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Abstract

This paper presents a novel MILP-based method that addresses the simultaneous optimization of the off-line blending and the short-terr
scheduling problem in oil-refinery applications. Depending on the problem characteristics as well as the required flexibility in the solution, the
model can be based on either a discrete or a continuous time domain representation. In order to preserve the model’s linearity, an iterativ
procedure is proposed to effectively deal with non-linear gasoline properties and variable recipes for different product grades. Thuspthie solutio
a very complex MINLP formulation is replaced by a sequential MILP approximation. Instead of predefining fixed component concentrations for
products, preferred blend recipes can be forced to apply whenever it is possible. Also, different alternatives for coping with infeasible problems a
presented. Sufficient conditions for convergence for the proposed approach are presented as well as a comparison with NLP and MINLP solve
to demonstrate that the method provides an effective integrated solution method for the blending and scheduling of large-scale problems. The ne
method is illustrated with several real world problems requiring very low computational requirements.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction have been addressed through linear and non-linear mathemat-
ical approaches that make use of binary variables (MILP and
The main objective in oil refining is to convert a wide vari- MINLP codes) to explicitly model the discrete decisions to
ety of crude oils into valuable final products such as gasolinehe made Grossmann, Van den Heever, & Harjunkoski, 2002
jet fuel and diesel. The short-term blending and scheduling ar8hah, 1998 Short-term scheduling problems have been mainly
critical aspects in this large and complex process. The economgtudied for batch plants. Extensive reviews can be found in
and operability benefits associated with obtaining better-qualityReklaitis (1992)Pinto and Grossmann (199&allrath (2003)
and less expensive blends, and at the same time making a maed,Floudas and Lin (2004Much less work has been devoted
effective use of the available resources over time, are numerots continuous plantd.ee, Pinto, Grossmann, and Park (1996)
and significant. A wide variety of mathematical programmingaddressed the short-term scheduling problem for the crude-oil
techniques have been extensively used for long-term planninigventory management problem. Non-linearities of mixing tasks
as well as the short-term scheduling of refinery operations.  were reformulated into linear inequalities with which the orig-
For planning problems, most of the computational tools havénal MINLP model was converted to a MILP formulation that
been based on successive linear programming models, such@m be solved to global optimality. According to the authors,
RPMS from Honeywell, Process Solutions (formeBgoner  this linearization was possible because only mixing operations
& Moore, 1979 and PIMS from Aspen Technology (formerly were considered (s&@uesada & Grossmann, 1995iowever,
Bechtel Corp., 1993 On the other hand, scheduling problemsit was later pointed out byWenkai, Hui, Hua, and Tong (2002)
that the proposed reformulation linearization technology (RLF)
may lead to composition discrepancy (the amounts of individ-
* Corresponding author. Tel.: +1 412 268 2230; fax: +1 412 268 7139. ual crudes delivered from a tank to CDU are not proportional to
E-mail address: grossmann@cmu.edu (I.E. Grossmann). the crude composition in the tank). The objective function was
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the minimization of the total operating cost, which comprisesmentation of decision support systems for off-line multi-period
waiting time cost of each vessel in the sea, unloading cost fdolending problems at Texaco. Commercial applications such as
crude vessels, inventory cost and changeover cost. Several exaAspen Blend™ and Aspen PIMS-MB®Y from AspenTech are
ples were solved to highlight the computational performance o#lso available for dealing with online and offline blending opti-
the proposed modeMoro, Zanin, and Pinto (1998)eveloped mization problems. Since these software packages are restricted
a mixed-integer non-linear programming planning model forto solving the blending problem, resource and temporal deci-
refinery production. The model assumes that a general refinegions must be made a priori either manually or by using a special
is composed of a number of processing units producing a varietyethod.
of input/output streams with different properties, which can be To solve both sub-problems simultaneougbfismann and
blended to satisfy different specifications of diesel oil demandsGruhn (2001) proposed a two-level optimization approach
Each unit belonging to the refinery is defined as a continuous/here a non-linear model is used for the recipe optimization
processing element that transforms the input streams into sewhereas a mixed-integer linear model (MILP) is utilized for the
eral products. The general model of a typical unit is representesicheduling problem. The proposed decomposition technique for
by a set of variables such as feed flowrates, feed propertiefe entire optimization problem is based on solving first the
operating variables, product flowrates and product propertiesion-linear model aiming at generating the optimal solution of
The main objective is to maximize the total profit of the refin- the blending problem, which is then incorporated into the MILP
ery, taking into consideration sales revenue, feed costs and tlseheduling model as fixed decisions for optimizing only resource
total operating costWenkai et al. (2002proposed a solution and temporal aspects. In this way, the solution of a large MINLP
algorithm that iteratively solves two mixed-integer linear pro-model is replaced by sequential NLP and MILP moddia.
gramming (MIP) models and a non-linear programming (NLP)and learapetritou (2003roposed a solution strategy based on
model, resulting in better quality, stability, and efficiency thandecomposing the overall refinery problem in three subsystems:
solving the MINLP model directlyKelly and Mann (2003a,b) (a) the crude-oil unloading and blending, (b) the production unit
highlight the importance of optimizing the scheduling of anoperations, and (c) the product blending and lifting (Siee 1).
oil-refinery’s crude-oil feedstock from the receipt to the charg-The first sub-problem involves the crude oil unloading from
ing of the pipestills. The use of successive linear programmingessels, its transfer to storage tanks and the charging schedule
(SLP)was proposed for solving the quality issue in this problemfor each crude oil mixture to the distillation units. The second
More recentlyKelly (2004)analyzed the underlying mathemat- sub-problem consists of the production unit scheduling, which
ical modeling of complex non-linear formulations for planning includes both fractionation and reaction processes. Reactions
models of semi-continuous facilities where the optimal operasections alter the molecular structure of hydrocarbons, in gen-
tion of petroleum refineries and petrochemical plants was mainlgral to improve octane number, whereas fractionation sections
addressed. separate the reactor effluent into streams of different proper-
In addition, the off-line blending problem, also known asties and values. Lastly, the third sub-problem is related to the
blend planning has been addressed through several optimizatisocheduling, blending, storage and lifting of final products. In
tools. The main purpose here is to find the best way of mix-order to solve each one of these sub-problems in the most effi-
ing different intermediate products from the refinery and someient way, a set of mixed-integer linear models (MILPS) were
additives in order to minimize the blending cost subject to meetdeveloped, which take into account the main features and dif-
ing the quality and demand requirements of the final productdiculties of each case. In particular, fixed product recipes were
The term quality refers to meeting given product specificationsassumed in the third sub-problem, which means that blending
Rigby, Lasdon, and Waren (1998jscussed successful imple- decisions were not incorporated into this model. The MILP for-
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Fig. 1. lllustration of a standard refinery system.
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mulation was based on a continuous time representation arstheduling problems. This second issue is also known as the

on the notion of event points. The mathematical formulationoff-line blending problem and takes into account variable prod-

proposed to solve each sub-problem involves material balanagct recipes and property specifications such as minimum octane

constraints, capacity constraints, sequence constraints, assignumber, maximum sulfur and aromatic content, etc. The main

ment constraints, demand constraints, and a specific objectiabjective is to produce on-spec blends at minimum cost, where

function. Continuous variables are defined to represent flowratggroduct specifications are stringent and constantly changing in

as well as starting and ending times of processing tasks. Binampost of the markets. Product qualities are usually predicted

variables are principally related to assignment decisions of taskirough complex correlations that depend on the concentra-

to event points, or to some specific aspect of each sub-problertion and the properties of the components used in the blend.
From the above review it can be seen that a variety of matheddepending on the product property, non-linear correlations may

matical programming approaches are currently available to thimclude linear, bilinear, trilinear and exponential terms. Some

short-term blending and scheduling problem. However, in ordeof these non-linear terms can sometimes be linearized (see

to reduce the inherent problem difficulty, most of them relyAdams & Sherali, 19900ral & Kettani, 1992. The general

on special assumptions that generally make the solution inefarocess topology corresponds to a multi-stage system composed

ficient or unrealistic for real world cases. Some of the commorof component storage tanks, blend headers and product storage

assumptions are: (a) fixed recipes for different product gradetanks. Specifically, we assume that we are given the following

are predefined, (b) component and product flowrates are knowitems:

and constant, and (c) all product properties are assumed to be lin-

ear. On the other hand, more general mixed-integer non-linear(1) A predefined scheduling horizon, typically 7-10 days.

programming (MINLP) formulations are capable of consider- (2) A set of intermediate products from the refinery (compo-

ing the majority of the problem features. However, as pointed nents).

out by several authors solving logistics and quality aspects for(3) A set of dedicated storage tanks with minimum and max-

large-scale problems is not possible in a reasonable time with  imum capacity restrictions.

current mixed-integer non-linear programming (MINLP) codes (4) Initial stocks for components.

and global optimization techniques (Jia and lerapetritou, 2003;(5) Component supplies with known flowrates.

