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Carlos A. Ḿendeza, Ignacio E. Grossmanna,∗, Iiro Harjunkoskib, Pousga Kaboréb
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Abstract

This paper presents a novel MILP-based method that addresses the simultaneous optimization of the off-line blending and the short-term
scheduling problem in oil-refinery applications. Depending on the problem characteristics as well as the required flexibility in the solution, the
model can be based on either a discrete or a continuous time domain representation. In order to preserve the model’s linearity, an iterative
procedure is proposed to effectively deal with non-linear gasoline properties and variable recipes for different product grades. Thus, the solution of
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very complex MINLP formulation is replaced by a sequential MILP approximation. Instead of predefining fixed component concentr
roducts, preferred blend recipes can be forced to apply whenever it is possible. Also, different alternatives for coping with infeasible prre
resented. Sufficient conditions for convergence for the proposed approach are presented as well as a comparison with NLP and MI

o demonstrate that the method provides an effective integrated solution method for the blending and scheduling of large-scale problem
ethod is illustrated with several real world problems requiring very low computational requirements.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

The main objective in oil refining is to convert a wide vari-
ty of crude oils into valuable final products such as gasoline,

et fuel and diesel. The short-term blending and scheduling are
ritical aspects in this large and complex process. The economic
nd operability benefits associated with obtaining better-quality
nd less expensive blends, and at the same time making a more
ffective use of the available resources over time, are numerous
nd significant. A wide variety of mathematical programming

echniques have been extensively used for long-term planning
s well as the short-term scheduling of refinery operations.

For planning problems, most of the computational tools have
een based on successive linear programming models, such as
PMS from Honeywell, Process Solutions (formerlyBooner
Moore, 1979) and PIMS from Aspen Technology (formerly

echtel Corp., 1993). On the other hand, scheduling problems
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have been addressed through linear and non-linear math
ical approaches that make use of binary variables (MILP
MINLP codes) to explicitly model the discrete decisions
be made (Grossmann, Van den Heever, & Harjunkoski, 20;
Shah, 1998). Short-term scheduling problems have been ma
studied for batch plants. Extensive reviews can be foun
Reklaitis (1992), Pinto and Grossmann (1998), Kallrath (2003)
and,Floudas and Lin (2004). Much less work has been devo
to continuous plants.Lee, Pinto, Grossmann, and Park (19
addressed the short-term scheduling problem for the crud
inventory management problem. Non-linearities of mixing ta
were reformulated into linear inequalities with which the o
inal MINLP model was converted to a MILP formulation th
can be solved to global optimality. According to the auth
this linearization was possible because only mixing opera
were considered (seeQuesada & Grossmann, 1995). However
it was later pointed out byWenkai, Hui, Hua, and Tong (200
that the proposed reformulation linearization technology (R
may lead to composition discrepancy (the amounts of ind
ual crudes delivered from a tank to CDU are not proportion
the crude composition in the tank). The objective function
098-1354/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2005.11.004
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the minimization of the total operating cost, which comprises
waiting time cost of each vessel in the sea, unloading cost for
crude vessels, inventory cost and changeover cost. Several exam-
ples were solved to highlight the computational performance of
the proposed model.Moro, Zanin, and Pinto (1998)developed
a mixed-integer non-linear programming planning model for
refinery production. The model assumes that a general refinery
is composed of a number of processing units producing a variety
of input/output streams with different properties, which can be
blended to satisfy different specifications of diesel oil demands.
Each unit belonging to the refinery is defined as a continuous
processing element that transforms the input streams into sev-
eral products. The general model of a typical unit is represented
by a set of variables such as feed flowrates, feed properties,
operating variables, product flowrates and product properties.
The main objective is to maximize the total profit of the refin-
ery, taking into consideration sales revenue, feed costs and the
total operating cost.Wenkai et al. (2002)proposed a solution
algorithm that iteratively solves two mixed-integer linear pro-
gramming (MIP) models and a non-linear programming (NLP)
model, resulting in better quality, stability, and efficiency than
solving the MINLP model directly.Kelly and Mann (2003a,b)
highlight the importance of optimizing the scheduling of an
oil-refinery’s crude-oil feedstock from the receipt to the charg-
ing of the pipestills. The use of successive linear programming
(SLP) was proposed for solving the quality issue in this problem.
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mentation of decision support systems for off-line multi-period
blending problems at Texaco. Commercial applications such as
Aspen BlendTM and Aspen PIMS-MBOTM from AspenTech are
also available for dealing with online and offline blending opti-
mization problems. Since these software packages are restricted
to solving the blending problem, resource and temporal deci-
sions must be made a priori either manually or by using a special
method.

To solve both sub-problems simultaneously,Glismann and
Gruhn (2001)proposed a two-level optimization approach
where a non-linear model is used for the recipe optimization
whereas a mixed-integer linear model (MILP) is utilized for the
scheduling problem. The proposed decomposition technique for
the entire optimization problem is based on solving first the
non-linear model aiming at generating the optimal solution of
the blending problem, which is then incorporated into the MILP
scheduling model as fixed decisions for optimizing only resource
and temporal aspects. In this way, the solution of a large MINLP
model is replaced by sequential NLP and MILP models.Jia
and Iearapetritou (2003)proposed a solution strategy based on
decomposing the overall refinery problem in three subsystems:
(a) the crude-oil unloading and blending, (b) the production unit
operations, and (c) the product blending and lifting (seeFig. 1).
The first sub-problem involves the crude oil unloading from
vessels, its transfer to storage tanks and the charging schedule
for each crude oil mixture to the distillation units. The second
s hich
i ctions
s gen-
e tions
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t the
s . In
o t effi-
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d dif-
fi were
a ding
d for-

a sta
ore recently,Kelly (2004)analyzed the underlying mathem
cal modeling of complex non-linear formulations for plann

odels of semi-continuous facilities where the optimal op
ion of petroleum refineries and petrochemical plants was m
ddressed.

In addition, the off-line blending problem, also known
lend planning has been addressed through several optimi

ools. The main purpose here is to find the best way of
ng different intermediate products from the refinery and s
dditives in order to minimize the blending cost subject to m

ng the quality and demand requirements of the final prod
he term quality refers to meeting given product specificat
igby, Lasdon, and Waren (1995)discussed successful imp

Fig. 1. Illustration of
n

.
.

ub-problem consists of the production unit scheduling, w
ncludes both fractionation and reaction processes. Rea
ections alter the molecular structure of hydrocarbons, in
ral to improve octane number, whereas fractionation sec
eparate the reactor effluent into streams of different pr
ies and values. Lastly, the third sub-problem is related to
cheduling, blending, storage and lifting of final products
rder to solve each one of these sub-problems in the mos
ient way, a set of mixed-integer linear models (MILPs) w
eveloped, which take into account the main features and
culties of each case. In particular, fixed product recipes
ssumed in the third sub-problem, which means that blen
ecisions were not incorporated into this model. The MILP

ndard refinery system.
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mulation was based on a continuous time representation and
on the notion of event points. The mathematical formulation
proposed to solve each sub-problem involves material balance
constraints, capacity constraints, sequence constraints, assign-
ment constraints, demand constraints, and a specific objective
function. Continuous variables are defined to represent flowrates
as well as starting and ending times of processing tasks. Binary
variables are principally related to assignment decisions of tasks
to event points, or to some specific aspect of each sub-problem.

From the above review it can be seen that a variety of mathe-
matical programming approaches are currently available to the
short-term blending and scheduling problem. However, in order
to reduce the inherent problem difficulty, most of them rely
on special assumptions that generally make the solution inef-
ficient or unrealistic for real world cases. Some of the common
assumptions are: (a) fixed recipes for different product grades
are predefined, (b) component and product flowrates are known
and constant, and (c) all product properties are assumed to be lin-
ear. On the other hand, more general mixed-integer non-linear
programming (MINLP) formulations are capable of consider-
ing the majority of the problem features. However, as pointed
out by several authors solving logistics and quality aspects for
large-scale problems is not possible in a reasonable time with
current mixed-integer non-linear programming (MINLP) codes
and global optimization techniques (Jia and Ierapetritou, 2003;
Kelly and Mann, 2003a,b). The major issue here is related to non-
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scheduling problems. This second issue is also known as the
off-line blending problem and takes into account variable prod-
uct recipes and property specifications such as minimum octane
number, maximum sulfur and aromatic content, etc. The main
objective is to produce on-spec blends at minimum cost, where
product specifications are stringent and constantly changing in
most of the markets. Product qualities are usually predicted
through complex correlations that depend on the concentra-
tion and the properties of the components used in the blend.
Depending on the product property, non-linear correlations may
include linear, bilinear, trilinear and exponential terms. Some
of these non-linear terms can sometimes be linearized (see
Adams & Sherali, 1990; Oral & Kettani, 1992). The general
process topology corresponds to a multi-stage system composed
of component storage tanks, blend headers and product storage
tanks. Specifically, we assume that we are given the following
items:

(1) A predefined scheduling horizon, typically 7–10 days.
(2) A set of intermediate products from the refinery (compo-

nents).
(3) A set of dedicated storage tanks with minimum and max-

imum capacity restrictions.
(4) Initial stocks for components.
(5) Component supplies with known flowrates.
(6) Properties or qualities for components.
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inear and non-convex constraints with which the computat
erformance strongly depends on the initial values and bo
ssigned to the model variables. Taking into account the m
eaknesses of the available mathematical approaches, the
oal of this work is to develop a novel iterative mixed-inte

inear programming (MILP) formulation for the simultaneo
asoline short-term blending and scheduling problem of
efinery operations, which is generally agreed as being the
mportant and complex subproblem. Its importance comes
he fact that gasoline can yield 60–70% of total refinery’s pr
n the other hand, the complexity arises from the large n
er of product demands and quality specifications for each
roduct, as well as the limited number of available resource
an be used to reach the production goals. Non-linear pro
pecifications based on variable and preferred product re
re effectively handled through the proposed iterative li
rocedure, which allows the model to generate optimal, or
ptimal solutions with modest computational effort.

