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Nonequilibrium modeling of three-phase distillation
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Abstract

A nonequilibrium (NEQ) model for a complete three-phase distillation in tray columns is described. The model consists of a set of mass and
energy balances for each of the three possible phases present. Mass and heat transfer between these phases is modeled using the Maxwell–Stefan
equations. Equilibrium is only assumed at the phase boundary between two phases. The equilibrium stage model is a special case of the general
model.

The method of solving the NEQ model equations described here consists of first solving the equilibrium two phase model, using this
solution to obtain a converged solution for the equilibrium three-phase problem by means of a differential arc length continuation method, and
subsequently using this as a starting guess for the nonequilibrium three-phase model with Newton’s method. Incorporated into the algorithm
model is a liquid phase stability check and phase split calculation to evaluate the thermodynamic stability of all liquid phases present in the
distillation column each iteration.

We have found that the component Murphree efficiencies tend to be lower and more highly variable in the two-liquid phase region than they
are in the single liquid region. There may be a jump discontinuity in component efficiencies as we move from homogeneous to heterogeneous
liquid phase regions of composition space. EQ models modified by efficiency factors should not, in general, be used for the simulation of
three-phase distillation processes. NEQ models should be preferred in general.
© 2004 Published by Elsevier Ltd.
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1. Introduction

Chemical engineers have been solving distillation prob-
lems using theequilibrium (EQ) stage modelsince Sorel
first used the model for the distillation of alcohol over 100
years ago. Since the late 1950s chemical engineers have
been solving the EQ model equations by computer. Indeed,
from the late 1950s to the early 1990s hardly a year passed
without the publication of at least one (and usually many
more than one) new algorithm for solving these equations
(Seader, 1985). One could even make a case that it was the
EQ model that brought computing into chemical engineer-
ing in the first place.
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Real distillation processes, however, nearly always oper-
ate away from equilibrium. In recent years it has become
possible to simulate distillation and absorption as the mass
transfer rate-based operations that really they are using what
have become known asnonequilibrium(NEQ) orrate-based
models (Taylor, Krishna, & Kooijman, 2003).

It is the purpose of this paper to discuss the NEQ modeling
and computer simulation of three-phase distillation systems.
The computer simulation of distillation processes, whether
done using EQ or NEQ models, requires us to address the
following concerns.

• Formulation of the model equations.
• Physical property calculations.
• Degrees of freedom analysis.
• Solving large linear and strongly nonlinear systems of

equations.

These are, in fact, the topics discussed in the influ-
ential monographProcess Flowsheetingby Westerberg,
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Nomenclature

av interfacial area per volume
of vapor (m−1)

aLL
j interfacial area between the two liquid

phases on stagej (m2)
aVL ′
j interfacial area between vapor and

liquid phase 1 on stagej (m2)
aVL ′′
j interfacial area between vapor and

liquid phase 2 on stagej (m2)
c number of components
ct total concentration (mol m−3)
db bubble diameter (m)
–D Maxwell–Stefan diffusion coefficient

(m2 s−1)
Ej energy transfer rate on stagej (J s−1)
EV vaporization efficiency
fi,j molar feed stream of componenti

to stagej (mol s−1)
Fj molar feed stream to stagej (mol s−1)
Fo Fourier number
g Gravitation constant (m s−2)
hf Froth height (m)
hj heat transfer coefficient (J m−2 K−1 s−1)
H enthalpy (J mol−1)
H̄i,j partial molar enthalpy of componenti

on stagej (J mol−1)
Ki,j equilibrium constant of componenti

on stagej
L′

j molar liquid flow rate of phase
1 from stagej (mol s−1)

L′′
j molar liquid flow rate of

phase 2 from stagej (mol s−1)
Ni,j mass transfer rate of componenti

on stagej (mol s−1)
Pj pressure on stagej (Pa)
Qj heat duty on stagej (J s−1)
R gas constant (J mol−1 K−1)
Sh Sherwood number
t homotopy parameter
T temperature (K)
vb bubble rise velocity (m s−1)
Vj molar vapor flow rate from stagej

(mol s−1)
x′
i,j mole fraction of componenti

on stagej, liquid phase 1
x′′
i,j mole fraction of componenti

on stagej, liquid phase 2
yi,j mole fraction of componenti

on stagej, vapor phase
z
αβ
i,j mole fractioni on stagej,

phaseα at αβ phase interface

Greek letters
β phase split fraction
δi,k kronecker delta
ε convergence tolerance
εv vapor holdup
γi activity coefficient of componenti
Γi,k thermodynamic factor for binary pairi andk
η dimensionless film coordinate
ϕ volumetric flow rate (m3 s)
κi,k binary pair mass transfer coefficient

componentsi andk (m s−1)
µ chemical potential (J mol−1)
ρ density (kg m−3)
σ surface tension (N m−1)
τv vapor residence time (s)

Subscripts
i component number
j stage number
k Alternative component number
t total, summation over all components

Superscripts
F feed quantity or property
L′

j liquid phase 1 quantity or property
L′′

j liquid phase 2 quantity or property
LL indicating transfer films between two

liquid phases
V vapor phase quantity or property
VL ′

j indicating transfer films between vapor
and liquid phase 1

VL ′′
j indicating transfer films between vapor and

liquid phase 2

Hutchison, Motard, and Winter (1979). The philosophy and
techniques of process modeling and simulation put forth
in their monograph have pervaded all of modern process
engineering to the point that this material has become part
of the education of all chemical engineers (see, for exam-
ple, Biegler, Grossmann, & Westerberg, 1997; Seader &
Henley, 1998).

2. Review

Several important processes involve the distillation of
mixtures that may form two distinct liquid phases (Doherty
& Malone, 2001). In some cases, this cannot be avoided,
due to the nonideal thermodynamic nature of the mixture. In
other cases, phase separation is induced on purpose. There
are many examples of extractive or azeotropic distillation
processes, in which binary azeotropes are ‘broken’ by the in-
troduction of a third component that creates a liquid–liquid
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region. Much of the world’s dehydrated alcohol is produced
by means of heterogeneous azeotropic distillation, along
with many other industrially important chemicals.

The simulation of three-phase distillation processes has
long been carried out using the equilibrium stage model. The
model involves material balance equations, energy balance
equations, equilibrium relations, and mole fraction summa-
tion equations. Obtaining the numerical solution of these
equations that can be significantly more difficult than solv-
ing the equilibrium model equations for a two-phase system.
There are a number of reasons for this.

• The very high nonlinearity of the thermodynamic quan-
tities (primarily theK-values) means that the numerical
computations are unusually sensitive to estimates of the
temperatures and compositions and convergence often is
very difficult to obtain. Indeed, the availability of appro-
priately accurate thermodynamic models often is an im-
portant consideration.

• Although the process might be called “three-phase” dis-
tillation, there will almost certainly be a number of stages
with only one liquid phase present. Thus, part of the
computational problem involves finding the appropriate
number of phases on each stage. Put another way, the
number of equations and variables necessary to determine
the operating condition of a column is not known until
the problem has been (nearly) solved.

