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Abstract 

We discuss certain basic features of the equation-free (EF) approach to modeling and computation for 
complex/multiscale systems. We focus on links between the equation-free approach and tools from 
systems and control theory (design of experiments, data analysis, estimation, identification and 
feedback).  As our illustrative example, we choose a specific numerical task (the detection of stability 
boundaries in parameter space) for stochastic models of two simplified heterogeneous catalytic reaction 
mechanisms. In the equation-free framework the stochastic simulator is treated as an experiment (albeit 
a computational one). Short bursts of fine scale simulation (short computational experiments) are 
designed, executed, and their results processed and fed back to the process, in integrated protocols 
aimed at performing the particular coarse-grained task (the detection of a macroscopic instability). Two 
distinct approaches are presented; one is a direct translation of our previous protocol for adaptive 
detection of instabilities in laboratory experiments (Rico-Martinez et al., 2003); the second approach is 
motivated from numerical bifurcation algorithms for critical point detection. A comparison of the two 
approaches brings forth a key feature of equation-free computation: computational experiments can be 
easily initialized at will, in contrast to laboratory ones. 
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The purpose of this paper is to articulate certain 
connections we perceive between the recently developed 
equation-free approach to modeling and computation of 
complex/multiscale systems on the one hand, and 
fundamental tools of systems and control theory and 
practice on the other. We will also illustrate these 
connections through simple examples. Even though these 
connections are straightforward, our experience is that 
they open up some truly interesting, and, we believe, 
powerful alternative avenues to the use of 
microscopic/stochastic simulators. 

Most engineering systems we try to model are 
inherently multiscale (consider, as an example, the 
macroscopic flow of a Newtonian fluid, arising through 
molecular interactions). Typically, however, and for 
practical modeling purposes, we are not interested in the 
detailed evolution of the system state (the positions and 
velocities of each molecule). Instead, we are interested in 
the dynamic evolution of certain coarse-grained 
observables (“outputs” of the molecular system) such as 
macroscopic density, momentum and energy fields. These 
observables are often low order moments of the evolving 



  
 
molecular distribution. In many cases of engineering 
interest (e.g. fluid mechanics) it is possible to write 
accurate macroscopic evolution equations that close at the 
level of the quantities of interest (e.g. the Navier-Stokes 
equations). In non-Newtonian cases, additional moments 
(e.g. stresses) have to be included as observables (new 
dependent variables), and larger, more complex sets of 
macroscopic evolution equations must be written. This is 
clearly a model reduction process: we go from models like 
molecular dynamics, with enormous numbers of degrees 
of freedom, that are “correct” but extremely difficult to 
use, to more useful and economical models (ODEs, PDEs, 
DAEs, PDAEs) in terms of a few dependent variables. 

 The essential reduction process, which is almost 
always based on separation of time scales (and 
concomitant space scales), is the derivation of closures: 
formulas that embody the effect of unmodeled scales and 
variables on the ones we retain. A celebrated such closure 
for Newtonian fluid mechanics is Newton’s law of 
viscosity, that expresses stresses (in effect, higher order 
moments of the molecular distribution, which evolve on a 
faster time scale) as a functional of the velocity field (in 
effect, lower-order, slower evolving moments). These 
closures may be derived experimentally, from extensive 
observations, often in the form of correlations, or they 
may be derived mathematically from the microscopic 
models themselves under appropriate assumptions (such as 
the Chapman-Enskog expansion of the Boltzmann 
equation (Chapman and Cowling, 1964)).  Traditional 
engineering modeling starts with obtaining such closures, 
and writing the corresponding macroscopic evolution 
equations in terms of the relevant, coarse-grained system 
observables (“outputs”). When reasonably accurate 
macroscopic equations have been explicitly constructed, 
the mathematical and computational tools developed for 
the study of such equations are brought to bear on their 
analysis. Simulation, stability and bifurcation analysis, 
optimization, controller design: the development and 
implementation of algorithms for performing such tasks on 
traditional evolution equations constitute a large 
component of engineering education and practice. 

When accurate macroscopic evolution equations 
for a system of interest can be derived, this “traditional 
path” of computer-assisted modeling (first obtain 
governing equation through closures, then study and 
analyze the equations) is “the way to go”. However, in 
current modeling practice, the need constantly arises for 
studying problems for which good, quantitative closures 
have not yet been derived (experimentally or theoretically) 
and the only available modeling tool is direct simulation 
with a microscopic (atomistic, molecular, agent-based) 
code. This simulation “lives” on extremely fine space and 
time scales, and it is very often prohibitive; hardware 
evolution is not going to bridge this “scale gap” soon 
enough. Systematic improvements in the fine-scale 
algorithms (e.g. more efficient thermostats in certain MD 
computations) are very important, but the scale gap still 
remains. We have a “correct” fine-scale model, which is 

