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Abstract

A general framework for a partial differential equation (PDE) model predictive
control problem is formulated. A first principle model of the system, described by a
semi-linear PDE system with boundary control, is employed in a model predictive

control (MPC) framework. Here, the aim is to determine, off-line (i.e. without pro-
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cess measurement ), the theoretical optimal behavior of the process that will be used
during on-line MPC. Input and output constraints are handled in the optimization
task using a non-linear programming method. This strategy is evaluated for the
optimization of processing temperatures during the manufacture of thick-sectioned
polymer composite laminates. The off-line optimization task consists of determining
the optimal temperature profile, otherwise known as the cure cycle. Moreover, for
this particular process, the existence of a feasible constrained optimization problem

is discussed through the design of a constraint bound.

Key words:
Model predictive control, distributed parameter model, nonlinear programming,

trajectory optimization, composite manufacturing, autoclave curing process.

1 Introduction

The framework presented here deals with a model predictive control (MPC)
problem based on a semi-linear parabolic PDEs system characterized by bound-
ary control. Transport reaction phenomena with significant diffusive and con-
vective phenomena are typically characterized by severe nonlinearities and
spatial variations and are naturally described by partial differential equations.
Examples of such processes include tubular reactors, packed bed reactors, ab-
sorption columns, drying or polymerization processes. The large number of
real applications described by such PDE models constitutes the motivation
for this work. Moreover, as modeling becomes more and more accurate, the

use of complex nonlinear PDE models is increasing. Unfortunately, in con-
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trol theory, due to the complexity of the problem, relatively few studies are
devoted to the control of processes explicitly characterized by a PDE model,
especially in the nonlinear case. Various methods are proposed for control of
such distributed parameter systems but there is no general framework yet.
In order to implement a low order model based controller with a computer, the
original PDE model is usually simplified into an ordinary differential equation
(ODE) model. Such a finite dimension approximation is based on finite dif-
ferences, finite volume method, orthogonal collocation or Galerkin’s method.
Recently other studies have utilized properties of the initial PDE system before
finite dimension controller synthesis. Christofides developed order reduction
by partitioning the eigenspectrum of the operator of the PDE system [9,15]
and methods based on approximate inertial manifold for spatial discretization
of the PDE [8,1]. Other approaches for controller synthesis of nonlinear PDE
systems are based on symmetry groups, infinitesimal generators and invari-
ant conditions [31,17]. In [19,43], a finite dimensional controller is obtained
through model reduction based on various methods: singular value decompo-
sition, Karhunen-Loéve expansion or eigenfunction method. In [2], stability
conditions for closed loop control of a linear PDE with a finite dimension
controller are given in the time and frequency domains through semigroup
analysis. In [42], based on semigroup theory, proofs were given for the closed
loop stability of PI control for a linear PDE system.

In regards to MPC, it has become an advanced control strategy widely used
in industry [37,36]. In any MPC formulation, the model is essential: it aims
to predict future process behaviors in an optimization procedure. Historically,
models chosen in practical applications were time domain, input/output repre-
sentations or obtained through step or impulse responses. Even if these kinds of

models are easily obtained, their drawback is a lack of confidence in modeling



complex system behaviors like those observed in the autoclave curing process,
where nonlinearities of the reaction and distributed aspect are important. Few
papers where MPC was applied for PDE system exist [13,32,41,20]. In these
works, accurate high order dimension models are accounted for. The draw-
back with such accurate PDE models is that their online resolution during the
optimization task may prohibit the implementation of the real-time control
strategy. To reduce the dimension of the nonlinear elliptic model, Karhunen-
Loéve expansion combined with weighted residuals method was used to get
the finite dimensional model used in the MPC framework [3].

