

Control Engineering

Series Editor

William S. Levine Department of Electrical and Computer Engineering University of Maryland College Park, MD 20742-3285 USA

Editorial Advisory Board

Okko Bosgra Delft University The Netherlands

Graham Goodwin University of Newcastle Australia

Petar Kokotović University of California Santa Barbara USA

Manfred Morari ETH Zürich Switzerland William Powers Ford Motor Company (retired) USA

Mark Spong University of Illinois Urbana-Champaign USA

Iori Hashimoto Kyoto University Kyoto Japan Panagiotis D. Christofides, Antonios Armaou Yiming Lou Amit Varshney

Control and Optimization of Multiscale Process Systems

Birkhäuser Boston • Basel • Berlin Panagiotis D. Christofides University of California, Los Angeles Department of Chemical & Biomolecular Engineering Los Angeles USA pdc@seas.ucla.edu

Yiming Lou United Technologies Corporation Pomona, CA USA ylou@ieee.org Antonios Armaou Pennsylvania State University Department of Chemical Engineering University Park USA armaou@psu.edu

Amit Varshney Westminster, CO USA amitvarshney00@yahoo.com

ISBN: 978-0-8176-4792-6 DOI 10.1007/978-0-8176-4793-3 e-ISBN: 978-0-8176-4793-3

Library of Congress Control Number: 2008939376

© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

birkhauser.com

Contents

List	of Fi	gures		ix
List	of Ta	ables .		xvii
Pre	face .	•••••		xix
1	Intr	oductio	9 n	1
	1.1	Motiva	ation	1
	1.2	An Ex	ample of a Multiscale Process: Thin-Film Growth	2
	1.3	Backg	round on Control and Optimization of Multiscale	
		Proces	ss Systems	4
	1.4	Object	tives and Organization of the Book	7
2	Mul	tiscale	Process Modeling and Simulation	11
	2.1	Overv	iew of Multiscale Modeling	11
	2.2	Thin-H	Film Growth Process	12
	2.3	Gas-P	hase Model	13
	2.4	Surfac	e Microstructure Model	14
		2.4.1	Poisson Processes and Master Equation	14
		2.4.2	Theoretical Foundation of Kinetic Monte	
			Carlo Simulation	16
		2.4.3	Kinetic Monte Carlo Simulation of Thin-Film Growth	18
3	Con	trol Usi	ing Kinetic Monte Carlo Models	27
	3.1	Introd	uction	27
	3.2	Real-7	Time Estimation	28
		3.2.1	Kinetic Monte Carlo Simulator Using Multiple	
			Small Lattices	28
		3.2.2	Adaptive Filtering and Measurement Compensation	32
	3.3	Feedba	ack Control Design	34
		3.3.1	An Estimator/Controller Structure	34

		3.3.2	Model-Predictive Control	35
	3.4	Applic	cation to a Thin-Film Growth Process	37
		3.4.1	SISO Control: Surface Roughness Regulation	38
		3.4.2	MIMO Control: Surface Roughness and Growth Rate	
			Regulation	43
	3.5	Applic	cation to a Complex Deposition Process	57
		3.5.1	Process Description	57
		3.5.2	Open-Loop Dynamics	61
		3.5.3	Low-Temperature Regime: PI Control Design	65
		3.5.4	High-Temperature Regime: MPC Design	68
	3.6	Concl	usions	74
4	Con	structio	on of Stochastic PDEs	75
-	4.1	Introd	uction	75
	4.2	Const	ruction of 1D Linear Stochastic PDEs.	76
		4.2.1	1D Linear Stochastic PDE Model	76
		4.2.2	Eigenvalue Problem of the Linear Operator	77
		4.2.3	Analytical Solutions for Statistical Moments	79
		4.2.4	Model Construction Methodology	81
		4.2.5	Application to a 1D Thin-Film Growth Process	81
	4.3	Const	ruction of 2D Linear Stochastic PDEs.	89
		431	2D Linear Stochastic PDE Model	89
		4.3.2	Eigenvalue Problem of the Linear Operator	90
		4.3.3	Analytical Solutions for Statistical Moments	91
		4.3.4	Model Construction Methodology	93
		4.3.5	Application to a 2D Thin-Film Growth Process	94
	44	Param	eter Estimation for Nonlinear Stochastic PDEs	103
		4 4 1	Example: The Stochastic Kuramoto–Siyashinsky	100
			Equation	103
		442	Model Reduction	104
		4.4.3	System of Deterministic ODEs for State Covariance	107
		4.4.4	Parameter Estimation	108
		445	Application to an Ion-Sputtering Process	110
	4.5	Concl	usions	116
5	Fee	dhack (Control Using Stochastic PDFs	117
5	5 1	Introd	uction	117
	5.2	Predic	tive Control Using Stochastic PDFs	118
	5.2	5 2 1	Generic MPC Formulation	118
		522	Order Paduation	110
		523	Application to a 1D Thin Film Growth Process	121
		5.2.5 5.2.1	Application to a 2D Thin Film Growth Process	121
	5 2	J.Z.4 Lineer	Covariance Control Using Stochastic DDEs	122
	5.5	5 2 1	Model Deduction	126
		522	Faadbaak Control Design	120
		5.5.2		13/

