive Lead-information Transferring (CLT) Loss.
The CLT can maximize a lower bound to the mutual in-
formation between the teacher and student representations.

Further, We modify traditional Knowledge Distillation to
multi-label Knowledge Distillation to make it applicable
to the context of multi-disease labels. To verify the effec-
tiveness of our method, in this paper, we conduct extensive
experiments on two commonly used public datasets, PTB-
XL and ICBEB2018. Experimental results demonstrate the
effectiveness and robustness of multi-view knowledge trans-
ferring in the single-lead ECG classification task. To sum
up, the contributions of this paper include the following:

• We propose a more general and efficient framework
MVKT-ECG to transfer multi-view information from
multi-lead ECG signals to single-lead-based models.

• We explore the nature of inter-lead knowledge transfer
and design a novel inter-lead information transferring
objective—Contrastive Lead Transferring(CLT) Loss.

• We formulate multi-label Knowledge Distillation
(MKD) and apply it to to fit the context of more general
multi-disease label detection.

2. Related Work
(Hannun et al., 2019) firstly proposed a comprehensive eval-
uation of an end-to-end deep neural network for ECG anal-
ysis across various diagnostic classes, demonstrating that
an end-to-end deep learning approach can classify a broad
range of distinct arrhythmias from single-lead ECGs with
high diagnostic performance similar to that of cardiolo-
gists. Due to the limited information provided by single
lead ECGs, all kinds of intelligent ECG equipment can only
support a few types of detection at present. For example, the
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Figure 2. An Overview of Multi-View Knowledge Transferring: the network using single-lead ECG signals is optimized by the
network using 12-lead ECG signals. The student network receives the multi-view Knowledge in two ways: (a) minimizing LCLT to
improve the inter-lead disease mutual information (b) matching the logits of the teacher by minimizing the LMKD;

Apple Watch can only detect sinus rhythm(SR) and atrial
fibrillation(AF) (Rizas et al., 2022). And most academic
research has also focused on that. Existing studies have
achieved high detection accuracy in the detection of AF
(Clifford et al., 2017). However, limited by input informa-
tion, the single-lead model performs poorly in classifying
other arrhythmias, such as STD and PAC (Relevant experi-
mental data will be presented in the Appendix).

To address this problem of lacking ECG views, people
proposed the method of restruction and synthesis of ECG.
(Zhang & Frick, 2019) restored another nine leads based
on noisy three-lead signals through LSTM. (Golany et al.,
2021) transformed the reconstruction of missing leads into
solving the least squares problem by mapping the known
ECG leads to the corresponding Koopman space and using
the theory that the Koopman operator is linear. (Chen et al.,
2021b) proposed the concept of ECG panorama and the
corresponding generation network Nef-Net and further pro-
posed disease-aware synthesis method—ME-GAN, which
attains panoptic electrocardio representations conditioned
on heart diseases. These methods can restructure or syn-
thesize multi-view ECG signals, but lacking evaluation on
downstream classification tasks makes it difficult to guaran-
tee the quality of the reconstructed signals to detect diseases.

To achieve model compression of single-lead-based model

and minimize the performance gap between the arrhythmia
classification model with multi-lead ECG signals and the
arrhythmia classification model with single-lead ECG sig-
nals, (Sepahvand & Abdali-Mohammadi, 2022) proposed
the teacher-student architecture. In order to deploy models
in the poor-data environment without requiring direct access
to multi-modal data acquired from a rich-data environment,
(Hong et al., 2018) proposed a knowledge distillation (KD)
method (RDPD) to enhance a predictive model trained on
poor data using knowledge distilled from a high-complexity
model trained on rich, private data. These methods use
the traditional method of KD, forcing the student to imi-
tate the output and inner features or attention of the teacher.
It realizes the compression of the model through mature
knowledge distillation loss and reduces the gap between
single-lead ECG and 12-lead ECG. But this method must
require the same dimension of the feature map between
teacher and student, which makes the network structure lack
flexibility. Different from this work, we explore the nature
of inter-lead information transferring and formulate two new
losses. In addition, our architecture can also deal with the
muli-label-disease task, which is more general and efficient.
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3. Method
3.1. Architecture

