‘ ! ! . UCRL-PROC-214507

LAWRENCE
LIVERMORE
NATIONAL

wsomsrony | SENSILIVILY Analysis of
Differential-Algebraic Equations and
Partial Differential Equations

L. Petzold, Y. Cao, S. LI, R. Serban

August 10, 2005

Chemical Process Control (CPC7)
Lake Louise, Alberta, Canada
January 8, 2006 through January 13, 2006

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Sensitivity Analysis of Differential-Algebraic
Equations and Partial Differential Equations

Linda Petzold and Yang Cao
Department of Computer Science
University of California
Santa Barbara, California 93106

Abstract— Sensitivity analysis generates essential information
for model development, design optimization, parameter estima-
tion, optimal control, model reduction and experimental design.
In this paper we describe the forward and adjoint methods
for sensitivity analysis, and outline some of our recent work
on theory, algorithms and software for sensitivity analysis of
differential-algebraic equation (DAE) and time-dependent partial
differential equation (PDE) systems.

I. INTRODUCTION

In recent years there has been a growing interest in sen-
sitivity analysis for large-scale systems governed by both
differential algebraic equations (DAEs) and partial differential
equations (PDEs). The results of sensitivity analysis have
wide-ranging applications in science and engineering, includ-
ing model development, optimization, parameter estimation,
model simplification, data assimilation, optimal control, un-
certainty analysis and experimental design.

Recent work on methods and software for sensitivity anal-
ysis of DAE and PDE systems has demonstrated that for-
ward sensitivities can be computed reliably and efficiently.
However, for problems which require the sensitivities with
respect to a large number of parameters, the forward sensitivity
approach is intractable and the adjoint (backward) method is
advantageous. Unfortunately, the adjoint problem is quite a
bit more complicated both to pose and to solve. Our goal
for both DAE and PDE systems has been the development of
methods and software in which generation and solution of the
adjoint sensitivity system are transparent to the user. This has
been largely achieved for DAE systems. We have proposed a
solution to this problem for PDE systems solved with adaptive
mesh refinement.

This paper has three parts. In the first part we introduce the
basic concepts of sensitivity analysis, including the forward
and the adjoint method. In the second part we outline the
basic problem of sensitivity analysis for DAE systems and
examine the recent results on numerical methods and software
for DAE sensitivity analysis based on the forward and adjoint
methods. The third part of the paper deals with sensitivity
analysis for time-dependent PDE systems solved by adaptive
mesh refinement (AMR).

II. BASICS OF SENSITIVITY ANALYSIS

Generally speaking, sensitivity analysis calculates the rates
of change in the output variables of a system which result from

Shengtai Li
Theoretical Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Radu Serban
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore,California 94551

small perturbations in the problem parameters. To illustrate
the basic ideas of sensitivity analysis, consider a general,
parameter-dependent nonlinear system

F(z,p) =0, 1)

where z € R*, p € R™, F : R™t" — R", and % is
nonsingular for all p € R™. In its most basic form, sensitivity
analysis calculates the sensitivities ‘;—If of the solution variables
with respect to perturbations in the parameters. In many
applications, one is concerned with a function of the state
variable z and parameters p, which is called a derived function,
given by g(z,p) : R™*" — RF, where k usually is much

smaller than m and n. In this case, the objective of sensitivity

analysis is to compute the sensitivities g—g. We have
dg
d_p = gaTp + gp, 2

where g, = g—g, Tp = g—;, gp = g—z. There are two methods for

obtaining the sensitivity: the forward method and the adjoint
(backward) method.
1. Forward method

Linearizing the nonlinear system (1), we obtain

Fyxp+ F, =0, 3)

where z,, is an n X m matrix. To compute Z—g, we first need to
solve m linear systems of (3) to obtain x,,. This is an excellent
method when the dimension m of parameters is small.
2. Backward method

When the dimension m of p is large, the forward method
becomes computationally expensive due to the need to com-
pute x,. We can avoid solving for z, by using the backward
(adjoint) method. To do this, we first multiply (3) by A to
obtain