Kelly and Mann, 2003a,b). The major issue here is related tonon-(6) Properties or qualities for components.

linear and non-convex constraints with which the computational (7) Minimum and maximum flowrates between component

performance strongly depends on the initial values and bounds tanks and blend headers.

assigned to the model variables. Taking into account the major(8) A set of final products with predefined minimum and max-

weaknesses of the available mathematical approaches, the major imum quality specifications.

goal of this work is to develop a novel iterative mixed-integer (9) A set of equivalent blend headers working in parallel that

linear programming (MILP) formulation for the simultaneous can be allocated to each final product.

gasoline short-term blending and scheduling problem of oil{10) A set of correlations, mostly non-linear, for predicting the

refinery operations, which is generally agreed as being the most  values of properties of each blend.

important and complex subproblem. Its importance comes froni11) Minimum and maximum component concentrations in

the fact that gasoline can yield 60—70% of total refinery’s profit. final products.

On the other hand, the complexity arises from the large num¢12) Preferred product recipes.

ber of product demands and quality specifications for each final

product, as well as the limited number of available resources that The goal is to determine:

can be used to reach the production goals. Non-linear property

specifications based on variable and preferred product recipga) the assignment of blenders to final products;

are effectively handled through the proposed iterative lineafb) the inventory levels of components and products in storage

procedure, which allows the model to generate optimal, or near-  tanks;

optimal solutions with modest computational effort. (c) thevolume fraction of componentsincluded in each product;
(d) the total volume of each product;
2. Problem statement (e) the pumping rates for components and products;

(f) the optimal timing decisions for production and storage
The gasoline short-term blending and scheduling problem tasks.

takes into account two major issues. The first one is related
to aspects of production logistics, which mainly involves mul-  The objective is to maximize the production profit while
tiple production demands with different due dates, inventorysatisfying the process, operations and maintenance constraints,
pumping constraints for products and components, as well a#al product demands and quality specifications. The objec-
different logistic and operating rules. Most of these features aréve function includes the total product value, the raw material
part of typical scheduling problems and are usually modeledost, inventory cost and penalties for deviation from preferred
as discrete and continuous decisions in an optimization frameecipes. Additional terms involving slack variables for handling
work. On the other hand, the second issue is the productiomfeasible solutions can also be incorporated into the objective
quality, which represents an additional difficulty for standardfunction to provide effective solutions for all circumstances. The
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next section describes a simultaneous optimization approach fenlumetric flow of component being transferred to produgpt

the blending and scheduling operations involved in this problemduring the time slot whereasFlﬁt denotes the volumetric flow
of productp being blended during each time stoThe continu-

3. Proposed optimization approach ous variablesVi”, and Vlf , define the amount of component and
product being stored at each time paintespectively. Finally,

The main features of the proposed approach can be summthe discrete Val’iablﬁp,t defines which products are allocated to

rized as follows: blenders in each time slatAdditional continuous and discrete

variables can be included into the mathematical model to tackle

A multi-period optimization model is used that is able to dealparticular problem characteristics and operating constraints.
with multiple product demands with different due dates and It is worth mentioning that both the discrete and the con-
quality specifications. tinuous time formulations are focused on a part of the details

« Discrete or continuous time domain representations can baround real-world problem logic constraints. A comprehensive
used, depending on the problem characteristics. The ter@numeration of most of them can be foundkelly and Mann
“time slot” is used in this paper to represent a time inter-(2003a,b) When some features such as inter-temporal trans-

val with known duration and position for discrete time, andfer of logic are addressed (i.e. run-lengths, mixing-delays, etc.),
unknown duration and position for continuous time. the MILP computational effort can be significantly increased,
e Linear approximations are used together with an iterative proParticularly when more than 20 time-periods or time-slots are
cedure to get better predictions of all product properties, evefefined in the model.
those naturally non-linear such as the octane number.
e The production logistics and quality specifications are solved- Off-line blending problem
simultaneously.
e Fixed or variable product recipes are specified, as well as Before describing the proposed MILP formulation, we
minimum and maximum limits on component concentration.Present in this section the main features of the iterative scheme
e Binary variables are used to represent assignment decisiorf®! Predicting product properties for the blending problem.

as well as any other logistic or production rule found in the A significant number of gasoline properties can be directly
problem. computed by using a volumetric average as shown inEq.

PRyti = > Phiivl,,. Vp.k.t 1)

i

Inorderto describe the main model variablég, 2illustrates
a simple example of a gasoline blending and scheduling prob-
lem, which has traditionally been treated as two separate prolwherev/ , , is the volume fraction of componehin productp
lems. The solution of the scheduling problem defines the way iin time slotz, PR, defines the exact value of the propekty
which the products are processed with respect to time and avafler productp in time slotr and py is the value of the property
able equipment. On the other hand, the solution of the blending for componeni. The volume fraction Variablei’,,,,, is linked
problem defines how the available components are blended @ the volumetric flowrate Variab"*{p,z and Flf!t through the
mixed together to produce on-spec products with minimum coshon-linear equality2): '

The key decision variables involved in a standard problem

X I i i 1 P _ rl
are the following. The continuous variablg/ ,, defines the VipiFps =Fipr VP k1 2)
f‘—p“ —o Lo “ “
min/max product specifications
5 / i Pl'mf"p.m < Py < Pl‘m':'xp.m
fia »p—o i\p, : - pr™ e S Prpjes Spr i pke
B prmmp.kn = PTpkn,t < pr“mxp.ku
. 3
fiy -
e g S—
==
component “
[properties
- DT k1 component :  blenders product
- pri o tanks tanks
™ prl"‘kn

Fig. 2. lllustration of the meaning of the principal model variables.
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Taking into account that volumetric flowrate variables arecomputed through the iterative procedure described below
required to control inventory levels in tanks and volume fraction ;
variables are needed to predict product properties, the genergg = Zipri,ksg-V,-,p,, Vp, k t @)
mathematical model for the integrated blending and scheduling * S, ’ o
problem comprises a set of constraints with bilinear terms, even . L . .
if only linear product properties are considered. In order to pre- | nerefore, the proposed linear approximation for gravimetric
serve the linearity of the model, the original equafitycan be ~ Pl€nding is as follows:

xpressed in an alternative w multiplying it :
expressed alternative way by multiplying Bﬁt prmmFP ) Zipri,kSQFi{p,z

axp P
pkpt = sgrav, ; = prr;,k F,.. Vb, k,t (8)

PRyt Fpy = Zpri’kvl{py,F;t, Vp, k.t ()

i We want to point out that there are some complex blending
Then, equality2) can be incorporated into E(), yielding Eq. decisions (especially in crude-oil blending) that may require to

(4): explicitly define yield variables for streams within streams (see
Kelly, 2004 Kelly & Mann, 2003a,b. For example, there may
PRp’kthzir = Zpri,kFi{p,p Vp, k,t 4 be the requirement to blend to a distillate diesel sulfur quality
i

specification. Therefore, we need the diesel yield as well as the
diesel specific gravity in each component blending stream to be
Malculated endogenously. This is a higher-degree multi-linear
problem that is not addressed in this paper.
To illustrate the use of the iterative procedure and the pro-
posed linear approximatioRjg. 3shows a comparison between

Subsequently, taking advantage of minimum and maximu
product property specifications, constrai#j can be replaced
by constrain{(5), in which the variable PR, is substituted by
their respective minimum and maximum property valueﬂpr

a H .
Py )» which are known problem data: the values of the linear volumetric average, the non-linear origi-
- ; AP nal correlation and the proposed linear approximation for a real
PR Fpe < D PikFi,, < PoRFy . Vpoki () non-linear product property such as the motor octane number.
i

In this example, the blend of two components, A and B, is only

In this way, the variabl@{p, is no longer required and the considered. The final prO(_juct property is a_non-l_inear function
model remains linear. This linearization is valid only if prop- ©f component concentrations. As shownfig. 3, if 40% of

erties computed volumetrically are considered in the blending®MmPonent A is blended with 60% of component B, the values
problem. However, other gasoline properties can be approxF—’f the volumetric average and the real non-linear correlation are
mated by adding minor changes to the previous equation. F&8-5 gnd 88.74, respectivgly. This difference arises becausg all
instance, if the correlation for predicting a particular l:,roductnon-lmear terms involved in the exact motor octane correlation

property is based on a linear volumetric average plus addition&"® Notincluded in the linear volumetric average. In order to cor-
non-linear terms. such as the case of the octane number. th&ct this discrepancy, the correction factor bias is calculated and

non-linear part of the equation can be removed and replaced ed to yield a better property prediction in the next iteration.
a correction factor bigg,;, as shown in Eq(6): or this specific mixture of components the correction factor

bias is equal to 0.24. The linear approximation comprising the
pr’,?,‘;?F,it + biaSp,k,tF,f_, volumetric average together with the correction factor bias will
always predict the exact value of the property if the same compo-
< prikF!,, <piy¥F/, +bias, . Fy,. Vp.kt (6)  nentconcentration is utilized in the next iteration. Furthermore,
i

92
Thus, non-linear product properties can be approximated Property

through the linear equatio¢6), which is composed of a vol-
umetric average followed by a correction factor ‘bias’. As can
be seen, this correction factor depends on the product, prop-
erty and time slot, and it is iteratively calculated by using the