extremely difficult and time consuming to simulate; and 
accurate, closed form, macroscopic evolution equations 
for the coarse-grained quantities of interest are not 
available, nor can they be easily derived. 
 This is the regime that equation-free modeling 
tries to address: problems where a trustworthy fine scale 
simulator is available, and we have reason to believe that 
macroscopic  coarse-grained equations in terms of a 
number of system observables exist in principle, even if 
they are not available in closed form. This premise 
(believing that a model of the system does close at a 
certain coarse-grained level, even if we do not know how 
to write the closure) is a fundamental premise of equation-
free computation. It is also the typical situation one 
encounters when trying to model or control a new 
experimental system: thinking of the system as an input-
output black box, one asks which (and how many) the 
relevant variables are, in terms of which one would write a 
deterministic input-output model. At this stage we will 
assume that we know which and how many these 
important variables are; for our laminar Newtonian 
isothermal flow example, this would involve density and 
momentum fields. We have been taught that these are 
“good variables” for such problems as undergraduates; yet 
in new problems we will not know which, nor even how 
many, the right variables will be. Data analysis tools that 
address this question become therefore vital, and we will 
return to this issue in our Discussion section.  
 Consider how an accurate, macroscopic evolution 
equation is used in scientific computation: its use depends 
on what numerical task we want to perform. For dynamic 
simulation we need to repeatedly call a subroutine that, 
given the system state, returns the time derivative 
(evaluates the right-hand-side of the evolution equations). 
For implicit integration, we will also need a subroutine 
that evaluates the linearization (the Jacobian) of these 
equations. Finding steady states through a contraction 
mapping, such as Newton iteration, also requires repeated 
evaluations of the right hand side and the linearization of 
the model. Thinking a little further along these lines shows 
that in most scientific computing tasks, the actual form of 
the macroscopic equation is never used – we only need a 
few terms of its Taylor series, usually the zeroth and first 
order terms, at most the second order terms, evaluated at a 
sequence of state instances. These instances are not known 
a priori – the second Newton iterate depends on the first, 
and so on. (A case where this is not true, i.e. where the 
functional form of the equation is required, occurs in 
global optimization, where one computes under-estimators 
of various terms in the right-hand-side of an equation).  
 Depending on the task we wish to perform, the 
“main algorithm” calls the subroutine containing the 
model and obtains “on demand” the right-hand-side (RHS) 
and/or its linearization at the current state; these numerical 
values are processed based on the task in question 
(different processing for numerical integration, different 
processing for fixed point computation, different 
processing for optimal control computations) and, based 



  

on this processing, new state instances are arrived at for 
which we want to call the model subroutine again. It is 
clear that scientific computation does not require a closed 
model formula – it only requires a couple of terms of the 
Taylor series of the model, but it requires them at many 
points, and these points are not known at the beginning of 
the computation. Whether the model subroutine contains a 
compact closed formula that can fit in a single 
programming line, or whether it contains an enormous 
lookup table, the “main algorithm” does not know and 
does not care: it requests certain numerical quantities to 
compute with, receives them, and proceeds in identical 
fashion.   

The simple (but obvious) next step, is to consider 
the case in which the “model subroutine” is neither a one-
line compact formula, nor a precompiled lookup table – 
instead, it consists of a request to a laboratory 
experimentalist for the first couple of terms of the Taylor 
expansion of the system RHS at a prescribed state. It 
should be conceptually clear that, if it is easy to initialize a 
physical experiment at a given state, then a few 
experiments can be performed from which the relevant 
numbers can be estimated and returned to the “main 
algorithm” – in which case one is performing numerical 
integration, fixed point computation, or in principle any 
other numerical task using not a model, but the physical 
experiment itself, appropriately initialized. 

This line of thinking shows that, in principle, one 
can perform many scientific computing tasks without a 
model, as long as one has access to the physical 
experiment itself, and can initialize it at will. Short 
experiments, at states prescribed by the “main algorithm” 
give values for residuals and Jacobians at the state point of 
interest; the “main algorithm” processes them and 
suggests a new state point at which similar information is 
required – and the process continues until the result of 
interest is arrived at. In effect, traditional numerical 
algorithms become protocols for the design of experiments 
(physical or computational) so that we arrive at the final 
desired result.  
 Clearly, many elements of systems theory are 
playing a role in this approach: which experiments do we 
need to perform in order to estimate the local linearization 
of a model?  How should we process the (probably noisy) 
results to get our best estimate of these quantities? Is a 
local linear model consistent with our data? Yet the one 
(small but vital) issue is that one requires this information 
many times and at prescribed state points. Here arises, in 
our opinion, the crucial difference between laboratory 
experimentation, and computational experimentation: it is 
almost trivially easy to initialize a computational 
experiment “at will” at several, different, prescribed initial 
conditions – one only changes the initial data passed in the 
subroutine call. On the other hand, it is typically extremely 
difficult, or even practically impossible, to initialize a 
laboratory flow at several, different, prescribed velocity 
fields. This is the reason (or at least one important reason) 

