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Abstract

The vast majority of people who suffer unexpected cardiac arrest are per-
formed cardiopulmonary resuscitation (CPR) by passersby in a desperate
attempt to restore life, but endeavors turn out to be fruitless on account of
disqualification. Fortunately, many pieces of research manifest that disci-
plined training will help to elevate the success rate of resuscitation, which
constantly desires a seamless combination of novel techniques to yield further
advancement. To this end, we collect a custom CPR video dataset in which
trainees make efforts to behave resuscitation on mannequins independently
in adherence to approved guidelines, thereby devising an auxiliary toolbox
to assist supervision and rectification of intermediate potential issues via
modern deep learning methodologies. Our research empirically views this
problem as a temporal action segmentation (TAS) task in computer vision,
which aims to segment an untrimmed video at a frame-wise level. Here, we
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propose a Prompt-enhanced hierarchical Transformer (PhiTrans) that inte-
grates three indispensable modules, including a textual prompt-based Video
Features Extractor (VFE), a transformer-based Action Segmentation Execu-
tor (ASE), and a regression-based Prediction Refinement Calibrator (PRC).
The backbone of the model preferentially derives from applications in three
approved public datasets (GTEA, 50Salads, and Breakfast) collected for TAS
tasks, which accounts for the excavation of the segmentation pipeline on the
CPR dataset. In general, we unprecedentedly probe into a feasible pipeline
that genuinely elevates the CPR instruction qualification via action segmen-
tation in conjunction with cutting-edge deep learning techniques. Associated
experiments advocate our implementation with multiple metrics surpassing
91.0%.

Keywords: Instructional cardiopulmonary resuscitation, Temporal action
segmentation, Transformer, Prompt, Boundary regression refinement

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a universal public health is-
sue undergone by about 3.8 million people annually, with only 8% to 12%
surviving hospital discharge [1]. Characterized as blood flow or breathing
stops, OHCA induces permanent brain damage or death happens acutely.
Performing cardiopulmonary resuscitation (CPR) could serve as an emer-
gency procedure for OHCA, which maintains the blood flow and breathing
until advanced medical help arrives [2]. There has been a large volume of re-
search and practice for decades to investigate CPR [3, 4, 5]. In 1891, the first
chest compression on a human being were performed by Friedrich Maass [4].
The first guidelines for CPR were released about 50 years ago [3]. Despite a
long history of deploying CPR against OHCA, survival remains dismally low.
There are indications that CPR performance influences the outcome [6, 7].
From this perspective, a great deal of research [8, 9, 10] seeks and proves
the positive effects of CPR instruction. Besides, the increasing number of
people suffering OHCA worldwide makes intensive CPR education even more
imperative. To enable CPR education as a mandatory part of society, not
only should we cultivate the awareness of social responsibility, but employ
more comprehensive approaches [8]. Specifically, traditional assessment of
CPR skills involves strenuous manual efforts, which lacks efficiency and re-
peatability [8, 9]. Extensive attempts to revive those who sustain OHCA
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will be probably further improved with the combination of promising novel
computer techniques and widespread application.

One most relevant specific research [11] emerges by collecting a dataset of
real-world instruction videos from the Internet, containing performing CPR
and four non-medical tasks. However, the work intends to address the prob-
lem of automatically learning the main steps to complete a certain task,
neither implemented particularly for formal CPR behaviors nor designed
for CPR instruction. Given the aforementioned dataset, several subsequent
works focus on action segmentation in an unsupervised [12] or weakly su-
pervised way [13] without proposing concrete challenges pertaining to CPR
instruction. The positive impacts of CPR action segmentation are not clearly
defined yet. Therefore, we evoke one ensuing challenge: How better could we
elevate CPR instruction with action segmentation?

To this end, we resort to investigating a specific realm called temporal
action segmentation (TAS), which has gradually developed into one of the
high-profile research spotlights in computer vision. The universal goal of
the TAS task is to identify activities in untrimmed videos at a frame-wise
level. It has promoted a wealth of applications in human behavior analy-
sis from video summarization [14], video surveillance [15], action recognition
[16, 17], to skill assessment [18]. With prosperous computing power rein-
forcement, understanding single-semantics short video clips has been gradu-
ally outmoded in the TAS task in favor of larger, more complex untrimmed
videos [19, 20], which requires both intrinsic and extrinsic correlations of ac-
tions. Conventional segmentation methods [21] like Temporal Convolutional
Networks (TCNs) consider single frames or short video segments for feature
representation. They overlook the latent relationship among contextual ac-
tions, leading to poor performance, especially in long videos. Accordingly,
some studies [22, 23] exploit Recurrent Neural Networks (RNNs) to model
each action clip to maintain local dependencies but still struggle to handle
longer videos effectively due to the inherent spatio-temporal complexity of
RNN. To equip the model with relational reasoning, methods utilizing Graph
Convolutional Networks (GCNs) regard each action as a single node on the
graph and edges represent the contextual relationship [24, 25]. However,
these preceding works all adopt frame-wise features extracted by pre-trained
I3D [26] network, which might not be adequate enough to excavate effec-
tive representations of videos. In the past few years, it can be witnessed that
both transformer-based [27, 28] and prompt-based architectures [29, 30] have
flourished in artificial intelligence, which tremendously lightens our research
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on addressing deficiencies of preceding methods. Particularly in visual appli-
cations, Transformer-based architectures hold the potential to integrate the
information between sequential elements that are far from each other with
powerful scalability. Prompt-based architectures could enhance the visual
features with representative linguistic semantics.