. Problem statement

The gasoline short-term blending and scheduling pro
akes into account two major issues. The first one is re
o aspects of production logistics, which mainly involves m
iple production demands with different due dates, inven
umping constraints for products and components, as w
ifferent logistic and operating rules. Most of these feature
art of typical scheduling problems and are usually mod
s discrete and continuous decisions in an optimization fr
ork. On the other hand, the second issue is the produ
uality, which represents an additional difficulty for stand
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(7) Minimum and maximum flowrates between compon
tanks and blend headers.

(8) A set of final products with predefined minimum and m
imum quality specifications.

(9) A set of equivalent blend headers working in parallel
can be allocated to each final product.

10) A set of correlations, mostly non-linear, for predicting
values of properties of each blend.

11) Minimum and maximum component concentration
final products.

12) Preferred product recipes.

The goal is to determine:

(a) the assignment of blenders to final products;
b) the inventory levels of components and products in sto

tanks;
(c) the volume fraction of components included in each prod
d) the total volume of each product;
(e) the pumping rates for components and products;
(f) the optimal timing decisions for production and stor

tasks.

The objective is to maximize the production profit wh
atisfying the process, operations and maintenance const
nal product demands and quality specifications. The o
ive function includes the total product value, the raw mat
ost, inventory cost and penalties for deviation from prefe
ecipes. Additional terms involving slack variables for hand
nfeasible solutions can also be incorporated into the obje
unction to provide effective solutions for all circumstances.
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next section describes a simultaneous optimization approach for
the blending and scheduling operations involved in this problem.

3. Proposed optimization approach

The main features of the proposed approach can be summa-
rized as follows:

• A multi-period optimization model is used that is able to deal
with multiple product demands with different due dates and
quality specifications.

• Discrete or continuous time domain representations can be
used, depending on the problem characteristics. The term
“time slot” is used in this paper to represent a time inter-
val with known duration and position for discrete time, and
unknown duration and position for continuous time.

• Linear approximations are used together with an iterative pro-
cedure to get better predictions of all product properties, even
those naturally non-linear such as the octane number.

• The production logistics and quality specifications are solved
simultaneously.

• Fixed or variable product recipes are specified, as well as
minimum and maximum limits on component concentration.

• Binary variables are used to represent assignment decisions,
as well as any other logistic or production rule found in the
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volumetric flow of componenti being transferred to productp
during the time slott whereasFP

p,t denotes the volumetric flow
of productp being blended during each time slott. The continu-
ous variablesVI

i,t andVP
p,t define the amount of component and

product being stored at each time pointt, respectively. Finally,
the discrete variableAp,t defines which products are allocated to
blenders in each time slott. Additional continuous and discrete
variables can be included into the mathematical model to tackle
particular problem characteristics and operating constraints.

It is worth mentioning that both the discrete and the con-
tinuous time formulations are focused on a part of the details
around real-world problem logic constraints. A comprehensive
enumeration of most of them can be found inKelly and Mann
(2003a,b). When some features such as inter-temporal trans-
fer of logic are addressed (i.e. run-lengths, mixing-delays, etc.),
the MILP computational effort can be significantly increased,
particularly when more than 20 time-periods or time-slots are
defined in the model.

4. Off-line blending problem

Before describing the proposed MILP formulation, we
present in this section the main features of the iterative scheme
for predicting product properties for the blending problem.

A significant number of gasoline properties can be directly
computed by using a volumetric average as shown in Eq.(1):

P
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problem.

In order to describe the main model variables,Fig. 2illustrates
simple example of a gasoline blending and scheduling p

em, which has traditionally been treated as two separate
ems. The solution of the scheduling problem defines the w
hich the products are processed with respect to time and
ble equipment. On the other hand, the solution of the blen
roblem defines how the available components are blend
ixed together to produce on-spec products with minimum
The key decision variables involved in a standard prob

re the following. The continuous variableFI
i,p,t defines the

Fig. 2. Illustration of the mea
-
-
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r
.

Rp,k,t =
∑

i

pri,kv
I
i,p,t, ∀p, k, t (1)

herevI
i,p,t is the volume fraction of componenti in productp

n time slot t, PRp,k,t defines the exact value of the propertk
or productp in time slott and pri,k is the value of the proper
for componenti. The volume fraction variablevI

i,p,t is linked

o the volumetric flowrate variablesFI
i,p,t and FP

p,t through the
on-linear equality(2):

I
i,p,tF

P
p,t = FI

i,p,t, ∀p, k, t (2)

of the principal model variables.
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Taking into account that volumetric flowrate variables are
required to control inventory levels in tanks and volume fraction
variables are needed to predict product properties, the general
mathematical model for the integrated blending and scheduling
problem comprises a set of constraints with bilinear terms, even
if only linear product properties are considered. In order to pre-
serve the linearity of the model, the original equality(1) can be
expressed in an alternative way by multiplying it byFP

p,t :

PRp,k,tF
P
p,t =

∑
i

pri,kv
I
i,p,tF

P
p,t, ∀p, k, t (3)

Then, equality(2) can be incorporated into Eq.(3), yielding Eq.
(4):

PRp,k,tF
P
p,t =

∑
i

pri,kF
I
i,p,t, ∀p, k, t (4)

Subsequently, taking advantage of minimum and maximum
product property specifications, constraint(4) can be replaced
by constraint(5), in which the variable PRp,k,t is substituted by
their respective minimum and maximum property values (prmin

p,k ;
prmax

p,k ), which are known problem data:

prmin
p,k FP

p,t ≤
∑

i

pri,kF
I
i,p,t ≤ prmax

p,k FP
p,t, ∀p, k, t (5)
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computed through the iterative procedure described below

PRp,k,t =
∑

ipri,ksgiV
I
i,p,t

sgp,t

, ∀p, k, t (7)

Therefore, the proposed linear approximation for gravimetric
blending is as follows:

prmin
p,k FP

p,t ≤
∑

ipri,ksgiF
I
i,p,t

sgravp,t

≤ prmax
p,k FP

p,t, ∀p, k, t (8)

We want to point out that there are some complex blending
decisions (especially in crude-oil blending) that may require to
explicitly define yield variables for streams within streams (see
Kelly, 2004; Kelly & Mann, 2003a,b). For example, there may
be the requirement to blend to a distillate diesel sulfur quality
specification. Therefore, we need the diesel yield as well as the
diesel specific gravity in each component blending stream to be
calculated endogenously. This is a higher-degree multi-linear
problem that is not addressed in this paper.

To illustrate the use of the iterative procedure and the pro-
posed linear approximation,Fig. 3shows a comparison between
the values of the linear volumetric average, the non-linear origi-
nal correlation and the proposed linear approximation for a real
non-linear product property such as the motor octane number.
In this example, the blend of two components, A and B, is only
c tion
o
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o n are
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r d and
u tion.
F ctor
b the
v will
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In this way, the variablevI
i,p,t is no longer required and th

odel remains linear. This linearization is valid only if pr
rties computed volumetrically are considered in the blen
roblem. However, other gasoline properties can be app
ated by adding minor changes to the previous equation

nstance, if the correlation for predicting a particular prod
roperty is based on a linear volumetric average plus addit
on-linear terms, such as the case of the octane numbe
on-linear part of the equation can be removed and replac
correction factor biasp,k,t, as shown in Eq.(6):

rmin
p,k FP

p,t + biasp,k,tF
P
p,t

≤
∑

i

pri,kF
I
i,p,t ≤ prmax

p,k FP
p,t + biasp,k,tF

P
p,t, ∀p, k, t (6)

Thus, non-linear product properties can be approxim
hrough the linear equation(6), which is composed of a vo
metric average followed by a correction factor ‘bias’. As
e seen, this correction factor depends on the product,
rty and time slot, and it is iteratively calculated by using
rocedure described below.

On the other hand, it is worth mentioning that some pro
roperties such as oxygen and sulfur content are blended
etrically, which means that component and product spe
ravities are also taken into account for the prediction, as s

n Eq.(7). In this case, sgi and sgp,t define the specific gravity o
omponenti and productp in time slott, respectively. Given tha
gp,t is a model variable that is not directly computed through
roposed linear approach and with the intention of mainta

he model’s linearity, the exact value of sgp,t can be substitute
y an approximated specific gravity sgravp,t, which can be easi
-
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onsidered. The final product property is a non-linear func
f component concentrations. As shown inFig. 3, if 40% of
omponent A is blended with 60% of component B, the va
f the volumetric average and the real non-linear correlatio
8.5 and 88.74, respectively. This difference arises becau
on-linear terms involved in the exact motor octane correla
re not included in the linear volumetric average. In order to
ect this discrepancy, the correction factor bias is calculate
sed to yield a better property prediction in the next itera
or this specific mixture of components the correction fa
ias is equal to 0.24. The linear approximation comprising
olumetric average together with the correction factor bias
lways predict the exact value of the property if the same co
ent concentration is utilized in the next iteration. Furtherm

Fig. 3. A non-linear property and the proposed linear approximation
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it was observed that the proposed linear approximation tends
to predict a very close value of the real property if component
concentrations are not significantly changed in the next iteration
as shown inFig. 3.