why such approaches are not typically used in laboratory 
experimentation. 
 In equation-free computation we do not have a 
subroutine containing the macroscopic, coarse-grained 
model. But we do have a subroutine that can evolve the 
fine scale model, and we in principle can initialize the fine 
scale model consistently with values of its macroscopic 
observables (construct distributions consistent with a few 
of their lower moments). This operation (fine scale initial 
conditions from coarse scale observables) is called lifting 
in EF terms; it is a one-to-many operation (there are 
clearly many ways to initialize distributions with the same 
mean and variance!) and we will return to its discussion 
below. When the “main code” asks for specific Taylor 
series information of the unavailable, coarse-grained 
model at a particular state point, we then “simply” 
initialize the fine scale code consistently, perform several 
short bursts of computational experimentation with it, and 
process the results to estimate the numbers of interest – 
these numbers are then fed back to the “main code” which 
can continue its scientific computation.  The procedure 
occurs again and again, until the final result is reached. It 
is reached without ever finding a closed form macroscopic 
model; yet it is reached using the fact (the belief) that such 
a model exists, that we know in terms of which variables it 
closes, and having access to the fine scale code. We are 
literally doing coarse-grained scientific computation 
directly on the fine-scale model, without the intermediate 
of a closed formula – computational experimentation and 
estimation are the tools we used to substitute function and 
Jacobian evaluations. It is important to reiterate that we 
must be able to initialize the fine scale code easily – at fine 
scale states consistent with specific values of the coarse-
grained observables. 
 What does one benefit by running the fine scale 
code this way? Normally, one would initialize the fine 
scale code (e.g. the molecular dynamics), prescribe 
parameter values, let the code evolve over long times, and 
observe its output. This way we are simulating on the 
computer temporal evolution as it would occur in nature – 
we are doing on the computer our best approximation of 
what we would see in the laboratory. What if the 
information we need, however, is not the temporal 
evolution itself? What if, for example, we need to find 
stationary states, and we are only simulating until we get 
eventually close to a stationary state? It is in these cases 
that equation-free computation may provide some 
computational benefits.  Steady states are often found 
much faster from fixed point computation – rather than 
direct simulation (especially unstable ones that cannot in 
principle be found by direct simulation). In performing 
Newton iterations, one uses the same model (the same 
equations) as when one is integrating in time – but uses 
them differently.  Fixed point algorithms take advantage of 
the local smoothness in the neighborhood of a steady state 
to converge on it with a relatively much smaller effort than 
long, protracted integration. (An important caveat is that 
these potential computational savings are strongly problem 



  
 
dependent, and that Newton iteration requires good 
initialization!)  It is smoothness and Taylor series in the 
neighborhood of the steady state that allows us this 
computational economy in reaching the same result (the 
steady state) by Newton rather than by direct simulation.  

Consider now a steady state of the laminar Navier-
Stokes equations (to revisit our discussion example). It is 
the density and momentum fields that are at steady state – 
the molecules are not; they keep evolving and colliding. 
The Jacobian of the molecular dynamics equations cannot 
be used to help us converge to the coarse-grained steady 
state – we need derivatives with respect to the coarse-
grained variables themselves. It is these coarse-grained 
derivatives (derivatives in time, derivatives with respect to 
parameters, derivatives with respect to coarse-grained 
variables) that have the potential for overall computational 
savings – these quantities allow us to “jump in time” in a 
forward Euler step; to “jump in phase space” in a Newton 
step or in a conjugate gradient step; to “jump in parameter 
space” in a continuation step, etc.  Since we have no 
coarse-grained equations, we cannot differentiate them to 
obtain coarse-grained derivatives – we have to estimate 
the coarse-grained derivatives from short bursts of 
appropriately initialized microscopic simulation, in order 
to link to continuum numerical analysis algorithms and 
possibly accelerate our computational time-to-results. 
 In summary, equation-free computation is an 
“input-output” approach to modeling complex or 
multiscale systems. When a fine scale code is available, 
and we have reason to believe that coarse-grained 
equations can in principle be derived, we do not need to 
derive them to compute with them. We can perform many 
scientific computing tasks with them by calling the fine 
scale solver as a computational experiment that can be 
initialized at will. Short bursts of appropriately initialized 
computation with the fine scale code allows for the on 
demand estimation of the numerical quantities required for 
coarse-grained scientific computation.  Elements of 
systems and control theory (design of experiments, 
estimation, variance reduction, model reduction, model 
identification) become a vital component of the EF 
process, in linking the fine scale simulation with the 
coarse-grained computational tasks. To illustrate these 
points, we will choose a particular type of a fine scale 
simulator (the Gillespie stochastic simulation algorithm, 
SSA (Gillespie, 1976, 1977)). We will also choose one 
particular type of scientific computing task (the 
computation of coarse-grained bifurcation points).  

Bifurcation points (such as turning points) often 
mark the boundary between stability and instability for a 
dynamical system. Bifurcation theory is well established 
and used for the stability and parametric analysis of 
nonlinear continuum system models ranging form ecology 
to materials science. In many cases it is required that the 
system of interest operate at open-loop unstable equilibria 
or even at marginally stable (critical) points. Presuming 
modal controllability and the accurate knowledge of the 
location of these critical points, an arsenal of control 