91

20

Correction factor ‘bias’ = 0.24

procedure described below. a5 L7 A

On the other hand, it is worth mentioning that some product / PPk BLEND
properties such as oxygen and sulfur content are blended gravi Imrmrmim g, ar 50% COMPONENT &
metrically, which means that component and product specific = ,-" _Property Value
gravities are also taken into account for the prediction, as shown §r e
in Eq.(7). In this case, sgnd sg, define the specific gravity of S
componentand producp in time slott, respectively. Given that / N )
s, is amodel variable that is not directly computed through the e 3 o i - CD"M”;';WW”MT
proposed Ilnear approaCh and Wlth the Intention Of mamtammg |—Non-linearcorrelation— « +linear volum. average* * * * linear volum. average + bias

the model’s linearity, the exact value of,sgcan be substituted
by an approximated specific gravity sgsawvhich can be easily Fig. 3. A non-linear property and the proposed linear approximation.
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it was observed that the proposed linear approximation tendsar volumetric average. The specific gravity of each product
to predict a very close value of the real property if componentind time slot is also computed. After that, the LP model is
concentrations are not significantly changed in the next iteratiosolved that includes linear approximation with the parameter
as shown irig. 3 bias, x;, for volumetric properties and the parameter sggayv
The proposed iterative procedure to solve simultaneously thior gravimetric properties. The parameter bias will be equal to
blending and scheduling problem using only linear equationgero for all linear properties that can be computed volumetri-
is shown inFig. 4 The first step is to find an initial recipe cally. For non-linear properties this parameter will converge to a
for all products. If preferred product recipes are known theynon-zero value that reflects the difference with the linear approx-
can be proposed as initial product recipes. Preferred recipes aimation. Subsequently, the solution of this problem is updated
the best alternative for blending because they satisfy all prodand the product recipes for those products meeting all specifi-
uct specifications with minimum cost. However, the use of thentations in a specific time interval are fixed. If different recipes
strongly depends on the scheduling decisions, component inveare used for the same product in different time intervals, only
tories and product demands and for this reason, they should ntitose that are feasible will be fixed. This process is repeated
be treated as fixed mixtures in a blending tool. On the otheuntil all product recipes meet the product specifications, i.e. all
hand, if preferred recipes are not defined, one possibility foproduct recipes are fixed. The main objective of this iterative pro-
generating initial recipes is to solve the LP model includingcedure is to progressively find feasible recipes for all products
only linear product properties. Once initial recipes are generwhile optimizing all temporal and resource constraints in the
ated, they provide the component volume fractions used in eacttheduling problem. The proposed method can be conceptually
blend, which can then be employed as fixed parameters in moiaterpreted as a successive LP method for the blending prob-
realistic non-linear correlations. The value predicted by the nonlem or a successive MILP model for the simultaneous blending
linear correlation and the linear volumetric average are both useshd scheduling problem. lppendix A we provide sufficient
to calculate the correction factor ‘bias’ (se&. 3). Given that  conditions under which the successive LP method is guaran-
we are dealing with a multi-period optimization problem, theteed to converge to a local solution of the blending problem.
correction factor will be calculated for all non-linear proper- These conditions are rigorous for the case that a specification
ties, products and time intervals as the difference between tha&f a non-linear property does not become active at the solution.
value predicted by the original non-linear equation and the lin\When that is not the case, the proof requires the assumption that

Generate initial product recipes

component volume
fractions in blends

Compute non-linear properties (K™*) for all products and time intervals
PR, =g(v,,) whereg(v, ,)isanon-linear correlation for predicting product

P . L :
property kand v, is the component volume fraction in the "current solution”

Compute correction factor 'bias' and specific gravity sgrav' (using current solution)
> hz‘a.\-ﬁ e g(vi..i;‘,) —f(lr,.]"{) where ,f{vw ) is the linear volur_net.nc average
sgrav,, =sg, Wwheresg, is the specific gravity of productp in time interval 1

l

Solve LP Model (blending) or
MILP Model (blending and scheduling)
(include all product properties, hiu.s'm and sgrav, )

X

component volume
fractions in blends

Compute non-linear properties (K**) for all products and time intervals
. PR_lg‘k‘: = g(vl.p,.‘ )
Fix product recipes for products on-spec

|

All products
on-spec

Integrated solution for the blending and

YESH .
scheduling problem

Fig. 4. Proposed iterative approach for simultaneous blending and scheduling.
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the non-linear properties are a weak function of the composiParameters

tions, which of course is a strong assumption. However, as ias, i
will be shown later in the paper, only few iterations are needed

to obtain a very good solution for the blending and scheduling:;
problem. Furthermore, in the section of computational resultg

we present a comparison with NLP and MINLP methods indd,
which they confirm the solutions obtained with the proposed:,
method, but at either considerable higher computational cost, or

in some cases failing to converge depending on the starting poifft
used. Thus, the proposed method is fast and reliable, providing

very good solutions, which is particularly relevant for industrial ini;

applications. ini,
lmln
p

5. Integrated blending and scheduling model " tB

A central aspect of any scheduling model is related to timing R+
decisions. Mathematical formulations can be based on eitheﬂltyi,z_a
a discrete or continuous time domain representation. The dis)lty,-Ffp
crete time representation only allows processing tasks to takfj]tys+

L . . k,p
place at certain time points, which correspond to the bound-
aries of a set of predefined time slots. The main advantage (H't S
using a discrete time grid is that mass balance and inventory
constraints are easier to handle but at the same time the SO|utiBﬂy$H
loses flexibility, unless smaller time intervals are used, which '
may significantly decrease the computational performance
the method. In contrast, continuous time representations ar .
capable of generating more flexible solutions in terms of tim- rll"’nax
. .. . . . . p.k
ing decisions, although with higher CPU time requirements. ‘-
Also, inventory and mass balance constraints are generally mopé?k ax
difficult to model since they have to be checked at any time dur'® e’;

. . . . . témn
ing the scheduling horizon in order to ensure that a feasiblédl&,
solution will be generated. Since the best choice of the timéCPip
representation strongly depends on the problem characteristics ax
and the desired solution quality, we developed a mathematicé?pr
formulation for each type of representation assuming a commol’clfJ,'f‘,',n
time grid for all resources working in parallel. Before present-sgray,
ing the proposed mathematical models the nomenclature is as
follows:

correction factor of the value of propertyof product

p in time slotz

cost of component

demand due date

demand of produgt to be satisfied at due dade
predefined ending time of time slofdiscrete time rep-
resentation)

constant flowrate of component

time horizon

initial inventory of component

initial inventory of producp

minimum time slot duration when it is allocated to
productp

maximum number of blenders that can be working in
parallel in time slot

penalty cost for excess of componeirt productp

penalty cost for shortage of componeint productp

penalty cost for a deviation from the minimum speci-
fication for property in productp

penalty cost for a deviation from the maximum speci-
fication for propertyk in productp

penalty cost for purchasing componerfrom third-
party

price of producp

value of property for component

maximum value of property for productp

minimum value of property for productp
maximum flowrate of produgt

minimum flowrate of produgh

preferred concentration of componenin productp
according to product recipe

maximum concentration of componenh productp

minimum concentration of componeiin productp
specific gravity of produgt in time slotz

predefined starting time of time slot(discrete time
representation)

sp penalty cost for inventory of component
Indices sp, penalty cost for inventory of produgpt
d due dates of product demands Vimx maximum storage capacity of component
; intermediates or components V,.max minimum storage capacity of componént
k properties or qualities V" maximum storage capacity of prodyct
p final products or gasoline grades vy minimum storage capacity of prodyet
t time slots
Variables
Sets Ap binary variable denoting that prodyetis blended in
D set of product due dates o imeslots o _
i set of intermediates to be blended Dy, s_hortage of componemlihat is used for produgt in
K set of properties for intermediates and products . time slotr according to th? preferred produc.t recipe
Kn.  setof properties that are predicted with non-linear cor-DY,,  excess of componenthatis used for produgtin time
relations slot¢ according to the preferred product recipe
P set of final products Dl?,:n,t deviation from the minimum specification of property
T set of time slots k for productp in time slotz
T, set of time slots postulated for the sub-interval endinngN deviation from the maximum specification of property

at due date/ (continuous time)

k for productp in time slot¢
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E; ending time of time slot (continuous time representa- 6.2. Product composition constraint
tion)
Fi{p’[ amount of componertbeing transferred to produpt Every final product or gasoline gragés a blend of different
during time slotr components, as expressed by constra{@D):
FP amount of producp being blended during time slot
PR,, . exact value of the properfyfor productp in time ¢ Y L, =Fp. Vpi (10)
Sit amount of componeritto be purchased in time slot i
S; starting time of time slot (continuous time represen- Note that a significant reduction in the number of continuous
tation) variables can be obtained if ELO) is deleted from the model
vi”p’, volume fraction of componeritin productp at timer andF,ﬁ, is replaced byZ,.F,{p’t. However, in order to make the
Vi{t amount of componeritstored at the end of time slot  model easier to understanﬂlft has been included in all model
V’i{, amount of componeritstored at the beginning of time  €quations.
slot¢
V’;’ 4 amount of producp stored at due daté 6.3. Minimum/maximum component concentration

V;z amount of producp stored at the end of time slot _ . .
' In order to satisfy product qualities and/or market conditions,

upper and lower bounds can be forced on the component concen-
tration for specific gasoline grades. Then, consti@dihfensures
that product composition will always satisfy the predefined com-

OB At
In this section, we present an MILP model that assumes th&tonent specifications. Parametersitfpand reif™ define the

the entire scheduling horizon is divided into a finite number of MNiMumM/maximum concentration of componérior product
consecutive time slots that are common for all units and can b "eSPectively:

allocated to different products, i.e. blending tasks. The propose,d;pmlnFP < Fl[ . < rcpmax o Yip.t (11)
model has the following features: P P