The proposed iterative procedure to solve simultaneously the
blending and scheduling problem using only linear equations
is shown inFig. 4. The first step is to find an initial recipe
for all products. If preferred product recipes are known they
can be proposed as initial product recipes. Preferred recipes are
the best alternative for blending because they satisfy all prod-
uct specifications with minimum cost. However, the use of them
strongly depends on the scheduling decisions, component inven-
tories and product demands and for this reason, they should not
be treated as fixed mixtures in a blending tool. On the other
hand, if preferred recipes are not defined, one possibility for
generating initial recipes is to solve the LP model including
only linear product properties. Once initial recipes are gener-
ated, they provide the component volume fractions used in each
blend, which can then be employed as fixed parameters in more
realistic non-linear correlations. The value predicted by the non-
linear correlation and the linear volumetric average are both used
to calculate the correction factor ‘bias’ (seeFig. 3). Given that
we are dealing with a multi-period optimization problem, the
correction factor will be calculated for all non-linear proper-
ties, products and time intervals as the difference between the
value predicted by the original non-linear equation and the lin-

ear volumetric average. The specific gravity of each product
and time slot is also computed. After that, the LP model is
solved that includes linear approximation with the parameter
biasp,k,t, for volumetric properties and the parameter sgravp,k,t,
for gravimetric properties. The parameter bias will be equal to
zero for all linear properties that can be computed volumetri-
cally. For non-linear properties this parameter will converge to a
non-zero value that reflects the difference with the linear approx-
imation. Subsequently, the solution of this problem is updated
and the product recipes for those products meeting all specifi-
cations in a specific time interval are fixed. If different recipes
are used for the same product in different time intervals, only
those that are feasible will be fixed. This process is repeated
until all product recipes meet the product specifications, i.e. all
product recipes are fixed. The main objective of this iterative pro-
cedure is to progressively find feasible recipes for all products
while optimizing all temporal and resource constraints in the
scheduling problem. The proposed method can be conceptually
interpreted as a successive LP method for the blending prob-
lem or a successive MILP model for the simultaneous blending
and scheduling problem. InAppendix A, we provide sufficient
conditions under which the successive LP method is guaran-
teed to converge to a local solution of the blending problem.
These conditions are rigorous for the case that a specification
of a non-linear property does not become active at the solution.
When that is not the case, the proof requires the assumption that
Fig. 4. Proposed iterative approach for
 simultaneous blending and scheduling.
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the non-linear properties are a weak function of the composi-
tions, which of course is a strong assumption. However, as it
will be shown later in the paper, only few iterations are needed
to obtain a very good solution for the blending and scheduling
problem. Furthermore, in the section of computational results
we present a comparison with NLP and MINLP methods in
which they confirm the solutions obtained with the proposed
method, but at either considerable higher computational cost, or
in some cases failing to converge depending on the starting point
used. Thus, the proposed method is fast and reliable, providing
very good solutions, which is particularly relevant for industrial
applications.

5. Integrated blending and scheduling model

A central aspect of any scheduling model is related to timing
decisions. Mathematical formulations can be based on either
a discrete or continuous time domain representation. The dis-
crete time representation only allows processing tasks to take
place at certain time points, which correspond to the bound-
aries of a set of predefined time slots. The main advantage of
using a discrete time grid is that mass balance and inventory
constraints are easier to handle but at the same time the solution
loses flexibility, unless smaller time intervals are used, which
may significantly decrease the computational performance of
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d demand due date
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et predefined ending time of time slott (discrete time rep-
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fi constant flowrate of componenti
h time horizon
inii initial inventory of componenti
inip initial inventory of productp
lmin
p minimum time slot duration when it is allocated to

productp
nB

t maximum number of blenders that can be working in
parallel in time slott

pltyR+
i,p penalty cost for excess of componenti in productp

pltyR−
i,p penalty cost for shortage of componenti in productp

pltyS+
k,p penalty cost for a deviation from the minimum speci-

fication for propertyk in productp
pltyS−

k,p penalty cost for a deviation from the maximum speci-
fication for propertyk in productp
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he method. In contrast, continuous time representation
apable of generating more flexible solutions in terms of
ng decisions, although with higher CPU time requireme
lso, inventory and mass balance constraints are generally
ifficult to model since they have to be checked at any time

ng the scheduling horizon in order to ensure that a fea
olution will be generated. Since the best choice of the
epresentation strongly depends on the problem characte
nd the desired solution quality, we developed a mathem

ormulation for each type of representation assuming a com
ime grid for all resources working in parallel. Before pres
ng the proposed mathematical models the nomenclature
ollows:

ndices
due dates of product demands
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final products or gasoline grades
time slots
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set of product due dates
set of intermediates to be blended
set of properties for intermediates and products

NL set of properties that are predicted with non-linear
relations
set of final products
set of time slots

d set of time slots postulated for the sub-interval en
at due dated (continuous time)
e

e

s
l

n

s

ri,k value of propertyk for componenti
rmax
p,k maximum value of propertyk for productp

rmin
p,k minimum value of propertyk for productp

atemax
p maximum flowrate of productp

atemin
p minimum flowrate of productp

cpi,p preferred concentration of componenti in productp
according to product recipe

cpmax
i,p maximum concentration of componenti in productp

cpmin
i,p minimum concentration of componenti in productp

gravp,t specific gravity of productp in time slott
t predefined starting time of time slott (discrete time

representation)
pi penalty cost for inventory of componenti
pp penalty cost for inventory of productp
max
i maximum storage capacity of componenti
min
i minimum storage capacity of componenti
max
p maximum storage capacity of productp
min
p minimum storage capacity of productp

ariables
p,t binary variable denoting that productp is blended in

time slott
R−
i,p,t shortage of componenti that is used for productp in

time slott according to the preferred product recip
R+
i,p,t excess of componenti that is used for productp in time

slot t according to the preferred product recipe
S−
k,p,t deviation from the minimum specification of prope

k for productp in time slott
S+
k,p,t deviation from the maximum specification of prope

k for productp in time slott
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Et ending time of time slott (continuous time representa-
tion)

FI
i,p,t amount of componenti being transferred to productp

during time slott
FP

p,t amount of productp being blended during time slott
PRp,k,t exact value of the propertyk for productp in time t
Si,t amount of componenti to be purchased in time slott
St starting time of time slott (continuous time represen-

tation)
vI
i,p,t volume fraction of componenti in productp at timet

VI
i,t amount of componenti stored at the end of time slott

V ′I
i,t amount of componenti stored at the beginning of time

slot t
V ′P

p,d amount of productp stored at due dated
VP

p,t amount of productp stored at the end of time slott

6. Discrete time representation

In this section, we present an MILP model that assumes that
the entire scheduling horizon is divided into a finite number of
consecutive time slots that are common for all units and can be
allocated to different products, i.e. blending tasks. The proposed
model has the following features:

1 the
time

2 dif-

3 more
and

4 ope

5 entir

6 cate

6

fi f
e olin
g of
u

∑

6.2. Product composition constraint

Every final product or gasoline gradep is a blend of different
componentsi, as expressed by constraint(10):∑

i

FI
i,p,t = FP

p,t, ∀p, t (10)

Note that a significant reduction in the number of continuous
variables can be obtained if Eq.(10) is deleted from the model
andFP

p,t is replaced by
∑

iF
I
i,p,t . However, in order to make the

model easier to understand,FP
p,t has been included in all model

equations.

6.3. Minimum/maximum component concentration

In order to satisfy product qualities and/or market conditions,
upper and lower bounds can be forced on the component concen-
tration for specific gasoline grades. Then, constraint(11)ensures
that product composition will always satisfy the predefined com-
ponent specifications. Parameters rcpmin

i,p and rcpmax
i,p define the

minimum/maximum concentration of componenti for product
p, respectively:

rcpmin
i,p FP

p,t ≤ FI
i,p,t ≤ rcpmax

i,p FP
p,t, ∀i, p, t (11)

It should be noted that a fixed recipe for a particular productp
c pmin

a
p ided
u rod-
u as an
i ay,
t

6

ol-
u
d rate
i uted
b slot
d e
s tion
i uted
t
t d
d o
e

r

6

end-
i slot
a d of
. A discrete time domain representation is used where
scheduling horizon is divided into a set of consecutive
slots.

. Equivalent blenders working in parallel are available for
ferent product grades.

. A particular product demand can be satisfied by one or
time slots whenever they are allocated to this product
finished before the product due date.

. Variable product recipes are considered and product pr
ties are predicted by linear correlations.

. Constant flowrate of components is assumed during the
scheduling horizon.

. Constant flowrate of products is assumed during the allo
time slot.

Model constraints and variables are introduced below.

.1. Assignment constraint

Constraint(9) defines through the binary variablesAp,t the
nal productsp to be processed in time slott. Given that a set o
quivalent blenders are available to produce different gas
rades simultaneously,nB

t specifies the maximum number
nits that can be working in parallel during time slott:

p

Ap,t ≤ nB
t , ∀t (9)
r-

e

d

e

an also be taken into consideration by fixing the values of rci,p

nd rcpmax
i,p to the predefined concentration of componenti for

roductp. However, the use of fixed recipes should be avo
nless they are the only possibility to produce a particular p
ct. As a better option, preferred recipes can be proposed

nitial solution of the proposed iterative procedure. In this w
he generation of infeasible solutions will be avoided.

.4. Minimum/maximum volumetric flowrates for products

Constraint(12) specifies that minimum and maximum v
metric flowrates must be satisfied when productp is blended
uring time slott. Due to the fact that a constant product flow

s assumed in this work, the volumetric flowrate can be comp
y multiplying the upper and lower flowrates by the time
uration whenever productp is allocated to a particular tim
lot t (Ap,t = 1). Moreover, since a discrete time representa

s used, the time slot duration is a known parameter comp
hrough the predefined startingst and ending timeset of each
ime slott. It should be noted that if productp is not processe
uring time slott (Ap,t = 0), the volumetric flowrate will be als
qual to zero:

atemin
p (et − st)Ap,t ≤ FP

p,t ≤ ratemax
p (et − st)Ap,t, ∀p, t

(12)

.5. Material balance equation for components

Given that a discrete time representation allows the bl
ng tasks to start and finish at the boundaries of the time
llocated, inventory limits have only to be checked at the en
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each time slot. Then, as expressed by constraint(13), the amount
of componenti being stored in tank at the end of time slott is
equal to the initial inventory of componenti plus the compo-
nent produced up to the end of time slott minus the component
transferred to blenders up to the end of time slott:

VI
i,t = inii + fiet −

∑
p,t′≤t

F I
i,p,t′ , ∀i, t (13)

where inii is the initial inventory of componenti at timet = 0, the
parameterfi specifies the constant production rate of component
i and et defines the ending time of time slott. Given that a
discrete time representation is used, both parameters are known
in advance.