M Fya, + ATF, = 0. @)
Now let A solve the linear adjoint system
N Fy = go ©)
Then g,x, = —AT F,, thus from (2)

dg

®=—V&+%. (6)

Note that we need to solve the linear equation (5) just once, no
matter how many parameters are involved in the system. The
adjoint method is a powerful tool for sensitivity analysis. Its
advantage is that when the dimension of parameters is large,
we need not solve the large system for x,, but instead only
the adjoint system (5), which greatly reduces the computation
time. Thus while forward sensitivity analysis is best suited to
the situation of finding the sensitivities of a potentially large
number of solution variables with respect to a small number
of parameters, adjoint (backward) sensitivity analysis is best
suited to the complementary situation of finding the sensitivity
of a scalar (or small-dimensional) function of the solution with
respect to a large number of parameters.

The derivation of the adjoint sensitivity method for DAEs
and PDEs follows a similar idea as above but is more com-
plicated. In this paper we will avoid the details and focus
on the introduction of the corresponding adjoint systems and
software.

III. SENSITIVITY ANALYSIS FOR DAE SYSTEMS

Recent work on methods and software for sensitivity analy-
sis of DAE systems [13], [28], [25], [26], [29] has demon-
strated that forward sensitivities can be computed reliably
and efficiently via automatic differentiation [6] in combination
with DAE solution techniques designed to exploit the structure
of the sensitivity system. For a DAE depending on parameters,

F(x7':i.7t7p) = O
{ 50) = wo(p), M

these problems take the form: find dz/dp; at time T', for j =
1,...,n,. Their solution requires the simultaneous solution
of the original DAE system with the n, sensitivity systems
obtained by differentiating the original DAE with respect to
each parameter in turn. For large systems this may look like
a lot of work but it can be done efficiently, if n, is relatively
small, by exploiting the fact that the sensitivity systems are
linear and all share the same Jacobian matrices with the
original system.

A. The Adjoint DAE

Some problems require the sensitivities with respect to a
large number of parameters. For these problems, particularly
if the number of state variables is also large, the forward
sensitivity approach is intractable. These problems can often
be handled more efficiently by the adjoint method [12]. In this
approach, we are interested in calculating the sensitivity of an
objective function

T
G(z,p) = /0 oz, p)dt, ®)

or alternatively the sensitivity of a function g(x, T, p) defined
only at time 7'. The function g must be smooth enough that
gp and g, exist and are bounded.

In [11] we derived the adjoint sensitivity system for DAEs
of index [3] up to two (Hessenberg) and investigated some

of its fundamental properties. Here we summarize the main
results.
The adjoint system for the DAE

F(t,.’lf,.’i,",p) =0
with respect to the derived function G(z,p) (8) is given by
(N F3)' = N Fp = —ga,)

where * denotes the transpose operator and prime denotes the
total derivative with respect to ¢.

The adjoint system is solved backwards in time. For index-
0 and index-1 DAE systems, the initial conditions for (9) are
taken to be A*Fj|i=r = 0, and the sensitivities of G(z,p)
with respect to the parameters p are given by

dG
dp
For Hessenberg index-2 DAE systems, the initial conditions
are more complicated, and are described in detail along with
an algorithm for their computation in [11].
For a scalar derived function g(z, T, p), the corresponding
adjoint DAE system is given by

(A1 Fs)' —

T
/ (g9 = N*E,) dt + (\ Fi)lico(z0)p. (10)
0

7F: =0, (1)
oA

where A\ denotes 37 - For index-0 and index-1 DAE systems,
the initial conditions Ap(T") for (11) satisfy (A%Fy)|i=T =
[92 — A*Fg] |t=7. We note that the initial condition Ar(T') is
derived in such a way that the computation of A(¢) can be
avoided. This is the case also for index-2 DAE systems. The
full algorithm for consistent initialization of the adjoint DAE
system is given in [11]. The sensitivities of g(z,T,p) with
respect to the parameters p are given for index-0 and index-1
DAE systems by

d T
Y = = NPt = [NPFy) + () o (oo)y.
12)
Note that the values of both A at ¢t = T and Aqr at ¢t = 0
are required in (12). If F}, # 0, the transient value of A is
also needed. For an index-2 system, if the index-2 constraints
depend on p explicitly, an additional term must be added to
the sensitivity (12).