6. Discrete time representation

Itshould be noted that a fixed recipe for a particular proguct
can also be taken into consideration by fixing the values (?le’cp

1. A discrete time domain representation is used where thand rcif2* to the predefined concentration of componifur
scheduling horizon is divided into a set of consecutive tlmGOVOdUCtP However, the use of fixed recipes should be avoided

slots. unless they are the only possibility to produce a particular prod-
2. Equivalent blenders working in parallel are available for dif-UCt- As & better option, preferred recipes can be proposed as an
ferent product grades. initial solution of the proposed iterative procedure. In this way,

3. Aparticular product demand can be satisfied by one or morée generation of infeasible solutions will be avoided.
time slots whenever they are allocated to this product and

finished before the product due date. 6.4. Minimum/maximum volumetric flowrates for products
4. Variable product recipes are considered and product proper- _ - o .
ties are predicted by linear correlations. Constraint(12) specifies that minimum and maximum vol-
5. Constantflowrate of components is assumed during the entitgmetric flowrates must be satisfied when progué blended
scheduling horizon. during time slot. Due to the fact that a constant product flowrate
6. Constantflowrate of products is assumed during the allocate§ assumed in this work, the volumetric flowrate can be computed
time slot. by multiplying the upper and lower flowrates by the time slot

duration whenever produgt is allocated to a particular time
slotr (4,:=1). Moreover, since a discrete time representation
Model constraints and variables are introduced below. IS used, the time slot duration is a known parameter computed
through the predefined startingand ending timesg, of each
time slotz. It should be noted that if produptis not processed

during time slot (4, = 0), the volumetric flowrate will be also
6.1. Assignment constraint equal to zero:

Constraint(9) defines through the binary variablds, the — rat€)"(e; — s)Ap, < Fy, < rat€™(e; — s)Apr,  Vp.i
final productg to be processed in time slotGiven that a set of (12)
equivalent blenders are available to produce different gasoline
grades simultaneously? specifies the maximum number of
units that can be working in parallel during time siot 6.5. Material balance equation for components

5 Given that a discrete time representation allows the blend-
> Api<np. Vi (9)  ing tasks to start and finish at the boundaries of the time slot
allocated, inventory limits have only to be checked at the end of
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eachtime slot. Then, as expressed by const(a8)ithe amount including variable recipes and non-linear properties:
of component being stored in tank at the end of time sias i op . AP
equal to the initial inventory of componehplus the compo- Pk Fp.r < Zpri,kFi,p,t <P F, YDkt 17)
nent produced up to the end of time siainus the component i
transferred to blenders up to the end of time slot _
N prnEP <N o F! L 4 bias . Fl
Vi, =ini; + fiee— > Fl, .. Vit (13) Pk pit Zl: ik Fi e paFip
p.t'<t < pHIR%XF:,, Vp, k, t (17/)
where inj is the initial inventory of componemntt timet = 0, the

parametef; specifies the constant production rate of component : _ _ o
i and e, defines the ending time of time slat Given that a Inturn, Eq.(17”) defines the proposed linear approximation

discrete time representation is used, both parameters are knofff those product properties that are gravimetrically predicted:

in advance. il
rn'"nFP < ZiprlvkplF‘i,p,t
p p.k " pt =
sgrav, s

. Note that constraintél7), (17) and (17) are only required
Constraint(14) imposes lower/upper bound™" andV/™®  for those gasoline grades that can be produced using variable
on the total amount of componeitieing stored in a storage tank recipes. If a fixed recipe is enforced, product properties must be
during the scheduling horizon. Given that constant componergatisfied in advance through the predefined component concen-
flowrates are assumed, a perfect coordination between the prrations.
duction of components and final products is required to satisfy
the storage constraints through the entire scheduling horizon:6.10. Multiple product demands

< piF,

b YDkt @ar

6.6. Component storage capacity

min 1 max .
Vil = Vi = Vi, Vit (14) Refinery operations typically require that multiple demands

_ ‘ forthe same gasoline grade be satisfied during the entire schedul-
6.7. Material balance equation for products ing horizon. Constraintl8) guarantees that a sufficient amount

. ] of productp will always be available to satisfy each product
Constraint(15) computes the amount of produgtbeing  gemand dgl:

stored in tank at the end of time slotaking into account the

initial inventory, production and demands of prodpct ini, + ZF:z > dep’d,’ Vp,d (18)
.. t<d d'<d
V[it =inip + ZF,Z/ - dep,d’ Vp,t (15)
vt d=t 6.11. Objective function (maximize net profit)
0.8. Product siorage capacity While satisfying all quality and logistic issues, the main

objective of the scheduling problem is to maximize the net profit

A minimum safety stock and a finite storage capacity isdefined as the total product value minus the total component cost:
assumed for final products:

. P I
VIS VL S VIR Y (16) mad > (pF - ZF) (19)
t p i
6.9. Minimum/maximum product qualities The formulation can also accommodate alternative objective
functions. An example is Eq20), where penalties related to

Assuming that properties are volumetrically computed, contomponent and product inventories has been included in order
straint(17) guarantees that the value of propeirfipr productp o also reduce storage costs:

in time slotr will always satisfy minimum and maximum prod-

uct specifications. To maintain the model’s linearity, propérty

is not directly computed and bounds are only imposed on eacWaXZZ (p”F;»’ B Zc,' F"{PJ) B ZZSpf’ Vlf’

property. Otherwise, non-convex bilinear equations would be ~ * 7 ! Pt

generated in the model, which would then become non-linear. _ZZSH ViIt (20)
Although this linearization is only valid for properties volu- .1 ’

metrically computed, the original equati¢hr) can be slightly

modified as Eq(17) to account for real-world product prop-

erties, as described in Sectidrwith the use of the parameter 7. Continuous time representation

bias, «,. The bestvalue of this parameter can be obtained through

the proposed iterative procedure. In this way, the MILP mathe- The model introduced in the previous section relies on a dis-
matical model is able to effectively deal with the quality issue,crete time domain representation. As an alternative option, the
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continuous time formulation that is presented in this sectioré. A constant flowrate of product is assumed during the allo-
aims at generating more flexible schedules capable of maximiz- cated time slot.
ing the plant performance without significantly increasing the
model size. However, special attention must be paid to the lim- When the mathematical model is based on a continuous time
ited storage capacity since continuous time representation tendemain representation, starting and ending times for the time
to make the modeling of inventory constraints more difficult.slots are new continuous decision variables. For that reason,
The main idea here is first to partition the entire time horizonpart of the original constraints used for the discrete time repre-
into a predefined number of sub-intervals. The length of eackentation must be updated in order to maintain the linearity of
sub-interval will depend on the product due dates. For instancehe model as well as to account new problem features. In this
the first sub-interval will start at the beginning of the schedulingsection we describe the set of constraints that must be modified
horizon and finish at the first product due date. The second oras well as the new ones to be added. Constraints that are not
will be extended from the first up to the second product due dateequired to change must be included into the model in the same
A similar idea is applied to the next sub-intervals. Therefore, thavay they were presented in the previous section, such as Egs.
number of sub-intervals will be equal to the number of produc{9)—(11), (14)—(17), (17, (17") and (19)
due dates and the starting and ending time of each one will be
known in advance. 7.1. Minimum/maximum volumetric flowrates for products
Once the sub-intervals are defined, a set of time slots with
unknown duration are postulated for each one. The number Constraintg12) and (12) replace original constrair(L2)
of time slots for each sub-interval will depend on the sub-when a continuous time representation is used. When prpduct
interval length as well as the grade of flexibility desired foris not allocated to time slaf the binary variable, , is equal to
the solution. Variable starting and ending times of time slotszero and constrair(tl2’) enforces the variable“;t to be equal
are introduced as new model continuous variables that allow the zero as well. On the other handl,, will be equal to one
production events to happen at any time during the schedulvhenever produgi is processed during time slotin this case,
ing horizon.Fig. 5 illustrates the main features of the pro- constrain{12’) becomes redundantand constrélr®) imposes
posed continuous time domain representation. In this case, fowfiinimum and maximum volumetric flowrates depending on the
product demands with different due dates are to be satisfieéime slot duration:
which means that four sub-intervals are predefined. Then, nine . .
time slots can be postulated for the entire scheduling horifat€," (E; — S;) — rate)"" (1 — Ap,)
zon, where two time slots are defined for each one of the P
first three sub-intervals whereas three are postulated to the last— Fpy = 1@ (E = S), Vp.1 (12)
one.
The proposed model has the following features: F;,z - rat%‘a"hAp,,, V.1 (12
1. A continuous time domain representation is used where th
scheduling horizon is divided into sub-intervals and a set o
time slots with unknown duration and position are postulated
for each one.
2. Equivalent blenders working in parallel are available for dif-
ferent product grades
3. Aparticular product demand can be satisfied by one or morB
time slots whenever they are allocated to this product an
finished before product due date.
4. Final product properties are based on a volumetric averag%o
and a correction factor computed through the proposed |terVi{t —ini; + fiE, — Z F,'Ip,ﬂa Vi, t (13)
ative process.