6.6. Component storage capacity

Constraint(14) imposes lower/upper boundsVmin
i andVmax

i

on the total amount of componenti being stored in a storage tank
during the scheduling horizon. Given that constant component
flowrates are assumed, a perfect coordination between the pro-
duction of components and final products is required to satisfy
the storage constraints through the entire scheduling horizon:

Vmin
i ≤ VI

i,t ≤ Vmax
i , ∀i, t (14)
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including variable recipes and non-linear properties:

prmin
p,k FP

p,t ≤
∑

i

pri,kF
I
i,p,t ≤ prmax

p,k FP
p,t, ∀p, k, t (17)

prmin
p,k FP

p,t ≤
∑

i

pri,kF
I
i,p,t + biask,p,tF

I
i,p,t

≤ prmax
p,k FP

p,t, ∀p, k, t (17′)

In turn, Eq.(17′′) defines the proposed linear approximation
for those product properties that are gravimetrically predicted:

prmin
p,k FP

p,t ≤
∑

ipri,kρiFI
i,p,t

sgravp,t

≤ prmax
p,k FP

p,t, ∀p, k, t (17′′)

Note that constraints(17), (17′) and (17′′) are only required
for those gasoline grades that can be produced using variable
recipes. If a fixed recipe is enforced, product properties must be
satisfied in advance through the predefined component concen-
trations.

6.10. Multiple product demands

Refinery operations typically require that multiple demands
for the same gasoline grade be satisfied during the entire schedul-
i unt
o uct
d

i

6

ain
o rofit
d t cost:

m

ctive
f to
c order
t

m

7

dis-
c , the
.7. Material balance equation for products

Constraint(15) computes the amount of productp being
tored in tank at the end of time slott taking into account th

nitial inventory, production and demands of productp:

P
p,t = inip +

∑
t′≤t

FP
p,t′ −

∑
d≤t

ddp,d, ∀p, t (15)

.8. Product storage capacity

A minimum safety stock and a finite storage capacit
ssumed for final products:

min
p ≤ VP

p,t ≤ Vmax
p , ∀p, t (16)

.9. Minimum/maximum product qualities

Assuming that properties are volumetrically computed,
traint(17)guarantees that the value of propertyk for productp
n time slott will always satisfy minimum and maximum pro
ct specifications. To maintain the model’s linearity, propek

s not directly computed and bounds are only imposed on
roperty. Otherwise, non-convex bilinear equations woul
enerated in the model, which would then become non-li
lthough this linearization is only valid for properties vo
etrically computed, the original equation(17) can be slightly
odified as Eq.(17′) to account for real-world product pro
rties, as described in Section4 with the use of the paramet
iasp,k,t. The best value of this parameter can be obtained thr

he proposed iterative procedure. In this way, the MILP ma
atical model is able to effectively deal with the quality iss
h

.

h

ng horizon. Constraint(18)guarantees that a sufficient amo
f productp will always be available to satisfy each prod
emand ddp,d:

nip +
∑
t≤d

FP
p,t ≥

∑
d′≤d

ddp,d′ , ∀p, d (18)

.11. Objective function (maximize net profit)

While satisfying all quality and logistic issues, the m
bjective of the scheduling problem is to maximize the net p
efined as the total product value minus the total componen

ax
∑

t

∑
p

(
ppFP

p,t −
∑

i

ciF
I
i,p,t

)
(19)

The formulation can also accommodate alternative obje
unctions. An example is Eq.(20), where penalties related
omponent and product inventories has been included in
o also reduce storage costs:

ax
∑

t

∑
p

(
ppFP

p,t −
∑

i

ciF
I
i,p,t

)
−
∑
p

∑
t

sppVP
p,t

−
∑

i

∑
t

spiV
I
i,t (20)

. Continuous time representation

The model introduced in the previous section relies on a
rete time domain representation. As an alternative option
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continuous time formulation that is presented in this section
aims at generating more flexible schedules capable of maximiz-
ing the plant performance without significantly increasing the
model size. However, special attention must be paid to the lim-
ited storage capacity since continuous time representation tends
to make the modeling of inventory constraints more difficult.
The main idea here is first to partition the entire time horizon
into a predefined number of sub-intervals. The length of each
sub-interval will depend on the product due dates. For instance,
the first sub-interval will start at the beginning of the scheduling
horizon and finish at the first product due date. The second one
will be extended from the first up to the second product due date.
A similar idea is applied to the next sub-intervals. Therefore, the
number of sub-intervals will be equal to the number of product
due dates and the starting and ending time of each one will be
known in advance.

Once the sub-intervals are defined, a set of time slots with
unknown duration are postulated for each one. The number
of time slots for each sub-interval will depend on the sub-
interval length as well as the grade of flexibility desired for
the solution. Variable starting and ending times of time slots
are introduced as new model continuous variables that allow the
production events to happen at any time during the schedul-
ing horizon. Fig. 5 illustrates the main features of the pro-
posed continuous time domain representation. In this case, four
product demands with different due dates are to be satisfied,
w nin
t hori-
z the
fi e la
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1 e th
et of
ated

2 dif-

3 more
and

4 rag
iter

5 the

6. A constant flowrate of product is assumed during the allo-
cated time slot.

When the mathematical model is based on a continuous time
domain representation, starting and ending times for the time
slots are new continuous decision variables. For that reason,
part of the original constraints used for the discrete time repre-
sentation must be updated in order to maintain the linearity of
the model as well as to account new problem features. In this
section we describe the set of constraints that must be modified
as well as the new ones to be added. Constraints that are not
required to change must be included into the model in the same
way they were presented in the previous section, such as Eqs.
(9)–(11), (14)–(17), (17′), (17′′) and (19).

7.1. Minimum/maximum volumetric flowrates for products

Constraints(12′) and (12′′) replace original constraint(12)
when a continuous time representation is used. When productp
is not allocated to time slott, the binary variableAp,t is equal to
zero and constraint(12′′) enforces the variableFP

p,t to be equal
to zero as well. On the other hand,Ap,t will be equal to one
whenever productp is processed during time slott. In this case,
constraint(12′′) becomes redundant and constraint(12′) imposes
minimum and maximum volumetric flowrates depending on the
t
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a t only
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b n rate
f

7

e
l -
hich means that four sub-intervals are predefined. Then,
ime slots can be postulated for the entire scheduling
on, where two time slots are defined for each one of
rst three sub-intervals whereas three are postulated to th
ne.

The proposed model has the following features:

. A continuous time domain representation is used wher
scheduling horizon is divided into sub-intervals and a s
time slots with unknown duration and position are postul
for each one.

. Equivalent blenders working in parallel are available for
ferent product grades

. A particular product demand can be satisfied by one or
time slots whenever they are allocated to this product
finished before product due date.

. Final product properties are based on a volumetric ave
and a correction factor computed through the proposed
ative process.

. A constant flowrate of components is assumed during
entire scheduling horizon.

Fig. 5. Proposed continuous time representation.
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e
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ime slot duration:

atemin
p (Et − St) − ratemin

p h(1 − Ap,t)

≤ FP
p,t ≤ ratemax

p (Et − St), ∀p, t (12′)

P
p,t ≤ ratemax

p hAp,t, ∀p, t (12′′)

.2. Material balance equation for components

To ensure that only feasible solutions are generated
mount of component stored in tank has to be checked no
t the end but also at the beginning of each time slot. To mak
ossible, a new variableV ′I

i,t is included into the model and t
riginal equation(13)is replaced by constraints(13′) and (13′′).
he same idea for computing the inventory of componen
pplied to these new constraint:

I
i,t = inii + fiEt −

∑
p,t′≤t

F I
i,p,t′ , ∀i, t (13′)

′I
i,t = inii + fiSt −

∑
p,t′<t

FI
i,p,t′ , ∀i, t (13′′)

Note that despite the fact thatEt andSt are model variable
oth constraints remain linear because a constant productio

i is assumed for the components.

.3. Component storage capacity

An additional constraint(14′) is required to impos
ower/upper boundsVmin

i andVmax
i on the total amount of com
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ponenti being stored in tank at the beginning of time slott:

Vmin
i ≤ V ′I

i,t ≤ Vmax
i , ∀i, t (14′)

7.4. Material balance equation for products

Constraint(15′) computes the inventory of productp available
right after satisfying the demand of productp taking place at
due dated. In this way, a minimum product safety stock can be
guaranteed at any time during the scheduling horizon, even after
a product lifting is carried out:

V ′P
p,d = inip +

∑
t<d

FP
p,t −

∑
d′≤d

ddp,d′ , ∀p, d (15′)

Constraint(16′) explicitly defines the lower bound on the new
inventory variable:

Vmin
p ≤ V ′P

p,d, ∀p, d (16′)

7.5. Set of time slot timing constraints

Instead of defining starting and ending times of time slots
as fixed parameters, in continuous time representation models
these decisions are treated as additional continuous variables to
be optimized. In order to allow more flexible solutions and avoid
overlapping time slots, a correct order and sequence between
p se
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imposes that they must end before due dated. The main goal
of this assumption is that neither additional variables nor new
constraints are required to establish which time slots can satisfy
a specific product demand. As a result, more flexible schedules
can be obtained without increasing the complexity of inventory
constraints:

St ≥ d − 1, ∀t ∈ Td (24)

Et ≤ d, ∀t ∈ Td (25)

7.9. Time slot assigment

Constraint(26) imposes an order for using the set of prede-
fined time slots. In other words, a time slott + 1 can be only
allocated to a productp whenever the previous time slot within
the same sub-interval has been used:∑
p

Ap,(t+1) ≤ nB
t

∑
p

Ap,t, ∀d, (t, t + 1)∈ Td (26)

8. Treatment of infeasible solutions

The short-term blending and scheduling of oil-refinery oper-
ations is a very complex and highly constrained problem, where
even feasible solutions may be difficult to generate in some

nt an
alties
odel.
ecifi-
orld

or a

sired

age

e
at

d at
ucts,
the
ostulated time slots must be established through the next
onstraints.