• The equilibrium stage model equations always admit a
“trivial” two-phase solution; that is, one vapor and one
liquid phase.

Many different algorithms for solving this set of equa-
tions have been proposed. All methods are, in one sense or
another, extensions of methods that have been found useful
for solving two-phase distillation problems (see, for exam-
ple,Biegler et al., 1997; Seader & Henley, 1998). For exam-
ple, equation oriented methods (Baden & Michelsen, 1988;
Cairns & Furzer, 1990a,b,c; Ferraris & Morbidelli, 1981,
1982), a multistage flash algorithm (Ferraris & Morbidelli,
1981), “bubble-point” type methods (Block & Hegner,
1976; Ferraris & Morbidelli, 1981), “inside-out” methods in
which the property evaluations are put in an outer iteration
loop rather than in an inner loop as in the “bubble point”
type methods (Prokopakis, Seider, & Ross, 1981; Ross &
Seider, 1981; Schuil & Bool, 1985) and homotopy-continua-
tion methods (Kovach & Seider, 1987; Woodman, 1989).
Swartz and Stewart (1987)used orthogonal collocation
techniques to model three-phase distillation processes. The
advantages of this approach include a model that can be
considerably reduced in size compared to the other ap-
proaches mentioned above, and that the structure of the
model does not change as the location of multiple liquid
phases changes during the solution procedure. As an aside
we note here that it would be an interesting challenge to
adapt the Swartz–Stewart approach to the nonequilibrium
model developed in this paper.

Since the number of liquid phases present on each tray in
the separation unit is not generally known, the number of
equations necessary for modeling the unit cannot be deter-
mined until the actual operating conditions of the column
have been determined. In some algorithms it is necessary to
specify in advance which stages have two phases and which
stages have three phases. This is an unsatisfactory feature of
such methods that makes convergence a somewhat uncertain
adventure.

The equilibrium stage model, so widely used in distilla-
tion simulation and design, does not, of course, represent
reality in that few stages actually operate at equilibrium.
The usual way out of this difficulty is either to use overall
efficiencies or to combine an equation for “stage efficiency”
with the equilibrium relations. Stage efficiencies have a
more fundamental basis than overall efficiencies and, for
two-phase systems, can be estimated from appropriate
correlations (Lockett, 1986).

Ross and Seider (1981)attempted to overcome the prob-
lem of departures from equilibrium on three-phase trays
through the introduction of Murphree-type stage efficien-
cies, for both sets of vapor liquid equilibrium equations on
a stage. For lack of any good estimation methods or experi-
mentally determined values,Ross and Seider (1981)provide
arbitrary values for these stage efficiencies and assume that
all efficiencies are equal, i.e. the two liquid phases are in
equilibrium with each other. In any event, reliable prediction
methods for efficiencies in three-phase systems are nonex-
istent. Indeed,Cairns and Furzer (1990a)explicitly warn
against incorporating Murphree efficiencies into the equi-
librium stage model for three-phase systems. In part, this
is because the numerical value of the Murphree efficiency
is highly variable, but also because it is strongly dependent
on the choice of thermodynamic model (this also is true for
two-phase systems, of course).

Lao and Taylor (1994)reviewed the available literature on
three-phase distillation efficiencies, quoting several sources
of contradictory behavior for these systems. Some studies
found that the overall efficiency was not influenced by the
number of liquid phases present (Grohse, McCartney, Hauer,
Gerster, & Colburn, 1949; Schoenborn, Koffolt, & Withrow,
1941). However, in the discussion that accompanies the pa-
per bySchoenborn et al. (1941)all warn against generaliz-
ing this finding. The introduction of a second liquid phase
can have a strong (positive or negative) influence on mass
transfer behavior. Efficiencies between 25 and 50% are not
uncommon (see alsoSection 6). Lao and Taylor (1994)state
that since low and variable stage efficiencies are to be ex-
pected, ‘a model based on the assumption of equilibrium
on every stage cannot hope to be able to predict column
performance’. In addition, choosing the best location for de-
canters may only be determined if the actual compositions
and the presence of two liquid phases are known. Hence it
is important to be able to correctly predict the location of
the stages where a second liquid phase can form. The low
stage efficiencies that can occur in such columns suggest
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Fig. 1. Schematic representation of a three-phase stage.

that this cannot be done reliably with an equilibrium stage
model.

To the best of our knowledgeLao and Taylor (1994)
were the first to develop mass transfer rate-based models
of three-phase distillation. However, theirs was a model for
only a single tray and no attempt was made to model an en-
tire distillation column (solving the equations for a single
tray was sufficiently difficult at that time). It is the purpose of
this paper to describe our nonequilibrium model of an entire
three-phase distillation column and the method of solving
the model equations. We address each of the topics iden-
tified in the introduction. The model framework described
here and the associated computer code was used bySpringer,
Baur, and Krishna (2003)who found favorable agreement
between with a nonequilibrium model of three-phase distil-
lation and their own extensive set of experiments with the
water (1)–cyclohexane (2)–ethanol (3) system.

3. A nonequilibrium model of three-phase distillation

The unit cell for the nonequilibrium stage model for three-
phase distillation is shown inFig. 1. This unit cell is assumed
to describe a ‘real’ tray in a tray column or a ‘real’ section
of packing in a packed distillation column. Present on this
stage are one vapor phase and two liquid phases that may
all be in contact with each other. In this figureVjrepresents
the vapor flow rate from stagej, andL′

jandL′′
j represent the

flow rates of liquid phases 1 and 2, respectively. The mole
fraction of componenti in the vapor stream leaving stagej
is given byyij , and the mole fractions of componenti in the
two liquid phases present on stagej is given byx′

ij andx′′
ij .

The mass transfer rates are denoted byN, where the super-
scriptαβ refers to mass transfer between phaseα and phase
β. The energy transfer rates between the phases are denoted
by E, for which a similar superscripting system is main-
tained. In the development of the equations, the subscript
j will be reserved for stage numbering, and the subscriptsi
andk will be used for subscripting components. The model

is developed assuming the stages are numbered from the
top down, the condenser (if any) or top stage being stage 1.

3.1. Conservation equations

The overall mole (mass) balances for the vapor phase and
the two liquid phases are given by:

Vj − Vj+1 − FV
j + NVL ′

t,j + NVL ′′
t,j = 0 (1)

L′
j − L′

j−1 − FL ′
j − NVL ′

t,j + NLL
t,j = 0 (2)

L′′
j − L′′

j−1 − FL ′′
j − NVL ′′

t,j − NLL
t,j = 0 (3)

In the above equations,F represents a feed stream added
to stagej. NVL ′

t,j , NVL ′′
t,j , andNLL

t,j are the overall interphase
mass transfer rates (mol/s or equivalent) between the three
phases on stagej. We have omitted the primes on the LL
superscripts since there is only one liquid–liquid interface.