Here we briefly describe the framework of our method and
introduce the notations used in this paper. Given a 12 leads
ECG signal X =

[
x(1), x(2), ..., x(12)

]
or a single lead

ECG signal x = x(i), where X ∈ R12×L and x ∈ RL. Our
models are aimed to learn a function Fθ(X), mapping a set
of ECGs [X1, X2, ..., XN ] to a representative features space.
Then the classifier Cθ(·) will project the above features into
category space Ŷ ∈ RC . We consider the medical reality
that sometimes patients with heart disease often have com-
plex conditions, often multiple arrhythmias. So we consider
the multi-label disease scenario, so the sigmoid function
was used as the final activation function. Here, we hope that
this kind of representation can 1)minimize the information
gap between single-lead ECGs and multi-lead ECGs sig-
nals and 2)be robust to the lead reduction in the single-lead
ECGs. To achieve this, as shown in Figure 2, our proposed
method is a two-stage procedure, as follows.
First step : we train the teacher network using standard
12 leads ECGs X =

[
x(1), x(2), ..., x(12)

]
. The module

FTθ (X) : R12×L → RD will map each ECG signal Xi to a
fixed-size representation di (in xresnet1d101 (Strodthoff
et al., 2021) D = 4096). We train the teacher network-
which will observe 12-lead ECG using the multi-label classi-
fication term — Binary Cross Entropy Loss (LBCE), which
can be formulated as:

LBCE = − [y log ŷ + (1− y) log(1− ŷ)] (1)

where y represents the one-hot labels and ŷ represents the
predicted classes probability.
Second step: we use the teacher network trained in the
first step to instantiate the new student network, which only
observes single-lead ECG, and the teacher’s parameters
are frozen. When we have trained the teacher model, we
hope the representation ability of the network, which only
observes single-lead ECGs, can be improved. In order to
achieve this, we aim at the information knowledge we can
gather from different leads, depicting the same heart con-
dition under different views. When facing a 12-lead ECG
classification task, one can often exploit lead viewpoints
to provide a variety of appearances for a target disease.
We want to teach a network to recover as much full-lead
information just from a single-lead ECG. Although some
diseases can not be inferred from single-lead ECG signals,
what we want to do is to shorten the information gap be-
tween single-lead ECG and 12-lead ECG as far as possible,
encouraging the student to focus more on key details to some
particular diseases and maximum the mutual disease infor-
mation between single-lead and 12-lead, further to reduce
the incidence of misdiagnosis.

Typically, due to the information gap between 12-lead ECG

and single-lead ECG, the teacher network is always more
powerful than the student network. This kind of asymmetry
between the teacher and the student can produce a distilla-
tion objective different from the one due to the differences
in model complexity. MVKT-ECG improves the mutual
information between the feature representations of teacher
and student by the Contrastive Lead-information Transfer-
ring (CLT) Loss. In the process of doing so, we also allow
the student to imitate the teacher’s output from the single-
lead, which is a part of the 12-lead. To do it, we refine the
Knowledge Distillation loss (Hinton et al., 2015) to a new
knowledge distillation objective that can process multi-label
disease problems.

3.2. Contrastive Lead-information Transferring(CLT)

To improve the inter-lead mutual information, we pro-
pose the disease-aware Contrast Lead-information Trans-
ferring(CLT) Loss, which can transfer useful disease in-
formation by maximizing the mutual information between
single-lead ECG and multi-lead ECG.

As we all know, due to the lack of data dimensions, the dis-
ease information in the feature extracted by a neural network
from single-lead ECG is less compared with 12-lead ECG,
but it still contains part disease information. We refer to
this information as the mutual information between single-
lead ECG and 12-lead ECG. In another aspect, the absence
of available data for single-lead ECG signals also tends to
trigger a false diagnosis. For example, abnormal T wave
morphology in any lead would be clinically diagnosed as a T
wave change. In the case of abnormal T waves in other leads,
judgment based on lead I alone is likely to lead to missed
detection Fig 1(b). We refer to this information that triggers
a tendency to misdiagnosis as misleading information.