.6. Time slot duration

Constraint(21) defines a minimum time slot duration wh
roductp is allocated to time slott. It is generally used to mod
n existing operating condition, but at the same time pe
liminating schedules using very short time slots, which are
lly inefficient in practice:

t − St ≥ lmin
p Ap,t, ∀p, t (21)

To ensure that duration of a slot is zero if it is not used,
22) is included into the model:

t − St ≤ h
∑
p

Ap,t, ∀t (22)

.7. Time slot sequencing

Constraint(23) establishes a sequence between consec
ime slotst andt + 1:

t ≤ S(t+1), ∀t (23)

.8. Sub-interval bounds

The setTd comprises all time slots that are postulated f
ub-interval related to a particular due dated. This sub-interva
egins at the previous due dated − 1 and finishes at due dated.
onstraint(24)defines that time slots pre-allocated to this s

nterval must start after due dated − 1 whereas constraints(25)
t of

its
u-

.

ive

a

-

circumstances. For that reason, in this section we prese
additional set of variables and equations that defines pen
that can be added to the objective function of the proposed m
These penalties can partially relax some hard problem sp
cations that can generate infeasible solutions when real w
problems are addressed.

8.1. Penalty for preferred recipe deviation

If a preferred combination of components is defined f
particular product through the parameter rcpi,p, the following
constraints can be included in the model to try to use the de
recipe whenever it is possible:

rcpi,pFP
p,t + DR−

i,p,t ≥ Fi,p,t, ∀i, p, t (27)

rcpi,pFP
p,t − DR+

i,p,t ≤ Fi,p,t, ∀i, p, t (28)

whereDR+
i,p,t and whereDR−

i,p,t define the excess and the short
of componenti that is used in productp in time slott, according
to the preferred product recipe. Constraint(29) penalizes th
slack variablesDR+

i,p,t andDR−
i,p,t in the objective to ensure th

deviations from the preferred recipe are minimized:

penalty=
∑

t

∑
p

∑
i

(pltyR+
i,p DR+

i,p,t + pltyR−
i,p DR−

i,p,t) (29)

8.2. Penalty for minimum/maximum specification deviation

If desired product qualities cannot be fully achieved, an
the same time, they can partially be violated for certain prod
the following constraints can be used in order to minimize
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deviation:

propmin
p,k FP

p,t − DS+
k,p,t ≤

∑
i

pri,kF
I
i,p,t, ∀p, k, t (30)

propmax
p,k FP

p,t + DS−
k,p,t ≥

∑
i

pri,kF
I
i,p,t, ∀p, k, t (31)

where the continuous variablesDS+
k,p,t andDS−

k,p,t define a value
that, in some way, represents the deviation from the mini-
mum and maximum specification for propertyk, respectively.
If propertyk for productp is between minimum and maximum
specification values, both variables will be equal to zero. The
corresponding objective penalty terms are shown in Eq.(32):

penalty=
∑

t

∑
p

∑
k

(pltyS+
k,pDS+

k,p,t + pltyS−
k,pDS−

k,p,t) (32)

8.3. Penalty for intermediate shortage

A common source of infeasible solutions is the lack of a min-
imum amount of intermediate required to satisfy either prede-
fined component concentrations or certain market specifications.
In this case, intermediate products can be purchased at higher
cost from a third-party. The continuous variableSi,t defines the
amount of intermediatei needed in time slott, which allows to
relax minimum inventory constraints:

V

o-
n

p

tions
t tha

the relative change in the bias parameter be less or equal than a
specified tolerance.

9. Numerical results

The proposed discrete and continuous time MILP mod-
els can be solved using the iterative procedure outlined in
Fig. 4for the simultaneous blending and scheduling operations.
The performance of the proposed MILP-based approach was
tested with several real-world examples. The data are shown in
Tables 1 and 2. Note that from the 12 product specifications
shown inTable 2, properties P1, P2, P8 and P12 are non-linear,
while the rest are linear. In the proposed iterative approach, prop-
erties P1 and P2 are estimated through Eq.(17′) whereas P8 and
P12 are computed in Eq.(17′′) (gravimetrically predicted). The
basis of the example comprises nine intermediate products or
components from the refinery, which can be blended in differ-
ent ways to satisfy multiple demands of three gasoline grades
with different specifications over an 8-day scheduling horizon.
Twelve key component and product properties are taken into
consideration for solving the blending problem, where the first
eight can be predicted by a linear volumetric average whereas
the remainder is based on non-linear correlations. All the infor-
mation about components such as cost, constant production rate,
initial, minimum and maximum stocks and properties is shown
i en-
t iven
i for
c aders
w oal
i -
n nent
s costs
w

T
C

C 23.00 .00
P 14.0 .00
I 2.00 00
M 5.0
M 00.00 0.00

P
94.80 .30
1.50 .90
0.67 .7339
4.90 30
7.10 10

00.00 .90
17.10 .40
0.00 057
2.30 0
8.90 0
1.10 0
0.00 0
I
i,t = inii + prodiet −

∑
p,t′≤t

F I
i,p,t′ + Si,t, ∀i, t (33)

The penalty term(34) is directly proportional to the comp
ent purchase cost:

enalty=
∑

t

∑
i

(pltySH
i Si,t) (34)

It should be noted that for the case of infeasible specifica
he stopping criterion of the iterative procedure should be

able 1
omponent data

Component

C1 C2 C3 C4

ost ($/bbl) 24.00 20.00 26.00
rod. rate (Mbbl/day) 15.00 33.00 20.00

nitial stock (Mbbl) 48.00 20.00 75.00 2
in stock (Mbbl) 5.0 5.0 5.0
ax stock (Mbbl) 100.00 250.00 250.00 1

roperty
P1 93.00 104.00 104.90
P2 92.10 91.90 91.90 8
P3 0.7069 0.8692 0.6167
P4 3.60 1.00 100.00 9
P5 16.30 4.50 100.00 9
P6 94.30 93.50 100.00 1
P7 35.00 22.70 351.10 1
P8 0.007 0.00 0.00
P9 0.00 88.60 0.00
P10 0.00 0.1 61.30 4
P11 0.00 3.30 0.00
P12 0.00 0.00 0.00
t

n Table 1. Product data including price, requirements, inv
ory constraints, rate, recipe limits and specifications are g
n Table 2. Dedicated storage tanks with limited capacities
omponents and products and three equivalent blend he
orking in parallel are available in the refinery. The main g

s to maximize the total profit (see Eq.(19)), considering compo
ent cost, product values and different penalties for compo
hortages and out-spec products. Note that no inventory
ere considered.

C5 C6 C7 C8 C9

24.00 50.00 50.00 50.00 50
0 18.00 10.00 0.00 0.00 0

30.00 54.00 12.00 20.00 15.
5.0 5.0 0.0 0.0 0.0
100.00 100.00 100.00 100.00 10

87.40 118.00 87.30 95.20 93
86.10 100.00 79.50 85.80 81

31 0.6540 0.7460 0.7460 0.8187 0
91.50 15.00 0.00 1.30 34.
95.50 100.00 0.00 6.00 57.

100.00 100.00 0.00 93.90 95
93.00 31.30 63.30 16.00 52

9 0.0002 0.05 0.0063 0.1805 0.
0.20 0.00 43.98 65.30 21.3

36.00 0.00 1.04 0.60 33.3
0.10 0.00 3.33 0.90 0.8
0.00 15.40 0.00 0.00 0.0



626 C.A. Méndez et al. / Computers and Chemical Engineering 30 (2006) 614–634

Table 2
Product data

Product

G1 (price ($/bbl) = 31.00) G2 (price ($/bbl) = 31.00) G3 (price ($/bbl) = 31.00)

MIN MAX LIFT MIN MAX LIFT MIN MAX LIFT

Requirement (Mbbl)
Day 1 5.00 45.00 10.00 5.00 50.00 12.00 5.00 50.00 10.00
Day 3 5.00 50.00 25.00
Day 4 5.00 45.00 25.00 5.00 50.00 23.00
Day 5
Day 7 5.00 45.00 30.00
Day 8 5.00 45.00 10.00 5.00 50.00 22.00

Inventory (Mbbl) 5.00 150.00 5.00 150.00 5.00 150.00
Rate (Mbbl/day) 5.00 45.00 5.00 50.00 5.00 50.00

Product

G1 (price ($/bbl) = 31.00) G2 (price ($/bbl) = 31.00) G3 (price ($/bbl) = 31.00)

MIN MAX MIN MAX MIN MAX

Recipe (%)
C1 0.00 22.00 0.00 25.00 0.00 25.00
C2 0.00 20.00 0.00 24.00 0.00 24.00
C3 2.00 10.00 0.00 10.00 0.00 10.00
C4 0.00 6.00 0.00 23.00 0.00 23.00
C5 0.00 25.00 0.00 25.00 0.00 25.00
C6 0.00 10.00 0.00 10.00 0.00 10.00
C7 0.00 100.00 0.00 0.00 0.00 0.00
C8 0.00 100.00 0.00 0.00 0.00 0.00
C9 0.00 100.00 0.00 0.00 0.00 0.00

Specifications
P1 95.00 98.00 98.00
P2 85.00 88.00 88.00
P3 0.72 0.775 0.72 0.775 0.72 0.775
P4 20.00 50.00 20.00 48.00 22.00 50.00
P5 46.00 71.00 46.00 71.00 46.00 71.00
P6 85.00 85.00 85.00
P7 45.00 60.00 45.00 60.00 60.00 90.00
P8 0.015 0.015 0.008
P9 42.00 42.00 42.00
P10 18.00 18.00 18.00
P11 1.00 1.00 1.00
P12 2.70 2.70 2.70

Four different examples were solved with the purpose of ana-
lyzing the strong interaction between blending and scheduling
decisions. In order to guarantee that feasible solutions are found,
slack variables for property deviations and intermediate short-
ages were included in all cases, which were null for all solutions
generated. Example 1 is only focused on the blending problem
and its solution is used as initial product recipes for the other.
Examples 2–4 are solved using the proposed model with the
discrete and the continuous time domain representation. When
the discrete time representation is used, the scheduling horizon
is divided into six consecutive time intervals, where intervals 1,
3, 4 and 6 have 1-day duration whereas intervals 2 and 5 have
2-day duration. In order to make a direct comparison with the
continuous time formulation, the time discretization is deter-
mined based on the product due dates. For the continuous time
representation, one time slot with unknown duration is postu-

lated for each one of the six subintervals defined by the product
due dates.