Now we attempt to yield a feasible resolution for the proposed challenge:
We preliminarily establish a custom CPR dataset involving videos of par-
ticipants performing the whole process of CPR in a standard green screen
laboratory environment. After that, we devise a crafted architecture to per-
form action segmentation. Specifically, we propose a Prompt-enhanced hier-
archical Transformer (PhiTrans) that integrates three integral modules: 1) a
textual prompt-based Video Features Extractor (VFE) module that extracts
abundant frame-wise features; 2) a transformer-based Action Segmentation
Executor (ASE) module that deduces the contextual relationship while adap-
tive to long frame sequences; 3) a regression-based Prediction Refinement
Calibrator (PRC) module that further alleviates the over-segmentation issues
highlighted in the TAS task. Finally, we observe the model performance on
the custom CPR dataset and claim that it can serve as an auxiliary toolbox
applied in action segmentation for assisting CPR instruction by automati-
cally identifying potential omission, repetition, or out-of-order situations at
a frame-wise level, allowing trainees to rectify the workflow in real-time free
of experts.

Our main contributions are chronologically three-fold:

• We collect a custom CPR dataset covering videos of the entire car-
diopulmonary resuscitation evaluation performed by each participant,
along with corresponding frame-level semantic annotation.

• We propose an integrated model, called PhiTrans, especially applied
for CPR action segmentation, including three integral modules: Video
Features Extractor, Action Segmentation Executor, and Prediction Re-
finement Calibrator.

• To the best of our knowledge, we unprecedentedly probe into a feasi-
ble pipeline that genuinely elevates the CPR instruction qualification
via action segmentation in conjunction with cutting-edge deep learning
techniques.
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2. Related Work

2.1. Temporal Action Segmentation

Temporal action segmentation (TAS), one of the most challenging topics
in advanced video comprehension, aims to extract frame-wise features from
untrimmed videos and categorize them chronologically with pre-defined ac-
tion labels. Action localization, video summarization, and other downstream
applications benefit from products of the TAS task as input. Over the past
decade, a multitude of methods [31, 32, 33, 21, 34, 35] have leveraged mod-
els for action prediction with the extracted frame-wise features. Traditional
paradigms involve sliding windows with non-maximum suppression [31], Hid-
den Markov Models (HMM) [32], Linear Dynamical Systems (LDS) [33], and
Bayesian Non-parametric Models (BNM) [21].

These methods encounter common obstacles to modeling long-range de-
pendencies. To alleviate this issue, RNNs [23] and TCNs [34] are deployed
to capture global dependencies and the contextual information of adjacent
frames. After that, Multi-Stage Temporal Convolutional Network (MS-TCN)
[20] combines TCNs with multi-stage patterns to make remarkable progress
in the TAS task, wherein plural stages are stacked to refine the predictions
from the preceding output successively. In addition, other methods aim to
model the TAS task from a unique perspective. Self-Supervised Temporal
Domain Adaptation (SSTDA) [36] trains with two auxiliary tasks of binary
and sequential domain prediction. Dilated Temporal Graph Reasoning Mod-
ule (DTGRM) [24] builds multi-level dilated temporal graphs to simulate
temporal dependencies between video frames at different timescales. These
exceptive methods lose portability on account of complex task patterns. Con-
sidering the spatio-temporal complexity of CPR action segmentation and
accessibility for downstream design, we follow the same philosophy of multi-
stages for iterative refinement.

2.2. Transformer-based Architecture

Initially designed for Natural Language Processing (NLP) related tasks,
Transformer [27] has motivated a tremendous leap forward in capabilities
for pre-training on larger datasets and fine-tuning on smaller task-specific
datasets with computational efficiency and scalability. The visual applica-
tion [28] of Transformer constantly challenges the dominant status of Con-
volutional Neural Networks (CNNs)[37, 38, 39, 40, 41, 42, 43, 44, 45]. Vision

5



Transformers require less vision-specific inductive bias and maintain more
global information relying on the Multi-head Self-Attention (MSA).

Witnessed the success of Transformer in image classification, image seg-
mentation, and other vision tasks, one study [46] explores the transfer im-
plementation of Transformer on the TAS task. The work presents major
concerns underwent and accordingly proposes local connectivity inductive
bias and hierarchical representation pattern, allowing vanilla Transformer
scale to the TAS task. Such adaptions produce a hybrid Transformer ar-
chitecture with temporal convolution included, which leads to fine-grained
loss between adjacent frames as the depth layers increase. Most recently,
follow-up works tend to improve this issue in two ways: establish a pure
Transformer model [47] or refine temporal convolutions [48]. Although these
efforts seem favorable, the robustness remains to be verified due to the lack of
open sources. Therefore, our approach preserves the backbone and excavates
promising performance with extensive optimization. Particularly, considering
the resemblance among CPR actions, we enjoy a specific action segmenta-
tion refinement framework [49], laying the foundation for our endeavors to
alleviate over-segmentation errors highlighted in the TAS task.

2.3. Prompt-based Learning

Served as an evolutionary group of Machine Learning (ML) model train-
ing approaches, prompt-based learning preliminarily allows people linguisti-
cally specify a certain task for the pre-trained Large Language Model (LLM)
to compile and complete [29]. To present a more intuitive perception of
prompt-based learning, this section primarily introduces the identification
of prompt and prompt engineering. Essentially, a prompt is an instruction
depicted in natural language for the model to execute. The procedure of
building the ideal prompt for a specific task is called prompt engineering.
Subsequently, prompt-based learning involves training a language model on
the converted prompt-based dataset. The essence of prompt-based learning
is to modify the input into prompts and embed the anticipated output as
unfilled blanks within the prompt.