We know the lower limit of mutual information (Oord et al.,
2018):

I(GT (X), GS(X))

=
∑
i,j

p(GT (Xi), G
S(Xj)) log

p(GT (Xi), G
S(Xj))

p(GT (Xi))(GS(Xj))

≥ log(N) + E
[
log

f(GT (Xi), G
S(Xj))

f(GT (Xi))(GS(Xj))

]
= log(N) + E

[
log

exp
[
(GT (Xi)G

S(Xj))/τ
]∑

exp [(GT (Xi)GS(Xj))/τ ]

]
= log(N)− LCLT

(2)
The key idea of contrastive learning is learning a representa-
tion that is close for “positive” pairs and pushing apart the
representation between “negative” pairs. In detail, for sam-
ples Xi and Xj , MVKT-ECG shortens the student model
and teacher model’s representation of the same sample
GS(xi) and GT (Xi) and further the feature representation
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of the two models for different samples, such as GS(Xi)
and GT (Xj). This can be achieved by minimizing:

LCLT = −E

[
log

exp
[
(GT (Xi)G

S(Xj))/τ
]∑

exp [(GT (Xi)GS(Xj))/τ ]

]
(3)

N is the number of positive and negative sample pairs; the
larger the better. Then a memory buffer is used to store
the features of all training samples in this study. Since the
teacher has observed multi-view ECGs, we believe that the
different distances between “positive” and “negative” pairs
yield a strong description of corresponding disease identities.
During the training, N samples are randomly selected to
calculate the loss so that it can meet the demand of the
model for the number of negative samples. The expression
of each sample in the memory will carry on momentum
updates according to the latest feature extracted from the
network.

3.3. Multi-label diseases Knowledge Distillation(MKD)

The traditional KD focuses on single-label classification
problems, so we propose MKD, a new knowledge distilla-
tion objective that can process multi-label disease problems.
Especially, we separate the output probability pi with 1−pi,
and for each sample, we calculate the fore-and-aft softmax
by temperature coefficient τkd.

qi =
epi/τkd

epi/τkd + e(1−pi)/τkd

(4)

LMKD = τ2kd
∑
i

KL
(
qTi ||qSi

)
(5)

where τkd represents the temperature coefficient of multi-
label disease knowledge distillation loss.

3.4. Student Optimization

In summary, the MVKT-ECG overall objective com-
bines the distillation terms (LMKD), the Contrastive Lead-
information Transferring terms(LCLT), and the ones opti-
mized by hard label-LBCE, which provide a higher con-
ditional likelihood w.r.t. ground truth labels. To sum up,
MVKT aims to boost single lead ECG’s representation abil-
ity by the following optimization problem:

argminθS LMVKT = LSBCE + αLMKD + βLCLT (6)

where α, β are hyperparameters balancing the contributions
of LMKD and LCLT to the total loss LMVKT. Regarding
the student initialization, we found that the CLECG’s self-
supervised strategy (Chen et al., 2021a) is beneficial, which
will be mentioned in Sect. 5.5.

4. Dataset
To build robust and efficient single-lead ECG interpretation
models in a multi-label disease context. So we conduct
experiments on two multi-label freely accessible datasets.
ICBEB2018 dataset(Liu et al., 2018) contains 6,877 12-
lead ECG recordings, each ranging in length from 6 to 60
seconds. The dataset considered one normal and eight ab-
normal arrhythmia categories, including AF, I-AVB, LBBB,
PAC, PVC, RBBB, STD, and STE. Each record may have
more than one label. This paper follows the processing
method in (Liu et al., 2018) to divide the dataset into ten
folds by stratified sampling, and the original label distri-
bution is maintained in each fold. Among them, the first
eight were used as training sets, while the 9th and 10th were
used as verification and test sets, respectively. Then, we
preprocess them to get equal-length data, and the length
n = 10000.