9.1. Example 1 (blending problem)

Example 1 deals with a single-period blending problem of
three products (G1–G3). The main goal is to find the best or
‘preferred’ recipe for each product that minimizes blend cost
and simultaneously satisfies all quality specifications. Preferred
recipes are proposed as the initial blends for the integrated blend-
ing and scheduling problems addressed in Examples 2–4. For
this particular problem, temporal, inventory and resource con-
straints coming from the scheduling problem are disregarded by
assuming that enough resources, component stocks and time are
available as needed to produce 1 Mbbl of each product once.
In this way only a pure blending problem is taken into consid-
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Table 3
Iterative blending problem for product G1

Quality Min. Spec. Initial recipe (blend
cost ($/bbl) = 29.30)

Iteration 1 (blend
cost ($/bbl) = 29.97)

Iteration 2 (blend
cost ($/bbl) = 29.99)

Max Spec.

Value Value Approx Value Approx

P1 95.00 97.891 97.898 97.7737 97.893 97.8928
P2 85.00 88.417 88.470 88.0493 88.438 88.4335
P3 0.72 0.7418 0.7325 0.7324 0.775
P4 20.00 34.455 35.418 35.409 50.00
P5 46.00 46.00 50.80 50.833 71.00
P6 85.00 96.460 91.797 91.780
P7 45.00 60.00 60.00 60.00 60.00
P8 0.0378 0.0152 0.0150 0.0150 0.0150 0.015
P9 28.458 22.974 22.923 42.00
P10 14.256 15.974 16.005 18.00
P11 0.8964 1.00 1.00 1.00
P12 1.1223 1.5684 1.5488 1.5687 1.5684 2.70

eration. Component costs and properties, variable recipe limits
and stringent product specifications are the central features to be
considered for solving Example 1, where it is assumed that all
scheduling decisions are made a priori. The proposed LP-based
iterative procedure was used to find preferred recipes for all
required products. As reported inTable 13in Section11on com-
putational results, the problem involves 81 constraints and 127
continuous variables and its solution was found in 0.13 s. In this
case, initial product recipes were generated taking into account
only linear product properties. Then the iterative procedure was
performed to update the initial recipes with the purpose of sat-
isfying all product specifications. Preferred recipes for products
G2 and G3 were found by executing just one iteration of the pro-
posed procedure, whereas an additional iteration was needed to
satisfy all specifications for product G1, since the maximum
specification for property P8 was violated both in the initial
recipe as in the first iteration (seeTable 3). In order to gener-
ate feasible recipes, component concentrations for each product
were updated by the LP model in each iteration, which gradually
increased the blend cost. The recipe evolution for product G1 in
terms of component concentration is presented in detail inFig. 6.

Blend cost and product properties associated to each recipe are
shown inTable 3. In addition to the exact values for each prop-
erty predicted by non-linear correlations, the approximations
predicted by the proposed linear functions are also presented in
Table 3. It should be noted that predictions of non-linear proper-
ties tend to improve when the number of iterations is increased.
Finally, best product recipes and ‘bias’ factors for all products
are reported inTable 4.

9.2. Example 2 (blending and scheduling with limited
production)

In Example 2 preferred product recipes found in Example
1 were used as the initial solution for the proposed iterative
MILP-based procedure. Despite using linear approximations,
the proposed MILP model was capable of finding in just one
iteration the same solution generated by non-linear optimiza-
tion tools. However, although the discrete and continuous time
representations obtained the same profit in terms of component
cost and product value ($ 1,611,210), the continuous time repre-
sentation is able to find a schedule that operates the blenders at

recip
Fig. 6. Convergence to preferred
 e for product G1 (iterative procedure).
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Table 4
Preferred product recipes

Product

G1 (blend cost ($/bbl) = 29.99) G2 (blend cost ($/bbl) = 25.28) G3 (blend cost ($/bbl) = 24.98)

Recipe (%)
C1 22.00 25.00 25.00
C2 20.00 23.947 24.00
C3 2.00 16.794 1.372
C4 4.847 25.00 16.636
C5 25.00 9.259 25.00
C6 10.00 7.992
C7 5.198
C8 0.958
C9 9.997

Quality
P1 97.893 (bias = 1.527) 98.4122 (bias = 1.5611) 98.2214 (bias = 1.5208)
P2 88.438 (bias =−0.659) 88.4594 (bias =−1.0439) 88.3310 (bias =−1.0861)
P3 0.7324 0.7305 0.7289
P4 35.409 41.3410 42.3734
P5 50.833 54.5932 54.5475
P6 91.780 97.0184 97.0150
P7 60.00 60.00 64.2465
P8 0.0150 0.0079 0.0072
P9 22.923 21.6536 21.6966
P10 16.005 17.2363 18.00
P11 1.00 1.00 1.00
P12 1.5687 1.4561 1.2597

full capacity for 2.67 days less than the discrete time represen-
tation, which can significantly reduce the total operating cost.
Product schedules based on a discrete and continuous time rep-
resentation are reported inTables 5 and 6, respectively. Gantt
charts and inventory evolution of components for both discrete
and continuous time representations are shown inFig. 7. As
shown inTable 13, the discrete time formulation involves 679
constraints, 9 binary variables, and 757 continuous variables.
The continuous time formulation comprises 832 constraints, 9

Table 5
Product schedule (Example 2—discrete time representation)

Product Period Start End Prod Lift Inventory

G1 T1 0.00 1.00 15.02 10.00 5.02
T2 1.00 3.00 0.00 0.00 5.02
T3 3.00 4.00 45.00 25.00 25.02
T4 4.00 5.00 0.00 0.00 25.02
T5 5.00 7.00 45.00 30.00 40.02
T6 7.00 8.00 45.00 10.00 75.02

G2 T1 0.00 1.00 50.00 12.00 38.00
T2 1.00 3.00 50.00 25.00 63.00
T3 3.00 4.00 50.00 23.00 90.00
T4 4.00 5.00 0.00 0.00 90.00
T5 5.00 7.00 0.00 0.00 90.00
T6 7.00 8.00 0.00 0.00 90.00

G3 T1 0.00 1.00 50.00 10.00 40.00

binary variables, and 841 continuous variables. Both models
were solved in 0.26 s.

9.3. Example 3 (blending and scheduling with flexible
production)

This example evaluates in Example 2 the effect of predefining
minimum and maximum requirements for each time interval.
In this way the amount to be produced in each time interval

Table 6
Product schedule (Example 2—continuous time representation)

Product Period Start End Prod Lift Inventory

G1 T1 0.00 1.00 45.00 10.00 35.00
T2 1.00 2.00 0.00 0.00 35.00
T3 3.00 4.00 45.00 25.00 55.00
T4 4.00 5.00 0.00 25.00 55.00
T5 5.00 5.33 15.02 0.00 40.02
T6 7.00 8.00 45.00 10.00 75.02

G2 T1 0.00 1.00 50.00 12.00 38.00
T2 1.00 2.00 50.00 0.00 63.00
T3 3.00 4.00 50.00 23.00 90.00
T4 4.00 5.00 0.00 23.00 90.00
T5 5.00 5.33 0.00 0.00 90.00
T6 7.00 8.00 0.00 0.00 90.00

G3 T1 0.00 1.00 50.00 10.00 40.00

T2 1.00 3.00 0.00 0.00 40.00
T3 3.00 4.00 0.00 0.00 40.00
T4 4.00 5.00 0.00 0.00 40.00
T5 5.00 7.00 0.00 0.00 40.00
T6 7.00 8.00 50.00 22.00 68.00
T2 1.00 2.00 0.00 0.00 40.00
T3 3.00 4.00 0.00 0.00 40.00
T4 4.00 5.00 0.00 0.00 40.00
T5 5.00 5.33 0.00 0.00 40.00
T6 7.00 8.00 50.00 22.00 68.00
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Fig. 7. Gantt charts and evolution of component stocks (Example 2): (a) discrete time; (b) continuous time; (c) discrete time; (d) continuous time.

becomes a model variable only restricted by minimum and max-
imum production rates. The amount of product to be lifted at
specific due dates is still a hard constraint to be satisfied. This
modification allows the model to increase the total production
by almost 36%, i.e. from 400.02 to 542.02 Mbbl, which repre-
sents increasing the total profit to $ 2,448,050, which is almost
a 52% increase (seeTable 12). Preferred product recipes are
used for all products and one iteration is only executed. Product
schedules based on a discrete and continuous time representa-
tion are shown inTables 7 and 8, respectively. In this example
we note that the continuous time representation needs 2.60 days
less of total operating time to reach the same production level
as the discrete time model.Fig. 8 shows Gantt-charts and evo-
lution of component stock for Example 3. The discrete time
formulation comprises 679 constraints, 18 binary variables, and
757 continuous variables and its solution was found in 0.23 s.
The continuous time formulation comprises 832 constraints, 18
binary variables, and 841 continuous variables and its solution
was generated in 0.26 s (seeTable 13).

9.4. Example 4 (full re-blending and re-scheduling with
limited production)

Finally, this example deals with a modified version of the
original Example 2 where the following changes are introduced:

(1) properties P1 and P2 are decreased by one for components
C1–C3 and C6, (2) the price of G3 is increased to 31.05 $/bbl,
(3) component cost is increased to 27 and 23 $/bbl for C1 and
C2 and (4) production rates for C1 and C2 are reduced to 13

Table 7
Product schedule (Example 3—discrete time representation)

Product Period Start End Prod Lift Inventory

G1 T1 0.00 1.00 45.00 10.00 35.00
T2 1.00 3.00 60.02 0.00 95.02
T3 3.00 4.00 0.00 25.00 70.02
T4 4.00 5.00 0.00 0.00 70.02
T5 5.00 7.00 0.00 30.00 40.02
T6 7.00 8.00 45.00 10.00 75.02

G2 T1 0.00 1.00 50.00 12.00 38.00
T2 1.00 3.00 0.00 25.00 13.00
T3 3.00 4.00 50.00 23.00 40.00
T4 4.00 5.00 0.00 0.00 40.00
T5 5.00 7.00 60.00 0.00 100.00
T6 7.00 8.00 50.00 0.00 150.00

G3 T1 0.00 1.00 50.00 10.00 40.00
T2 1.00 3.00 72.00 0.00 112.00
T3 3.00 4.00 0.00 0.00 112.00
T4 4.00 5.00 0.00 0.00 112.00
T5 5.00 7.00 10.00 0.00 122.00
T6 7.00 8.00 50.00 22.00 150.00
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Fig. 8. Gantt charts and evolution of component stocks (Example 3): (a) discrete time; (b) continuous time; (c) discrete time; (d) continuous time.

and 31 Mbbl/day respectively. All other data remain as in the
original example. The main goal here is to analyze the effect of
these changes in the blending and scheduling decisions. Detailed
product schedules for discrete and continuous time representa-
tions for Example 4 are shown inTables 9 and 10, respectively.