design techniques can be used to cope with system 
stabilization there.  Several methods have been also 
proposed to deal with the stabilization of nonlinear 
systems in the case where the critical modes are 
uncontrollable for the corresponding linearized system: 
sufficient conditions for the local feedback stabilization 
and control of static and Hopf bifurcations of nonlinear 
systems are given in (Abed and Fu, 1986a, 1986b; Gu et 
al., 2000) while bifurcation control, based on normal 
forms, via state feedback with a single uncontrollable 
mode is addressed in (Kang, 2000). The incorporation of 
washout filters (Lee, 1991; Wang et al., 1999) is used to 
cope with system stabilization while preserving the 
equilibria of the original system in the presence of model 
structural uncertainties. Global stabilization of 
bifurcations, using Lyapunov tools, changing the type of 
bifurcation from subcritical to supercritical is presented in 
(Krstić et al., 1998, 2000). Anderson et al., (1999) and 
Rico-Martinez, et al. (2003), proposed an adaptive control 
method for the detection of instabilities in experimental 
systems, while a robust method for experimental 
bifurcation analysis for periodically driven systems is 
addressed in (Langer and Parlitz, 2002). All these 
approaches operate at the continuum/macroscopic level, 
possibly accounting for a degree of uncertainty. 

We are interested in extending these techniques 
so that they can be used in problems for which coarse-
grained evolution equation models are not available. The 
task we want to perform is at the coarse-grained, systems 
level, while the available simulator is an atomistic (in this 
case, stochastic) one, which cannot be direcly coupled 
with continuum level tools. Over the last few years, it has 
been established (Gear et al., 2002; Makeev et al., 2002; 
Runborg et al., 2002; Siettos et al., 2003a; Kevrekidis et 
al., 2003) that coarse timesteppers can serve as an 
equation-free bridge between microscopic problem 
descriptions and continuum level computational methods. 
Based on the concept of coarse timesteppers we address 
the development of an integrated framework that enables 
miscroscopic simulators, under certain assumptions 
imposed by the criticalities sought, to converge to their 
open-loop coarse bifurcation points. We will present two 
different approaches: the first one is directly based on the 
approach presented in (Rico-Martinez, et al., 2003). An 
adaptive control scheme was used in that work to drive a 
laboratory experiment to its critical point and keep it there; 
here we drive a microscopic simulator (again an 
experiment, but now a computational one)  to its coarse 
critical point and keep it there. The steering of the 
microscopic timestepper is achieved through the 
manipulation of the bifurcation parameter, which becomes 
our control variable. The second approach is motivated by 
numerical bifurcation theory and incorporates a direct 
method for the detection of bifurcation points in the 
equation free framework. In this case, several brief 
computational experiments are designed based on the 
numerical quantities required in the bifurcation codes; 
these experiments are executed and discarded after the 



  

relevant quantities are estimated, and new ones are 
initialized subsequently. It is worth noting that our “input-
output” algorithms are applicable for both “legacy” black-
box continuum dynamic simulators as well as for 
microscopic/ stochastic simulators (the application of 
choice here). The two approaches may also complement 
each other; for example, the adaptive control-based 
detection protocol can be used to provide a good initial 
guess of the critical point to the numerically-motivated 
algorithm. 

The paper is organized as follows: in the next 
section we briefly describe the concept of coarse 
timesteppers (Gear et al., 2002, Makeev et al., 2002, 
Kevrekidis et al., 2003). We then present our two 
alternative approaches.  To illustrate our methodology we 
used stochastic simulation of two simple surface reaction 
mechanisms: the first mechanism results from a 
simplification of the kinetics of NO reduction by H2 on Pt 
and Rh surfaces. The second one is a simplified kinetic 
description of the CO oxidation reaction with an inert site-
blocking, reversibly adsorbing species; solution branches 
of both mechanisms possess turning point bifurcations. 
We will conclude with a brief discussion. 

 

Coarse Timesteppers and Detection of Open-Loop 
Coarse Bifurcation Points for Microscopic Simulators 

The concept of coarse timesteppers 

The coarse timestepper is a fundamental building 
block of equation-free algorithms – it is the way to obtain 
macroscopic input-output information from a microscopic 
simulator.  The main assumption behind the coarse 
timestepper (as discussed in some detail above) is that a 
coarse-grained model for the fine-scale dynamics exists 
and closes in terms of a few coarse-grained variables 
(observables); and that we know a good set of such 
observables. Typically these are low-order moments of 
microscopically evolving distributions, and the existence 
of a coarse-grained model implies that the higher order 
moments of the distributions become, relatively quickly 
over the time scales of interest, “slaved” to the lower, few, 
“master” ones. What a coarse timestepper does, in fact, is 
providing a closure on demand (“just in time” (Cybenko, 
1996)); relatively short bursts of fine scale simulation 
naturally  establish this slaving relation (refer to Gear et 
al., 2002; Makeev et al., 2002; Siettos, et al., 2003a; 
Kevrekidis et al., 2003) for more detailed discussions). 
Briefly, once the appropriate macroscopic observables 
have been identified, the coarse timestepper consists of the 
following essential components (see Kevrekidis et al., 
2003; Makeev et al., 2002; Runborg et al., 2002): 

(a) Selecting values of the coarse initial conditions 
(I.C.’s.); 

(b) Using a lifting operator it to transform the coarse 
I.C.’s to one or more consistent microscopic 
initial conditions; 

(c) Evolving these microscopic distribution(s) 
through the fine scale simulator for a short 
macroscopic time T- and  

(d) Restricting the resulting microscopic 
distribution(s) back to their moments at the 
reporting horizon time T (i.e., finding values of 
the observables after time T). 