PTB-XL dataset(Wagner et al., 2020) is the to-date largest
freely accessible clinical 12-lead ECG-waveform dataset
comprising 21,837 records from 18,885 patients of 10 sec-
onds long. This work uses all signals down-sampled at 100
Hz as the labeled data source. This dataset provides rich
multi-level annotations, which, in terms of diagnosis, in-
clude superclasses of 5 classes and subclasses of 24 classes.
We followed the Settings in (Wagner et al., 2020) to divide
the dataset into ten folds of class-balanced, with the first
eight folds as the training set and the 9th and 10th folds
as the verification set and test set, respectively. The signal
length of each sample is 1,000 points.

5. Experiments
Evaluation Metrics. In the followings, we report perfor-
mance in terms of Area under the Receiver Operating Char-
acteristic (ROC-AUC) and the F1 score.

5.1. Experimental setups

We implemented the MVKT algorithm in the framework of
Pytorch. During the training, the model was trained accord-
ing to the two-stage teacher-student training process, and the
12-lead data was first used to train the teacher model. All
the teacher networks are trained for 100 epochs using Adam
(Kingma & Ba, 2014). During the information transferring
period, the parameters of the teacher model are frozen, and
only the student model is updated. We feed 12-lead ECG
signals to the teacher and single-lead ECGs to the student.
In the process of information transferring, the temperature
coefficient of knowledge distillation τKD is set as 1.5 be-
cause the dataset we used contains not many categories
and the network prediction scores for each category are
not concentrated. The temperature coefficient in the loss
of comparative representation τ is set as 0.07, and the di-
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Table 1. Comparision MVKT’s performance with State-of-the-Art single-lead ECG interpretation methods on public datasets. Since KD
loss is only applicable to single-label classification, we use the original output KL-div when computing KD loss on these two data sets.

Method
ICBEB2018 PTBXL.subdiagnostic PTBXL.superdiagostic

AUC ACC F1-score AUC ACC F1-score AUC ACC F1-score

resnet1d Liu 90.2 92.2 65.6 84.9 88.5 48.8 82.6 80.2 60.9

DenseCNN wang 88.7 90.6 61.7 84.5 88.3 47.9 82.7 81.1 61.7

SEresnet18 93.5 94.4 72.5 85.0 88.8 48.5 82.7 81.3 61.6

SEresnet34 93.7 94.4 73.1 84.4 89.3 47.7 82.9 81.8 62.3

CNN Hannun 94.0 94.7 74.6 84.9 89.2 48.9 83.1 80.8 61.4

KD+FitNet 94.0 94.8 74.8 83.6 87.2 46.4 83.8 76.5 60.1

KD+AT 92.8 93.8 71.4 82.0 86.1 44.2 80.0 78.5 59.8

MVKT-ECG 95.7 95.7 78.0 86.1 88.3 58.3 84.3 82.2 62.6

mension of teacher and student representation d is 128 in
all structures. The size of the training batch is 32. In each
training round, 1024 samples are randomly selected from
the memory storage area to calculate the loss-LCLT. In
the concrete realization, the negative samples are extracted
with the student output and the teacher output as the anchor
points, respectively. The loss is composed of two symmetric
parts. In the concrete realization, the negative samples are
extracted with the student output and the teacher output as
the anchor points, respectively. The loss is composed of two
symmetric parts.

5.2. Comparision with State-Of-The-Art Single Lead
ECG’s Classification Methods

Table 1 reports a thorough comparison with current state-of-
the-art (SOTA) methods across datasets. In the Physionet
Challenge 2017 competition (Clifford et al., 2017), Han-
nun’s CNN based model (Hannun et al., 2019) achieved the
best score. The DenseCNN wang (Wang et al., 2019a), and
resnet1d Liu (Liu et al., 2019) achieved the top performance
in China ECG AI Contest 2019 competition. (Zhao et al.,
2020) proposed a large kernel size model SEresnet Zhao
based on SE-block (Hu et al., 2018), achieving second place
in the PhysioNet 2020 competition (Alday et al., 2020).
(Sepahvand & Abdali-Mohammadi, 2022) (KD+FitNet) and
(Hong et al., 2018) (KD + attention) also use the distilla-
tion idea to bridge the gap between the model with multi-
lead ECG signals and single-lead ECG signals by trying to
make the student’s output and inner features the same as
the teacher’s. Compared with KD, Our proposed method
performs better and outperforms other SOTA single-lead
models. This result is fully consistent with our goal of ro-
bustness when providing only a single lead ECG as a query.