If the objective function is of the integral form G(z,p) (8),
it can be computed easily by adding a quadrature variable,
which is equal to the value of the objective function, to the
original DAE. For example, if the number of variables in the
original DAEs is N, we append a variable z 41 and equation

m'JV-|-1 = g(m7t7p)

Then G = zn41(z, T, p). In this way, we can transform any
objective function in the integral form (8) into the scalar form
g(z,T,p). The quadrature variables can be calculated very
efficiently [25] by a staggered method; they do not enter into
the Jacobian matrix.

From [11] we know that for DAE systems of index up to two
(Hessenberg), asymptotic numerical stability in solving the

forward problem is preserved by the backward Euler method,
but only (for fully-implicit DAE systems) if the discretization
of the time derivative is performed ‘conservatively’, which
corresponds to solving an augmented adjoint DAE system,

A—F\ = 0,

A—F:x = 0. (13)

It was shown in [11] that the system (13) with respect to
A preserves the stability of the original system. Note that
the augmented system (13) is of (one) higher index than the
original adjoint system (11). This is not a problem in the
implementation since the newly high-index variables do not
enter into the error estimate and it can be shown that basic
DAE structures such as combinations of semi-explicit index-1
and Hessenberg index-2 are preserved under the augmentation.
Also, the linear algebra is accomplished in such a way that the
matrix needed is the transpose of that required for the original
system. Thus there are no additional conditioning problems
for the linear algebra due to the use of the augmented adjoint
system.

B. Sensitivity Analysis Tools

The DASPK3.0 [25], [26] software package was developed
for forward sensitivity analysis of DAE systems of index up
to two [8], [3], and has been used in sensitivity analysis
and design optimization of several large-scale engineering
problems [21], [32]. DASPK3.0 is an extension of the DASPK
software [9], [8] developed by Brown, Hindmarsh, and Petzold
for the solution of large-scale DAE systems. DASPKADJOINT,
described in detail in [24], is an extension to DASPK3.0 which
accomplishes the DAE solution along with adjoint sensitivity
analysis.

Functionality similar to that of DASPK3.0-DASPKADJOINT
is provided by the sensitivity-enabled solvers in SUNDIALS,
the Suite of Nonlinear and Differential/Algebraic Equation
Solvers [19]. cVODES [34] is an ODE integrator with sen-
sitivity analysis capabilities (both forward and adjoint), while
IDAS! provides the same capabilities for DAE systems. While
the DASPK family of solvers is written in Fortran, the SUNDI-
ALS solvers are written in ANSI-C.

Much of the challenge in writing adjoint solvers for DAE
systems stems from the requirement of handling the com-
plexities of formulation and solution of the adjoint sensitivity
system while requiring as little additional information from the
user as is mathematically necessary. Here we describe some
of the details of the implementation.

In the adjoint system (11) and the sensitivity calculation
(12), the derivatives Fy, F; and F}, may depend on the state
variables z, which are the solutions of the original DAEs.
Ideally, the adjoint DAE (11) should be coupled with the
original DAE and solved together as we did in the forward
sensitivity method. However, in general it is not feasible to
solve them together because the original DAE may be unstable

'IDAS is not part of the current SUNDIALS release, but will be provided
with a future distribution.

when solved backward. Alternatively, it would be extremely
inefficient to solve the original DAE forward any time we need
the values of the state variables.