.2. Material balance equation for components

To ensure that only feasible solutions are generated, the
amount of component stored in tank has to be checked not only
atthe end but also at the beginning of each time slot. To make this
ossible, a new variabl\é/,{, is included into the model and the
riginal equatior{13)is replaced by constrainf&3) and (13).

he same idea for computing the inventory of components is
plied to these new constraint:

JH<t
5. A constant flowrate of components is assumed during the P
entire scheduling horizon. V/il.t =ini; + f;8, — Z Fi{p,t” Vi, t (13"
p.r'<t

D, D g Note that despite the fact thAt andS; are model variables,
both constraints remain linear because a constant production rate
I | f; is assumed for the components.
]

[

>

/y—'—‘—“:"

time
; - . s T S i ,wf 7.3. Component storage capacity
SLOTS An additional constraint(14) is required to impose

Fig. 5. Proposed continuous time representation. lower/upper boundS’imin andV/"®on the total amount of com-
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ponenti being stored in tank at the beginning of time slot imposes that they must end before due @at&éhe main goal
min max ) ' of this assumption is that neither additional variables nor new
Vit =V, = ViR Vit (14)  constraints are required to establish which time slots can satisfy
a specific product demand. As a result, more flexible schedules
7.4. Material balance equation for products can be obtained without increasing the complexity of inventory

. . ) constraints:
Constrain{15) computes the inventory of prodycavailable

right after satisfying the demand of prodyctaking place at Si=d—1, Viely (24)
due dated. In this way, a minimum product safety stock can be
guaranteed at any time during the scheduling horizon, even aftéf; <d, VieTly (25)
a product lifting is carried out:
V/[I;d =ini, + ZF;J — dep,d’» Vp,d (15) 7.9. Time slot assigment

t<d d'<d

Constraint(26) imposes an order for using the set of prede-
Constrain{16) explicitly defines the lower bound onthe new fined time slots. In other words, a time slot 1 can be only

inventory variable: allocated to a produgt whenever the previous time slot within
min the same sub-interval has been used:
vimn <y Vp.d (16)
> Apiy=npY Aps VA (tt+1)eTy (26)
7.5. Set of time slot timing constraints p p

Instead of defining starting and ending times of time slotg Tyeatment of infeasible solutions
as fixed parameters, in continuous time representation models
these decisions are treated as additional continuous variables to The short-term blending and scheduling of oil-refinery oper-
be optimized. In order to allow more flexible solutions and avoidations is a very complex and highly constrained problem, where
overlapping time slots, a correct order and sequence betweesven feasible solutions may be difficult to generate in some
postulated time slots must be established through the next set eircumstances. For that reason, in this section we present an

constraints. additional set of variables and equations that defines penalties
that can be added to the objective function of the proposed model.
7.6. Time slot duration These penalties can partially relax some hard problem specifi-

cations that can generate infeasible solutions when real world
Constraint(21) defines a minimum time slot duration when problems are addressed.
productp is allocated to time slat It is generally used to model
an existing operating condition, but at the same time permitS.1. Penalty for preferred recipe deviation
eliminating schedules using very short time slots, which are usu-

ally inefficient in practice: If a preferred combination of components is defined for a
min particular product through the parameter;ggthe following
Ei =S = 1," Aps, Vpit (21)  constraints can be included in the model to try to use the desired
To ensure that duration of a slot is zero if it is not used, Eq€cipe whenever it is possible:
(22)is included into the model: rep, FL,+ DR > Fipi Vi poi 27)
— S <hY Aps Vi (22)
reppFly — DR < Fipa Viop.t (28)
7.7. Time slot sequencing whereDRp and whereDRp define the excess and the shortage

of component that is used in produgtin time slotz, according
Constraint(23) establishes a sequence between consecutivie the preferred product recipe. Constra(B®) penalizes the
time slotsr andr + 1: slack varrablesDR ; and D, in the objective to ensure that
E < S¢+1), Vi (23) deviations from the preferred recipe are minimized:

penalty= "> (pltyR, DR, + pltyR, DR, ) (29)
7.8. Sub-interval bounds t p i

The setlT,; comprises all time slots that are postulated for a8.2. Penalty for minimum/maximum specification deviation
sub-interval related to a particular due ddté& his sub-interval
begins at the previous due date- 1 and finishes at due dade If desired product qualities cannot be fully achieved, and at
Constraint(24) defines that time slots pre-allocated to this sub-the same time, they can patrtially be violated for certain products,
interval must start after due date- 1 whereas constrain(25)  the following constraints can be used in order to minimize the
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deviation: the relative change in the bias parameter be less or equal than a
i specified tolerance.
progy i Fp — D,i” < prikF!,.. Vp.kt (30)
i
progy ¥ F/, + Dfp,t > Zpri,k Fl,,. Vp.ki (31) 9. Numerical results
i

) ) s . The proposed discrete and continuous time MILP mod-
where the continuous Va”ablég,;,z andDp , , define avalue  g|s can be solved using the iterative procedure outlined in
that, in some way, represents the deviation from the minigig 4for the simultaneous blending and scheduling operations.
mum and maximum specification for propektyrespectively.  The performance of the proposed MILP-based approach was
If property k for productp is between minimum and maximum tested with several real-world examples. The data are shown in
specification values, both variables will be equal to zero. Thergples 1 and 2Note that from the 12 product specifications

corresponding objective penalty terms are shown in(&2j shown inTable 2 properties P1, P2, P8 and P12 are non-linear,
lty— itvS" pS’ tvS_ pS~ 32 Whlllethe restare linear. In the proposed iterative approach, prop-
penalty Zzp:zk:(p Yic.p D p,e + PV, DE 1) 32) " erties P1 and P2 are estimated through(fE@) whereas P8 and

P12 are computed in E¢L7’) (gravimetrically predicted). The
basis of the example comprises nine intermediate products or
components from the refinery, which can be blended in differ-

A common source of infeasible solutions is the lack of a min-€Nt Ways to satisfy multiple demands of three gasoline grades
imum amount of intermediate required to satisfy either prede‘-"”th different specifications over an 8-day scheduling horizon.

fined component concentrations or certain market specificationd Welve key component and product properties are taken into
In this case, intermediate products can be purchased at highgpnsideration for solving the blending problem, where the first
cost from a third-party. The continuous varialsje defines the ~ €1ght can be predicted by a linear volumetric average whereas
amount of intermediateneeded in time slat which allows to the remainder is based on non-linear correlations. All the infor-
relax minimum inventory constraints: mation about components such as cost, constant production rate,
initial, minimum and maximum stocks and properties is shown
VZ, = ini; + prode; — Z Fi{p’,/ + Sis, Vit (33) in Table 1 Product data including price, requirements, inven-
pr'<t tory constraints, rate, recipe limits and specifications are given
in Table 2 Dedicated storage tanks with limited capacities for
components and products and three equivalent blend headers
working in parallel are available in the refinery. The main goal
penalty= ZZ(pnyiSHSm) (34)  istomaximize the total profit (see Ed.9)), considering compo-
T nent cost, product values and different penalties for component
It should be noted that for the case of infeasible specificationshortages and out-spec products. Note that no inventory costs
the stopping criterion of the iterative procedure should be thatvere considered.

8.3. Penalty for intermediate shortage

The penalty ternf34)is directly proportional to the compo-
nent purchase cost:

Table 1
Component data
Component
C1 c2 C3 C4 C5 Cc6 c7 C8 Cc9
Cost ($/bbl) 24.00 20.00 26.00 23.00 24.00 50.00 50.00 50.00 50.00
Prod. rate (Mbbl/day) 15.00 33.00 20.00 14.00 18.00 10.00 0.00 0.00 0.00
Initial stock (Mbbl) 48.00 20.00 75.00 22.00 30.00 54.00 12.00 20.00 15.00
Min stock (Mbbl) 5.0 5.0 5.0 5.0 5.0 5.0 0.0 0.0 0.0
Max stock (Mbbl) 100.00 250.00 250.00 100.00 100.00 100.00 100.00 100.00 100.00
Property
P1 93.00 104.00 104.90 94.80 87.40 118.00 87.30 95.20 93.30
P2 92.10 91.90 91.90 81.50 86.10 100.00 79.50 85.80 81.90
P3 0.7069 0.8692 0.6167 0.6731 0.6540 0.7460 0.7460 0.8187 0.7339
P4 3.60 1.00 100.00 94.90 91.50 15.00 0.00 1.30 34.30
P5 16.30 4.50 100.00 97.10 95.50 100.00 0.00 6.00 57.10
P6 94.30 93.50 100.00 100.00 100.00 100.00 0.00 93.90 95.90
P7 35.00 22.70 351.10 117.10 93.00 31.30 63.30 16.00 52.40
P8 0.007 0.00 0.00 0.009 0.0002 0.05 0.0063 0.1805 0.057
P9 0.00 88.60 0.00 2.30 0.20 0.00 43.98 65.30 21.30
P10 0.00 0.1 61.30 48.90 36.00 0.00 1.04 0.60 33.30
P11 0.00 3.30 0.00 1.10 0.10 0.00 3.33 0.90 0.80

P12 0.00 0.00 0.00 0.00 0.00 15.40 0.00 0.00 0.00
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Table 2
Product data
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Product

G1 (price ($/bbl)=31.00)

G2 (price ($/bbl)=31.00)

G3 (price ($/bbl) =31.00)