Here,c represents the number of components. The com-
ponent balances for each component in the vapor and both
liquid phases are given by:

Vjyi,j − Vj+1yi,j+1 − fV
i,j + NVL ′

i,j + NVL ′′
i,j = 0 (4)

L′
jx

′
i,j − L′

j−1x
′
i,j−1 − f L ′

i,j − NVL ′
i,j + NLL

i,j = 0 (5)

L′′
j x

′′
i,j − L′′

j−1x
′′
i,j−1 − f L ′′

i,j − NVL ′′
i,j + NLL

i,j = 0 (6)

In these equations,fi,j represents the individual compo-
nent feed of componenti to the phase denoted by the super-
script on stagej. The energy balance equations for all three
phases are given by:

VjH
V
j − Vj+1H

V
j+1 − FV

j HFV
j + EVL ′

j + EVL ′′
j = 0 (7)

L′
jH

L ′
j − L′

j−1H
L ′
j−1 − FL ′

j HFL′
j − EVL ′

j + ELL
j = 0 (8)

L′′
jH

L ′′
j − L′′

j−1H
L ′′
j−1 − FL ′′

j HFL′′
j − EVL ′′

j − ELL
j = 0 (9)

where E represents the rate of energy transfer between
phases.

3.2. Transport relations

The mass and energy transfer rates in the above conser-
vation equations are evaluated using the Maxwell–Stefan
equations here written in generic form as:

zαi

RTα

∂µ
αβ
i

∂η
=

c∑
k=1

zαi N
αβ

k − zαkN
αβ
i

cα
t κ

αβ

i,ka
αβ

(10)

In the above equations,α andβ are phase labels chosen
from V,L′, L′′, zαi is the mole fraction of speciesi in phase

α, µ
αβ
i is the chemical potential of speciesi in the α − β

film, R is the gas constant,T is the temperature, andη is a
dimensionless film coordinate (0≤ η ≤ 1). cα

t is the molar
phase density.καβ

i,k andaαβ are the phase mass transfer coef-
ficients and interfacial areas for the transport films between
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phasesα andβ. The mole fractions in the right-hand side of
the equations are the linear average of the mole fractions at
the interface and in the bulk. Note that we have omitted the
stage index letterj for clarity.

In the most general application of the model we need no
less than six different sets of these equations; two for each
possible phase boundary. Onlyc − 1 of each set of these
equations are independent. The mole fractions of thecth
component is obtained from the summation equation (one
of these equations is needed for each phase):
c∑

i=1

zαi,j − 1 = 0 (11)

In their paper,Krishnamurthy and Taylor (1985), and later
Kooijman (1995)rewrite the generalized Maxwell–Stefan
(GMS) equations into an expression for a mass transfer co-
efficient multiplied by a driving force to obtain an expres-
sion for the mass transfer rate directly.Higler, Krishna, and
Taylor (1999)used a finite difference approximation to the
chemical potential gradient. Since normally, mole fraction
profiles within the film and chemical potential gradients will
not be very steep, the latter approach is adequate. In this
model we take an even simpler approach, using just one dis-
cretisation step in the film. This means that the chemical
potential gradients inEq. (10)can be approximated by:

zαi

RT

∂µα
i

∂η
=

c−1∑
k=1

Γi,k(z
αβ
i − zαi ) (12)

where

Γi,k = δi,k + zαi

(
∂ ln γα

i

∂zαi

)
T,P,zα

i,k,k 	=j=1...c−1

(13)

For the vapor phase we may estimate the thermodynamic
factor from a similar expression on which the species fu-
gacity coefficient appears in place of the activity coefficient
(Taylor & Krishna, 1993, p. 24). If, further, we assume that
the vapor phase is ideal thenΓik = δik. The mole fractions
on the right-hand side ofEq. (10)are approximated at the
arithmetic average 0.5(zαi + z

αβ
i ).

By themselves, the Maxwell–Stefan equations are
‘floating’ equations. They relate the driving force for mass
transfer of a component to the frictional drag between
different species in terms of relative velocities and drag co-
efficients.Eq. (14)is, therefore, required to ‘tie down’ these
relative velocities in each of the coupled transfer films.
These equations are commonly referred to as the bootstrap
condition (Krishna & Wesselingh, 1997; Taylor & Krishna,
1993; Wesselingh & Krishna, 2000).

Eαβ
j = −h

αβ
j a

αβ
j (T α

j − T
αβ
j ) +

c∑
i=1

Nαβ
i,jH̄

αβ
i,j

= −h
βα
j a

αβ
j (T

αβ
j − T

β
j ) +

c∑
i=1

Nαβ
i,jH̄

βα
i,j (14)

whereTαβ represents the temperature of theα − β inter-
face,h is a heat transfer coefficient, and̄H the partial mo-
lar enthalpy. The differencēHαβ

i,j − H̄
βα
i,j represents the mo-

lar heat of vaporization. This factor is important only for
vapor–liquid mass transfer. For liquid–liquid mass transfer,
the partial molar latent heats will be nearly equal and the
bootstrap equation essentially requires the conductive heat
fluxes to be the same (although the full interfacial energy
balance (14) is used in the calculations).

3.3. Interface equations

Thermodynamic equilibrium is assumed at the interfaces
between two distinct phases.

z
αβ
i,j = K

αβ
i,j z

βα
i,j , α ∈ {V,L′, L′′},

α 	= β ∈ {V,L′, L′′} (15)

wherez
αβ
i,j is the mole fraction of speciesi in theα phase at

the αβ phase boundary. There are three possible interfaces
and, therefore, three sets of these equilibrium relations are
required.

Note here, that, since it is not assumed that three phases
are at equilibrium at any particular point in the three-phase
mixture, the above three equations are completely indepen-
dent. This is in contrast to the equilibrium stage model, in
which only two independent sets of equilibrium relations
exist.

In addition, it is necessary that the mole fractions at all
interfaces in all phases should sum up to unity:

c∑
i=1

z
αβ
i,j − 1 = 0, α ∈ {V,L′, L′′},

α 	= β ∈ {V,L′, L′′} (16)

3.4. Hydraulic equation

The pressure may be evaluated from the pressure on the
stage above and the pressure drop over the stage.

Pj = Pj−1 + 'Pj−1 (17)

3.5. Reboiler and condenser

The reboiler and condenser will be modeled as equilib-
rium stages. For each three-phase equilibrium stage, the to-
tal mass balance is given by:

Vj − Vj+1 + L′
j − L′

j−1 + L′′
j − L′′

j−1 − Fj = 0 (18)

The individual component balances are given by:

Vjyi,j − Vj+1yi,j+1 + L′
jx

′
i,j − L′

j−1x
′
i,j−1 + L′′

j x
′′
i,j

− L′′
j−1x

′′
i,j−1 − fi,j = 0 (19)
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The overall energy balance of an equilibrium stage is
given by:

VjH
V
i,j − Vj+1H

V
i,j+1 + L′

jH
L ′
i,j − L′

j−1H
L ′
i,j−1 + L′′

jH
L ′′
i,j

− L′′
j−1H

L ′′
i,j−1 − FjH

F
j + Qj = 0 (20)