5.3. MVKT-ECG on different backbones

We indicate the baseline and teacher model with the name
of the backbone and append “MVKT” for the model af-
ter the MVKT (e.g. ResMVKT34). We first benchmark
5 SOTA models’ performance when they observe 12-lead
ECGs and single-lead ECGs, respectively. The 5 models:
CNN Hannun (Hannun et al., 2019), ResNet1d34 (He et al.,
2016), ResNet1d wang (Wang et al., 2017), inception1d
(Ismail Fawaz et al., 2020), XresNet1d101 (Strodthoff et al.,
2020) are set as our backbones. The backbones’ perfor-
mance on single-lead ECGs is set as our baseline. Table 2
reports the comparison for different backbones. Table 4 and
Table 5 demonstrates detail promotion of each disease. In
detail, the student XresMVKT1d101 outperforms its base-
line observably (3.2 % on ICBEB2018, 1.3 % on PTB.super,
and 1.4 % on PTB.sub). Based on this, we draw the fol-
lowing conclusions: 1) according to the objective which the
student seeks to optimize, our method can gain significant
improvement when single-lead ECGs are available; 2) com-
pared with the baseline, the students do gain improvement,
but it is hard for them to exceed the teacher’s performance.
As far as we can tell, the single-lead ECGs contain only a
fraction of the 12-lead ECGs information that the MVKT
can elicit to the greatest extent, but some pieces of informa-
tion which single-lead ECG drops can never be recovered.

As additional proof, plots from Figure 3 draw a comparison
between models before and after information transferring.
MVKT-ECG improves the performance considerably on
ICBEB2018 dataset for each selected lead. Surprisingly, the
lead II, AVR and limb lead (always v3–v6) always perform
better. Surprisingly, MVKT-ECG can make lighter single-
lead networks superior to complex models several times
deeper: as an example, ResMVKT34 scores better than
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Table 2. MVKT’s results on different datasets, settings, and archi-
tectures.

backbone
AUC (%)

PTB.sub PTB.super ICBEB2018

Teacher CNN Hannun 92.3 92.0 97.0

1 lead
CNN Hannun 84.8 83.3 94.0

CNN Hannun MVKT 85.6 83.4 95.7

Teacher ResNet1d34 92.3 92.8 94.5

1 lead
ResNet1d34 84.5 82.6 90.7

ResMVKT34 85.2 83.8 93.9

Teacher ResNet1d wang 92.7 92.1 91.0

1 lead
ResNet1d wang 84.9 83.1 87.3

ResMVKT wang 85.8 84.0 89.3

Teacher Inception1d 93.2 92.4 93.8

1 lead
Inception1d 85.2 83.2 88.1

InceptionMVKT 86.1 84.3 90.7

Teacher XresNet1d101 92.1 93.7 95.3

1 lead
XresNet1d101 83.9 82.7 92.6

XresMVKT101 85.3 84.0 94.6

even XresNet101 on ICBEB2018, regardless of the selected
lead of ECGs.

I II III AVR AVL AVF V1 V2 V3 V4 V5 V6
ECG lead

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

A
U

C
 (%

)

ResNet1d34
ResMVKT34
XresNet1d101
XresMVKT101

Figure 3. Performance (AUC) at evaluation time when changing
the lead of ECG in ICBEB2018 dataset.

5.4. Analysis on MVKT-ECG

The impact of Loss Terms.
We conducted a thorough ablation study for the loss terms.
Without loss of generality, we focus our analysis on Xres-
MVKT101 on the ICBEB2018 dataset. Table 3 reports
the ablation’s result. In the three losses, LCLT plays an
important role. Although we only use the hard label and
LCLT, it can also achieve a significant result, which also
demonstrates our proposed role of information transferring
between leads. And as expected, the greatest performance
of AUC is obtained with all the losses.