MIN MAX LIFT MIN MAX LIFT MIN LIFT
Requirement (Mbbl)
Day 1 5.00 45.00 10.00 5.00 50.00 12.00 5.00 50.00 10.00
Day 3 5.00 50.00 25.00
Day 4 5.00 45.00 25.00 5.00 50.00 23.00
Day 5
Day 7 5.00 45.00 30.00
Day 8 5.00 45.00 10.00 5.00 22.00
Inventory (Mbbl) 5.00 150.00 5.00 150.00 5.00 150.00
Rate (Mbbl/day) 5.00 45.00 5.00 50.00 5.00 50.00
Product
G1 (price ($/bbl) =31.00) G2 (price ($/bbl) =31.00) G3 (price ($/bbl) =31.00)
MIN MAX MIN MAX MIN MAX
Recipe (%)
C1 0.00 22.00 0.00 25.00 0.00 25.00
Cc2 0.00 20.00 0.00 24.00 0.00 24.00
C3 2.00 10.00 0.00 10.00 0.00 10.00
C4 0.00 6.00 0.00 23.00 0.00 23.00
C5 0.00 25.00 0.00 25.00 0.00 25.00
C6 0.00 10.00 0.00 10.00 0.00 10.00
Cc7 0.00 100.00 0.00 0.00 0.00 0.00
C8 0.00 100.00 0.00 0.00 0.00 0.00
C9 0.00 100.00 0.00 0.00 0.00 0.00
Specifications
P1 95.00 98.00 98.00
P2 85.00 88.00 88.00
P3 0.72 0.775 0.72 0.775 0.72 0.775
P4 20.00 50.00 20.00 48.00 22.00 50.00
P5 46.00 71.00 46.00 71.00 46.00 71.00
P6 85.00 85.00 85.00
P7 45.00 60.00 45.00 60.00 60.00 90.00
P8 0.015 0.015 0.008
P9 42.00 42.00 42.00
P10 18.00 18.00 18.00
P11 1.00 1.00 1.00
P12 2.70 2.70 2.70

Four different examples were solved with the purpose of analated for each one of the six subintervals defined by the product
lyzing the strong interaction between blending and schedulinglue dates.
decisions. In order to guarantee that feasible solutions are found,
slack variables for property deviations and intermediate short9.l. Example 1 (blending problem)
ages were included in all cases, which were null for all solutions
generated. Example 1 is only focused on the blending problem Example 1 deals with a single-period blending problem of
and its solution is used as initial product recipes for the otherthree products (G1-G3). The main goal is to find the best or
Examples 2—4 are solved using the proposed model with threferred’ recipe for each product that minimizes blend cost
discrete and the continuous time domain representation. Wheand simultaneously satisfies all quality specifications. Preferred
the discrete time representation is used, the scheduling horizaecipes are proposed as the initial blends for the integrated blend-
is divided into six consecutive time intervals, where intervals 1jng and scheduling problems addressed in Examples 2—-4. For
3, 4 and 6 have 1-day duration whereas intervals 2 and 5 havhis particular problem, temporal, inventory and resource con-
2-day duration. In order to make a direct comparison with thestraints coming from the scheduling problem are disregarded by
continuous time formulation, the time discretization is deter-assuming that enough resources, component stocks and time are
mined based on the product due dates. For the continuous tinawailable as needed to produce 1 Mbbl of each product once.
representation, one time slot with unknown duration is postuin this way only a pure blending problem is taken into consid-
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Table 3
Iterative blending problem for product G1
Quality Min. Spec. Initial recipe (blend Iteration 1 (blend Iteration 2 (blend Max Spec.
cost ($/bbl) =29.30) cost ($/bbl) =29.97) cost ($/bbl) =29.99)
Value Value Approx Value Approx
P1 95.00 97.891 97.898 97.7737 97.893 97.8928
P2 85.00 88.417 88.470 88.0493 88.438 88.4335
P3 0.72 0.7418 0.7325 0.7324 0.775
P4 20.00 34.455 35.418 35.409 50.00
P5 46.00 46.00 50.80 50.833 71.00
P6 85.00 96.460 91.797 91.780
P7 45.00 60.00 60.00 60.00 60.00
P8 0.0378 0.0152 0.0150 0.0150 0.0150 0.015
P9 28.458 22.974 22.923 42.00
P10 14.256 15.974 16.005 18.00
P11 0.8964 1.00 1.00 1.00
P12 1.1223 1.5684 1.5488 1.5687 1.5684 2.70

eration. Component costs and properties, variable recipe limit8lend cost and product properties associated to each recipe are
and stringent product specifications are the central features to lsbown inTable 3 In addition to the exact values for each prop-
considered for solving Example 1, where it is assumed that akrty predicted by non-linear correlations, the approximations
scheduling decisions are made a priori. The proposed LP-basgdedicted by the proposed linear functions are also presented in
iterative procedure was used to find preferred recipes for allable 3 It should be noted that predictions of non-linear proper-
required products. As reportediable 13n Sectionl1on com-  ties tend to improve when the number of iterations is increased.
putational results, the problem involves 81 constraints and 12Finally, best product recipes and ‘bias’ factors for all products
continuous variables and its solution was found in 0.13 s. In thisire reported ifable 4

case, initial product recipes were generated taking into account

only linear product properties. Then the iterative procedure was.2. Example 2 (blending and scheduling with limited

performed to update the initial recipes with the purpose of satproduction)

isfying all product specifications. Preferred recipes for products

G2 and G3 were found by executing just one iteration of the pro- In Example 2 preferred product recipes found in Example
posed procedure, whereas an additional iteration was neededtowere used as the initial solution for the proposed iterative
satisfy all specifications for product G1, since the maximumMILP-based procedure. Despite using linear approximations,
specification for property P8 was violated both in the initial the proposed MILP model was capable of finding in just one
recipe as in the first iteration (sd@ble 3. In order to gener- iteration the same solution generated by non-linear optimiza-
ate feasible recipes, component concentrations for each produ@n tools. However, although the discrete and continuous time
were updated by the LP model in each iteration, which graduallyepresentations obtained the same profit in terms of component
increased the blend cost. The recipe evolution for product G1 igost and product value ($ 1,611,210), the continuous time repre-
terms of component concentration is presented indetRitiré.  sentation is able to find a schedule that operates the blenders at
(mc1]

INITIAL RECIPE ITERATION 1 ITERATION 2 EC2

ocs3

oc4

BmCS

mce

BC7

ocs

mC9

o Cs

mC7

o Ce
7.246

Fig. 6. Convergence to preferred recipe for product G1 (iterative procedure).
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Table 4
Preferred product recipes
Product
G1 (blend cost ($/bbl) =29.99) G2 (blend cost ($/bbl) =25.28) G3 (blend cost ($/bbl) =24.98)
Recipe (%)
C1 22.00 25.00 25.00
Cc2 20.00 23.947 24.00
C3 2.00 16.794 1.372
C4 4.847 25.00 16.636
C5 25.00 9.259 25.00
C6 10.00 7.992
Cc7 5.198
C8 0.958
C9 9.997
Quality
P1 97.893 (bias =1.527) 98.4122 (bias=1.5611) 98.2214 (bias =1.5208)
P2 88.438 (bias =0.659) 88.4594 (bias=1.0439) 88.3310 (bias=1.0861)
P3 0.7324 0.7305 0.7289
P4 35.409 41.3410 42.3734
P5 50.833 54.5932 54.5475
P6 91.780 97.0184 97.0150
P7 60.00 60.00 64.2465
P8 0.0150 0.0079 0.0072
P9 22.923 21.6536 21.6966
P10 16.005 17.2363 18.00
P11 1.00 1.00 1.00
P12 1.5687 1.4561 1.2597

full capacity for 2.67 days less than the discrete time represerbinary variables, and 841 continuous variables. Both models
tation, which can significantly reduce the total operating costwere solved in 0.26 s.

Product schedules based on a discrete and continuous time rep-

resentation are reported irables 5 and 6respectively. Gantt ¢ 5 Example 3 (blending and scheduling with flexible

charts and inventory evolution of components for both discret%m duction)

and continuous time representations are showRi 7. As

shown inTable 13 the discrete time formulation involves 679 ;g example evaluates in Example 2 the effect of predefining
constraints, 9 binary variables, and 757 continuous variable$,inimum and maximum requirements for each time interval.
The continuous time formulation comprises 832 constraints, 9, this way the amount to be produced in each time interval

Table 5 Table 6

Product schedule (Example 2—discrete time representation) Product schedule (Example 2—continuous time representation)

Product Period Start End Prod Lift Inventory Product Period Start End Prod Lift Inventory

Gl T1 0.00 1.00 15.02 10.00 5.02 G1 T1 0.00 1.00 45.00 10.00 35.00
T2 1.00 3.00 0.00 0.00 5.02 T2 1.00 2.00 0.00 0.00 35.00
T3 3.00 4.00 45.00 25.00 25.02 T3 3.00 4.00 45.00 25.00 55.00
T4 4.00 5.00 0.00 0.00 25.02 T4 4.00 5.00 0.00 25.00 55.00
T5 5.00 7.00 45.00 30.00 40.02 T5 5.00 5.33 15.02 0.00 40.02
T6 7.00 8.00 45.00 10.00 75.02 T6 7.00 8.00 45.00 10.00 75.02