In which Qj is a heat duty that may be specified to the
stage. In addition, phase equilibrium is assumed between the
bulk phases of the vapor and the two liquid phases:

yi,j = K′
i,jx

′
i,j, yi,j = K′′

i,jx
′′
i,j, x′

i,j = KL
i,jx

′′
i,j (21)

Only two of the above three equilibrium correlations are
independent: the first and second parts ofEq. (21)may be
divided to give the third part, with

KL
i,j =

K′′
i,j

K′
i,j

(22)

In addition, it is necessary that the mole fractions of the
components in each individual phase sum up to 1:
c∑

i=1

yi,j = 1,
c∑

i=1

x′
i,j = 1,

c∑
i=1

x′′
i,j = 1 (23)

The pressure in the reboiler may be calculated from the
pressure on the bottom stage:

Pj = Pj−1 + 'P (24)

The pressure of the condenser has to be specified:

P1 = Pspec (25)

3.6. Transition stages

It is likely that a column will have some trays on which
only one liquid phase is present. For example, it is pos-
sible for a tray to receive liquid from both phases on the
tray above, but only one liquid phase leaves or for two liq-
uid phases to leave a stage while receiving a single liquid
phase from the stage above. These situations are depicted in
Fig. 2. In case a three-phase stage dumps two liquids onto a
two-phase stage, the mass balance for the three-phase stage
does not change, but the mass balance for the two-phase
stage becomes:

L′
j − L′

j−1 − L′′
j−1 − FL ′

j − NVL
t,j = 0 (26)

The term for mass transfer to the second liquid phase has
disappeared. The component mass balance becomes:

L′
jx

′
i,j − L′

j−1x
′
i,j−1 − L′′

j−1x
′′
i,j−1 − f L ′

i,j − NVL
i,j = 0 (27)

The energy balance for this situation is:

L′
jH

L ′
j − L′

j−1H
L ′
j−1 − L′′

j−1H
L ′′
j−1

− FL ′
j HFL′

j − EVL ′
j = 0 (28)

The equations do not need to be modified for the case
in which a two-phase stage supplies liquid to a three-phase

three phase stage two phase stage

va
po

r

liquid 1

liquid 2

va
po

r

liquid

va
po

r

liquid

va
po

r

liquid 1

liquid 2

two phase stage three phase stage

Fig. 2. Three-phase to two-phase, and two-phase to three-phase stages.

stage. It is, however, necessary to ‘add’ the liquid phase to
the ‘correct’ liquid phase. We assume that the liquid from the
stage above is added to the liquid phase on the stage below
to which it is closest in proximity in composition space. For
this, the following composition distance function is evalu-
ated for both liquid phases present on the three-phase stage.

'xα =
√√√√ c∑

i=1

(xj−1 − xα
j )

2 (29)

The liquid from the stage above is added to the liquid
with the smallest value of the distance function. The result
of adding the liquid to the ‘wrong’ phase is unreasonably
high predictions of mass transfer rates because the driving
forces (composition differences) are abnormally large.

3.7. Mass transfer coefficients

One of the important issues encountered in nonequilib-
rium modeling of three-phase distillation is the absence of
methods for estimation of mass and heat transfer coeffi-
cients and interfacial areas. Closely related to the issue of
mass transfer is that of the nature of the contact between the
phases.

Lao and Taylor (1994)proposed four simple flow mod-
els (of varying degrees of realism). Here we focus on two
contacting models, as shown inFig. 3. In model 1, it is as-
sumed that the vapor only sees one liquid phase. The other
liquid phase is completely dispersed within the continuous
liquid. This means that one set of mass transfer equations
for vapor liquid contacting may be removed from the above
set of equations.

In contact model 2 (the stratified flow model) the vapor
sees both liquid phases in turn. There would be negligible
mass transfer between the two liquids. Photographs pub-
lished by Davies, Ali and Porter (1987)suggest that this
flow regime might sometimes occur in practice, but the dis-
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Dispersed liquid flow model Stratified liquid flow model

liquid phase 1

liquid phase 2vapor bubbles

dispersed liquid phase 2

continuous liquid phase 1

Fig. 3. Possible contacting models in three-phase distillation.

persed liquid phase has been observed more frequently in
experimental studies (although it must be admitted that the
number of such studies remains quite small in number).

Springer et al. (2003), who used the framework de-
scribed here and the computer code developed for this work
to simulate their own experiments involving the mixture
water–ethanol–cyclohexane, employed the dispersed liquid
model and assumed that the two liquid phases were in equi-
librium with each other. This means that the liquid–liquid
mass transfer rate equations can be eliminated (or replaced
by equations that set the bulk liquid composition equal to
the liquid–liquid interface composition).

In the absence of generally applicable empirical correla-
tions for the mass transfer coefficientsSpringer et al. (2003)
assumed that the vapor phase rises through the liquid phase
as a swarm of uniform, spherical bubbles with a diameter
db. The liquid (froth) phase is assumed to have a uniform
thickness ofhf . The vapor liquid interfacial area per unit
volume of vapor is given by:

av = 6

db
(30)

The residence time of the vapor in the liquid (froth) film
is:

τv = hf

vb
(31)

In which vb is the bubble rise velocity, and is estimated
from (Mendelson, 1967)

vb =
√

2σ

ρLdb
+ gdb

2
(32)

The vapor phase mass transfer coefficients may be evalu-
atedfor each binary pairof species from the following equa-
tion for unsteady-state diffusion within a spherical bubble:

Shi,k = κV
i,kdb

ÐV
i,k

= 2π2

3

( ∑∞
m=1exp{−m2π2Foi,k}∑∞

m=1(1/m
2)exp{−m2π2Foi,k}

)

(33)

with

Foi,k = 4ÐV
i,kτv

d2
b

(34)

For Fourier numbers larger than about 0.06, the Sherwood
number reduces to the asymptotic value of 2π2/3 and the
steady-state binary pair mass transfer coefficients for the
vapor phase are given by:

κV
i,k = 2π2

3

ÐV
i,k

db
(35)

The liquid phase mass transfer coefficients are obtained
from a penetration model, leading to:

κL
i,k = 2

√
ÐL

i,k

πtc
(36)

in which the contact time between the liquid with the gastc
is given by:

tc = db

vb
(37)

In the above set of equations, there are two parameters
that have to be specified: the froth height and the bubble
diameter. When modeling an actual process for which data
is available these parameters can be chosen to best fit the
measurements.

The total interfacial area between vapor and liquid per m2

of bubbling area (required in the MS equations) is obtained
from:

aint = avεvhf (38)

whereεv is the vapor holdup on a tray which may be obtained
from εf = uv/vb whereuv is the superficial gas velocity,
andvb is the bubble rise velocity.

3.8. Total reflux calculations

A modification of this procedure is needed in order to
be able to simulate distillation operations at total reflux (a
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condition encountered many times in experimental studies).
In effect, total reflux means that a degree of freedom is lost,
since the column has no feed and delivers no product. For
total reflux simulations, compositions on one tray are set
to those measured in the experiments. This means that the
component balances for the designated stage are replaced
by specification equations for the (known) mole fractions.
In addition, the bottom product flow rate is set to zero. The
last degree of freedom is removed by specifying the reflux
flow rate.