		5.3.3 Analysis of the Closed-Loop Infinite-Dimensional System	138
		5.3.4 Application to a Thin-Film Growth Process	140
	5.4	Nonlinear Covariance Control Using Stochastic PDEs	144
		5.4.1 Model Reduction	148
		5.4.2 Feedback Control Design	149
		5.4.3 Analysis of the Closed-Loop Infinite-Dimensional	
		System	150
		5.4.4 Application to the Stochastic Kuramoto-Sivashinsky	
		Equation	156
		5.4.5 Application to a KMC Model of an Ion-Sputtering	
		Process	162
	5.5	Conclusions	167
6	Opti	imization of Multiscale Process Systems	169
	6.1	Introduction	169
	6.2	Optimization Problem Formulation	170
	6.3	Order Reduction of Dissipative PDEs	172
		6.3.1 Method of Weighted Residuals	174
		6.3.2 Karhunen–Loève Expansion	175
	6.4	Optimization of Microscopic Model Using Tabulation	178
		6.4.1 Problem Formulation	178
		6.4.2 In situ Adaptive Tabulation	179
		6.4.3 FDC Derivative Estimation and EOA	181
	6.5	Multiscale Optimization Problem Solution	184
		6.5.1 Solution Algorithm	184
	6.6	Application to Thin-Film Growth	185
		6.6.1 Process Modeling and Simulation	185
		6.6.2 Time-Constant Process Operation: Optimization Problem	
		Formulation and Results	189
		6.6.3 Time-Varying Process Operation: Optimization Problem	
		Formulation and Results	194
	6.7	Conclusions	200
7	Dyn	amic Optimization of Multiscale Process Systems	203
	7.1	Introduction	203
	7.2	Problem Formulation	203
	7.3	Multiscale Solution Algorithm	205
	7.4	Numerical Simulations	207
		7.4.1 Catalytic CO Oxidation with Infinite Surface Mobility	207
		7.4.2 Catalytic CO Oxidation with Limited Surface Mobility	
		and Lateral Interactions	210
	7.5	Conclusions	213
Def			215
ĸef	erenc	es	213
Ind	ndex		

List of Figures

1.1	Schematic of the reactor with a split-inlet configuration	2
2.1	Illustration of the thin-film growth process.	12
2.2	Initial surface configuration of the kMC simulation of the thin-film growth.	19
2.3	The surface configuration after the execution of an adsorption event	21
2.4	The surface configuration after 30 adsorption events	23
2.5	Execution of a desorption event: surface atom selected for desorption (left plot) and the surface configuration after the desorption event (right plot).	24
2.6	Execution of a migration event: surface atom selected for migration marked as black (left plot) and the surface configuration after the migration event (right plot).	25
3.1	Comparison of the surface roughness profiles obtained from kinetic Monte Carlo simulations that use 20×20 , 50×50 , 100×100 , and 150×150 lattices.	29
3.2	Comparison of the surface roughness profiles from three independent kinetic Monte Carlo simulations that utilize a 20×20 lattice.	30
3.3	Comparison of the surface roughness profiles from three independent kinetic Monte Carlo simulations that utilize a 50×50 lattice.	30
3.4	Comparison of the evolution of surface roughness from (1) a Monte Carlo simulation that uses a 20×20 lattice, (2) the computation of the average of six independent Monte Carlo simulations that utilize a 20×20 lattice, and (3) a Monte Carlo simulation that uses a 100×100 lattice	31