Table 8
Product schedule (Example 3—continuous time representation)

Product Period Start End Prod Lift Inventory

G1 T1 0.00 1.00 45.00 10.00 35.00
T2 2.80 3.00 9.00 10.00 44.00
T3 3.00 4.00 45.00 35.00 64.00
T4 4.00 4.80 4.00 35.00 68.00
T5 6.80 7.00 9.00 65.00 47.00
T6 7.00 8.00 38.02 75.00 75.02

G2 T1 0.00 1.00 50.00 12.00 38.00
T2 2.80 3.00 10.00 37.00 23.00
T3 3.00 4.00 50.00 60.00 50.00
T4 4.00 4.80 40.00 60.00 90.00
T5 6.80 7.00 10.00 60.00 100.00
T6 7.00 8.00 50.00 60.00 150.00

G3 T1 0.00 1.00 50.00 10.00 40.00
T2 2.80 3.00 0.00 10.00 40.00
T3 3.00 4.00 50.00 10.00 90.00
T4 4.00 4.80 40.00 10.00 130.00
T5 6.80 7.00 10.00 10.00 140.00
T6 7.00 8.00 32.00 32.00 150.00

Regarding the blending decisions, preferred recipes found in
Example 1 are proposed as the initial solution. However, they
have to be updated because some preferred recipes become
infeasible because of the modifications introduced. Only one
iteration is required to modify the infeasible recipes related to

Table 9
Product schedule (Example 4—discrete time representation)

Product Period Start End Prod Lift Inventory

G1 T1 0.00 1.00 45.00 10.00 35.00
T2 1.00 3.00 0.00 0.00 35.00
T3 3.00 4.00 5.00 25.00 15.00
T4 4.00 5.00 0.00 0.00 15.00
T5 5.00 7.00 20.00 30.00 5.00
T6 7.00 8.00 10.00 10.00 5.00

G2 T1 0.00 1.00 50.00 12.00 38.00
T2 1.00 3.00 100.00 25.00 113.00
T3 3.00 4.00 50.00 23.00 140.00
T4 4.00 5.00 0.00 0.00 140.00
T5 5.00 7.00 0.00 0.00 140.00
T6 7.00 8.00 0.00 0.00 140.00

G3 T1 0.00 1.00 50.00 10.00 40.00
T2 1.00 3.00 0.00 0.00 40.00
T3 3.00 4.00 0.00 0.00 40.00
T4 4.00 5.00 0.00 0.00 40.00
T5 5.00 7.00 0.00 0.00 40.00
T6 7.00 8.00 50.00 22.00 68.00
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Table 10
Product schedule (Example 4—continuous time representation)

Product Period Start End Prod Lift Inventory

G1 T1 0.00 1.00 16.00 10.00 6.00
T2 1.00 3.00 0.00 10.00 6.00
T3 3.00 4.00 45.00 35.00 26.00
T4 4.00 5.00 0.00 35.00 26.00
T5 5.00 5.20 9.00 35.00 5.00
T6 7.00 8.00 10.00 75.00 5.00

G2 T1 0.00 1.00 50.00 12.00 38.00
T2 1.00 3.00 100.00 37.00 113.00
T3 3.00 4.00 50.00 60.00 140.00
T4 4.00 5.00 0.00 60.00 140.00
T5 5.00 5.20 0.00 60.00 140.00
T6 7.00 8.00 0.00 60.00 140.00

G3 T1 0.00 1.00 50.00 10.00 40.00
T2 1.00 3.00 0.00 10.00 40.00
T3 3.00 4.00 0.00 10.00 40.00
T4 4.00 5.00 0.00 10.00 40.00
T5 5.00 5.20 0.00 10.00 40.00
T6 7.00 8.00 50.00 32.00 68.00

products G2 and G3. Original preferred and updated recipes
for these products are compared inTable 11. As shown, the
new recipes satisfy all product specifications but at the same
time, updated component concentrations increase the blend-
ing cost with which the profit is reduced from $ 2,448,050
to 1,234,490. This difference mainly arises because compo
nent costs were increased and octane numbers were reduce
It should be noted that key properties such as P1 and P2 ar

Table 11
Updated product recipes (Example 4)

Product

G2

Preferred (blend
cost ($/bbl) = 25.28)

Updated (blend cos
($/bbl) = 26.92)

t

Recipe (%)
C1 25.00 25.00
C2 23.947 24.00
C3 16.794 0.223
C4 25.00 16.09
C5 9.259 24.831
C6 9.856

Quality
P1 97.8204 98.0235
P2 87.8588 88.0133

1.2597 1.3626

satisfied with a very small margin, which means that qual-
ity giveaway is also minimized through the proposed method.
Computational requirements for this example are summarized in
Table 13.

10. Computational results

Different blending and scheduling problems were solved in
the previous section in order to evaluate the efficiency of the pro-
posed method. Example 1 dealt with a pure blending problem
whereas Examples 2–4 also accounted for optimal scheduling
decisions. Examples 3 and 4 correspond to modified versions of
the original Example 2 where minimum and maximum require-
ments were relaxed (Example 3) and certain changes in compo-
nent properties and cost and product prices were incorporated
(Example 4).Table 12summarizes the results for Examples 2–4,
while Table 13provides the computational statistics on the four
examples. As can be seen, the size of the MILP problems is
not very large and involves a modest number of 0–1 variables.
For this reason every single problem needs no more than 1 s of
CPU time with CPLEX 8.1, which highlights the computational
efficiency of the proposed models and the iterative MILP proce-
dure. In addition, a very small number of iterations were required
to satisfy all product specifications in all the examples. As a
general characteristic, it was observed that discrete time formu-
lations usually have a better computational performance when
c uous
f that
s uip-
m

P3 0.7305 0.7309
P4 41.3408 40.831
P5 54.5936 54.571
P6 97.0184 97.015
P7 60.00 60.00
P8 0.0079 0.0081
P9 21.6533 21.6837
P10 17.2362 16.968
P11 1.00 0.9938
P12 1.4562 1.5491
-
d.
e

G3

t Preferred (blend
cost ($/bbl) = 24.98)

Updated (blend cos
($/bbl) = 26.67)

25.00 25.00
24.00 24.00
1.372 3.195

16.636 14.869
25.00 24.269
7.992 8.640

97.6283 98.052
87.7294 88.0455
0.7289 0.7285

42.3734 41.9724
54.5476 54.6305
97.015 97.015
64.2473 68.1274

0.0072 0.0074
21.6966 21.6546
18.00 18.00
1.00 0.9799

ompared to continuous models. On the other hand, contin
ormulations are able to generate more flexible schedules
ignificantly reduce the operating time of the available eq
ent.
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Table 12
Summary of results

Example Blend value (M$) Comp. stock production (M$) Comp. inventory build (M$) Total profit (M$) Profit per barrel ($/bbl)

2 12400.61 22352 11562.6 1611.21 4.03
3 16802.61 22352 7997.44 2448.05 4.52
4 11785 23504 12953.49 1234.49 3.25

Table 13
Model size and computational requirements

Example Binary vars, cont. vars,
constraints

CPU time Iterations

1 –, 127, 81 0.13a,b 2
2 (discrete) 9, 757, 679 0.26a 1
2 (continuous) 9, 841, 832 0.26a 1
3 (discrete) 18, 757, 679 0.23a 1
3 (continuous) 18, 841, 832 0.26a 1
4 (discrete) 9, 757, 679 0.23a 1
4 (continuous) 9, 841, 832 0.26a 1

a Seconds on Pentium IV PC with CPLEX 8.1 in GAMS 21.2.
b All scheduling decisions are predefined.

In order to examine the solution of the scheduling and blend-
ing problem addressed in this paper using directly the non-linear
correlations,Table 14presents the computational results for
Examples 1 and 2. Consideration of the original non-linear cor-
relations gives rise to NLP and MINLP models, which were
solved by several non-linear general-purpose optimizers. Local
solutions are obtained with MINOS, CONOPT, and DICOPT,
whereas global solutions can be obtained with BARON. Since

the component concentrations in each product may have a signif-
icant influence on the non-linear model performance, examples
were solved considering different initial values for these key
problem variables.