4. Degrees of freedom analysis

To model a complete three-phase distillation column four
possible types of stage may be needed.

1. A nonequilibrium three-phase stage.
2. A nonequilibrium two-phase stage.
3. An equilibrium three-phase stage.
4. An equilibrium two-phase stage.

4.1. Equations and variables

The variables for the nonequilibrium stages are summa-
rized in Table 1. The variables summarized in the first six
lines of the table are the variables for a two-phase nonequi-

Table 1
Variables for a nonequilibrium stage

Variable Symbol Number

Vapor flow rate Vj 1
Liquid flow rate phase 1 L′

j 1
Liquid flow rate phase 2 L′′

j 1
Vapor phase bulk composition yi,j c
Liquid phase 1 bulk composition x′

i,j c

Liquid phase 2 bulk composition x′′
i,j c

Vapor interface composition (vapor–liquid 1) yVL ′
i,j c

Liquid interface composition (vapor–liquid 1) xL ′V
i,j c

Vapor interface composition (vapor–liquid 2) yVL ′′
i,j c

Liquid interface composition (vapor–liquid 2) xL ′′V
i,j c

Liquid 1 interface composition (liquid–liquid) xL ′L ′′
i,j c

Liquid 2 interface composition (liquid–liquid) xL ′′L ′
i,j c

Vapor phase bulk temperature TV
j 1

Liquid phase 1 bulk temperature T L ′
j 1

Liquid phase 2 bulk temperature T L ′′
j 1

Interface temperature vapor–liquid 1 TVL ′
j 1

Interface temperature vapor–liquid 2 TVL ′′
j 1

Interface temperature liquid–liquid T LL
j 1

Stage pressure Pj 1

Mass transfer rates vapor–liquid 1 NVL ′
i,j c

Mass transfer rates vapor–liquid 2 NVL ′′
i,j c

Mass transfer rates liquid 1–liquid 2 NL ′L ′′
i,j c

Table 2
Variables for an equilibrium stage

Variable Symbol Number

Vapor flow rate Vj 1
Liquid flow rate phase 1 L′

j 1
Liquid flow rate phase 2 L′′

j 1
Vapor phase composition yi,j c
Liquid phase 1 composition x′

i,j c
Liquid phase 2 composition x′′

i,j c
Stage temperature Tj 1
Stage pressure Pj 1
Stage heat duty Qj 1

librium stage. The additional variables for a nonequilibrium
three-phase stage appear following the 6th line of the table.
The number of variables for a two-phase stage is 5c+6, the
number of variables for a nonequilibrium three-phase stage
is 12c+10. The variables for an equilibrium stage are sum-
marized inTable 2. The number of variables for a two phase
stage is 2c + 4 and for a three-phase stage 3c + 6.

The equations to be solved for each nonequilibrium stage
are summarized inTable 3. For each stage there is a total
of 5c + 6 equations for each two-phase stage and a total of
12c+10 equations for each three-phase stage. The equations
for the equilibrium stages are summarized inTable 4.

Table 3
Equations for a nonequilibrium stage

Equation Reference Number

Vapor phase mass balance (1) 1
Liquid phase 1 mass balance (2) 1
Liquid phase 2 mass balance (3) 1
Vapor phase component balance (4) c − 1
Liquid phase 1 component balance (5) c − 1
Liquid phase 2 component balance (6) c − 1
Vapor bulk summation equation (11) 1
Liquid 1 bulk summation equation (11) 1
Liquid 2 bulk summation equation (11) 1
Vapor energy balance (11) 1
Liquid 1 energy balance (11) 1
Liquid 2 energy balance (11) 1
Equilibrium vapor/liquid 1 (15) c
Equilibrium vapor/liquid 2 (15) c
Equilibrium liquid/liquid (15) c
MS–vapor film at liquid phase 1 (10) c − 1
MS–vapor film at liquid phase 2 (10) c − 1
MS–liquid phase 1 film at vapor phase (10) c − 1
MS–liquid phase 1 film at liquid phase (10) c − 1
MS–liquid phase 2 film at vapor phase (10) c − 1
MS–liquid phase 2 film at liquid phase (10) c − 1
Bootstrap vapor–liquid 1 (14) 1
Bootstrap vapor–liquid 2 (14) 1
Bootstrap liquid 1–liquid 1 (14) 1
Summation equation vapor phase, at liquid phase 1 (16) 1
Summation equation vapor phase, at liquid phase 2 (16) 1
Summation equation liquid phase 1 at vapor phase (16) 1
Summation equation liquid phase 1 at liquid phase (16) 1
Summation equation liquid phase 2 at vapor phase (16) 1
Summation equation liquid phase 2 at liquid phase (16) 1
Hydraulic equation (17) 1
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Table 4
Equations for an equilibrium stage

Equation Reference Number

Total mass balance (18) 1
Component mass balances (19) c − 1
Total energy balance (20) 1
Summation equation vapor phase (23) 1
Equilibrium equations vapor–liquid 1 (21) c
Summation equation liquid phase 1 (23) 1
Pressure equation (24) 1
Equilibrium equations vapor–liquid 2 (21) c
Summation equation liquid phase 2 (23) 1

4.2. Degrees of freedom

The total number of equations and variables for
three-phase nonequilibrium stages is 12c + 10 and for
two-phase stages is 5c + 6. There are, therefore, no degrees
of freedom on these stages. The total number of equations
for an equilibrium stage with three phases is 3c+5 and with
two phases 2c + 4. The total number of variables is 3c + 6
for three-phase stages and 2c + 5 for two-phase stages, re-
sulting in one degree of freedom per equilibrium stage. For
the reboiler and condenser, normally the energy balance is
replaced by a specification equation on, for example, the
reflux, the boilup ratio, or the product purity.

4.3. Specifications

4.3.1. Configuration
The configuration of the column needs to be fixed. This

requires the specification of the number of stages, number of
feeds and their locations, number of (decanted) side streams
and their locations, and possible external heat duties.

4.3.2. Pressure model and condenser pressure
The condenser pressure needs to be specified. In addition,

it is common practice to give an independent specification
for the top stage, since the top stage pressure may differ
substantially from the condenser pressure, depending on the
design used. Furthermore, a pressure drop model needs to
be specified for each nonequilibrium stage. Possible options
are as follows.

• No pressure drop—all stages in the column are at the same
pressure.

• Fixed pressure drop—the pressure drop is assumed to be
equal for all stages, and the stage pressure may be calcu-
lated from the top pressure and the pressure drop over all
stages above the stage under consideration.

• Fixed top and bottom pressure. The pressure profile is in-
terpolated between the specified top and bottom pressures.

• Estimated pressure drop. The pressure drop is estimated
from a semi-empirical correlation.

4.3.3. Feeds
Specification of flow rate, composition and thermody-

namic state of each feed is required. The latter can be deter-
mined if any of the two following parameters are specified:
pressure, temperature and vapor fraction.

4.3.4. Decanted side streams
For each decanted side stream, one needs to specify which

phase is decanted. In practice this is handled by specifying a
component that consists mainly in the decanted stream (e.g.
water for a watery stream, or an organic component for an
organic phase).