The implementation of the adjoint sensitivity method con-
sists of three major steps. First, we must solve the original
ODE/DAE forward to a specific output time 7. Second,
at time 7', we compute the consistent initial conditions for
the adjoint system. The consistent initial conditions must
satisfy the boundary conditions of (9). Finally, we solve the
adjoint system backward to the start point, and calculate the
sensitivities.

With enough memory, we can store all of the necessary
information about the state variables at each time step during
the forward integration and then use it to obtain the values
of the state variables by interpolation during the backward
integration of the adjoint DAEs. The memory requirements for
this approach are proportional to the number of time steps and
the dimension of the state variables z, and are unpredictable
because the number of time steps varies with different options
and error tolerances of the ODE/DAE solver.

To reduce the memory requirements and also make them
predictable, we use a two-level checkpointing technique. First
we set up a checkpoint after every fixed number of time steps
during the forward integration of the original DAE. Then we
recompute the forward information between two consecutive
checkpoints during the backward integration by starting the
forward integration from the checkpoint. This approach needs
to store only the forward information at the checkpoints and
at a fixed number of times between two checkpoints.

In the implementation we allocated a special buffer to
communicate between the forward and backward integration.
The buffer is used for two purposes: to store the necessary
information to restart the forward integration at the check-
points, and to store the state variables and derivatives at each
time step between two checkpoints for reconstruction of the
state variable solutions during the backward integration.

In order to obtain the fixed number of time steps between
two consecutive checkpoints, the second forward integration
should make exactly the same adaptive decisions as the
first pass if it restarts from the checkpoint. Therefore, the
information saved at each checkpoint should be enough that
the integration can repeat itself. In the case of DASPK3.0,
CVODES, and IDAS, the necessary information includes the
order and stepsize for the next time step, the coefficients of the
BDF formula, the history information array of the previous k
time steps, the Jacobian information at the current time, etc..
To avoid storing Jacobian data (which is much larger than
other information) in the buffer, we enforce a reevaluation of
the iteration matrix at each checkpoint during the first forward
integration.

If the size of the buffer is specified, the maximum number
of time steps allowed between two consecutive checkpoints
and the maximum number of checkpoints allowed in the
buffer can be easily determined. However, the total number
of checkpoints is problem-dependent and unpredictable. It is
possible that the number of checkpoints is also too large for

some applications to be held in the buffer. We then write the
data of the checkpoints from the buffer to a disk file and reuse
the buffer again. Whenever we need the information on the
disk file, we can access it from the disk. We assume that the
disk is always large enough to hold the required information.

Various interpolation schemes can then be used to recover
the forward solution at any time (between two consecutive
check points) to be used in the generation of the adjoint
system. For example, we can store x and & at each time step
during the forward integration and reconstruct the solution
at any time by cubic Hermite interpolation. This option is
available for any of the three solvers mentioned above. The
SUNDIALS solvers also provide an alternative interpolation
scheme, based on storing only z values and then constructing
a variable-order interpolation which attempts to approximate
the polynomial underlying the linear multistep integration for-
mula®. This second option is better suited than cubic Hermite
interpolation especially for the Adams integration method (an
option in CVODES) for which the method order can be as high
as 12.

Another important issue is how to formulate the adjoint
DAE and the initial conditions so that the user doesn’t have to
learn all about the adjoint method and derive these for them-
selves. The adjoint equations involve matrix-vector products
from the left side (vector-matrix products). Although a matrix-
vector product Fpv can be approximated via a directional
derivative finite difference method, it is difficult to evaluate
the vector-matrix product vF), directly via a finite difference
method. The vector-matrix product vF, can be written as a
gradient of the function vF(z) with respect to z. However,
N evaluations of vF(z) are required to calculate the gradient
by a finite-difference method if we don’t assume any sparsity
in the Jacobian. Therefore, automatic differentiation (AD) is
necessary to improve the computational efficiency. A forward
mode AD tool cannot compute the vector-matrix products
without evaluation of the full Jacobian. It has been shown [15]
that an AD tool with reverse mode can evaluate the vector-
Jacobian product as efficiently as a forward mode AD tool can
evaluate the Jacobian-vector product. In our implementation
with DASPK3.0, we use the AD tool TAMC [15] to calculate the
vector-matrix products, while CVODES and IDAS are currently
being interfaced to the AD tool ADIC [7]. Initialization of the
adjoint DAE is quite a bit more complicated than in the ODE
case. For details, see [10] and [11]. In general, one needs to
be able to provide some information about the structure of the
problem (i.e. which are the index-1 and index-2 variables and
constraints).