 
The above “black box” coarse timestepper is a mapping 

: ΤΦ
)(1 kT p,xΦx kk =+ ΤΦ : Rmx Rq →Rm ,   (1) 

 
where the vector x denotes the coarse variables and p ∈Rq 
denotes the vector of system’s parameters. 
 Computational coarse timestepping circumvents 
the derivation of explicit macroscopic equations, (i.e. the 
analytical derivation of ), while it is still able to deliver 
systems level information operating directly on the 
microscopic evolution rules: e.g. coarse (macroscopic) 
steady states can be obtained as fixed point, using T as 
sampling time, of the mapping : 

ΤΦ

ΤΦ 0x,Φx =− )( pT . The 
choice of T is associated with the (estimated) spectral gap 
of the linearization of the unavailable closed macroscopic 
equations (Siettos et al., 2003a). Calls to the coarse 
timestepper from coarsely nearby initial conditions allow 
the estimation of the action of the linearization of the map 

on known vectors, since  ΤΦ
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Using the coarse timestepper to evaluate the “time-T map” 
of the coarse-grained model, as well as the action of this 
map’s Jacobian on prescribed vectors, underpins the 
equation free computational framework; it serves as a 
bridge between microscopic / stochastic simulators and 
macroscopic tasks such as coarse bifurcation analysis, 
control design and optimization calculations 
(Theodoropoulos et al., 2000; Kevrekidis, et al., 2003; 
Makeev et al., 2002; Runborg et al., 2002; Gear et al., 
2002; Siettos et al., 2003a, 2003b; Armaou et al., 2004, 
Armaou et al., 2005) Many other computational 
approaches to coarse-graining microscopic simulations for 
control purposes have been proposed (see for example 
Gallivan et al., 2001; Ni and Christofides, 2005; Lou and 
Christofides, 2005). 
 

The adaptive control-based detection approach 

As a representative system-level computational 
task that one might want to perform with a fine-scale 
model, we will select the detection of a coarse instability 
boundary (a coarse bifurcation point). Here we use the 
fine scale simulation as an evolving experiment, and 
discuss an adaptive control protocol, which, when 
wrapped around an existing microscopic simulator, 
enables it to seek such open-loop coarse bifurcation points 
and converge there. The protocol was originally designed 
for, and applied to, the on-line detection of bifurcations in 



  
 
experiments (Rico-Martinez et al., 2003).  We assume that 
we know the appropriate coarse variables x. The fine scale 
simulator has been initialized and it is evolving; at any 
given moment in time we have access to its fine-scale 
state, and so we can easily observe (compute the values 
of) the coarse variables through a restriction step. We will 
start, for convenience, in the neighborhood of a stable 
coarse steady state (x*, p*).  The procedure makes use of 
several standard systems and control theory tools as 
follows: 

 
Do Until convergence to the critical point {k=0, 1,… 
 
1. Implement, around the coarse observations of the 

evolving fine scale simulator, standard recursive 
system identification algorithms, such as 
recursive least squares and Kalman filter 
approaches (Astrom, and Wittenmark, 1995; 
Ljung, 2001), to estimate the parameters of a 
NARMAX coarse local model of the form 

 
)(1 kp,xFx kTk =+ .   (3) 

 
The structure of this local model, e.g. a truncated, 
low order Taylor series, should be capable of 
efficiently approximating the local, expected, 
coarse dynamics of the input-output map , in 
a neighborhood of the current coarse equilibrium 
point (x*, p*).  The parameter p will be our 
control variable. 

ΤΦ

 
2. With such a suitable local parametric model in 

hand, we estimate the location (in coarse phase 
and parameter space) of a nearby bifurcation 
point: we use standard optimization techniques to 
find a local minimizer  of the criticality 
condition that defines a bifurcation point. This 
can be stated as a constrained minimization 
problem of the form 

( , )x' 'p

J = 2

, 

1{ ( , )
2x

min x
mR p R

pϑ
∈ ∈

3. We then implement a feedback control law, to 
drive the identified local model to its estimated 
critical point . Using the separation and 
certainty equivalence principles, one can design 
and implement linear and/or nonlinear control 
techniques (e.g. local stabilizing direct state-
feedback controllers, wash-out filters, model 
predictive controllers etc.); the main point is that 
standard control theory tools are used around a 
computational experiment.  

( , )x' 'p

 
For simplicity, in our illustrative example we 
chose a discrete-time, direct state-feedback 
controller of the form 

)-(T x'xK' kk pp −=    (6) 
The values of the gain vector are calculated 
on the basis of a discrete linear quadratic control 
design, i.e. we seek a state-feedback control law 
that minimizes a performance criterion of the 
form 

K

0
( ) T Tx Q x Rk k k

k
kJ p p

∞

=
= +∑ p   (7) 

with respect to the linearized dynamics of the 
identified coarse local model (3) around the 
estimated critical point ( , , given by  )px' '
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∂
is the system Jacobian 

matrix, T
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∂
is the control vector. 