List of Figures

3.5	Comparison of the evolution of surface roughness from (1) a Monte Carlo simulation that uses a 30×30 lattice, (2) the computation of the average of six independent Monte Carlo simulations that utilize a 20×20 lattice, and (3) a Monte Carlo simulation that uses a 100×100 lattice	30
3.6	Diagram of the estimator/controller structure using a kinetic Monte Carlo simulator based on multiple small lattice models	35
3.7	Diagram of multivariable feedback control system with interaction compensation.	36
3.8	Block diagram of the closed-loop system with the kMC model-predictive controller.	36
3.9	(a) plot: surface roughness profile obtained directly from a kMC simulation that uses a 20×20 lattice; (b) plot: surface roughness profile from the roughness estimator (dashed line) and from a kMC simulation that uses a 100×100 lattice (solid line)	39
3.10	Evolution of the surface roughness and the substrate temperature under feedback control.	41
3.11	The microconfiguration of the surface for $T = 600$ K (left plot) and that at the end of the closed-loop simulation run (right plot)	41
3.12	Evolution of the surface roughness and substrate temperature under feedback controller without roughness estimator.	42
3.13	Comparison of surface roughness profiles: (1) roughness profile under feedback control using roughness estimator; (2) roughness profile under feedback control without using roughness estimator with controller parameters shown in column SISO of Table 3.2; and (3) roughness profile under feedback control without using roughness estimator with controller parameters tuned to avoid significant oscillation	43
3.14	Growth rate and surface roughness from the computation of the average of six independent kinetic Monte Carlo simulations that utilize a 20×20 lattice.	45
3.15	Growth rate and surface roughness from a kinetic Monte Carlo simulation that uses a 30×30 lattice.	46
3.16	Growth rate and surface roughness profiles from the estimator (solid lines) and from a kinetic Monte Carlo simulation that uses a 120×120 lattice model (dashed lines).	48
3.17	Comparisons of the surface roughness and growth rate profiles from a kinetic Monte Carlo simulation that uses an 80×80 lattice (dotted) and those from a kinetic Monte Carlo simulation that uses a 120×120 lattice (solid).	49
3.18	Profiles of the growth rate and the inlet precursor mole fraction under single-loop feedback control using the estimator/controller structure of Fig. 3.6	50
	Survey of 1 1g. J.U	50

х

3.19	Profiles of the surface roughness and the substrate temperature under single-loop feedback control using the estimator/controller structure of Fig. 3.6.	52
3.20	Comparison of closed-loop growth rate profiles: (a) Growth rate is the only controlled output and the structure of Fig. 3.6 is used (solid line); (b) Simultaneous regulation of growth rate and surface roughness is considered and feedback control that does not account for multivariable input–output interactions is used (dotted line)	53
3.21	Growth rate (middle plot) and surface roughness (bottom plot) profiles for a step change in inlet precursor mole fraction (top plot) from 2.0×10^{-5} to 2.1×10^{-5} . The substrate temperature is kept at 800 K.	54
3.22	Growth rate (middle plot) and surface roughness (bottom plot) with a step change in substrate temperature (top plot) from 800 K to 840 K . The inlet precursor mole fraction is 2.0×10^{-5}	55
3.23	Comparison of the closed-loop growth rate under multivariable feedback control with interaction compensation (solid line) and under multiple single-loop control (dashed line) (top plot) and closed-loop surface roughness under multivariable feedback control with interaction compensation (bottom plot)	56
3.24	Surface microconfiguration at the beginning (left plot, roughness = 1.8) and at the end of the closed-loop simulation run (right plot, roughness = 1.5).	56
3.25	The complex heterogeneous thin-film deposition process	58
3.26	Surface of a thin film deposited with $w_a^A = 0.05 \text{ s}^{-1}$, $w_a^B = 0.05 \text{ s}^{-1}$ and different temperatures at $t = 900 \text{ s}$: $T = 320 \text{ K}$ (left plot) and $T = 380 \text{ K}$ (right plot).	64
3.27	Surface roughness of thin films deposited with $w_a^A = 0.05 \text{ s}^{-1}$, $w_a^B = 0.05 \text{ s}^{-1}$ for different substrate temperature. $(t = 900 \text{ s})$	65
3.28	Surface roughness of thin films deposited with different substrate temperatures computed using different simulation lattice sizes	66
3.29	Block diagram of the closed-loop system	67
3.30	Temperature and surface roughness profiles with surface roughness set-point value of 3.5 ML: (a) closed-loop surface roughness (solid line, left scale); (b) open-loop surface roughness (dashed line, left scale); (c) substrate temperature (dotted line, right scale)	68
3.31	Temperature and surface roughness profiles with surface roughness set-point value of 3.5 ML in the presence of disturbance: (a) closed-loop surface roughness (solid line, left scale); (b) open-loop surface roughness (dashed line, left scale); (c) substrate temperature	
	(dotted line, right scale)	69