IV. SENSITIVITY ANALYSIS FOR TIME-DEPENDENT PDE
SYSTEMS

Sensitivity methods for steady-state PDE problems have

been studied by many authors (see [1], [5], [16], [18], [20]).
Here we outline some recent results on adjoint methods for

ZNote that, due to the fixed-leading coefficient implementation in CVODES
and IDAS, one does not exactly recover the BDF interpolant this way, but
rather a polynomial of the same local order.

general transient PDE systems. Although many of the results
from the steady-state system can be readily extended to the
time-dependent PDE system, the time-dependent system has
some unique features that must be treated differently. For
example, apart from the boundary conditions, we now have
initial conditions that must be determined. Two important
classical fields that make extensive use of sensitivity analysis
are inverse heat-conduction problems [14] and shape design
in aerodynamic optimization [31].
Given a parameter-dependent PDE system

F(t7u7ut7UZ7uzwap) = 07 (14)

and a vector of objective functions G(z, u,p) that depend on
u and p, the sensitivity problem usually takes the form: find
dG

‘75> Where p is a vector of parameters. By the chain rule, the
P

sensitivity % is given by
4G _09Gou oG
dp Oudp Op’
If we treat (14) as a nonlinear system about w and p, say

5)

H(u,p) = F(t,u,us, Uy, Uzy,p), We have the following
relationship

OH Ou n OH 0

oudp Op

Assuming that %—H is boundedly invertible, the sensitivity 2<
. . u dp
is given by

—1
dG _ 0G (6H> O0H 0G (16)

dp~ dul\du) dp p
There are two basic methods to calculate % in (16):

forward and adjoint. The forward methods calculate 2% =

op
—1 .) .
(%—H) 9H first, which is the solution of the sensitivity PDE
u op

for each uncertain parameter. The adjoint methods, however,
compute 4 (22 ~* first, which is the solution of the adjoint
PDE. The sensitivity and adjoint PDEs will be defined later.
Although both methods yield the same analytical sensitivities,
the computational efficiency may be quite different, depending
on the number of objective functions (dimension of G) and
the number of sensitivity parameters (dimension of p). The
forward method is attractive when there are relatively few
parameters or a large number of objective functions, while the
adjoint method is more efficient for problems involving a large
number of sensitivity parameters and few objective functions.
We have studied the forward method in [27] and shown how
it is possible to make use of the methods and software for
sensitivity analysis of DAEs in combination with an adaptive
mesh refinement algorithm for PDEs. In [23], we have studied
extensively the adjoint method for PDEs solved with adaptive
mesh refinement. Those results are outlined in what follows.

Two approaches can be taken for each method. In the
first, called the discrete approach, we approximate the PDE
by a discrete nonlinear system and then differentiate the
discrete system with respect to the parameters. The discrete
approach is easy to implement with the help of automatic
differentiation tools [6], [15]. However, when the mesh is

solution or parameter dependent (e.g., for an adaptive mesh
or moving boundary), or a nonlinear discretization scheme
(e.g., upwinding) is used, the discrete approach may not be
computationally effective.

It is well-known that the method of lines (MOL) can trans-
form a PDE system into an ODE or DAE system by spatial
discretization. Thus the sensitivity calculation methods in [11]
can be used if the semi-discretized PDE is obtained. However,
we have observed that the adjoint of the discretization (AD)
may not be consistent with a PDE, and the adjoint variables
are not smooth on an adaptive grid. Therefore, if the adaptive
region is changing with time (e.g. in adaptive mesh refinement
(AMR) [4], [27]), the interpolation for the adjoint variables
between different grids will introduce large errors. The AD
method cannot be used in this case. On the other hand, one
can show [23] that for linear discretization methods applied
on a fixed grid with appropriate treatment of the boundary
conditions, the sensitivities generated are accurate except in a
small boundary layer.