Our previous studies in parabolic PDE model predictive control dealt with
the online control of processes. In [11], the aim was to follow the specification
of the maximum amount of polluted gas released at the catalytic reverse flow
reactor outlet combined with the minimization of energy consumption. In [12],
a trajectory tracking for a drying process had to be ensured. In these studies,
we first focussed on real-time control issues since the PDE model involved in
the online optimization task may have a large size [11] and may then pro-
hibit implementation of any model predictive control strategy. To tackle this
issue, we developed the control strategy in two steps (the strategy is detailed
in [11,12]). Step one (off-line) is to choose a behavior based on the nonlinear
PDE model. At this point, no process measurement is needed to find the entire
behavior since this is an off-line procedure. Step two (online), based on a lin-
earized PDE model computed online around the behavior determined off-line
and based on process measurements, is to adjust the process behavior to the
optimal behavior determined online. One of the advantages of this strategy is
to replace the online (accurate) resolution of the nonlinear PDE model by the
online (approximate) resolution of a smaller size linearized PDE model. This

allows to reduce the calculation time dedicated to the resolution of the model



used in the online MPC procedure. Application of this two-step control strat-
egy helps to show the robustness of this approach with respect to modeling
errors [11,12] and input disturbances as well [11]. Since we first emphasized
our work on real-time control aspects (step two of our procedure), the off-line
behavior was not optimized.

The objective of this paper is to focus on step one of the control strategy and
to provide an approach for the determination of the off-line theoretical optimal
process behavior that will be used during our on-line control strategy [11,12].
The first part of the paper will describe the general aspects of thick-sectioned
composites manufacturing techniques and the autoclave molding process. The
manufacture of thick-sectioned polymer composite laminates was chosen as a
model system for its non-linear response to control actions, the complex in-
teractions between processing time and final part quality, and the availability
of a relatively accurate process model. In the second half of the paper, the
proposed PDE model predictive control approach is developed in a general
framework. Constraints handling and the nonlinear programming method are
detailed. Finally, the approach is evaluated for the optimization in the auto-
clave molding process. Simulation runs are discussed with an emphasis on the

importance and design of the constraint bound.

2 Background on Thick-Sectioned Composites

Despite many challenges in producing thick composites of adequate quality,
the need for composite parts with thick cross-sections and high strength con-
tinues to increase [29]. The composite components of bridge structures, tank

and submarine hulls, and airplanes can require cross-sections greater than 1



inch. The improper manufacture of these thick composite laminates can lead
to large thermal gradients (and subsequent delaminations), long processing
times, and inadequate mechanical properties. Manufacturing thick-sectioned
thermoset composites can be difficult due to the significant amount of heat
generated by the reacting resin and the low thermal conductivity of the com-
posite. Since the center of the composite is furthest from the mold surfaces, the
center is severely heat transfer limited and the heat generated by the exother-
mic polymerization reaction raises the internal temperature of the composite.
If these high temperatures within the composite part are not successfully con-
trolled, they can lead to degradation of the polymer and possibly large internal
voids from the vaporization of resin components. In addition, past research
into stresses generated within thick composite laminates [6] established the
importance of “‘inside-out” curing in order to reduce residual stresses within
the laminate and improve product strength. These stresses are generated when
the outside surfaces of the composite polymerize significantly before the cen-
ter. Therefore, the extent of cure of the resin at the surfaces of the composite
should be kept as low as possible before the center is cured. However, enough
heat needs to be added to the system to initiate resin cure at the center
and to later ensure that the polymerization reaction proceeds to completion

throughout the composite.

2.1 Vacuum Assisted Autoclave Layup Molding

A number of different processing techniques exist for manufacturing thermoset
composites; however, only a few are successfully used in industry for the pro-

duction of thick-sectioned laminates and other polymer composites [29]. His-



torically, thick-sectioned composites have been manufactured by the vacuum
assisted autoclave molding process. Consequently, nearly all research in the
optimization and control of thick-sectioned composites have involved this pro-
cess technique (e.g. [34,38,39,10,23,28,24,22,7,21,40]). While the use of other
processing techniques, such as resin transfer molding (RTM), is increasing
for the manufacture of thick-sectioned composites, the optimization of pro-
cessing temperatures is still a concern and methods for identifying optimal
temperature trajectories, such as the approach presented here, are very rele-
vant [30]. Vacuum assisted autoclave molding used in this work can produce
strong, quality composites with higher fiber volume percentage and low void
fractions, but unfortunately it requires a high capital cost autoclave unit with
accurate temperature and pressure control. Another limitation is that process-
ing times can be on the order of four to six hours.