4.3.5. Thermodynamic models
Specification of a thermodynamic model is required for

the calculation of, among other things, chemical potential
gradients, vapor–liquid and liquid–liquid equilibrium. With
respect to the vapor–liquid and liquid–liquid equilibrium, it
should be noted that all three sets ofEq. (15)are indepen-
dent. This means that the three-phase nonequilibrium model
does not assume that the three phases present on a stage exist
at equilibrium. It is assumed that, at an interface, only two
phases come into contact at any particular place and time.
Equilibrium is only assumed at the interface. As a conse-
quence, it is possible to use different thermodynamic mod-
els for each phase equilibrium calculation (Lao & Taylor,
1994). A benefit of this is that LL equilibrium may be eval-
uated using coefficient model parameters that were fitted
to LLE data, and VL equilibrium may be evaluated using
parameters fitted to VLE data. This circumvents the need
for accurate VLLE data and models that are able to accu-
rately describe these VLLE characteristics. This is contrary
to an equilibrium three-phase model, the quality of which
strongly hinges on the ability of the thermodynamic mod-
els to accurately describe VLLE. However, for equilibrium
stages it is necessary to use the same models and parameters
in order to preserve thermodynamic consistency.

4.3.6. Mass transfer model
The following parameters have to be specified for the

mass transfer model.

• The bubble diameter.
• The froth height.
• The contacting model, and related to that, which liquid

phase gets to see the vapor phase or how much of the
liquid phase gets to ‘see’ the vapor phase.

• Liquid droplet diameter (only if the liquid phases are not
assumed in equilibrium with each other.

4.3.7. Other physical properties
A nonequilibrium model also requires information about

properties such as surface tension, density and heat capac-
ity. These properties are needed for the estimation of mass
transfer coefficients (and possibly for pressure-drop and in-
terfacial area calculations).
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The overall liquid density may be evaluated as the
weighed average of the liquid densities:

ρav
L = φL ′

ρL ′ + φL ′′
ρL ′′

φL ′ + φL ′′ (39)

in whichφL ′
andφL ′′

are the volumetric flow rates of liquid
phase 1 and liquid phase 2, respectively. This averaging is
justified if the two phases form a fine dispersion. If two
distinct layers are formed on the tray it may be better to split
up the VL mass transfer calculation into two steps, one from
the vapor to the ‘heavy’ liquid phase, and secondly, from the
vapor to the ‘light’ liquid phase. There is no difficulty with
Eq. (39)near a liquid–liquid critical point; the densities of
the two liquid phases will then be more nearly equal and
Eq. (39)becomes a much better approximation.

For the surface tension, things are less straightforward.
The mixture surface tension of both liquid phases may be
estimated with established methods for VL systems as de-
scribed inPoling, Prausnitz, and O’Connell (2001). One
could argue that as long as the vapor ‘sees’ only one liquid
the surface tension to be used is the surface tension of that
phase, and the density is the averaged liquid density.

5. Comparison with other models

A small number of other investigators have used the
Lao–Taylor model as the basis of or starting point for the
development of three-phase column models. These works
are reviewed below now that we are better placed to be able
to comment on these models.

Eckert and Vanek (2001)have described an unsteady-state
nonequilibrium model largely based on a simplified version
of the steady-state model of Lao and Taylor, in which they
assume that one liquid phase is completely dispersed in the
other phase. The dispersed liquid phase does not ‘see’ the
vapor phase, and there are no mass or heat transfer resis-
tances between the two liquid phases. As a consequence,
the two liquid phases are always in equilibrium with each
other. Eckert and Vanek implement their equations within
RATEFRAC from Aspen Tech and use theAIChE method
for estimation of mass transfer coefficients (see chapter 12 of
Taylor & Krishna, 1993), and the Chilton–Colburn analogy
for heat transfer coefficients. Note that they only calculate
mass transfer between the vapor and the continuous liquid
phase. It should be noted that their paper does not discuss
the issue of transition from single liquid phase to two liquid
phases at points that are not known.

A model described byMortaheb, Kosuge, and Asano
(2002)assumes equilibrium between the two liquid phases.
An unusual aspect of their model is that the mass transfer
rate equations are expressed in terms of mass factions rather
than the mole fractions that are more commonly used; the
latter are much easier to work with, especially in the strongly
nonideal systems that are encountered in three-phase sys-
tems. Their model appears to have been developed more as

an aide to interpreting their own experimental studies noted
above than as a process design and simulation tool.

Repke and Wozny (2001, 2002)have conducted an ex-
perimental investigation of three-phase distillation in a col-
umn equipped with structured packing. They do not present
many details of their model, but it appears to be based on
the stage model ofLao and Taylor (1994)with appropri-
ate changes to deal with the rather different hydrodynamic
conditions in a packed column. Mass transfer coefficients
in the vapor–liquid interfaces are estimated from empirical
correlations developed for two phase system; those for the
liquid–liquid interface from film theory (which implies that
an estimate of the film thickness somehow is provided). No
details on various interfacial areas are given, but this is an
important parameter in nonequilibrium modeling.

6. Solving the model equations

The basic strategy we employ for solving the three-phase
NEQ problem is as follows.

• Solve an equivalent two-phase equilibrium stage problem.
By equivalent we mean a system having the same number
of stages and similar specifications.

• Solve an equivalent three-phase equilibrium stage prob-
lem (the solution to step 1 provides an initial point of
sorts from which to begin these calculations as discussed
below).

• Solve the complete three-phase NEQ model (the solution
to step 2 again providing a starting point of sorts).

In what follows we elaborate upon this procedure (which
has proven to be quite fast and reliable even on a rather
ordinary PC).

6.1. Parts I and II

For each part of the procedure outlined above we must
select an appropriate strategy for solving the model equa-
tions: an equation tearing approach, or an equation oriented
approach (seeBiegler et al., 1997or Seader & Henley, 1998
for background). An additional complication here is that
the structure of the system of equations in steps 2 and 3
is not known in advance of the solution. This is due to the
fact that we do not know the location of those stages that
will have two liquid phases (and which are modeled by the
three-phase NEQ model described here) and those stages
with just a single liquid phase and are modeled by the con-
ventional NEQ model (not forgetting the transition stages
modeled as described above). This additional complication
is not encountered during the solution of the equations that
model two-phase systems (part 1). It might be argued that the
lack of a defined equation structure would favor an equation
tearing approach as a class of method that can adapt more
easily to an evolving problem structure. However, we have
long preferred equation-oriented strategies for solving NEQ
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model equations (Powers et al., 1988) and, with appropriate
modifications, will adopt such a strategy again here.

The first part of the algorithm is to solve a simplified
version of the real problem, a two-phase equilibrium stage
model. A more or less standard equation-oriented approach
is used for this calculation (complete details are given by
Kooijman and Taylor (2001).