 
} End Do 

 

} ,   (4) 

 
subject to the constraints 
 
x-FT(x, p) = 0,     (5a) 
 
x*-a<x<x*+a, p*-β<p<p*+β  (5b) 
 

( )xϑ  is the criticality condition; e.g. in the one-
(coarse)-dimensional case, and for a turning point  

this becomes  1
=

∂
≡ −

∂ *

FT

x xx
ϑ . 

 
A number of reasonable precautionary steps are 
taken: for example, at each iteration, we may use 
bounds in the optimization problem (eq. 5b), to 
ensure feasible solutions.  

Some remarks, pertaining to the particular 
numerical task of critical point detection, are in order. 
Care should be taken in the choice of the control law with 
regard to the type of bifurcation sought, and also to 
account for uncertainty imposed by the approximating 
model. For example, while linear wash-out filters are 
appropriate, under certain assumptions, for the 
stabilization of Hopf and pitchfork-type bifurcations 
(Abed & Fu, 1986a, 1986b; Lee, 1991) even in the 
presence of model uncertainty, they are inadequate when 
dealing with other static bifurcations such as transcritical 
and saddle-node ones (Lee, 1991). Nonlinear or direct 
state feedback can be used, under appropriate 
assumptions, to stabilize the latter types of criticality (Lee, 
1991; Kang, 2000).  In practice, assuming system 
controllability, one can drive and keep the system close to 
the bifurcation point.   

This approach turns a modeling problem (the 
location of a bifurcation point) into a feedback control 
problem for the dynamic simulator. Standard identification 
tools are wrapped around (coarse) observations of the 



  

evolving (fine scale) dynamic simulator; an objective is 
formulated based on the modeling task we want to 
accomplish; and standard control design tools are used to 
drive the (computational) experiment to satisfy the 
objective. Control is being performed on dynamic fine 
scale simulations for coarse grained modeling purposes. 
At all stages, only local, low order coarse nonlinear 
models are identified from fine scale system observations 
– we never attempt to derive global coarse-grained 
nonlinear models. 

The numerically-motivated approach 

In the previous section we posed a modeling 
objective as a control problem; and using the fine scale 
simulator as a computational experiment, we used 
standard identification and control tools to drive the 
simulator to satisfy the objective. Even though the process 
occurs on the computer, it was originally devised (and 
successfully used) to work on real-time laboratory 
experiments. Identifying a good local model is crucial in 
the process, and an important factor contributing to the 
quality of the local model is the “richness” of dynamic 
information provided by the computational experiment 
itself. Usually, to obtain rich local information from a 
laboratory experiment, some form of “intelligent” 
excitation protocol is used (as was done in obtaining the 
computational results below).  

We now return to an important advantage of 
computer experimentation: in general, it is easy to 
initialize computational experiments at will (from different 
prescribed states). Furthermore, one does not have to 
continuously evolve a single realization of the problem on 
the computer – one can run a particular realization for a 
short time, and then, if different information is required, 
the realization can be stopped, discarded, and a different 
realization can be initialized. Furthermore, several 
realizations can be evolved in parallel. This type of 
freedom available in computational experimentation 
allows us to gather model information not by inducing a 
single experiment to visit different regions of phase space, 
but rather by initializing several different brief 
computational experiments at appropriate state space 
sampling locations. One can think of this as a type of 
importance sampling. While the tools for processing the 
results are the same (filtering, identification etc.), the way 
the information is gathered is much simpler and more 
direct for computational experiments. Once more, this is 
because computational experiments can easily be 
initialized at will; and because, once a certain piece of 
information has been gathered, they are expendable: they 
can be discarded, and new experiments initialized at 
locations “richer” towards additional information 
gathering.   

A good example is provided by matrix-free 
methods of iterative linear algebra (Kelley, 1995a). One 
does not need to have a matrix (alternatively, identify a 
linear system) in order to perform certain tasks with this 
matrix. It is enough to have matrix-vector products for a 
sequence of known vectors in order to perform tasks such 
as solving linear equations or finding leading eigenvalues. 

Matrix vector products, as we discussed above, can easily 
be estimated from nearby computational experiments, as 
long as the experiments can be easily initialized at 
prescribed initial conditions (the “second” initial 
condition is obtained from the first by adding a small 
multiple of the vector whose product with the explicitly 
unavailable matrix we want to estimate). Easy 
initialization makes a tremendous difference in the way we 
can design numerical experiments with a dynamic 
simulator – and allows us to use the same traditional 
systems theory tools (identification, controller design etc.), 
assembling them now in slightly different protocols. 