To investigate the effects of prompt-based design in visual applications,
models like CLIP [30] and ALIGN [50] have achieved remarkable performance
on image recognition tasks. They formulate the objectives as descriptive texts
and transit the classification problem into video-text matching. Besides, Ac-
tionCLIP [51] proposes a prompt-based paradigm specific to action recog-
nition tasks, aiming to recognize single actions in short video clips. These

6



methods demonstrate the potential of prompt-based learning to motivate the
development of visual tasks with multi-modal feature representation.

To this end, we attempt to rethink the effectiveness of frame-wise feature
extraction in the TAS task, for which previous action segmentation meth-
ods uniformly utilize the pre-trained I3D [26] model. Although the I3D-based
features maintain advantageous capacity due to integrating information from
the RGB stream and optical-flow stream, they might not be sufficient to
construct representative embeddings experiencing complex scenarios, partic-
ularly for CPR actions. One closely related work [52] that arose recently,
called Br-Prompt, is of significant importance for instructing the feature ex-
traction model equipped with a prompt-based paradigm. On top of that, our
approach extends more details elaborated for effective feature extraction of
CPR actions in favor of downstream tasks.

3. Methods

In this section, we introduce the proposed Prompt-enhanced hierarchical
Transformer (PhiTrans) with clear motivation and objective. Then we distill
its integral modules.

3.1. Overall Pipeline

As declared in Section 1, our motivation is to investigate how better could
we elevate CPR instruction with action segmentation, which nails down our
objective of devising an exact architecture for CPR action segmentation to
excavate its positive effects on CPR instruction.

The overall pipeline of our approach is illustrated in Fig. 1. We first apply
Video Features Extractor (VFE) to extract frame-wise features represent-
ing potentially involved CPR actions and transition semantics. After that,
Action Segmentation Executor (ASE) generates an initial prediction for the
input video, explicitly identifying ordinal CPR actions. Finally, to effectively
alleviate over-segmentation issues that might give rise to the misclassifica-
tion of CPR actions, we adopt Prediction Refinement Calibrator (PRC) to
refine the performance, thereby producing a final assessment enclosing less
boundary ambiguity.

We argue that the aforementioned modules are indispensable, separately
playing distinct roles and ultimately bringing down-to-earth performance to
the intact model. To support our claims, more module details and corre-
sponding impacts are described below.
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3.2. Video Features Extractor

The Video Features Extractor (VFE) module is responsible for extracting
discriminative frame-wise features of CPR videos, which subsequently be-
come the input of the action segmentation module. As demonstrated at the
bottom of Fig. 1, raw video frames are primarily sampled into neat clips with
fixed lengths for local recognition and training efficiency. On top of retaining
pre-established semantics by prompt engineering, the VFE module imple-
ments visual-linguistic contrastive learning to fuse multi-modal knowledge.
Ternary Transformer encoders unify the framework and the synchronous
training finally empowers the vision Transformer encoder to produce rep-
resentative frame-wise features for input videos.

3.2.1. Sampling strategy

To unify the inputs and mitigate the footprint burden, we implement a
sampling strategy for the raw CPR videos to generate a series of video clips.
Specifically, a frame-wise sliding window approach is carried out with the
downsampling rate (ds) of frames in each window and the overlapping rate
(ol) between windows. The configuration of ds and ol will be illuminated in
Section 5.3. The sampling strategy allows the VFE module to concentrate
on local dependencies with a fixed video length. Each generated video clip
involves one or multiple CPR actions, leading to diverse receptive fields to
feature extraction with training efficiency. Moreover, this strategy is vital
for augmenting data and empowers the robustness of the VFE module.

3.2.2. Prompt engineering

In order to acquire informative semantic merits for a CPR video clip,
prompt engineering resorts to the idea of embedding the expected output
string into the input template in a cloze test-like form. We simulate the
implementation inspired by Br-Prompt that is non-discriminatorily applied
to TAS tasks. In particular, we establish 15 advantageous semantics for
the CPR actions appeared in the custom dataset. Therefore, four types of
prompts are available to record properties of CPR behaviors such as location,
quantity, semantics, and integrality. More specifically, The ordinal prompt
zi
ord adopts the format as “this is the {ith} action in the video” to simply

captures the position of each state. The statistical prompt zstat counts the
number of CPR actions of a sequence with a neat format as “this video
clip contains {number of CPR behaviors} actions in total”. To investigate
pronounced semantic analysis, we utilize the format “{ith}, the person is
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performing the action step of {a certain CPR behavior}” as the semantic
prompt zi

sem focusing on adjacence and interspersion of actions. Eventually,
we regard aggregated semantic prompts in a CPR video clip as the integrated
prompt zinteg, representing global semantic information. The motivation of
prompt engineering aims to learn inter- and intra- affinities of behaviors
within CPR videos.

3.2.3. Visual-linguistic contrastive learning

Given massive prompts by the prompt engineering, the VFE module pon-
ders fabulous representation of the CPR video clips through visual-linguistic
contrastive learning. To be legible, video clip c and its text description t are
introduced to a visual encoder and a text encoder to obtain the correspond-
ing representation zc and zt, respectively, and the cosine similarity between
the two is expressed as:

s(zc, zt) =
zc · zt

|zc||zt|
(1)

The batch similarity matrix S for the video clip feature Zc and the text
feature Zt with batch size B is:

S(Zc,Zt) =

s(zc1 , zt1) · · · s(zc1 , ztB)
...