Autoclave layup processing begins by laying up a number of materials on the
tool surface, as shown in Figure 1 (a more extensive process description can
be found in [33]). The bottom tool surface shapes the bottom surface of the
composite. The final composite shape is further defined by a metal “picture
frame” along its edges and a top caul plate. Layers of “prepreg” are placed in
the mold and become the composite portion of the layup. Prepregs are sheets
of unidirectional fibers or woven fabrics impregnated with partially cured resin.
Thermocouples can be placed within the mold for feedback information, but
not without a detrimental effect on the part’s mechanical strength proper-
ties. Vacuum is achieved by covering mold and breather cloth structure with
a sealed, impermeable vacuum bag. Once the mold assembly is sealed within
the autoclave and vacuum has begun, the autoclave temperature and pressure
control programs are initiated. The temperature of the air circulating in the

autoclave is increased to reduce the viscosity of the resin and eventually initi-



ate the polymerization of the resin. The pressure within the autoclave is raised
to aid the evacuation of excess resin from prepreg to consolidate the laminate.
Consolidation is an important aspect of autoclave molding as it determines
the part’s final thickness, fiber content, and void fraction. While some of the
optimization and control strategies developed for the autoclave molding pro-
cess have focused primarily on achieving good part consolidation, minimizing
thermal and stress gradients within thick composites is an important issue

and can be adequately decoupled from the consolidation problem.

2.2  Cure Cycle Optimization

The processing conditions used to produce a thermoset composite are often
collectively called a “cure cycle”. A cure cycle is often presented as the profile
(or trajectory) of temperatures used to initiate cure (polymerization) within
the composite laminate and bring it to completion. For autoclave molding, the
cure cycle may also include an autoclave pressure profile used to aid consoli-
dation of the composite laminate. In this work, only the internal temperature
and extent of cure profiles of the composite are modeled, but the approach
can be extended in the future with the addition of a resin viscosity model to
identify the optimal autoclave pressure profile for consolidation.

Prior to introduction of computers, the cure cycle for thick-sectioned compos-
ites was developed from the recommended cycle through experimental trial
and error methods [38]. While still sometimes used, a trial and error pro-
cedure can be expensive, time-consuming, and non-optimal even under the
supervision of manufacturing expert. Computers have provided a much more

systematic and hopefully improved means of modifying cure cycles to suc-



cessfully produce thick-sectioned composite laminates. Early simulations were
primarily used to manually generate different cure cycles for thick-sectioned
composites to determine better processing conditions than those suggested
by the resin’s manufacturer for thinner laminates [25,18,6,10,23]. While this
trial and error approach often yielded better quality composites, identifying
the optimal cure cycle was unlikely. Furthermore, due to the complexity of
the heterogeneous composite system, the accuracy of the models used is an
important concern.

To evaluate cure cycles more systematically, a number of researchers have
simulation-based optimization strategies that are implemented off-line. Loos
and Nagendra [26] used a dynamic programming optimization technique to
reduce thermal lag and temperature overshoots. Martinez [28] used a hill-
climbing algorithm to identify a temperature trajectory that resulted in an
80% decrease in heat up time for a 2.54 c¢m thick composite by using aggres-
sive heating initially followed by a significant cooling phase before the final
heating stage. In Pillai et al. [33,34], a look-ahead strategy was employed
to evaluate the effect of different control actions during processing on the
pre-defined penalty function. This method decreased by 33% the processing
time recommended by the prepreg manufacturer while also improving prod-
uct quality. Michaud et al. [30] used a similar methodology but with a global
optimization algorithm designed to account for model parameter variabilities
during the off-line optimization of a cure cycle.

On-line control of thick-sectioned composite processes has primarily been
accomplished through the use of expert systems to adjust autoclave tem-
perature and pressure settings according to pre-defined heuristic rules (e.g.
[39,24,10,22]). Choi and Lee [7] combined an expert system approach with

traditional on-line control by dividing the composite process into three stages,



each with its own distinct control strategy to account for process variability.
Using a trained artificial neural network (ANN) as a model, Joseph et al. [21]
developed an on-line model-based optimization and control strategy for the
autoclave molding process. This work was later extended to use a shrinking-
horizon model predictive control strategy [40]. In this paper, we use the off-line
MPC framework presented here for the determination of the theoretical opti-

mal cure cycle.