Visualization of the classes distribution.

Table 3. Ablation study in terms of the impact of each loss term.

LBCE LMKD LCLT AUC (%)

XresNet101(Teacher) 95.3

XresMVKT101
(Student)

X 88.2

X X 93.7

X X 93.9

X X X 94.4

To visually assess the differences between the baseline and
student, we use the T-SNE graphs to highlight the feature
distribution. Figure 4 depicts the impact of MVKT between
different backbones on ICBEB2018. As we can see, the
distribution of features of normal (Norm), atrial premature
beat (PAC), ST-segment depression (STD), and ST-segment
elevation (STE) in the baseline network are confused to
some extent. After MVKT, although the four categories are
still relatively concentrated in the same area, the feature
distribution of the distilled model in all nine categories
became denser. As for the issue of category overlap, the
status is greatly improved, especially on CNN Hannun,
ResNet1d34, and XresNet1d101 backbones. (We can
see the improvement of each disease on ResNet1d wang
and Inception1d from Table 4). This suggests that the
information conveyed by other leads can make up for the
lack of single leads for various arrhythmias.

Commonality.
Faced with the shortage of ECG datasets, many self-
supervised learning methods are proposed to take advantage
of unlabeled data. As for the student network’s initialization,
(Chen et al., 2021a) introduced a SOTA unsupervised pre-
training program — CLECG to mine adequate information
from unlabeled data. During the pre-training, CLECG en-
courages the representations of different augmented views
of the same signal to be similar and increases the distance
between representations of augmented views from the dif-
ferent signals.

We combine MVKT-ECG with CLECG. As PTB-XL
dataset is the to-date largest freely accessible clinical ECG-
waveform dataset, we firstly pre-train the network with
CLECG on PTB-XL dataset, then using MVKT-ECG to
finetune. The different proportions (eighth, quarter, half,
all) of ICBEB2018 training set data were used in funtune
procedure. AUC indicators of random initialization and
self-supervised pre-training were compared and the results
are shown in Figure 6.

It can be seen that at different data sizes, MVKT-ECG can
improve performance by 1%-2% compared to the baseline
model and even surpass the performance of the baseline
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teacher

baseline

student

CNN_Hannun ResNet1d_wangResNet1d34 Inception1d XresNet1d101

Figure 4. Feature visualization. The first line, second and third lines are the feature distribution of teacher, baseline, and student,
respectively.

model trained with total data when using only half of the
data. On this basis, using the parameters obtained from ex-
ternal data of CLECG can further improve the performance
of the student model, and the AUC metric increases by 0.9%
when using all training data, which shows that our method
has practical application in combination with other methods.
Moreover, this result suggests that the student model can
improve performance by accepting knowledge transferred
both from unlabeled external data and other leads.

Figure 5. Combine MVKT-ECG with CLECG. The pre-training
procedure is based on the PTB-XL dataset, and the finetune proce-
dure is based on the ICBEB2018 dataset.

6. Conclusion
An effective ECG smart device recognition algorithm re-
quires higher recognition accuracy and robustness for single-
lead ECG signals. To achieve this goal, we propose MVKT-
ECG. This is teacher-student information transferring ap-
proach in which the student observes only a single lead of
the input ECG signals. This strategy encourages students to
find better representations and to be closer to the teacher in
performance through the knowledge transferring of the 12-
lead ECG processing network. Notably, MVKT-ECG shows
robustness in different datasets and different backbones.
Experimental results show that the proposed algorithm is
insensitive to the classification granularity and specific cate-
gories of the datasets, and the accuracy of the student model
in the detection of multiple arrhythmias is greatly improved.
The visualization results also show that multi-view knowl-
edge distillation can guide the student model to simulate
the expression of the teacher model, which makes up for
the deficiency of single-lead ECGs in differentiating some
specific categories.
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A. Detailed experimental results.
Here we report the F1 score of each disease on different backbones. We also try to use different frameworks for teachers and
students. We can see from the Table 4 and Table 5 that MVKT is beneficial in most cases for the diagnosis of any disease
except for CNN Hannun and Resnet1d wang. This suggests that the MVKT operates in an environment with sufficient
model capacity.