. . .
...

s(zcB , zt1) · · · s(zcB , ztB)

 (2)

We define the ground-truth batch similarity matrix GT , where the sim-
ilarity of the correct pair is set to 1, and contrastively the error pair is set
to 0. The objective of learning is to maximize the similarity between S and
GT .

Here we adopt the KL divergence (Kullback–Leibler divergence) as the
contrastive loss. For instance, N × N matrices P and Q, its brief form is
defined:

DKL(P∥Q) =
1

N2

N∑
i=1

N∑
j=1

Pij log
Pij

Qij

(3)

In this way, given dual modal similarity matrix SC and ST , we leverage
the visual-linguistic contrastive loss as:

L =
1

2
[DKL(SC∥GT ) + DKL(ST∥GT )] (4)
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To explain comprehensive details while avoiding ambiguous perplexity,
we first employ a semantic loss Li

sem, in which visual features zi
c involv-

ing ordinal contents of the video clip contend against commensurate textual
semantic representation zi

sem, thereby maintaining substantial semantic con-
cernments. Meanwhile, the average pooling video clip features zc containing
ordinal collections compete with integrated prompts representation zinteg via
the integrated loss Linteg to allow holistic demonstration. Furthermore, to
transparently exert a profound influence on the quantitive information, a
statistical loss Lstat is applied by way of contrasting average pooling enumer-
ation features z[CNT ] with statistical prompts representation zstat. We ablate
these loss components in Section 5.4.3.

Finally, the united loss of the model is manifested as:

L =
K∑
i=1

Li
sem + Linteg + Lstat (5)

3.3. Action Segmentation Executor

The Action Segmentation Executor (ASE) module takes frame-wise fea-
tures derived from the VFE module as input and produces moderate CPR
action segmentation predictions. The structure of the ASE module is illus-
trated in the upper left of Fig. 1. Generally, the ensemble is a hierarchical
encoder-decoder architecture, wherein the output of the encoder as initial
predictions will flow in ternary decoders for distillation. At the same time,
the ASE module attempts to acquire hierarchical perception with window-
perceptive self-attention and dilated temporal convolution throughout the
framework.

3.3.1. Hierarchical encoder-decoder

ASE module is composed of one encoder and three identical decoders.
Each of them contains nine blocks to provide hierarchical representation.
After generating the initial prediction by the encoder, three decoders perform
a refinement process to boost the performance. The input to the encoder is a
sequence of pre-extracted frame-wise features in sizes D× S, where D refers
to the feature dimension of each frame and S represents the total number
of frames of the input video. The first layer of the encoder uses a fully
connected layer to adjust the input feature dimension. Subsequently, each
encoder block utilizes a dilated temporal convolution as a feed-forward layer,
which is followed by a ReLU activation function and instance normalization,
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connecting the single-head self-attention layer. A residual concatenation is
taken between the two layers, and then the output dimension is reshaped
by 1 × 1 convolution to join the next encoder block. The final encoder
block outputs the initial prediction pe ∈ RS×C by passing a fully connected
layer, where C represents the number of action categories. Afterward, the
decoder takes the initial prediction as input and is arranged in accordance
with the encoder as a whole, except for the cross-attention layer. The cross-
attention layer combines the results from the encoder with the output from
the previous layer, treating the aggregation as the query Q and the key K,
and the output from the previous layer as the value V . The advantage of
this manner is that the frame-wise confidence scores from the encoder can be
involved in the refinement stage by generating attention weights, and these
attention weights are utilized for linear concatenation, without affecting the
feature space V itself. In the end, the model makes the best use of three
identical decoders to hierarchically produce the final prediction.

3.3.2. Hierarchical perception

Two hierarchical strategies are simultaneously adopted to scratch multi-
scale receptive fields by enlarging the window size of the self-attention layer
and dilated temporal convolution throughout the ASE module. Considering
videos in the CPR dataset tend to cover thousands of frames, it is fairly
demanding to seize significant vision plots for the self-attention layer within
each block of the encoder or the decoders. We follow the spirit of hierarchical
representation patterns proposed in [46] to mitigate this issue. Concretely,
such a strategy first concentrates on the local semantics and then gradu-
ally enlarges the receptive field to acquire the global concepts, allowing the
model to learn extrinsic-to-intrinsic knowledge of CPR actions displayed in
the videos. In addition, both apparent differences and subtle discrepancies
are taken into account, yielding a more specific fashion to the traits of CPR
actions. Practically, the window-perceptive self-attention layer calculates at-
tention weights with each particular frame within its local window at a w
scale, which is doubled as the blocks stack deeper (i.e., w = 2i, i = 1, 2, . . .).
Similarly, to introduce constructive local inductive bias, we follow the dilated
temporal convolution as utilized in the TAS task by expanding the kernel size
consistent with the self-attention layer.
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3.4. Prediction Refinement Calibrator

The Prediction Refinement Calibrator (PRC) module intends to remark-
ably alleviate over-segmentation errors of the predictions from the ASE mod-
ule. The PRC module allies with and refines the ASE module by duplicating
the segmentation pipeline but replacing the objective from action predictions
with boundary probabilities. In particular, a comprehensive loss function
serves as the motivation for jointly training the ASE and PRC modules. The
overall loss function is a combination of the action segmentation loss and the
boundary regression loss, with correlative ablation conducted in Section 5.4.3.
As shown in the upper right of Fig. 1, the generated boundary probability
curves further calibrate the action predictions from the ASE module with
less over-segmentation issues and present the final CPR action segmentation
predictions.