In the second, called the continuous approach, we dif-
ferentiate the PDE with respect to the parameters first and
then discretize the sensitivity or adjoint PDEs to compute
the approximate sensitivities. The system resulting from the
continuous approach is usually much simpler than that from
the discrete approach, and is naturally consistent with the
adjoint PDE system. Therefore, the adaptive grid method and
interpolation can be used without difficulties. Derivation of
the adjoint PDE could be handled by symbolic methods such
as MAPLE. However it is very difficult to formulate proper
boundary conditions for the adjoint of a general PDE system,
and to the best of our knowledge an algorithm for generating
the boundary conditions does not exist for a general PDE
system. Moreover, the adjoint system may become inadmis-
sible for some objective functionals (see [1], [2]), where the
boundary conditions (or initial conditions) for the adjoint PDE
system cannot be formulated properly. The discrete approach
does not have such difficulties.

We propose an approach to combine the AD method and
the discretization of the adjoint (DA) method in an efficient
manner so that it can be used with AMR. The new approach
(called the ADDA method) not only solves the problem for AD
on the adaptive grid, it also solves the inadmissibility problem
for DA. Both the AD and DA methods are used in this new
approach but are applied in different regions.

We developed the ADDA method based on an observation
that the discretization from the AD method is consistent
with the adjoint PDE (hence it can be replaced with the
discretization of the DA method) at the internal points if the
mesh and the (linear) discretization are uniform everywhere
except at the boundaries. The basic idea of the ADDAmethod
is illustrated in Fig. 1.

The results of the ADDA method should be equal or close
to the results of the AD method on a nonadaptive fine grid.
Given a reference nonadaptive fine grid, we first split the
whole domain into two zones: boundary buffer zone and
internal zone (see Fig. 1). The boundary buffer zone consists

DA

adaptive grid

fixed grid

Fig. 1. Diagram of the ADDA method

of the boundary points and points that use the boundary
points in their discretization. The remainder of the points
belong to the internal zone. Since the discretization of the
AD method may not be consistent with the adjoint PDE at
or near the boundaries, the buffer zone is fixed and never
adapted during the entire time integration. In the internal zone,
the discretization from the AD method can be replaced with
the discretization from the DA method if we assume that
the discretization from the AD method is consistent with the
adjoint PDE. It turns out [23] that this assumption is not
always true for a general discretization and grid. However,
if the mesh and discretization of the forward problem are
uniform in the internal zone, the adjoint of the discretization
is indeed consistent with the adjoint PDE.

After the discretization in the internal zone has been re-
placed by that from the DA method, the mesh can be adapted
to achieve efficiency without loss of the accuracy. The adaptive
mesh refinement in the internal zone is invisible to the AD
method, which expects that the discretizations for the adjoint
system are generated by the AD method on a nonadaptive fine
grid. Instead the discretization is accomplished efficiently by
the DA method on an adaptive grid. The internal zone looks
like a black box to the AD method.

Since the sensitivity calculation is based on the AD method,
the initial conditions for the adjoint system must be generated
by the AD method. However, the initial conditions generated
by the AD method may involve the grid spacing information,
due to the objective functional evaluation [23]. A variable
transformation [23] is used to eliminate the grid spacing
information related to the integration scheme in the objective
function evaluation. However, it cannot eliminate the grid
spacing information related to the integrand function.

Strictly speaking, the values of the adjoint variables are dif-
ferent on different grids. That is why the sensitivity calculation
by the AD method must be performed on a fixed mesh. The
initial given mesh, which is the last mesh generated at ¢t = T’
in the forward adaptive method, may not be the same as the
reference nonadaptive fine mesh we seek. Therefore, we must

calculate the initial conditions for the ADDA method on the
reference mesh first and then project them onto the initial given
mesh by interpolation.