Table 4. MVKT’s results of different diseases on ICBEB2018 dataset

backbone MVKT
F1 score (%)

NORM AF I-AVB LBBB RBBB PAC PVC STD STE Average

Teacher CNN Hannun 75.8 92.0 87.0 88.0 91.7 71.3 86.7 74.0 68.1 81.6

Student CNN Hannun 65.2 95.2 84.8 91.3 85.0 66.7 86.5 66.0 30.8 74.6√
73.9 95.9 85.5 87.5 86.9 70.8 82.2 72.0 47.4 78.0

Teacher ResNet1d34 73.4 91.7 85.7 88.4 91.0 35.7 82.2 75.5 61.9 76.2

Student ResNet1d34 63.9 92.1 84.5 87.5 85.5 33.8 60.0 65.1 26.9 66.6√
65.6 93.3 86.3 90.5 85.5 40.3 79.1 60.2 34.3 70.6

Teacher Resnet1d wang 65.9 90.5 55.8 82.6 90.5 22.9 77.2 75.7 57.1 68.7

Student Resnet1d wang 60.2 82.7 67.7 84.0 84.5 26.3 36.1 60.0 30.4 59.1√
59.4 85.9 68.5 87.0 84.0 24.7 40.7 61.2 26.3 59.8

Teacher Inception1d 70.6 92.3 85.9 84.0 90.6 39.4 81.8 76.7 61.9 95.9

Student Inception1d 62.4 89.9 81.1 85.1 84.07 27.9 30.9 60.0 26.9 60.9√
67.0 91.1 81.3 85.7 86.5 33.7 56.0 63.0 36.7 66.8

Teacher XresNet1d101 73.7 95.2 85.3 88.9 92.5 60.2 89.6 77.0 66.7 81.0

Student

XresNet1d101 65.8 89.8 83.8 87.0 85.2 63.1 80.0 65.9 32.3 72.5√
68.1 95.2 82.5 91.3 86.8 67.3 83.0 68.8 36.4 75.5

ResNet1d34 63.9 92.1 84.5 87.5 85.5 33.8 60.0 65.1 26.9 66.6√
69.1 93.3 86.3 87.5 87.3 50.0 74.5 66.3 30.8 71.7

Table 5. MVKT’s results of different diseases on PTB-XL dataset.

Backbone MVKT
F1 score

NORM MI STTC CD HYP Average

Teacher CNN Ag 74.8 60.5 73.2 86.2 76.0 74.2

Student CNN Ag 58.9 45.8 56.3 79.7 66.5 61.4√
60.1 46.4 57.4 80.3 67.8 62.4

Teacher ResNet1d34 74.5 58.6 75.1 85.8 76.8 74.2

Student ResNet1d34 59.2 45.0 55.4 80.1 66.4 61.2√
61.3 47.3 56.7 80.6 68.7 62.9

Teacher ResNet1d wang 74.9 58.7 75.9 86.6 76.8 74.6

Student ResNet1d wang 60.2 46.9 56.0 80.8 67.2 62.2√
60.4 46.4 57.7 80.9 68.5 62.5

Teacher Inception1d 76.6 60.1 76.1 86.4 76.0 75.1

Student Inception1d 58.8 46.3 56.2 80.3 67.0 61.7√
60.2 47.8 57.4 80.6 66.5 62.5

Teacher XresNet1d101 74.8 53.8 72.7 85.9 75.6 72.6

Student XresNet1d101 58.2 45.5 55.6 80.5 66.6 61.3√
59.8 47.2 57.3 80.4 67.5 62.4
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B. Illustration of Multi-label diseases Knowledge Distillation
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Figure 6. llustration of Multi-label diseases Knowledge Distillation.