3.4.1. Boundary probability calibration

To clarify the assets of the PRC module, we depict its intrinsic concept
for boundary probability calibration. During the inference period, the PRC
module regresses frame-wise action boundary possibilities P ∈ [0, 1]S. Sub-
sequently, the action boundaries B ∈ {0, 1}S are determined by electing
multiple Ps from P as the local maximum and simultaneously fulfilling the
exceeding condition of the threshold p = 0.5.

In practice, the ASE module primarily generates initial predictions by
assigning the action categories to the action segments with potential over-
segmentation issues. Then the calculated action boundaries B compartmen-
talize the video clip into refined action segments, each of which contains only
one action both theoretically and practically. The retained action categories
by majority voting for each action segment reach the final prediction of the
entire model.

3.4.2. Action segmentation loss

The overall action segmentation loss is defined as:

Las =
1

G

∑
g

(
L∗

cls + Lsmo

)
(6)

More specifically, the classification loss L∗
cls utilizes median frequency

balancing, where the action weights of each action category in the temporal
action segmentation task are calculated by dividing the mean frequency of
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each action category by the frequency of each action class. Concerning the
smoothing loss Lsmo, we implement Gaussian Similarity-weighted Truncated
Mean Squared Error (GS-TMSE), which penalizes all frames in a video clip
for the purpose of smoothing the transition of action probabilities between
frames while preventing them from interfering with the frames where actions
de facto transition. Its concrete form is as follows:

LGS−TMSE =
1

SC

∑
s,c

exp
(
− ∥xs − xs−1∥2

2σ2

)
δ2s,c (7)

δs,c = min{| log ps,c − log ps−1,c|, τ} (8)

where xs is the similarity index of the frame s, σ denotes the variance and
is simply set to 1, and the threshold τ is set to 4. The advantageous imple-
mentation benefits from the property of GS-TMSE. For brevity, the Gaussian
kernel based on the similarity of frames (frame-wise features in our exper-
iments), the function punishes contiguous but discriminative frames with
merely a small weight. We average the losses of G stages (in our framework
G = 4) as the overall action segmentation loss.

3.4.3. Boundary regression loss

We employ a weighted logistic regression loss function to endow our model
with boundary-aware capacity, which is defined as:

Lbr =
1

SG

∑
g

S∑
s=1

(
wpys · log ps + (1 − ys) · log(1 − ps)

)
(9)

where ys and ps represent the ground-truth action boundary labels and
predicted action boundary possibilities for the frame s, respectively. Since
the number of action boundary frames is much smaller than that of other
frames, the factor wp is kindly devised to samples with weight positive. To
further clarify wp, it comes from the reciprocal ratio of positive data points
over the entire training data.

4. Dataset

We primarily compare the performance of various models on three chal-
lenging public datasets that are widely recognized in the TAS task concen-
trating on catering behaviors, whereby the optimal architecture will be estab-
lished especially for CPR action segmentation. We argue for the reasonabil-
ity of selecting these three datasets on account of analogous representation
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Table 1: Summary of datasets for model development and application

Dataset videos classes duration fps instances view
50Salads 50 17 6.4 30 20 top
Breakfast 1,712 48 ≈1 15 6 third person

GTEA 28 11 ≈1 15 20 egocentric
CPR 99 15 2 15 17 third person

patterns compared to the CPR actions, wherein the behaviors are globally
invariant and locally distinct. More importantly, we introduce the prepro-
cesses of the custom CPR dataset and explain its implication. The essential
takeaway information for these four datasets is summarized in Table 1.

4.1. Preliminary Public Datasets

50Salads dataset [53] is beneficial for research in action recognition, ac-
tivity detection, process tracking, etc., which collects 50 videos from 25 par-
ticipants preparing two different kinds of mixed salads, and contains more
than 4 hours of video data. Each video lasts 6.4 minutes long on average
and consists of about 20 action instances. All videos are recorded from a
top-down view, including 17 action category annotations.

Breakfast dataset [54] is related to the preparation of daily breakfast. It
comprises 18 different kitchen scenes with diverse backgrounds conducive to
monitoring and analyzing daily human activities. The dataset contains 1,712
videos with 48 action annotations recorded from a third-person view of 52
participants, wherein each video represents an average of 6 action instances.

GTEA dataset [55] contains 28 egocentric videos with 11 action categories
involving daily kitchen activities performed by 4 participants. On average,
each video has 20 action instances and is about a half-minute long.

4.2. Custom CPR Dataset

We collect the CPR dataset with ethical approval and notification of sub-
jects with the assistance of MIRAGESTARS Inc., which involves 99 videos of
participants performing the whole process of cardiopulmonary resuscitation
in a standard green screen laboratory environment. This work is conducted
in adherence to the tenets of the Declaration of Helsinki, and ethics approval
is obtained by the Ethics Committee of the Shenzhen International Graduate
School of Tsinghua University Submission F111/2022.
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Each video has about two minutes duration on average, containing ex-
actly 15 action categories shown in Fig. 2 with their representative frames
and the corresponding semantic information. The raw videos shot are identi-
cally transformed utilizing the stream processing tool called FFmpeg. More
concretely, the frame rate and resolution of videos are decreased from 25 fps,
2k to 15 fps, 720p respectively, on account of alleviating the calculating bur-
den of proposed models, while ensuring the accessibility of the pipeline and
the efficiency of the architecture to the maximum extent. It is worth noting
that the simplifications above significantly reduce the video size from 320
MB – 1.1 GB to 1.9 MB – 5.3 MB, followed by wiping out the audio channel.
These transformations sufficiently consider that CPR action segmentation
generally depends on integral gestures rather than pixel-wise identification,
whereby hardly any practical loss will be generated. After that, these videos
are labeled at a frame-level by related trainers. The crafted CPR dataset
possesses diverse challenges, including but not limited to the transience of
partial actions, resemblance among actions, and out-of-place actions.