3 Modeling and Problem Statement

3.1 Modeling

A model of the curing process for thermosetting composites was first pre-
sented by Loos and Springer [25]. Since then, various aspects of modeling the
autoclave curing process have been investigated by numerous authors (see [4]
for a review). The core of the model used here was first developed by Bo-
getti [5]. The governing equations are the general anisotropic heat conduction
equation coupled with the kinetics relating the rate of reaction « (also named
fractional degree of cure) to the temperature T'. Since the 2-D problem has
demonstrated that temperature gradients were negligible in lateral direction,
only 1-D phenomena across the thickness are accounted for. The critical di-
mension is therefore across the thickness z and, by assuming the symmetry
of the process, is divided in two parts D., D, from the center of the com-
posite to the interface between the autoclave and the mold assembly (Figure
2). D, represents the composite portion of the system and D, represents the

tooling portion. Major change in the model used here (Pillai et al. [33]) is
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the boundary condition (convective in [5]). Pillai et al. lumped, at the edge
of the composite, the heat transfer resistance in the autoclave, the bag, the
fabric and the mold in a single layer, referred to as the tooling. The accuracy
of the model was improved considerably by explicitly accounting for the heat
capacity of the tooling. Concerning the kinetic model of the polymerization
reaction, it is modeled using an empirical Arrhenius-type rate law. The curing

process can therefore be described by the following nonlinear parabolic PDE

system (Syz) [33] with boundary control 7.

\

at

O — 3,27 with 2 € Dy =ty te+tf, t >0

X = 3,07 + meE2IA =R gm(1 — o) with 2 € D =0, %[, t > 0

at

with boundary conditions:

T(z,t) =T,(t) at z=1.+1t,

or  _ k0T

Frlts = keozjf MWE=le

>
T(t;,t) =T(t,1)

T _ —
5—0 at z =0

with initial conditions:

9o _ Ace_%%am(l - a)n with 2 € D, U 0D, = [07 tc]? t>0

with ¢ > 0

T(Z,O) = TO VZ c D= [0, tc+tt]

a(z,0) = 0" with z € D. U JD,

with the parameter values given in appendix.
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3.2 Constrained Optimization Problem Formulation

The optimization problem is to find, at each sample time k (¢t = kT, T, is
the sampling time),the value of the manipulated variable T, such that the
cure cycle is completed in minimum time. The performance index is chosen

such that it maximizes the fractional degree of cure rate at the center of the

composite:
in J(T,()) = =57 2)
min =
To(k) ¢ &2(0, k)

To ensure that the resulting cure cycle can realistically be implemented, con-
straints are introduced to define the range of temperatures and to limit the

heating (AT, max) and cooling (AT, i) rates of the autoclave:

Tamin S Ta(k) S Tamax
(3)

ACramin S %’1}%_1) S ACra max

Due to the lack of stress model available previously underlined, addressing
the inside-out curing issue is handled through constraints for the temperature

difference between the surface and center of the composite:

ATin < T(te, k) —T(0,k) < ATyax (4)

This constrained optimization procedure is iterated until the polymer is en-

tirely cured at k = k*:

a(z, k") > ap, Vz€D, (5)
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4 Off-line Optimization Methodology

4.1  Distributed Parameter Model Considered

One considers the following class of first principle model described by a semi-

linear one dimensional parabolic PDE system with boundary control (Syz,):

(

0el) — Aga(z,t) + Fy(z(z,t) V2€Q, >0

Apz(z,t) + Byu(t) =0 V2 €09, t >0

y(t) = Cz(z,t) V2€00QUIN, t>0

z(z,0) =2y ¥V 2z€QUIN

\
where z is the independent space variable, € is the spatial domain and 0f) its
boundary, £ is the independent time variable. z is the state vector in a Hilbert
space X = Ly(2), u is the control or manipulated variable in IR and y is the
vector of p outputs or controlled variables in IR?. A;, Ay and C are bounded
linear operators, Fy is a vector of nonlinear functions and B, is a matrix of

suitable dimensions.

4.2  Model Predictive Formulation

One of the numerous advantage of MPC formulation as a constrained opti-
mization problem is that a large number of control problems can be formu-
lated. It covers trajectory tracking for a controlled variable, minimization of

any economic function, minimization of energy supply under technical spec-
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ifications, etc [14]. Therefore, one can consider the following general task of
minimizing, under some constraints, the nonlinear cost function J (also named

performance index):

min J(@) = Sf (y(),u(j — 1)) Vi€ T ={k+1, ., k+N} (7

where k is the actual discrete time index, j is the discrete time index, N, is the
receding horizon and JIN” is the future discrete time window. @ is the sought
sequence of the future manipulated variable of the process u that is classically

tuned as follows:

d=[.ul) .17 Viegd"={k ....k+N,—1} (8)
and:

wf) =uk+ N, —)Vje I ={k+ N, ...,k + N, —1} (9)