The guiding principles for our second approach 
do not come from adaptive control, but rather from 
established numerical bifurcation algorithms. Numerical 
bifurcation theory provides an arsenal of tools for finding 
fixed points, tracing bifurcation diagrams, locating 
bifurcation points and tracing their loci in multiparameter 
space, using criticality conditions to formulate nonsingular 
augmented systems of algebraic equations, and building 
efficient contraction mappings (Keller, 1977; Abbot, 1978; 
Beyn and Doedel, 1981; Parker and Chua, 1989; Seydel, 
1994; Govaerts, 2000; Doedel and Tuckerman, 2000). 
These procedures are predicated on the availability of 
closed form system evolution equations (i.e. “right-hand-
sides” of the governing ODE or discretized PDE models) 
and our ability to evaluate their partial derivatives (of 
various low orders) with respect to parameters and/or 
dynamical variables.  The proposed numerical-assisted 
framework allows us to bypass the explicit derivation of 
such coarse equations, and to perform numerical tasks 
with them only through the “intelligent” design of brief 
dynamic numerical experiments with the fine scale solver.  
A different example of such a procedure, where the 
objective was the construction and exploration of coarse 
bifurcation diagrams, can be found in our recent work 
(Siettos et al., 2004). There, we proposed a methodology 
combining “coarse timestepping” and pseudo-arclength 
continuation with linear dynamic feedback control, 
steering microscopic simulators along their coarse 
bifurcation diagrams and enabling them to converge on 
both stable and unstable open-loop coarse stationary 
states. 
 Our goal here is to extend such approaches to the 
problem of coarse critical point detection. To motivate our 
approach we briefly describe the numerical computation of 
steady state bifurcations using augmented equation 
systems. We then use the coarse timestepper to solve such 
augmented systems through short bursts of fine scale 
simulation. The “black box” coarse timestepper is again 
obtained through the following steps: 
 

1. Start with an initial macroscopic guess of the 
coarse critical point, (x, p) 

2. Transform the macroscopic state x through a 
lifting operator μ  to Ncopies fine, consistent 
microscopic realizations   = μ x; 

copiesN,...,,iX 21=

3. Evolve these microscopic distributions through 
the microscopic simulator for a short macroscopic 
time T- and  



  
 

4. Obtain the restrictions (T) = 

Μ  (T) for each one of the 

microscopic distributions; average the restrictions 
to get the coarse state  x(T). 

copiesNi ,....,,x 21=

copiesN,...,,iX 21=

 
This gives us a “black box” evaluation of   Φ(x) = x(T) 
with x as the initial condition. We now 
 

5. Wrap around the coarse timestepper matrix-free 
iterative methods (quasi-Newton methods such as 
the Broyden, Fletcher, Goldfarb, Shanno (BFGS), 
direct methods such as the Nelder-Mead 
algorithm or  Newton-GMRES methods (Kelley, 
1995b)) to seek a solution (x, p, q) of the 
following system of 2m+1 equations: 
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where  is the Jacobian matrix. 
The second equation in (9) implies that we seek 
critical points where the Jacobian is singular, a 
necessary condition for turning point bifurcations. 
Note that in the above formulation the explicit 
evaluation of the Jacobian is not required. Instead 
what is needed is the action of this Jacobian on 
vectors, which can be obtained through the 
timestepper using directional derivative 
approximations. 

)()( pp Τ x,Φx,J x∇≡

 
The convergence of this procedure does not rely on 

the many and strict solvability assumptions for the control 
problem in the first approach; given a good initial guess, it 
is in principle straightforward for it to locate critical (here, 
saddle-node, or turning) points. This “repeated 
initialization” numerically motivated framework may be 
much more practical and computationally efficient than 
closed-loop control-based simulation runs.  A good initial 
guess of the critical point is of course required; 
conceivably, this can be provided from a previous 
computation of  a coarse bifurcation diagram. 

Simulation results: Steering SSA models to their coarse 
turning points. 

 We illustrate the two approaches using coarse time-
steppers based on kinetic Monte Carlo models of simple 
surface reaction schemes.  Our first illustrative example is 
a Gillespie “stochastic simulation algorithm” (SSA) 
(Gillespie, 1976, 1977) of a simplification of the 
mechanism for NO oxidation reaction by H2 on Pt and Rh 
surfaces; the mean field ODE approximation for this 
mechanism involves adsorption, first order desorption and 
reaction: 

θθγθθαθ 2)1()1( −−−−= rk&    (10) 

 
where θ is the coverage of adsorbed NO, α is the 
adsorption rate constant, γ is the NO desorption rate 
constant, and kr is a reaction rate constant. Simulation 
results were obtained for α = 1, γ = 0.01; kr was the 
bifurcation parameter (and, in our scheme, the control 
variable).  The deterministic version of the model exhibits 
two turning points (at kr ≈ 3.96 and kr  26) as shown in 
the bifurcation diagram (Figure 1a).  The coarse 
timestepper  

≈

 
) ,(1 rkΤk kΦ θθ =+     (11) 

 
of the SSA model was used as a “black box”. The inset in 
Figure 1a gives a closer look at the region around the 
turning point at kr ≈ 3.96.  

Before estimating, for the very first time, the 
location of the coarse turning point, we excited the fine 
scale simulator with a sinusoidal signal around 6=rk  for 
a short period of time (as shown in Figure 1b), to gather 
data and obtain an initial local model. In figure 2a we also 
show the closed loop trajectories on the ( θ,rk ) phase 
plane, i.e. the open-loop bifurcation diagram. SSA 
simulation results were obtained using T = 0.5 as the 
reporting horizon, while the values of the number of 
available sites (system size), N2, and the number of 
realizations using for averaging, Nrun, were chosen here to 
be 8002 and 100, respectively. Clearly, the adaptive 
control based methodology succeeds in steering and 
keeping the SSA simulator near (actually almost on) its 
coarse open-loop turning point (the protocol keeps the 
coarse state of the microscopic simulator within a 
narrower region than the square symbol appearing in 
Figure 1a). 