The motivation of this dataset is prone to assist CPR instruction by auto-
matically identifying potential omission, repetition, or out-of-order situations
at a second-wise level, even if taking frame-wise misregistration into consider-
ation. Furthermore, we adopt to implement four-fold nested cross validation
to minimize latent optimistically biased evaluation, thus fairly revealing the
performance of the presented model.

5. Experiments and Results

5.1. Evaluation Metrics

5.1.1. Frame-wise accuracy (Acc.)

Frame-wise accuracy is commonly used as an evaluation metric for action
segmentation [53, 54, 56], whereas it is easily affected by long-duration actions
and not sensitive to over-segmentation issues.

5.1.2. Segmental edit score (Edit)

Segmental edit score [58] is used to assess the model performance in pre-
dicting the ordering of action segmentation without being affected by minor
temporal shifts. Once proposed, the segmental edit score has been widely
used in many temporal action segmentation tasks [19, 24, 25, 36, 56] since
it combines the assessment of accuracy and efficiency into a single metric.
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Table 2: Action segmentation performance of various state-of-the-art (SOTA) models on
GTEA, 50Salads datasets and Breakfast

Dataset GTEA 50Salads Breakfast
Model F1@{10,25,50} Edit Acc. F1@{10,25,50} Edit Acc. F1@{10,25,50} Edit Acc.

MS-TCN [20] 85.8 83.4 69.8 79.0 76.3 76.3 74.0 64.5 67.9 80.7 52.6 48.1 37.9 61.7 66.3
DTGRM [24] 87.8 86.6 72.9 83.0 77.6 79.1 75.9 66.1 72.0 80.0 68.7 61.9 46.6 68.9 68.3

BCN [19] 88.5 87.1 77.3 84.4 79.8 82.3 81.3 74.0 74.3 84.4 68.7 65.5 55.0 66.2 70.4
MS-TCN++ [57] 88.8 85.7 76.0 83.5 80.1 80.7 78.5 70.1 74.3 83.7 64.1 58.6 45.9 65.6 67.6

ASRF [49] 89.4 87.8 79.8 83.7 77.3 84.9 83.5 77.3 79.3 84.5 74.3 68.9 56.1 72.4 67.6
SSTDA [36] 90.0 89.1 78.0 86.2 79.8 83.0 81.5 73.8 75.8 83.2 75.0 69.1 55.2 73.7 70.2

ASFormer [46] 90.1 88.8 79.2 84.6 79.7 85.1 83.4 76.0 79.6 85.6 76.0 70.6 57.4 75.0 73.5
Br-Prompt [52]+ASFormer 94.1 92.0 83.0 91.6 81.2 89.2 87.8 81.3 83.8 88.1 N/A N/A N/A N/A N/A

There is considerable uncertainty about when one action will cease and an-
other will begin. Typically, in practical applications such as surgical workflow
assessment, the accurate temporal continuity of surgical operations tends to
be more crucial than precise temporal segmentation, as the same goes for
CPR instruction.

5.1.3. Segmental F1 score with overlapping threshold k (F1@k)

Segmental overlap F1 score [34] has three distinctive characteristics: 1)
penalizes over-segmentation errors; 2) ignores minor temporal shifts between
the predictions and ground truth; 3) is determined by the total number of
actions but does not depend on the duration of each action instance. By
comparing the Intersection over Union (IoU) score of the predictions and
ground truth, if the threshold τ = k

100
is exceeded, it is determined as true

positive, otherwise as true negative, where k = 10, 25, 50 are adopted in
temporal action segmentation tasks. The precision and recall are defined
as precision = true positives

true positives+false positives
, recall = true positives

true positives+false negatives
,

respectively. Then F1@k value can be computed from F1 = 2× precision∗recall
precision+recall

.

5.2. Module Selection for Action Segmentation

It is non-trivial to select an appropriate and distinctive backbone to ap-
proach our goal of CPR action segmentation. Table 2 reveals the best tempo-
ral action segmentation models on GTEA, 50Salads, and Breakfast datasets.
Comparing the performance on public datasets is intuitively convincing, for
which we gaze at the optimal one, ASFormer [46]. Particularly, we overlook
Br-Prompt [52] in this subsection, which plays a role in feature representa-
tion, which enhances the action segmentation models rather than serves as
one of them.

Considering the property of the collected CPR dataset, we lay more em-
phasis on the analysis capacity to confront more enormous and complex
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data. Concretely, on the GTEA and 50Salads datasets with slightly smaller
video volumes, we find ASFormer exhibits inference accuracies comparable
to ASRF [49] and SSTDA [36]. While carried out on the Breakfast dataset
with a multitude of videos, the model explicitly yields state-of-the-art per-
formance. Through observing the performance on three public datasets, AS-
Former illustrates the application of Transformer in the TAS task, affirming
the non-negligible capacity of temporal representation and persistent sen-
sitivity of long-term relationships. Due to the convenient scalability and
robustness of ASFormer, we adopt this model as a vanilla backbone for CPR
action segmentation.