The model (Sy1,), which links u to y, is therefore directly used in the perfor-
mance index involved in (7). The optimization procedure has also to account

for:

e Constraints on the magnitude and velocity of the manipulated variable:

Umin S ’I,L(j) S Umax Vj € t70Np_1 = {k7 7k + NP - 1}

(10)
Athin < 0(j) = u(j = 1) < Ao Vi€ Ty
to ensure that the manipulated variable has a physical meaning.
e n general output constraints:
ci(y(i),u(i—1) <0 Vje ", YieTr ={1, .., n} (11)

due to operating specification, product quality, security, etc.
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This formulation leads to the solution of a constrained nonlinear optimiza-
tion problem based on a nonlinear dynamic distributed parameter model with
boundary control. This off-line optimization is repeated at the next sample

time k£ and stopped at the final time £ = £* when a particular event is reached:

0 < g(y(k*), u(k")) (12)

4.8 Constraints Handling

Nonlinear programming is the general case where the objective function and
constraint function may be nonlinear, and is the most difficult of the opti-
mization problems [16]. Indeed, there is no general agreement on the best
approach and much research is still to be done. Historically, the earliest devel-
opments were sequential minimization methods based on the use of penalty
and barrier functions. Even if they are not entirely efficient, they are simple
to apply. Other popular Lagrange-Newton methods, like sequential quadratic
programming (SQP), are local approaches and are used in MPC formulations.
Methods proposed here to handle input and output constraints in the off-line

constrained optimization problem are now detailed.

4.8.1 Transformation Method for Input Constraints Handling

The problem is to find a method to handle magnitude and velocity constraints
on the manipulated variable. Since it is the tuning parameter, an easy method
is the use of the following transformation method based on a sigmoid function

h depicted in Figure 3.
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u(j) = h(p(j)) = hmoy + hamptanh[2E)"limer]

hamp

(13)
p(j) ER
with:

{
Panin = MaX[Umin, 4(j — 1) + Almin]
Pnax = MiN[Upan, U(J — 1) + Atpax]

4 (14)
hmoy — hmax;hmin
h/amp — hmax_hmin

\
Seeking the sequence p of the unconstrained parameter p always ensures the

magnitude and velocity rate constraints? check for the manipulated variable.

4.8.2  Ezxterior Penalty Method for Output Constraints Handling

In order to account for output constraints, one adopts the exterior penalty
method used in nonlinear programming where a positive defined weighted

penalty term is added to the initial cost function J:

Jtot(a) = J(’LNI,) + Jewt(a) (15)

Jegt(W) =% ( Xi]wi maz?(0, ¢;(y(j), u(j — 1)))) Vi e le”, Vi e I7

J
where w; is an adaptive positive defined weight: it augments when the related

constraint tends to be satisfied. The penalty method transforms the problem

2 Acceleration rate can also be accounted for with this transformation.
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into an unconstrained problem by substituting a penalty function for the con-
straints. Solution of the resulting sequence of unconstrained problem tends to
a constrained minimum [27]. Roughly speaking, for any constraint ¢; not sat-
isfied (i.e. when ¢;(.,.) > 0), a positive term penalizes the minimization task.
This forces the optimizer to minimize J.;; and therefore forces the violated
constraint to be satisfied. Moreover, one of the advantages of the method is
that it can handle unfeasible problem without disturbing the overall resolution
[11]. Therefore, the solution proposed during the iterative optimization task

may be anywhere in the parameters space.

4.4 Final Penalized Optimization Problem

Finally, combining the transformation method for the constraints on the ma-
nipulated variable and the exterior penalty method for the constraints on
the controlled variable, the final penalized optimization problem to be solved

off-line is the following one:

. N.
jeg ?

p=[ [ u() - " Vi e Jp
p(j) =p(k+ N. — 1) Vj € Jpe~"

and subject to model (Syy,) resolution.