G2 T1 0.00 1.00 50.00 12.00 38.00 G2 T1 0.00 1.00 50.00 12.00 38.00
T2 1.00 3.00 50.00 25.00 63.00 T2 1.00 2.00 50.00 0.00 63.00
T3 3.00 4.00 50.00 23.00 90.00 T3 3.00 4.00 50.00 23.00 90.00
T4 4.00 5.00 0.00 0.00 90.00 T4 4.00 5.00 0.00 23.00 90.00
T5 5.00 7.00 0.00 0.00 90.00 T5 5.00 5.33 0.00 0.00 90.00
T6 7.00 8.00 0.00 0.00 90.00 T6 7.00 8.00 0.00 0.00 90.00

G3 T1 0.00 1.00 50.00 10.00 40.00 G3 T1 0.00 1.00 50.00 10.00 40.00
T2 1.00 3.00 0.00 0.00 40.00 T2 1.00 2.00 0.00 0.00 40.00
T3 3.00 4.00 0.00 0.00 40.00 T3 3.00 4.00 0.00 0.00 40.00
T4 4.00 5.00 0.00 0.00 40.00 T4 4.00 5.00 0.00 0.00 40.00
T5 5.00 7.00 0.00 0.00 40.00 T5 5.00 5.33 0.00 0.00 40.00

T6 7.00 8.00 50.00 22.00 68.00 T6 7.00 8.00 50.00 22.00 68.00
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Fig. 7. Gantt charts and evolution of component stocks (Example 2): (a) discrete time; (b) continuous time; (c) discrete time; (d) continuous time.

becomes a model variable only restricted by minimum and maxfl) properties P1 and P2 are decreased by one for components
imum production rates. The amount of product to be lifted atC1-C3 and C6, (2) the price of G3 is increased to 31.05 $/bbl,
specific due dates is still a hard constraint to be satisfied. Thi€3) component cost is increased to 27 and 23 $/bbl for C1 and
modification allows the model to increase the total productionrC2 and (4) production rates for C1 and C2 are reduced to 13
by almost 36%, i.e. from 400.02 to 542.02 Mbbl, which repre-
sents increasing the total profit to $ 2,448,050, which is almost
a 52% increase (sebable 13. Preferred product recipes are Table 7

. L Product schedule (Example 3—discrete time representation)
used for all products and one iteration is only executed. Product

schedules based on a discrete and continuous time represerftgduct ~ Period  Start  End  Prod Lift Inventory

tion are shown inrables 7 and Brespectively. In this example 1 T1 0.00 1.00 45.00 10.00 35.00

we note that the continuous time representation needs 2.60 days T2 1.00 300  60.02 0.00 95.02
T3 3.00  4.00 0.00  25.00 70.02

less of total operating time to reach the same production level

as the discrete time modelig. 8 shows Gantt-charts and evo- ig' 2'88 388 8'88 38'83 Zg'gg

lution of. component stock for Exa_lmple 3. .The dlsc;rete time T6 700 800 4500  10.00 75.02
formulation comprises 679 constraints, 18 binary variables, and

757 continuous variables and its solution was found in 0.23 52 n 0.00 1.00 °0.00 12.00 38.00

. X - . reo S T2 1.00 3.00 0.00  25.00 13.00

The continuous time formulation comprises 832 constraints, 18 T3 300 4.00 50.00 23.00 40.00

binary variables, and 841 continuous variables and its solution T4 4.00 5.00 0.00 0.00 40.00

was generated in 0.26 s (s&able 13. T5 5.00 7.00  60.00 0.00  100.00

T6 7.00 8.00  50.00 0.00  150.00

G3 T1 0.00 1.00  50.00  10.00 40.00

9.4. Example 4 (full re-blending and re-scheduling with T2 1.00 3.00 72.00 0.00 112.00

limited production) T3 3.00 4,00 0.00 0.00  112.00

T4 4.00 5.00 0.00 0.00  112.00

. ; ; L . T5 5.00 7.00  10.00 0.00  122.00

Finally, this example deals with a modified version of the T6 200 8.00 50.00 22,00 150.00

original Example 2 where the following changes are introduced:
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Fig. 8. Gantt charts and evolution of component stocks (Example 3): (a) discrete time; (b) continuous time; (c) discrete time; (d) continuous time.

and 31 Mbbl/day respectively. All other data remain as in theRegarding the blending decisions, preferred recipes found in
original example. The main goal here is to analyze the effect cExample 1 are proposed as the initial solution. However, they
these changesin the blending and scheduling decisions. Detailbédve to be updated because some preferred recipes become
product schedules for discrete and continuous time representafeasible because of the modifications introduced. Only one
tions for Example 4 are shown fables 9 and 1Qespectively. iteration is required to modify the infeasible recipes related to

Table 8 Table 9

Product schedule (Example 3—continuous time representation) Product schedule (Example 4—discrete time representation)

Product Period Start End Prod Lift Inventory Product Period Start End Prod Lift Inventory

G1 T1 0.00 1.00 45.00 10.00 35.00 Gl T1 0.00 1.00 45.00 10.00 35.00
T2 2.80 3.00 9.00 10.00 44.00 T2 1.00 3.00 0.00 0.00 35.00
T3 3.00 4.00 45.00 35.00 64.00 T3 3.00 4.00 5.00 25.00 15.00
T4 4.00 4.80 4.00 35.00 68.00 T4 4.00 5.00 0.00 0.00 15.00
T5 6.80 7.00 9.00 65.00 47.00 T5 5.00 7.00 20.00 30.00 5.00
T6 7.00 8.00 38.02 75.00 75.02 T6 7.00 8.00 10.00 10.00 5.00

G2 T1 0.00 1.00 50.00 12.00 38.00 G2 T1 0.00 1.00 50.00 12.00 38.00
T2 2.80 3.00 10.00 37.00 23.00 T2 1.00 3.00 100.00 25.00 113.00
T3 3.00 4.00 50.00 60.00 50.00 T3 3.00 4.00 50.00 23.00 140.00
T4 4.00 4.80 40.00 60.00 90.00 T4 4.00 5.00 0.00 0.00 140.00
T5 6.80 7.00 10.00 60.00 100.00 T5 5.00 7.00 0.00 0.00 140.00
T6 7.00 8.00 50.00 60.00 150.00 T6 7.00 8.00 0.00 0.00 140.00

G3 T1 0.00 1.00 50.00 10.00 40.00 G3 T1 0.00 1.00 50.00 10.00 40.00
T2 2.80 3.00 0.00 10.00 40.00 T2 1.00 3.00 0.00 0.00 40.00
T3 3.00 4.00 50.00 10.00 90.00 T3 3.00 4.00 0.00 0.00 40.00
T4 4.00 4.80 40.00 10.00 130.00 T4 4.00 5.00 0.00 0.00 40.00
T5 6.80 7.00 10.00 10.00 140.00 T5 5.00 7.00 0.00 0.00 40.00

T6 7.00 8.00 32.00 32.00 150.00 T6 7.00 8.00 50.00 22.00 68.00




Table 10

Product schedule (Example 4—continuous time representation)

Product Period Start End Prod Lift Inventory

Gl T1 0.00 1.00 16.00 10.00 6.00
T2 1.00 3.00 0.00 10.00 6.00
T3 3.00 4.00 45.00 35.00 26.00
T4 4.00 5.00 0.00 35.00 26.00
T5 5.00 5.20 9.00 35.00 5.00
T6 7.00 8.00 10.00 75.00 5.00

G2 T1 0.00 1.00 50.00 12.00 38.00
T2 1.00 3.00 100.00 37.00 113.00
T3 3.00 4.00 50.00 60.00 140.00
T4 4.00 5.00 0.00 60.00 140.00
T5 5.00 5.20 0.00 60.00 140.00
T6 7.00 8.00 0.00 60.00 140.00

G3 T1 0.00 1.00 50.00 10.00 40.00
T2 1.00 3.00 0.00 10.00 40.00
T3 3.00 4.00 0.00 10.00 40.00
T4 4.00 5.00 0.00 10.00 40.00
T5 5.00 5.20 0.00 10.00 40.00
T6 7.00 8.00 50.00 32.00 68.00
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satisfied with a very small margin, which means that qual-

ity giveaway is also minimized through the proposed method.

Computational requirements for this example are summarized in
Table 13

10. Computational results

Different blending and scheduling problems were solved in
the previous section in order to evaluate the efficiency of the pro-
posed method. Example 1 dealt with a pure blending problem
whereas Examples 2—4 also accounted for optimal scheduling
decisions. Examples 3 and 4 correspond to modified versions of
the original Example 2 where minimum and maximum require-
ments were relaxed (Example 3) and certain changes in compo-
nent properties and cost and product prices were incorporated
(Example 4)Table 12summarizes the results for Examples 2—4,
while Table 13provides the computational statistics on the four
examples. As can be seen, the size of the MILP problems is
not very large and involves a modest number of 0—1 variables.
For this reason every single problem needs no more than 1s of
CPU time with CPLEX 8.1, which highlights the computational
efficiency of the proposed models and the iterative MILP proce-

products G2 and G3. Original preferred and updated recipegdure. In addition, a very small number of iterations were required
for these products are comparedTiable 11 As shown, the
new recipes satisfy all product specifications but at the samgeneral characteristic, it was observed that discrete time formu-
time, updated component concentrations increase the blenthtions usually have a better computational performance when
ing cost with which the profit is reduced from $ 2,448,050 compared to continuous models. On the other hand, continuous
to 1,234,490. This difference mainly arises because compdermulations are able to generate more flexible schedules that
nent costs were increased and octane numbers were reducsinificantly reduce the operating time of the available equip-

It should be noted that key properties such as P1 and P2 areent.