The overall algorithm of the ADDA method is as follows:
First we obtain the initial conditions for the adjoint system
by the AD method on a virtual nonadaptive fine grid. Then
we transform and project them to the adaptive grid with a
fixed boundary buffer zone. We assume that the discretization
has been chosen so that AD is consistent with the adjoint
PDE internally. Then the spatial discretization in the boundary
buffer zone is generated by the AD method via automatic
differentiation, and the discretization in the internal zone is
defined by discretization of the adjoint PDE. Finally, an ODE
or DAE time solver is used to advance the solution to the next
time step. After the adjoint variables have been computed, the
sensitivity evaluations of the AD method are used to calculate
the sensitivities.

Examples that demonstrate the effectiveness of the ADDA
method are presented in [23].

ACKNOWLEDGMENTS

This work was supported by grants DOE DE-FGO03-
00ER25430 and NSF/ITR ACI-0086061. The work of the
fourth author was performed under the auspices of the
U.S. Department of Energy by the University of California,
Lawrence Livermore National Laboratory, under contract No.
W-7405-Eng-48.

REFERENCES

[1] W. K. Anderson and V. Venkatakrishnan, “Aerodynamic design opti-
mization on unstructured grid with a continuous adjoint formulation”,
AIAA 97-0643, 35°th Aerospace Science meeting & exhibit, 1997.

[2] E. Arian and M. Salas, Admitting the Inadmissible: Adjoint Formulation
for Incomplete Cost Functionals in Aerodynamic Optimization, ICASE
Report No. 97-69, 1997.

[3] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations, SIAM,
1998.

[4] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic
partial differential equations”, J. Comput. Phys. 53, pp. 484-512, 1984

[5] J. Borggaard and J. Burns, “A PDE sensitivity equation method for
optimal aerodynamic design”, J. Comp. Phys. 136, pp. 366-384, 1997.

[6] C. Bischof, A. Carle, G. Corliss, A. Griewank and P. Hovland, “ADI-
FOR - Generating derivative codes from Fortran programs”, Scientific
Programming 1, pp. 11-29, 1992.

[7] C. Bischof, L. Roh, and A. Mauer, ADIC - An Extensible Automatic
Differentiation Tool for ANSI-C, Technical Report ANL/MCS-P626-
1196, Mathematics and Computer Science Division, Argonne National
Laboratory, 1996.

[8] K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equations, Second
edition, SIAM, 1996.

[9] P. N. Brown, A. C. Hindmarsh and L. R. Petzold, “Using Krylov

methods in the solution of large-scale differential-algebraic systems”,

SIAM J. Sci. Comput. pp. 1467-1488, 1994.

Y. Cao, S. Li, L. Petzold and R. Serban, “Adjoint Sensitivity Analysis

for Differential-Algebraic Equations: The Adjoint DAE System and its

Numerical Solution”, SIAM J. Sci. Comput. 24(3), pp. 1076-1089, 2003.

Y. Cao, S. Li and L. Petzold, “Adjoint sensitivity analysis for differential-

algebraic equations: algorithms and software”, J. Comp. Appl. Math.

149, pp. 171-192, 2002.

R. M. Errico, “What is an adjoint model?”, Bulletin of the American

Meteorological Society 78, pp. 2577-2591, 1997.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

W. E. Feehery, J. E. Tolsma and P. I. Barton, “Efficient sensitivity anal-
ysis of large-scale differential-algebraic systems”, Applied Numerical
Mathematics 25, pp. 41-54, 1997.

Y. Jarny, M.N. Ozisik and J.P. Barton, “A general optimization method
using adjoint equation for solving multidimensional inverse heat con-
duction”, Int. J. Heat Mass. Transfer 34, pp. 2911-2919, 1991.