\

This nonlinear problem can now be solved by any unconstrained optimization

algorithm.
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4.5  Off-line Optimization Algorithm

Widely known for its robustness and convergence properties, the Levenberg-
Marquardt’s algorithm is used to minimize the cost function, where the se-

quence p is determined at each sample instant k£ by the iteration procedure:

ﬁnﬂ =p" - (VQJZZt + )‘I)_l V Yot (17)

where v7JJ%, and 72J7, are respectively the performance index gradient and
the performance index hessian with respect to p"™ at the iteration n. \7Jj,, is
explicitly provided into the control algorithm and the classical approximation

for 72J7, as well [16].

0

5 Off-line Optimization of Cure Cycle

In this section, the final optimization problem is stated and results of opti-
mization of the cure cycle are discussed with a particular emphasis on the

design of a constraint bound.

5.1 Final Constrained Optimization Problem Formulation

From the constrained optimization problem formulated in section 3.2, one
can define the problem involved in the proposed optimization procedure. The

model-based performance index is:
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- — 1 ] Np
win (L) = Jegy Vi€

(18)
T, = [To(k) ... Ty(k + N, — 1)|T

The constraints dealing with implementable value for manipulated variable

are:

Tamin S Ta(]) S Tamax VJ € *Z)Np_1

(19)
ATymin < 5= < AT, e Vje 7
The constraints dealing with controlled variables:
AThin < T(te; §) = T(0,5) < ATwax Vi€, (20)

The procedure is iterated until ¥ = k* when the condition given in Eq. (5) is

satisfied and the composite is judged to be fully cured.

5.2 Results

In order to reach the desired optimization objectives, two different series of

runs have been carried out under the following conditions:

e The first series involves the “trial-feedback” ® design of the bound AT},
to get a correct fractional degree of cure crossover.
e The second set of runs shows the influence of the prediction horizon over

the cure cycle.

3 “Trial-feedback” terminology is preferred to the usual “trial-error” terminology
since results in one simulation are used into the next one to improve results, therefore

acting as a “feedback loop”.
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5.2.1 Simulation Conditions

Simulations have been run under the following conditions:

e The sample time 7, is 1 min.

e The distributed parameter model is discretized by a finite difference method
with 4 nodes into D; and 3 nodes into D,... Simulations with more nodes led
to the same MPC results.

e Constraints bounds for the manipulated variable are:

Ty max = 130 °C

Ty inin = 10 °C
ATy max = +4 °C.min™!
ATy min = —4 °C.min™1

e Initial given constraints bounds for the difference of temperature between

the center and the top of the polymer are:

ATpax = +10 °C (25)
AT = —10 °C (26)

e Initial temperature is 28 °C'.

e Procedure stops for oy = 0.99.

e Moreover, it is assumed that a composite with acceptable material proper-
ties will be produced if the fractional degree of cure crossover between the
surface and center of the composite laminate happens before o,,,, = 0.5
[34]. This value has a strong impact over results and leads to design the
shape of the difference of temperature constraint bound.

e The software is implemented on a UltraSPARC 200MHz workstation.
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5.2.2 Influence of the Temperature Difference Upper Constraint Bound

To initially see how the bound of the temperature difference upper constraint
affects the final cure cycle performance (i.e. the fractional degree of cure
crossover), a first run is performed with (N,,N;) = (25,1). The resulting cure
cycle is shown in Figure 4. As it can be seen in Figure 5, the constraints put
on the temperature difference between the surface and center of the compos-
ite are satisfied during the first 80 minutes. One can see that the solution is
optimal until 80 minutes, since the saturation of the upper constraint limits
the augmentation of T, naturally fixed by the performance index (the higher
the autoclave temperature, the faster the cure). Then, the temperature at the
surface reaches a sufficient level and the exothermic reaction can start: heat
is released and the composite’s surface temperature increases at a higher rate
than at the center of the polymer, where the reaction has not yet begun. Con-
sequently, since the temperature difference upper constraint was previously
saturated, it can not be fulfilled anymore between 82 and 96 minutes. From
92 minutes, the surface reaction becomes more and more completed (Figure
6), hence less heat is created and the difference of temperature between sur-
face and center decreases. Then, temperature at the center reaches the mini-
mum required to start the reaction. Now, heat is trapped at the center of the
composite where temperature becomes higher than at the center: the lower
constraint is now no longer satisfied (Figure 5). Finally, the fractional degree
of cure crossover happens at 0.92 instead of below 0.5 as desired (Figure 6).