A special continuation method has been developed for
going from the equilibrium two-phase to the equilibrium
three-phase solution. Following convergence of the equilib-
rium stage model, a thermodynamic phase stability calcula-
tion as outlined below is carried out for each liquid stream.
In case there are any unstable liquid phases, a liquid–liquid
flash is employed to calculate the compositions of the
two liquid phases present on a stage. These results are
subsequently used in the initialization of the three-phase
equilibrium stage model. The liquid–liquid flash does not
change the overall composition of the mixture, and the
mass, component and energy balances will still be satisfied
after the LL flash. In addition, because the LL flash calcu-
lates the compositions of the liquid phases in equilibrium
with each other, the liquid–liquid equilibrium equations
will be satisfied as well. The only equations that will, in
the first iteration, not be satisfied, are the vapor–liquid
equilibrium equations. These may, however, be forced to
be satisfied by means of the introduction of a vaporization
efficiency:

EV
i,j = yi,j

Ki,jxi,j

(40)

where x and y refer the liquid and vapor mole frac-
tions in a two phase equilibrium stage model. This va-
porization efficiency is entered into the vapor–liquid
equilibrium equations by means of the following equa-
tion:

yi,j = ((1 − t)EV
i,j + t)Ki,jxi,j (41)

in which t is a continuation parameter. By moving system-
atically from t = 0–1, the original problem is converted
into the three-phase equilibrium problem. Note that the va-
porization efficiency inEq. (41)disappears att = 1. Con-
tinuation methods for solving distillation models are now
widely used in process simulation (seeSeader, 1985for
background).

Decanted side streams may be handled in a similar way.
The problem with decanted side streams is that they can
only exist when there are two liquid phases present on a
tray. This means that decanted side streams can only be
introduced after the two-phase equilibrium problem has
been solved, and the liquid on all stages has been analyzed
for stability. The introduction of a decanted side stream
normally results in substantial changes in the column flow
and composition profiles that may lead to failure of the
numerical algorithm to provide a converged solution. A
continuation method has been devised for introducing a
decanted side stream in order to avoid these problems. Ini-

tially, the decanted side stream is considered to be a normal
side stream, the magnitude of which may be estimated
based on the total feed stream of the main constituents
of the phase to be decanted. In the three-phase flash, the
decanted side stream may then be gradually introduced
by means of a continuation method. The combination of
these two steps (the two-phase equilibrium stage model fol-
lowed by a three-phase equilibrium stage model) provides
a good initial guess for the three-phase nonequilibrium
model.

6.2. Part III

The calculations for parts I and II can be considered to be
a fairly sophisticated way of estimating most of the unknown
variables for the solution of the three-phase NEQ model
equations. The numerical method we prefer for solving these
equations is a largely unconstrained Newton’s method (we
also use this method for the two-phase equilibrium stage
problem in step 1, the liquid phase stability problem and
liquid–liquid flash calculations, the three-phase equilibrium
stage problem in part II).

In our implementation of Newton’s method to solve the
model equations it is necessary to allow for the number of
equations (and variables) to change during the course of the
solution procedure as the number of liquid phases changes
between iterations. We have made no attempt to constrain
such changes, allowing the method to adapt the number of
model equations and the structure at will.

6.3. Stability analysis

The stability of the liquid phase as it leaves each stage
must be determined each iteration during parts 2 and 3 of
the procedure outlined above. Thus, as part of our simula-
tion model the phase stability test as devised byMichelsen
(1982a,b)has been implemented. This calculation, although
by no means always an easy one to converge, has been well
described in the literature and we refer readers to the orig-
inal papers ofMichelsen (1982a,b)and toSmith, Missen,
and Smith (1993)for details. If the liquid phase is found to
be unstable, we solve a liquid–liquid flash problem to find
the composition of each liquid phase. Phase separation takes
place when the phase is thermodynamically unstable; it is not
a mass transfer operation. Thus, there is no inconsistency in
the model created by using a phase equilibrium calculation in
this context. The initial estimates for the liquid–liquid flash
are obtained from the aforementioned stability calculation.
The model has been used to test for the presence of “only”
two liquid phases for which the Michelsen method has been
found to adequate. It might be worth noting that phase sta-
bility and phase split calculations for a distillation column
are easier than isolated liquid–liquid flash calculations. In a
distillation column, compositions from the stages above or
below that under consideration can also be used to refine the
initial estimates, thereby improving the chances of success.
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Fig. 4. Residue curve map for the water (1)–acetone (2)–toluene (3)
system along with the experimental data (open circles representing the
vapor compositions) for Run WAT-1 ofSpringer et al. (2003). The grey
shaded areas represent the region in which liquid–liquid phase splitting
occurs. The thick line represents the distillation boundary.

7. Some simulation results

Springer et al. (2003)have already demonstrated that the
NEQ model and method of solution described above works.
The results of the nonequilibrium model were compared with
data obtained in an extensive experimental investigation. In
general, a good match between numerical data and experi-
ments was obtained. The NEQ model is able to predict both
the crossing and the non-crossing of equilibrium distillation
boundaries when such events are observed in the experi-
ments whereas the EQ model predicts the exact opposite (in
both situations). The computational procedure proved reli-
able and quite fast, even on a rather ordinary PC.
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(a) Water composition (b) Acetone compositiion (c) Toluene compositiion

Fig. 5. Experimental vapor compositions along the distillation column for (a) water; (b) acetone; and (c) toluene. Also shown are the simulation results
showing the trajectories calculated by the EQ stage model (100% efficiency) and the NEQ stage model. In the NEQ model simulations a bubble size
db = 2.5 mm was chosen. The grey shaded areas represent the stages on which liquid–liquid phase splitting occurs.

7.1. Water–acetone–toluene system

Consider the experimental data ofSpringer et al. (2003)
during total reflux distillation of water–acetone–toluene in
a bubble-cap tray distillation. Their published data for Run
WAT-1 is plotted in the composition triangle, along with the
residue curve (RC) inFig. 4. The system shows one min-
imum boiling heterogeneous azeotrope between water and
toluene and a straight distillation boundary connecting the
azeotrope with pure acetone. The experimentally measured
composition trajectory is particularly intriguing in that as
we move from the condenser end (nearly pure acetone) the
composition line seems to lie to the right of the distillation
boundary but as the reboiler is approached the compositions
move away from the water rich regions and ends up yielding
nearly pure toluene in the reboiler.

We have simulated this column using both the NEQ and
EQ models. For the NEQ model, we assumed that the two
liquid phases are in equilibrium. The bubble diameter is
taken to be 2.5 mm. This figure was not chosen arbitrarily;
rather, it is derived from binary distillation experiments per-
formed bySpringer et al. (2003). The composition profiles
of (a) water; (b) acetone; and (c) toluene predicted by the
two models are shown inFig. 5, along with the experimen-
tal data. For total reflux simulations we need to define a
“starting” composition; in our simulations we took the va-
por composition leaving stage 9 as input data. We see that
the EQ model follows the trajectory dictated by the residue
curve and predicts a reboiler rich in water. The NEQ model
rightly anticipates the boundary crossing phenomena and
predicts a toluene rich reboiler.