Table 3: Action segmentation performance with features following various window config-
urations on the CPR dataset (#split 1)

CPR F1@{10,25,50} Edit Acc.
Baseline 95.8 93.6 89.8 94.2 89.5

ds=[2, 4] & ol=[2, 2] 95.3 94.8 91.5 93.3 92.0
ds=[2, 4, 8] & ol=[4, 2, 1] 96.5 95.5 92.0 94.8 91.0
ds=[4, 8, 12] & ol=[2, 1, 1] 96.0 95.7 92.7 95.0 91.8

5.3. Sampling Strategy Selection for Feature Extraction

In the process of extracting video frame-wise features, we adopt a spe-
cific sampling strategy dependent on pertinent experiments to generate video
clips of a fixed length, which serve as the input of the video features extrac-
tor. In general, each video clip adopts a 16-frame window. We are mainly
concerned with the downsampling rate (ds) of frames in each window, and
the overlapping rate (ol) between two windows. It should be emphasized
that both the downsampling rate and the overlapping rate are heuristically
selected according to the characteristics of the dataset. Concretely, longer
windows lead to sparse information about each action, while shorter ones
are even unable to contain more than two actions. We empirically take both
long and short windows into consideration, which produce excellent feature
extraction performance by involving multi-scale information.

Diverse window configurations are displayed in Table 3, which indicate the
non-trivial importance of the downsampling rate and the overlapping rate.
The collective results are retained on the custom CPR dataset (split #1)
under the support of the ASE module as the action segmentation backbone.
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Multiple downsampling rates and overlapping rates are adopted simultane-
ously as mentioned above. In addition, training efficiency is an essential fac-
tor to be carefully considered. Complicated windows conduce to substantial
training time, while simple ones may fail to grab discriminative information.
In the light of this, we conduct three groups of window arrangements to
seek out the optimal one. Here we adopt the preceding Transformer-based
method [46] as the vanilla baseline.

Table 4: Model performance and module ablation of PhiTrans on the CPR dataset

Model with Variants
Components

F1@{10,25,50} Edit Acc.
ASE VFE PRC

PhiTrans (Ours) ✓ ✓ ✓ 95.8 95.3 91.7 94.6 91.1
w/o ASE × ✓ ✓ 94.3 93.0 88.5 92.9 88.6
w/o VFE ✓ × ✓ 94.1 91.7 87.1 91.8 87.6
w/o PRC ✓ ✓ × 95.3 94.5 91.5 93.6 91.1

w/o VFE, w/o PRC ✓ × × 95.3 94.2 89.5 93.4 89.7

When the downsampling rates are 2, 4, and correspondingly the over-
lapping rates are 2, 2, redundant local features are captured. Each window
contains only few actions, where a good deal of frames belong to the same ac-
tion, resulting in poor effects. Similarly, employing 2, 4, and 8 downsampling
rates and 4, 2, and 1 overlapping rates though reaches a high F1@50 as 96.5,
its overlapping rate of 4 misleads the module extensively reusing the same
information, decreasing the abundance of video features. We finally adopt
downsampling rates as 4, 8, and 12 corresponding to the overlapping rates
of 2, 1, and 1, which balance the expressions derived from various receptive
fields with rational training efficiency.

5.4. Model Performance and Ablation Study of PhiTrans

In this subsection, we first present the favorable performance of PhiTrans
both on the custom and public datasets. Then module ablations are demon-
strated both quantitatively and qualitatively. Finally, we verify the effect of
every loss component implemented in the proposed model.

5.4.1. Model Performance of PhiTrans

Our model accomplishes the objective to serve as a productive toolbox
assisting CPR instruction with action segmentation, with the intact model
performance manifested in Fig. 3 and Table 4. On the whole, our model is
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adequate to approach the challenge of assisting CPR instruction, performing
well on all metrics surpassing 91.0%. The comprehensive performance reveals
the effectiveness and robustness of PhiTrans. More importantly, PhiTrans
reaches 94.6% on Edit, a metric which reflects the model ordinal predicting
performance wiping out fine-drawn temporal shifts. That means our model is
prone to understand the chronological relationship of CPR actions that prac-
tically necessitates. In addition, 95.8%, 95.3%, and 91.7% on F1@{10,25,50}
indicate that PhiTrans successfully penalizes over-segmentation errors high-
lighted in the TAS task. Though not designed to pursue a state-of-the-art
performance on the public dataset, PhiTrans somewhat outperforms cutting-
edge models, revealed in Table 5. It gains +0.8% improvement on F1@50,
with other metrics comparable to previous state-of-the-art, which further
manifests the effectiveness of PhiTrans on the general TAS task.

Moreover, it is possible to explain the segmentation errors that the model
induces through empirical observation and analysis. Fig. 4 visualizes the con-
fusion matrix of the CPR dataset, which witnesses dominant segmentation
performance on the majority of CPR actions by PhiTrans. Although our
model exhibits hesitation in distinguishing actions ranging from 6 (declaring
someone is sick) to 10 (requesting professional assistance), it is rational since
these actions primarily differ in terms of vocal expression by the subjects,
which is not incorporated into our modality for accommodating complex
real-world scenarios.

5.4.2. Module Ablation of PhiTrans

Table 4 quantitatively reveals the effect of each module on holistic model
performance. We detach each part independently to observe any drop. We
experiment w/o ASE by replacing the ASE module with the approved back-
bone [20], w/o VFE by adopting ResNet152 backbone-based frame-wise fea-
tures as input, and w/o PRC by merely applying loss functions proposed
in previous methods [46]. The results show that lacking any module will
lead to an apparent performance drop on all metrics, manifesting the es-
sentiality of each module. Worst of all, the loss of the VFE module (w/o
VFE) causes the model performance to reach a trough, leading to a disas-
trous result of the total -9.9% on F1 and -2.8%, -3.5% on Edit and Acc.,
respectively. Interestingly, the further removal of the PRC module on this
basis (namely, w/o VFE, w/o PRC) instead presents a relative increase on
all metrics. This situation can be explained by the fact that the PRC module
tends to suppress over-segmentation issues excessively when the feature ex-
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pression is insufficient. These results prove the indispensability of the VFE
module for its splendid feature representation. Similarly, whichever module
misses accounts for the loss of corresponding capacity.