Table 11

Updated product recipes (Example 4)

to satisfy all product specifications in all the examples. As a

Product

G2

G3

Preferred (blend
cost ($/bbl) =25.28)

Updated (blend cost
($/bbl)=26.92)

Preferred (blend
cost ($/bbl) =24.98)

Updated (blend cost
($/bbl)=26.67)

Recipe (%)
C1 25.00 25.00 25.00 25.00
c2 23.947 24.00 24.00 24.00
C3 16.794 0.223 1.372 3.195
C4 25.00 16.09 16.636 14.869
C5 9.259 24.831 25.00 24.269
Cc6 9.856 7.992 8.640

Quality
P1 97.8204 98.0235 97.6283 98.052
P2 87.8588 88.0133 87.7294 88.0455
P3 0.7305 0.7309 0.7289 0.7285
P4 41.3408 40.831 42.3734 41.9724
P5 54.5936 54,571 54.5476 54.6305
P6 97.0184 97.015 97.015 97.015
P7 60.00 60.00 64.2473 68.1274
P8 0.0079 0.0081 0.0072 0.0074
P9 21.6533 21.6837 21.6966 21.6546
P10 17.2362 16.968 18.00 18.00
P11 1.00 0.9938 1.00 0.9799
P12 1.4562 1.5491 1.2597 1.3626
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Table 12
Summary of results
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Example Blend value (M$) Comp. stock production (M$) Comp. inventory build (M$) Total profit (M$) Profit per barrel ($/bbl)

2 12400.61 22352 11562.6 1611.21 4.03

3 16802.61 22352 7997.44 2448.05 452

4 11785 23504 12953.49 1234.49 3.25

Table 13 ‘ ‘ the component concentrations in each product may have a signif-

Model size and computational requirements icant influence on the non-linear model performance, examples

Example Binary vars, cont. vars,  CPU time lterations ~were solved considering different initial values for these key
constraints problem variables.

1 _127.81 0.13b 5 _ The analysis of th_e res_u_lts reportedﬁa_ble_ l4reveals some

2 (discrete) 9, 757, 679 0.26 1 important features. First, it is worth mentioning that both the lin-

2 (continuous) 9,841, 832 0.26 1 ear and the non-linear models were able to find the same optimal

g(d'sctr_ete) igv ;ii' ggg g-gz i solution for these examples. However, in several cases the non-

. Eg?sr;r'gfec;us) o 757 &79 053 1 linear models failed to converge due to the non-convexities in

4 (continuous) 9. 841 832 026 1 the non-linear model. An additional problem was the execution

a Seconds on Pentium IV PC with CPLEX 8.1 in GAMS 21.2.
b All scheduling decisions are predefined.

errors that arose from evaluation errors in the non-linear func-
tions. These errors are generated because the original non-linear
correlations may be not defined for the entire domain of the vari-
ables or some possible combinations of feasible values. Usually,

In order to examine the solution of the scheduling and blendnon-linear solvers have difficulty recovering after attempting an
ing problem addressed in this paper using directly the non-lineasndefined operation such as dividing by zero or raising a negative
correlations,Table 14presents the computational results for number to a real power. Although these problems can partially
Examples 1 and 2. Consideration of the original non-linear corbe solved in some cases, the required changes may compromise
relations gives rise to NLP and MINLP models, which werethe optimality of the solution. Also, it can be seenTable 14
solved by several non-linear general-purpose optimizers. Locdhat the proposed method is significantly faster than the NLP
solutions are obtained with MINOS, CONOPT, and DICOPT,solvers in Example 1, and particularly, compared to the MINLP
whereas global solutions can be obtained with BARON. Sincesolvers in Example 2. Thus, froffable 14it is clear that the

DICOPT/MINOS
DICOPT/CONOPT

Maximum allowed
Maximum allowed

Execution erfor -
Execution effor -

Table 14

Comparison with non-linear codes

Example Solver Initial component concentration (%) Objective function CPUtime
1 Proposed approach - 80.251 0.13
1 MINOS 0 Execution errér -

1 CONOPT 0 Infeasible solutidn -

1 MINOS 10 80.251 0.4

1 CONOPT 10 80.251 0.3

1 MINOS Minimum allowed Execution errdt -

1 CONOPT Minimum allowed 80.251 0.6

1 MINOS Maximum allowed Execution error -

1 CONOPT Maximum allowed Execution erfor -

2 Proposed approach - 1611.21 0.26
2 DICOPT/MINOS 0 Execution errér -

2 DICOPT/CONOPT 0 1611.21 15

2 BARON 0 1611.21 ~1000

2 DICOPT/MINOS 10 1611.21 14

2 DICOPT/CONOPT 10 1611.21 1.3

2 BARON 10 1611.21 ~1000

2 DICOPT/MINOS Minimum allowed Execution erfor -

2 DICOPT/CONOPT Minimum allowed 1611.21 1.9

2 BARON Minimum allowed 1611.21 ~1000

2

2

2

BARON

Maximum allowed

Execution error -

2 Seconds on Pentium IV PC with GAMS 21.2.

b For specified recipe.

¢ Execution errors arise from evaluation errors in the non-linear functions.
d Infeasible solutions suggest that convergence problems may arise from non-convexities of non-linear functions.
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proposed successive linear approach is fast and robust, and veryThe two following cases provide a sufficient condition to the
useful for addressing real-world cases. convergence of the successive LP procedure to a local minimum
of problem (P).

11. Conclusions Case 1. The non-linear property PR < pr7at the local

, minimum of problem (P).
An integrated MILP-based approach has been proposed to

simultaneously optimize the gasoline off-line blending and theProof. Since in this casé, =0 and(A.4) is redundant, prob-
short-term scheduling problem in oil-refinery. The method isl€ém (P) reduces to the problem given@y.1)—(A.3) and (A.6)
able to deal with non-linear product properties and variablévhich is the LP solved at the first iteration of the procedure.
recipes through a successive LP or MILP iterative proceduré"ence, ittriVia"ny"OWS that a solution to this problem is eC]UiV-
that can be used either on discrete or continuous time formulaalent to the solution of problem (P).C]

tions. Several examples representgtiyg of real vyo_rld problemg.ce 2. The non-linear property PR, < prﬁx at the local
were presented to illustrate the flexibility and efficiency of theminimum of problem (P) andsPR, )/ (3vi) = O.

proposed models and solution technique. Also, sufficient con-

ditions for the convergence of the successive LP procedure tolroof. For convenience we represent problem (P) in compact
local solution of the blending problem have been presented, 48rm as:

well as numerical comparisons with NLP and MINLP solvers (PC):

showing that the proposed method converged to the same soly-

tions, b?Jt faster aFr)ld ﬁlore reliably. ° Hin Zj:ijj (A7)
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Appendix A. On the convergence of the successive LP

method for blending operations where we assume the functigy(x) > 0 representéA.5).

The Karush—Kuhn-Tucker conditions of (PC) yield the fol-

For simplicity we consider for the blending problem the casd®Wing stationary condition:
of a single period problem and hence we drop the subsdiapt _ N o
time. The equations ifL)—(6)with a cost objective functionand + Z idtij + ZM’“"’

. i . . i € I jel
assuming only upper bound for the specifications can be written "< e
as follows: g
(P): T [gj(X*) + axjxj] —p;=0 (A.11)
maxS . FP — Fl A1l wherei;, u;, p; are the multipliers ofA.8)—(A.10), respectively.
Xp: rr Zi:zp:ﬂl hP A1) When the successive LP procedure is uged) is replaced by
i jXjtéixi <di, i€l A.12
Ss.t. F; = ZFl{P’ Vp (A2) ;aldx] +0ixi <di, 1€l ( )
i
/ ax P whereé; is treated as a constant. For this case the stationary
> PrFl, <p¥Fy, Yp,Vke Kun (A-3)  condition of the Karush—Kuhn—Tucker condition yields:
i
cj+ ) Aiaij+ ) piaij+pnidi—pj=0 (A.13)
> ptiF!, < prlPFEY + 8, F). ¥p,Vke Kn (A.4) iez,l I.EZ,Z
i

Sinces; can be set equal i(x”) at the optimum solution”,

1 g
2 his implies thafA.11) and (A.12)gre identical if §g;)/(5x;) = 0.
8,0 =max{ 0,PR,; | =2 | V. Vp Vkek A5) )10
Pk { Pk (Flﬁ’ > } P NL (A-5) Note that from(A.5) case 2 means that convergence to a
local solution of the non-linear programming problem (P) can be
Fl,.Fy >0 (A.6) guaranteed if the non-linear properties are not a strong function

) ) of the compositions. [
where in the abov&) ;y andKy represent the linear and non-

. . . [ P

linear prop(_arnes, respectlvgly, and PRF; p/Fp) represents  peferences

the evaluation of the non-linear property at the volume frac-

. I P .

tion v;x = F[’p/Fp . Also, note that the successive LP method agams, w., & Sherali, H. (1990). Linearization strategies for a class of zero-
assumes fixed values &f at each successive iteration. one mixed integer programming problen@erations Research, 38, 217.
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