By tuning the prediction horizon, one could expect to improve constraints
checking and decreasing the fractional degree of cure crossover below its given
limit. However, this is not the case because of the constrained optimization

setup. Since the reaction has to be as fast as possible, the autoclave temper-
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ature has to be emphasized as much as possible. Therefore, given the initial
temperature difference upper constraint bound and the diffusion phenomena,
the temperature at the surface of the composite will always (i.e. for any N,)
reach the minimum extent necessary to start the reaction before the center of
the composite will. Most importantly, the surface of the composite is cured sig-
nificantly when the reaction at the center of the composite begins. Therefore,
one has to enforce the difference of temperature between surface and center
to decrease when surface reaction starts. Finally, through the “trial-feedback”
strategy, the following bound for the difference of temperature upper con-
straint is designed has a funnel shape constraint [35] depicted in Figure 7. It
allows the temperature profile inside the polymer to be more homogeneous
when the reaction starts, hence improving the inside-out cure. This bound is

adopted for the following runs.

5.2.3 Influence of the Prediction Horizon

The prediction horizon tuning parameter, IV,, is adjusted to determine its in-
fluence on the optimized cure cycle. In this case, the control horizon, N,, is
set to 1 to reduce the computational burden. Simulations show that NV, tuning
has less impact over the final cure cycle than IV, tuning does. Among all the
runs performed, 3 of them leading to different behaviors are depicted here:
N, = 15, N, = 25, N, = 45. The obtained cure cycle is depicted in Figure
8. One can clearly see the influence of the designed upper constraint bound
on the temperature difference between the surface and center of the compos-
ite laminate. Compared to the previous cure cycle (Figure 4), the autoclave
temperature is no longer continually increasing until the maximum autoclave

temperature bound is reached. In order to satisfy the temperature difference
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constraint, the autoclave temperature needs to level off or even cool some-
what to ensure that the surface’s fractional degree of cure does not greatly
surpass that of the center. The advantage of cooling stages within an auto-
clave molding cure cycle has been reported by a number of other researchers
[26,23,28,22]. The real impact of the prediction horizon can be seen when N,
is tuned to a relatively small value (N,=15). For such a small value, both
difference of temperature constraints cannot be completely satisfied as seen
in Figure 9. The funnel shape upper constraint is accounted for too late and
subsequently a high autoclave temperature is reached (Figure 8). The surface
of the composite heats up well before the center does and the fractional degree
of cure crossover appears too late (0.75) as shown in Figure 10. Although this
cure cycle would not produce a quality composite, this cure cycle is the fastest
of the three runs (133 minutes) due to the higher autoclave temperatures.
By increasing the prediction horizon to a relatively large value (N, = 45),
constraints are always satisfied in Figure 9. While the resulting cure cycle ap-
pears to be a valid solution, less heat is provided to the composite than in the
two other runs (Figure 8). Because of the lower processing temperatures, the
reaction at the center of the composite occurs at a later time. Consequently,
the fractional degree of cure crossover is delayed in time (cure cycle is the
slowest of the three cases) and occurs too late at 0.75 (Figure 10). A compos-
ite manufactured with this cure cycle would most likely not have the desired
mechanical properties. These two optimization runs clearly indicate that a
compromise has to be found between a fast cure cycle and one with a good
fractional degree of cure crossover.

By tuning the prediction horizon to an intermediate value (N, = 25), a suc-
cessful cure cycle is found with a processing time of 156 minutes (Figure 8).

The constraints are always satisfied (Figure 9) and the fractional degree of

23



cure crossover occurs before 0.5 (Figure 10). This cure cycle is comparable to
the 170 minute cure cycle found for the same composite system by Pillai et

al. using local criteria optimization [34].

5.2.4 Table of results

We present the following table to summarize the influence of the tuning of the
prediction horizon over various aspects of the application (control horizon is

first always tuned to 5):

e the value of degree of cure when the degree of cure crossover happens (it is
requires to occure before e, = 0.5),
e the simulated processing time (that is required to be as short as possible),

e the CPU time needed to find the entire cure cycle.