Besides, to intuitively present effects of these modules, Fig. 3 visualizes
the qualitative representation on the custom CPR dataset. Under the rein-
forcement of each module, PhiTrans could not only perceive the presence of
delicate actions but alleviate over-segmentation issues to a great extent, as
displayed in the blue dashed line. Three hands-on modules proportionally
bring promising performance for the challenge of assisting CPR instruction.

Table 5: Model performance of PhiTrans on the 50Salads dataset

50Salads F1@{10,25,50} Edit Acc.
Cutting-edge [52] 89.2 87.8 81.3 83.8 88.1
PhiTrans (ours) 89.3 87.8 82.1 83.4 88.1

Table 6: Loss ablation of PhiTrans on the CPR dataset (#split 1)

VFE Loss components F1@{10,25,50} Edit Acc.
Lsem 94.1 91.6 88.1 92.7 88.7
Lsem + Linteg 95.1 93.9 90.1 92.8 90.0
Lsem + Linteg + Lstat 96.2 95.5 91.4 95.5 90.5

PRC Loss components F1@{10,25,50} Edit Acc.
Las 93.7 92.4 88.3 91.0 89.4
Las + Lbr 96.2 95.5 91.4 95.5 90.5

5.4.3. Loss Ablation of PhiTrans

Table 6 presents two types of loss components that arise in the pro-
posed model, one for extracting frame-wise features and the other for re-
fining segmentation. Specifically, all three VFE loss components contribute
to capturing representative features. The semantic loss Lsem supervises dis-
tinctive features related to various CPR actions, laying the foundation for
feature extraction. As the integrated Linteg and statistical loss Lstat are suc-
cessively added, the model achieves respective improvement, indicating the
indispensability of all losses. Additionally, it can be witnessed that both loss
components utilized in the PRC module advocate the model performance by
action segmentation control and boundary regression refinement. Notably,
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the boundary regression loss Lbr brings +3.0% on every F1 and Edit), ex-
actly showing its effectiveness to alleviate over-segmentation issues. Overall,
these loss ablations certify the necessity and trait of losses implemented in
our model.

6. Conclusion and Discussion

In this study, we originally deliberate a rewarding pipeline that assists the
enhancement of CPR instruction via action segmentation through novel deep
learning architectures. Specifically, we collect a custom CPR dataset involv-
ing videos of the whole process of cardiopulmonary resuscitation assessment
along with corresponding frame-level semantic annotation. Accordingly, we
devise a Prompt-enhanced hierarchical Transformer, called PhiTrans, espe-
cially for CPR action segmentation. PhiTrans consists of three integral mod-
ules: Video Features Extractor, Action Segmentation Executor, and Predic-
tion Refinement Calibrator. Such an architecture adequately considers the
characteristics of CPR actions, facilitating the capacity to capture transient
CPR actions while maintaining impressive performance. Extensive ablation
experiments present that PhiTrans inspires improvement compared to half-
baked models on the CPR dataset.

In conclusion, it is non-trivial that PhiTrans is committed to CPR ac-
tion segmentation, which is conducive to freeing experts of detecting and
rectifying potential ordinal or oblivious mistakes made by subjects, thereby
manifesting a compelling pipeline on elevating CPR instruction with action
segmentation. The results of this research may serve as the cornerstone and
offer a route towards developing a prospective orientation that would leverage
fine-grained criteria like CPR action assessment.
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Figure 1: Overview of PhiTrans pipeline for cardiopulmonary resuscitation action segmen-
tation. The VFE module at the bottom plays a role in generating frame-wise features,
which will serve as the input to the top left ASE module to achieve the initial predictions.
The PRC module in the top right further implements calibration to yield the eventual
predictions. Lstat, Li

sem, and Linteg in the VFE module are three elaborate contrastive
learning losses. Vision Trans. Encoder, Text Trans. Encoder, and Fusion Trans. Module
are synchronously trained. Diverse colors in the PRC module represent action categories,
and their length indicates the duration of the corresponding action. Best viewed in color.
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CPR Action Categories Semantic Information

1. Preparing to start
2. Confirming environment
3. Ensuring safety
4. Leaning down and patting
5. Judging patient breath
6. Declaring someone is sick
7. Indicating she/he has studied aid
8. Asking someone to help
9. Requesting someone to fetch AED
10. Requesting professional assistance
11. Pressing patient chest
12. Checking patient mouth
13. Performing artificial respiration
14. Assessing patient status
15. Ending rescue operation
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Figure 2: Visualization of 15 action categories recorded in the CPR dataset and their
corresponding semantic information. Best viewed in color.
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Figure 3: Visualization of PhiTrans and related variants for temporal action segmentation
on the CPR dataset. Diverse colors represent action categories, and their length indicates
the duration of the corresponding action. Best viewed in color.
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Figure 4: Confusion matrix for the custom CPR dataset. The numbers on the horizontal
and vertical axes represent the ordinal CPR actions. The numerical unit in the confusion
matrix is expressed in percentages. Best viewed in color.
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