The analysis of the results reported inTable 14reveals some
important features. First, it is worth mentioning that both the lin-
ear and the non-linear models were able to find the same optimal
solution for these examples. However, in several cases the non-
linear models failed to converge due to the non-convexities in
the non-linear model. An additional problem was the execution
errors that arose from evaluation errors in the non-linear func-
tions. These errors are generated because the original non-linear
correlations may be not defined for the entire domain of the vari-
ables or some possible combinations of feasible values. Usually,
non-linear solvers have difficulty recovering after attempting an
undefined operation such as dividing by zero or raising a negative
number to a real power. Although these problems can partially
be solved in some cases, the required changes may compromise
the optimality of the solution. Also, it can be seen inTable 14
that the proposed method is significantly faster than the NLP
solvers in Example 1, and particularly, compared to the MINLP
solvers in Example 2. Thus, fromTable 14it is clear that the

Table 14
Comparison with non-linear codes

Example Solver Initial component c time

1 Proposed approach – 3
1 MINOS 0
1 CONOPT 0
1 MINOS 10
1 CONOPT 10
1 MINOS Minimum allowedb

1 CONOPT Minimum allowed
1 MINOS Maximum allowed
1 CONOPT Maximum allowed
2 Proposed approach – 6
2 DICOPT/MINOS 0
2 DICOPT/CONOPT 0
2 BARON 0
2 DICOPT/MINOS 10
2 DICOPT/CONOPT 10
2
2 ed
2 ed
2 ed
2 ed
2 wed
2 ed
BARON 10
DICOPT/MINOS Minimum allow
DICOPT/CONOPT Minimum allow
BARON Minimum allow
DICOPT/MINOS Maximum allow
DICOPT/CONOPT Maximum allo
BARON Maximum allow

a Seconds on Pentium IV PC with GAMS 21.2.
b For specified recipe.
c
 Execution errors arise from evaluation errors in the non-linear functions.
d Infeasible solutions suggest that convergence problems may arise from no
oncentration (%) Objective function CPUa

80.251 0.1
Execution errorc –
Infeasible solutiond –

80.251 0.4
80.251 0.3

Execution errorc –
80.251 0.6

Execution errorc –
Execution errorc –
1611.21 0.2

Execution errorc –
1611.21 1.5

1611.21 ∼1000
1611.21 1.4
1611.21 1.3

1611.21 ∼1000
Execution errorc –
1611.21 1.9

1611.21 ∼1000
Execution errorc –
Execution errorc –

Execution errorc –
n-convexities of non-linear functions.
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proposed successive linear approach is fast and robust, and very
useful for addressing real-world cases.

11. Conclusions

An integrated MILP-based approach has been proposed to
simultaneously optimize the gasoline off-line blending and the
short-term scheduling problem in oil-refinery. The method is
able to deal with non-linear product properties and variable
recipes through a successive LP or MILP iterative procedure
that can be used either on discrete or continuous time formula-
tions. Several examples representative of real world problems
were presented to illustrate the flexibility and efficiency of the
proposed models and solution technique. Also, sufficient con-
ditions for the convergence of the successive LP procedure to a
local solution of the blending problem have been presented, as
well as numerical comparisons with NLP and MINLP solvers
showing that the proposed method converged to the same solu-
tions, but faster and more reliably.
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The two following cases provide a sufficient condition to the
convergence of the successive LP procedure to a local minimum
of problem (P).

Case 1. The non-linear property PRp,k < prmax
p,k at the local

minimum of problem (P).

Proof. Since in this caseδp,k = 0 and(A.4) is redundant, prob-
lem (P) reduces to the problem given by(A.1)–(A.3) and (A.6),
which is the LP solved at the first iteration of the procedure.
Hence, it trivially follows that a solution to this problem is equiv-
alent to the solution of problem (P).�
Case 2. The non-linear property PRp,k < prmax

p,k at the local
minimum of problem (P) and (δPRp,k)/(δvi,k) = 0.

Proof. For convenience we represent problem (P) in compact
form as:

(PC):

min
∑

j

cjxj (A.7)
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ppendix A. On the convergence of the successive LP
ethod for blending operations

For simplicity we consider for the blending problem the c
f a single period problem and hence we drop the subscript for

ime. The equations in(1)–(6)with a cost objective function an
ssuming only upper bound for the specifications can be w
s follows:

(P):

ax
∑
p

αpFP
p −

∑
i

∑
p

βiF
I
i,p (A.1)

.t. FP
p =

∑
i

FI
i,p, ∀p (A.2)

i

pri,kF
I
i,p ≤ prmax

p,k FP
p , ∀p, ∀k ∈ KLIN (A.3)

i

pri,kF
I
i,p ≤ prmax

p,k FP
p + δp,kF

P
p , ∀p, ∀k ∈ KNL (A.4)

p,k = max

{
0, PRp,k

(
FI

i,p

FP
p

)}
, ∀p, ∀k ∈ KNL (A.5)

I
i,p, FP

p ≥ 0 (A.6)

here in the aboveKLIN andKNL represent the linear and no
inear properties, respectively, and PRp,k(FI

i,p/FP
p ) represent

he evaluation of the non-linear property at the volume f
ion νi,k = FI

i,p/FP
p . Also, note that the successive LP met

ssumes fixed values ofδp,k at each successive iteration.
j ≥ 0 (A.10)

here we assume the functiongi(x) > 0 represents(A.5).
The Karush–Kuhn–Tucker conditions of (PC) yield the

owing stationary condition:

j +
∑
i ∈ I1

λiai,j +
∑
i ∈ I2

µiai,j

+ µj

[
gj(x

∗) + ∂gj

∂xj

xj

]
− ρj = 0 (A.11)

hereλi,µi,ρi are the multipliers of(A.8)–(A.10), respectively
hen the successive LP procedure is used(A.9) is replaced by

j

ai,jxj + δixi ≤ di, i ∈ I2 (A.12)

hereδi is treated as a constant. For this case the statio
ondition of the Karush–Kuhn–Tucker condition yields:

j +
∑
i ∈ I1

λiai,j +
∑
i ∈ I2

µiai,j + µjδj − ρj = 0 (A.13)

Sinceδj can be set equal togj(x*) at the optimum solutionx* ,
his implies that(A.11) and (A.12)are identical if (δgj)/(δxj) = 0.

Note that from(A.5) case 2 means that convergence
ocal solution of the non-linear programming problem (P) ca
uaranteed if the non-linear properties are not a strong fun
f the compositions. �

eferences

dams, W., & Sherali, H. (1990). Linearization strategies for a class of
one mixed integer programming problems.Operations Research, 38, 217.



634 C.A. Méndez et al. / Computers and Chemical Engineering 30 (2006) 614–634

Bechtel Corp. (1993). PIMS (Process Industry Modeling System).User’s
manual, version 6.0. Houston, TX.

Booner & Moore. (1979). Management Science. RPMS (Refinery and Petro-
chemical Modeling System).A system description. Houston, TX.

Floudas, C. A., & Lin, X. C. (2004). Continuous-time versus discrete-time
approaches for scheduling of chemical processes: a review.Computers
and Chemical Engineering, 28, 2109.

Glismann, K., & Gruhn, G. (2001). Short-term scheduling and recipe opti-
mization of blending processes.Computers and Chemical Engineering,
25, 627.

Grossmann, I. E., Van den Heever, S. A., & Harjunkoski, I. (2002). Discrete
optimization methods and their role in the integration of planning and
scheduling.AIChE Symposium Series No. 326 (pp. 98, 150).

Jia, Z., & Iearapetritou, M. (2003). Mixed-integer linear programming for
gasoline blending and distribution scheduling.Industrial Engineering and
Chemistry Research, 42, 825.

Kallrath, J. (2003). Planning and scheduling in the process industry.
In Advanced planning and scheduling solutions in process industry.
Springer-Verlag, p. 11, ISBN 3-540-00222-7.

Kelly, J. D. (2004). Formulating production planning models.Chemical Engi-
neering Progress, 43–50.

Kelly, J. D., & Mann, J. L. (2003a). Crude-oil blend scheduling optimization:
An application with multi-million dollar benefits: Part I.Hydrocarbon
Processing, 47–53.

Kelly, J. D., & Mann, J. L. (2003b). Crude-oil blend scheduling optimization:
An application with multi-million dollar benefits: Part II.Hydrocarbon
Processing, 72–79.

Lee, H., Pinto, J. M., Grossmann, I. E., & Park, S. (1996). Mixed-integer
linear programming model for refinery short-term scheduling of crude
oil unloading with inventory management.Industrial Engineering and
Chemistry Research, 35, 1630.

Moro, L. F. L., Zanin, A. C., & Pinto, J. M. (1998). A planning model
for refinery diesel production.Computers and Chemical Engineering, 22,
S1039.

Oral, M., & Kettani, O. (1992). A linearization procedure for quadratic and
cubic mixed-integer problems.Operations Research, 40, S109.

Pinto, J. M., & Grossmann, I. E. (1998). Assignment and sequencing models
for the scheduling of chemical processes.Annals of Operation Research,
81, 433.

Quesada, I., & Grossmann, I. E. (1995). Global optimization of bilinear
process networks with multicomponents flows.Computers and Chemical
Engineering, 19, 1219.

Reklaitis, G. V. (1992). Overview of scheduling and planning of batch process
operations.Technical Report. Antalya, Turkey: NATO Advanced Study
Institute.

Rigby, B., Lasdon, L. S., & Waren, A. D. (1995). The evolution of
Texaco blending systems—From Omega to StarBlend.Interfaces, 25,
64.

Shah, N. (1998). Single- and multisite planning and scheduling: Current sta-
tus and future challenges.AIChE Symposium Series No 320 (pp. 94,
75).

Wenkai, L., Hui, C.-W., Hua, B., & Tong, Z. (2002). Scheduling crude-oil
unloading, storage and processing.Industrial Engineering and Chemistry
Research, 41, 6723.


	A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations
	Introduction
	Problem statement
	Proposed optimization approach
	Off-line blending problem
	Integrated blending and scheduling model
	Discrete time representation
	Assignment constraint
	Product composition constraint
	Minimum/maximum component concentration
	Minimum/maximum volumetric flowrates for products
	Material balance equation for components
	Component storage capacity
	Material balance equation for products
	Product storage capacity
	Minimum/maximum product qualities
	Multiple product demands
	Objective function (maximize net profit)

	Continuous time representation
	Minimum/maximum volumetric flowrates for products
	Material balance equation for components
	Component storage capacity
	Material balance equation for products
	Set of time slot timing constraints
	Time slot duration
	Time slot sequencing
	Sub-interval bounds
	Time slot assigment

	Treatment of infeasible solutions
	Penalty for preferred recipe deviation
	Penalty for minimum/maximum specification deviation
	Penalty for intermediate shortage

	Numerical results
	Example 1 (blending problem)
	Example 2 (blending and scheduling with limited production)
	Example 3 (blending and scheduling with flexible production)
	Example 4 (full re-blending and re-scheduling with limited production)

	Computational results
	Conclusions
	Acknowledgements
	On the convergence of the successive LP method for blending operations
	References