For the numerically motivated approach, in the 
estimation of matrix-vector products we used 
perturbations of the order of O(10-2) in our difference 
approximation, declaring convergence when the residual 
became  O(10-6). Here the time horizon was taken to be 
T=0.05 while the number of available sites was set to 
N2=10002 and the number of realizations to Nrun=2000. 
The optimization algorithm used to solve the augmented 
equations was the Nelder-Mead algorithm (Kelley, 
1995b). The initial guess was set to (0.3, 4.5) and the 
approach converged to the “correct” coarse bifurcation 
point.  

Our second illustrative example is an SSA 
simulation (Gillespie, 1976 and 1977) of the reaction: 

ABBA 2
2
1

2 →+
 

In particular we study a simplified description of the 
kinetics of catalytic CO oxidation, whose mean field 
description is given by the following ODE system: 
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where θi represent the coverages of species (i=A,B, resp. 
CO, O) on the catalytic surface. The parameters α,β,γ are 
associated with CO adsorption, O dissociative adsorption 
and CO desorption rates, while kr is a reaction rate 
constant. 
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Figure 1. (a) The bifurcation diagram for the first mean-
field example. The model exhibits two turning points at     
kr 3.96 and k≈ ≈r  26.  The inset shows the phase-plane 
trajectory (dotted line) of the closed loop response of the 
SSA simulator. (b)Closed loop transient of the control 
variable, kr (the open loop bifurcation parameter). The 
dashed line denotes the kr turning point value.  

 
Simulation results were obtained for α = 1.6, γ = 0.04 and 
kr =1. The bifurcation parameter, which acted as the 
control variable in our adaptive control-based protocol 
was β.  

The bifurcation diagram of the mean field model with 
respect to β is given in Figure 2a. It exhibits two turning 
points at β 2.5223 and β  8.4953. Again we initially 
excited the fine scale simulator for a short period of time 
(up to 200 s), with a sinusoidal signal, to construct, 
through recursive estimation, an initial local model; this 
was then used for the first estimation of the critical point. 
The parameters of the model were updated at every step of 
the protocol using a recursive Kalman filter algorithm. The 
closed loop transient of the SSA simulator, obtained by 

implementing the adaptive control-based detection 
protocol, is overlaid on the open-loop bifurcation diagram. 
Figure 2b shows the closed-loop transient of the control 
variable β. The procedure drives and keep the fine scale 
simulator close (actually almost on) its coarse turning 
point (the protocol keeps the coarse state of the 
microscopic simulator within a narrower region than the 
square symbol appearing in Figure2a). SSA simulations 
were performed using T=0.5, N

≈ ≈

2=8002 and Nrun=100. 
Starting with the initial state guess close to the turning 
point, the numerical bifurcation-motivated approach 
converged again to the “correct” coarse state and 
parameter values. 

θ

Conclusions 

We discussed and illustrated certain aspects of the 
equation-free approach to complex/mutiscale systems 
modeling and computation. The coarse timestepper uses 
the fine-scale simulation model as an experiment, which 
can be easily interrogated (initialized at will) to provide 
local information (residuals, actions of the Jacobian) of the 
unavailable, coarse-grained, macroscopic model. Using 
standard tools from control theory, one can feed these 
observations back to the simulator in order to steer it 
towards solving modeling problems (such as the automatic 
location of stability boundaries). Alternatively, one can 
use standard numerical analysis algorithms as templates to 
devise experimental design protocols for brief numerical 
experiments with the fine scale simulator that solve the 
same modeling problems. The latter approach is more 
direct; it sidesteps single experiment excitation issues by 
initializing several brief experiments at “interesting” state 
and parameter space locations.    

 rk

 rk

This type of link between systems and control theory, 
microscopic simulation and traditional numerical analysis 
may hold promise in the system level analysis of 
multiscale phenomena described by atomistic/stochastic 
simulators. A basic premise of the entire process is our 
assumption that we know the variables (observables of the 
fine scale simulation) based on which a coarse-grained, 
macroscopic model would close. In many cases such 
variables are known from previous knowledge or 
experimentation. For novel systems where such variables 
are not obvious, we need to turn to data analysis 
techniques for the parametrization of high-dimensional 
experimental or computational data. It is from such 
techniques (like the coordinates arising through harmonic 
analysis on data-based graphs (Nadler, et al., 2004)) that 
the variables enabling equation-free simulation will arise. 

Acknowledgments 

The work of I.G.K. was partially supported through 
AFOSR, DARPA and an NSF/ITR grant. C.S. 
acknowledges partial support by the European Social Fund 
and National Resources - (EPEAEK II) -Pythagoras. 
 

 (s)t



  
 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1 

 
 

0 200 400 600 800 1000
2

2.5

3

3.5

4

4.5

5

 

Figure 2.: (a) Bifurcation diagram for the simplified CO 
oxidation mean-field model, exhibiting two turning points 
at β 2.5223 and β  8.4953. We overlay the phase-plane 
trajectory (dotted line) of the closed loop response of the 
SSA simulator. (b) The closed loop transient of the control 
variable, β. The dashed line denotes its critical value.  
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