In order to appreciate the reason behind the sharp change
in the column trajectories predicted by the EQ and NEQ
models we have back calculated the Murphree component
efficiencies from the NEQ simulations. The Murphree effi-
ciency of each component can be calculated from the results
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of a simulation by:

EMV
i = yi,L − yi,E

y∗
i − yi,E

(42)

where the subscripts E and L refer to the composition of
streams entering and leaving a stage and wherey∗

i is the
composition of a vapor in equilibrium with the leaving liq-
uid phase. If the two liquids are not in equilibrium with
each other then we must define two independent sets of ef-
ficiencies and interpreting the results becomes very difficult
indeed. In this case we do assume that the liquid phases
are in equilibrium—an assumption supported by the NEQ
simulation results (Springer et al., 2003). This requires a
three-phase equilibrium calculation to determiney∗

i but this
is fairly straightforward.

The component efficiency profiles are shown inFig. 6.
From stages 2 to 7, the liquid phases on the trays are ho-
mogeneous, and the component efficiencies are close to one
another. The situation changes dramatically as soon as the
liquid–liquid region is entered. The component efficiencies
show a wide variation from stage to stage. For toluene the
efficiency is 550% on stage 10; this drops to−45% on stage
11. The large positive efficiency of toluene helps it to cross

Fig. 7. Murphree component efficiencies for ethanol–water–cyclohexane system. The grey shaded region indicates the composition space wherein the
liquid streams entering and leaving any particular stage are both heterogeneous.
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model for distillation of water–acetone–toluene at total reflux. In the NEQ
model simulations a bubble sizedb = 2.5 mm was chosen. The grey
shaded areas represent the stages on which liquid–liquid phase splitting
occurs.



2034 A. Higler et al. / Computers and Chemical Engineering 28 (2004) 2021–2036

the hurdle of the distillation boundary and bring the compo-
sition into the toluene rich region. The efficiency of water
drops significantly as we move from stage 8 downward to-
wards stages 10 and 11, where negative values are encoun-
tered. The negative efficiency of water serves to drive the
composition trajectories away from the water rich region.
The results shown inFig. 6demonstrate the very strong influ-
ence of liquid phase splitting on the component efficiencies.

7.2. Ethanol–water–cyclohexane system

Fig. 7a–cshows the component Murphree efficiencies for
the ethanol–water–cyclohexane system along three different
straight lines shown in the composition triangle in the top
left part ofFig. 7. To construct this figure we have carried out
calculations with a single-stage NEQ model. The composi-
tion of the vapor phase entering the stage was specified (at
points along each line in the triangle) and total reflux opera-
tion was assumed. The bubble model was again used for es-
timating the mass transfer coefficients (bubble size 2.5 mm).

In all three cases we see that the efficiencies sometimes
pass through an asymptotic discontinuity where the compo-
nent efficiencies tend towards±∞ due to the driving forces
for mass transfer (composition differences) changing sign

Fig. 8. Murphree component efficiency maps for (a) water; (b) ethanol; and (c) cyclohexane using the NEQ model.

(Taylor & Krishna, 1993). This is the case for ethanol and
water in all three illustrations and for cyclohexane inFig.
7a. What is more striking, however, is the sudden jump dis-
continuity in the efficiencies shown inFig. 7bas we move
from the single liquid region to the two-liquid region. In this
case there is a sudden change in the driving forces for mass
transfer leading to the jump discontinuity in the efficiencies.
The component efficiencies are much lower and more vari-
able from component to component in the two-liquid phase
region. In fact, the same behavior can be identified inFig. 7a
and c, but the simulations for these cuts were carried out al-
most totally in the heterogeneous liquid phase region, only
a very small part of the composition space is in the single
liquid phase region that lies close to the vertical axis in these
figures. There is a much larger single liquid region for the
cut shown inFig. 7b.

We have carried out similar calculations over the entire
composition triangle for this system leading to the Murphree
efficiency maps shown inFig. 8a–c. In general, we can see
that the efficiencies are lower, sometimes significantly lower
in the heterogeneous liquid region below the binodal curve.
This fall off in efficiency is most obvious inFig. 8a for
water where we see efficiencies close to 100% in the single
liquid phase region, falling to the 50–60% range just below
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the binodal curve, and all the way to 20% when the mole
fraction of ethanol is very low. The efficiency of ethanol
(Fig. 8b) is quite high almost everywhere, with the exception
of a modestly sized part of the two-liquid phase region.
The efficiency of cyclohexane (Fig. 8c) is high (80–90%)
in the single-phase region, but there are large regions in the
heterogeneous liquid phase region where the efficiency drops
to 50% and sometimes is of the order of 20% or less.Fig. 8b
and cboth show a transition from a region with efficiencies
that are close to unity (dark brown) to efficiencies that are
close to zero (dark blue). The thick broken lines inFig. 8
are the distillation boundaries.

8. Conclusion

A nonequilibrium model for a complete three-phase dis-
tillation process has been developed. The model consists of a
set of mass and energy balances for each of the three possible
phases present. Mass and heat transfer between these phases
is described explicitly by means of the Maxwell–Stefan
equations. Equilibrium is only assumed at the phase bound-
ary between two phases. In the most general case, no mass
transfer resistances are neglected. The equilibrium stage
model is a special case of the general model. Incorporated
into the model is a liquid phase stability check and phase
split calculation to evaluate the thermodynamic stability of
all liquid phases present in the distillation column each it-
eration.

Springer et al. (2003)have already demonstrated the NEQ
model and method of solution described above works. The
results of the nonequilibrium model were compared with
experimental data obtained from a small laboratory scale
column for the system water–ethanol–cyclohexane. In gen-
eral a good match between numerical data and experiments
was obtained. Mass transfer coefficients are obtained from a
single-bubble mass transfer model, in which the only degree
of freedom is the bubble diameter (that can be determined
from binary distillation data if desired).

The method of solving the NEQ model equations de-
scribed here consists of first solving the equilibrium two
phase model, using this solution to obtain a converged so-
lution for the equilibrium three-phase problem by means
of a differential arc length continuation method, and subse-
quently using this as a starting guess for the nonequilibrium
three-phase model, with an unconstrained Newton’s method.

We have shown using NEQ model simulations that the
component Murphree efficiencies tend to be lower and more
highly variable in the two-liquid phase region than they are in
the single liquid region. There may be a jump discontinuity
in component efficiencies as we move from homogeneous
to heterogeneous liquid phase regions of composition space.
Differences in component efficiencies can lead to distilla-
tion products quite different from what would be anticipated
on the basis of an equilibrium stage model. NEQ models
for three-phase systems now exist and have been shown to

be superior to EQ stage models at representing phenomena
that actually do take place in such columns (e.g. crossing
of the distillation boundaries predicted by an equilibrium
model). This result lends further support to the recommen-
dation that EQ models modified by efficiency factors should
not, in general, be used for the simulation of three-phase dis-
tillation processes. NEQ models should be preferred in gen-
eral. However, more work (largely experimental) is needed
to develop generally applicable correlations of various pa-
rameters that are important for these models, for example,
bubble sizes, froth heights, pressure drop.
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