R. Giering and T. Kaminski, “Recipes for adjoint code construction”,
ACM Trans. Math. Software 24, pp. 437-474, 1998.

M. B. Giles and N.A. Pierce, “Adjoint equations in CFD: duality,
boundary conditions and solution behaviour”, AIAA Paper 97-1850,
1997.

M. B. Giles and N.A. Pierce, “An introduction to the adjoint approach
to design”, ERCOFTAC Workshop on Adjoint Methods, Toulouse, June
21-23, 1999.

O. Ghattas and J.-H. Bark, “Optimal control of two and three-
dimensional incompressible Navier-Stokes Flows”, J. Comp. Phys., 136
pp. 231-244, 1997.

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward, “SUNDIALS, Suite of Nonlinear and
Differential/Algebraic Equation Solvers,” ACM Trans. Math. Software,
accepted, 2004.

A. Jameson, “Aerodynamic Design via Control Theory”, J. of Scientific
Computing, 3, pp. 233-260, 1988.

D. Knapp, V. Barocas, K. Yoo, L. Petzold and R. Tranquillo, “Rheol-
ogy of reconstituted type I collagen gel in confined compression”, J.
Rheology 41, pp. 971-993, 1997.

R. M. Lewis, “Numerical computation of sensitivities and the adjoint
approach”, in Computational Methods for Optimal Design and Control,
J. Borggaard, J. Burns, E. Cliff and S. Schreck Eds., pp. 285-302,
Birkhauser, 1998.

S. Li and L. Petzold, “Adjoint Sensitivity Analysis for Time-Dependent
Partial Differential Equations with Adaptive Mesh Refinement”, Journal
of Computational Physics 198(1), pp. 310-325, 2004.

S. Li and L. Petzold, Description of DASPKADJOINT: An Adjoint
Sensitivity Solver for Differential-Algebraic Equations, UCSB Technical
Report 2002, www.engineering.ucsb.edu/ cse.

S. Li and L. Petzold, “Software and algorithms for sensitivity analysis
of large-scale differential-algebraic systems”, J. Comp. Appl. Math. 125,
pp. 131-145, 2000.

S. Li and L. Petzold, Design of New DASPK for Sensitivity Analysis,
Technical Report, Dept. of Computer Science, Technical Report UCSB,
1999.

S. Li, L. Petzold and J. Hyman, “Solution adapted mesh refinement and
sensitivity analysis for parabolic partial differential equations”, Lecture
Notes in Computational Science and Engineering 30, Ed. L. T. Biegler,
O. Ghattas, M. Heinkenschloss and B. van Bloeman Waanders, Springer-
Verlag, Heidelberg, 2003.

S. Li, L. Petzold and W. Zhu, “Sensitivity analysis of differential-
algebraic equations: A comparison of methods on a special problem”,
Applied Numerical Mathematics 32, pp. 161-174, 2000.

T. Maly and L. R. Petzold, “Numerical methods and software for
sensitivity analysis of differential-algebraic systems”, Applied Numerical
Mathematics 20, pp. 57-79, 1997.

G. I. Marchuk, V. I. Agoshkov and V. P. Shutyaev, Adjoint equations
and perturbation algorithms, CRC Press, Boca Raton, Fl, 1996.

S. K. Nadarajah and A. Jameson, “A comparison of the continuous and
discrete adjoint approach to automatic aerodynamic optimization”, AIAA
paper 00-0067, 2000.

L. L. Raja, R. J. Kee, R. Serban and L. Petzold, “Dynamic optimization
of chemically reacting stagnation flows”, Proc. Electrochemical Society,
1998.

A. Sei and W. W. Symes, A note on consistency and adjointness for nu-
merical schemes, Tech. Report TR95-04, Department of Computational
and Applied Math., Rice University, 1995.

R. Serban and A.C. Hindmarsh, “CVODES, The Sensitivity-Enabled
ODE Solver in SUNDIALS,” Proceedings of the ASME International
Design Engineering Technical Conferences, Long Beach, CA, 24-28
September 2005.