Prediction horizon N, (-) 15 20 25 30 39

Control horizon N, (-) 5 5 5 5 5

Value of the degree of cure when the | 0.72 | 0.53 | 0.495 | 0.67 | 0.73

degree of cure crossover happens (-)

Simulated processing time (min) 133 | 153 | 162 | 159 | 159

CPU time for the entire cycle (min.s) || 1.46 | 1.47 | 1.34 | 1.40 | 1.34

One can see that prediction horizon tuning mostly influences the cure cycle
results than the calculation time: indeed, one can see the balance reached by
the optimal tuning of N, = 25 since the degree of cure crossover happens at
0.495 whereas the processing time is the longest of these runs (162 min). In

the meantime, the calculation time is always around 1 min 40 s. Concerning
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the influence of the control horizon, as expected, it strongly influences the

calculation time: 1362 min were needed with (N,, N, = 25,25).

6 Conclusion

A general MPC strategy is proposed for the off-line determination of the theo-
retical optimal process’s behavior used in our two-step MPC strategy [11,12].
The particularity of this process is that it is based on a nonlinear parabolic
PDE model. The first principle model of the system involved in the optimiza-
tion task is described by a semi-linear parabolic distributed parameter system
with boundary control. A detailed MPC procedure is given. Constraints on
the manipulated variable are handled through a hyperbolic transformation
to ensure that these constraints are continually satisfied. Constraints on the
controlled variable are accounted for through an exterior penalty method. It
facilitates the constraints handling and the optimization resolution as well,
since solution provided during the iterative optimization procedure may be
anywhere in the parameters space.

This framework was used to optimize the processing temperature profile nec-
essary to produce a quality thick-sectioned composite laminate in a minimum
amount of time. The cure cycle optimization was complicated by the lack of
an accurate model of internal residual stresses to predict the final quality of
the composite. Instead, constraints were added to the predictive framework to
control the temperature difference between the center and surface of the com-
posite. A constant maximum bound for the temperature difference, however,
was not sufficient to generate a good quality composite laminate (i.e. with a

low fractional degree of cure crossover). Alternatively, a funnel shape func-
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tion was used for the upper constraint to ensure that the temperature profile

within the composite is more homogeneous when the resin at the center of

the composite begins to react. By tuning the prediction horizon of the system,

an optimal cure cycle was found to manufacture a quality composite in 162

minutes.

7 Appendix

Parameters of autoclave cure simulation are:

Property Name Value Unit
Thermal conductivity ke 0.23793 | Wom L K™!
Polymer density Pe 1890 kg.m=3
Polymer thermal conductivity Cpe 1.134 103 | Jkg LK1
Thermal diffusion coefficient in the tooling B 0.38, m2.s7!
Mass ratio of resin in the composite m, 46 %
Enthalpy of reaction (—AH,) | 8525 10* Jkg™1
Pre-exponential factor A, 1.233 102 st
Activation energy factor E, 1.674 10° J.mol ™1
Perfect gas constant R 8.314 Jmol L. K1
Exponential factor m 0.524 (=)
Exponential factor n 1.476 (=)
where:
g= @)
p;:pt
o= e ()
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Geometrical Data are:

Property Name | Value Unit

Tooling thickness 2 11072 m

Half thickness of the polymer layer Ze 1.271072 | m
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Fig. 1. Composite layup [34].
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Fig. 2. Spatial domains from the center of the polymer to the edge of the autoclave.
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Fig. 3. Transformation law to handle manipulated variable constraints.
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Fig. 4. Influence of the initial temperature difference upper constraint bound: tem-

peratures in the autoclave (solid), at the surface (dashed) and at the center (dotted).
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Fig. 5. Influence of the initial temperature difference upper constraint bound

(dash-dot): temperature difference constraint between surface and center (solid).
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Fig. 6. Influence of the initial temperature difference upper constraint bound: frac-

tional degrees of cure at the surface (dashed) and at the center (dotted).
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Fig. 7. Design of the bound for the temperature difference upper constraint

(dash-dot) via “trial-feedback” strategy.
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Fig. 8. Influence of the prediction horizon tuning over the temperature in the auto-
clave, in runs based on the designed temperature difference upper constraint bound:

(solid: N, = 15), (dashed: N, = 25), (dotted: N, = 45).
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Fig. 9. Influence of the prediction horizon tuning over the temperature difference
constraint between surface and center, in runs based on the designed temperature
difference upper constraint bound: (solid: N, = 15), (dashed: N, = 25), (dotted:

N, = 45).
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Fig. 10. Influence of the prediction horizon tuning over the fractional degrees of
cure at the surface (solid) and at the center (dashed), in runs based on the designed

temperature difference upper constraint bound.
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