3.32	Temperature and surface roughness profiles with a surface roughness set-point value of 3.2 ML: (a) closed-loop surface roughness (solid line, left scale); (b) open-loop surface roughness (dashed line, left scale); (c) substrate temperature (dotted line, right	
3.33	scale)	70
	roughness set-point value of 3.2 ML in the presence of disturbance: (a) closed-loop surface roughness (solid line, left scale); (b)	
	temperature (dotted line, right scale)	70
3.34	roughness set-point value of 3.2 ML in the presence of disturbance: (a) closed-loop surface roughness (solid line, left scale); (b) open-loop surface roughness (dashed line, left scale); (c) substrate	
3.35	temperature (dotted line, right scale) Temperature and surface roughness profiles with a surface roughness set-point value of 3.2 ML: (a) closed-loop surface roughness (solid line, left scale); (b) reference surface roughness (dashed line, left scale); (c) open-loop surface roughness (dotted line, left scale); (d) substrate temperature (dashed dotted line, right	71
	scale)	73
3.36	Temperature and surface roughness profiles with a surface roughness set-point value of 3.2 ML: (a) closed-loop surface roughness (solid line, left scale); (b) reference surface roughness (dashed line, left scale); (c) open-loop surface roughness (dotted line, left scale); (d) substrate temperature (dashed dotted line, right scale)	73
4.1		15
4.1 4.2	The thin film growth process Eigenvalue spectrums of the system of infinite stochastic ODEs computed from the kMC simulation of the deposition process with different lattice sizes: $k_{\text{max}} = 100$, $k_{\text{max}} = 500$, $k_{\text{max}} = 1000$,	82
4.3	and $k_{\text{max}} = 2000.$ Eigenspectrums (top) and covariance spectrums (bottom) computed from simulated deposition processes with a growth rate W = 0.5 ML/s for different substrate temperatures: $T = 600 K$,	84
4.4	T = 650 K, and $T = 680$ K Final thin-film surface profiles generated by kMC simulation and stochastic PDE model for a 1000-s deposition with substrate temperature $T = 550$ K, thin-film growth rate $W = 0.1$ ML/s	85
4.5	and lattice size $k_{\text{max}} = 2000$ Final thin-film surface profiles generated by kMC simulation and stochastic PDE model for a 400-s deposition with substrate temperature $T = 700$ K, thin-film growth rate $W = 2.5$ ML/s,	87
	and lattice size $k_{\text{max}} = 2000$.	87

4.6	Expected surface roughness profiles generated by kMC simulation and stochastic PDE model for a 1000-s deposition with substrate temperature $T = 550$ K, thin-film growth rate $W = 0.1$ ML/s,	
	and lattice size $k_{\text{max}} = 2000$.	88
4.7	Expected surface roughness profiles generated by kMC simulation and stochastic PDE model for a 400-s deposition with substrate temperature $T = 700$ K, thin-film growth rate $W = 2.5$ ML/s, and lattice size $k_{max} = 2000$.	88
4.8	Eigenvalue spectrum of the stochastic ODE systems computed from	00
	the kMC simulation of the deposition process with $W = 0.5 \mathrm{s}^{-1}$,	
	$T = 650 \mathrm{K}, \mathrm{and} k_{\mathrm{max}} = 100.$	96
4.9	Final thin-film surface profiles generated by kMC simulation (left,	
	$k_{max} = 100$) and stochastic PDE model (right, 20×20 states)	
	for a 200-s deposition with substrate temperature $T = 610 \mathrm{K}$	
	and adsorption rate $W = 0.5 \mathrm{s}^{-1}$	99
4.10	Final thin-film surface profiles generated by kMC simulation (left,	
	$k_{\rm max} = 100$) and stochastic PDE model (right, 20×20 states)	
	for a 200 s deposition with substrate temperature $T = 710 \mathrm{K}$	
	and adsorption rate $W = 0.5 \text{s}^{-1}$.	100
4.11	Expected surface roughness profiles generated by kMC simulation	
	$(k_{\text{max}} = 100)$ and stochastic PDE model for a 200 s deposition with	
	adsorption rate $W = 0.5$ s ⁻¹ and different substrate temperatures: T = 610 K (top) and T = 710 K (bettern)	102
1 12	I = 010 K (top) and $I = 10 K$ (bottom)	102
4.12	the number of occupied sites in a 3×3 hox centered at the particle	
	on the top of site <i>i</i> : $P = 1$ in the left figure and $P = 4/7$ in the	
	right figure, where the particle marked by \bullet is on the top of site <i>i</i> ,	111
4.13	Profiles of the state covariance $\langle \alpha_{-}^{2}(t) \rangle$ for $n = 1, 3, 5, 7,$ and 9,	114
4.14	Profiles of the expected value for $\alpha_n \cdot f_{n\alpha}(t)$ for $n = 1, 3, 5, 7$,	
	and 9	114
4.15	The covariance matrix for the first 20 states: a diagonally dominant	
	matrix.	115
4.16	Comparison of the open-loop profile of the expected surface	
	roughness of the sputtering process from the kMC simulator	
	and that from the solution of the stochastic KSE using the estimated	
	parameters	115
51	Deals diagram of the aloged loop system	120
5.1	Surface roughness and substrate temperature profiles of a 1000 s	120
5.2	surface foughness and substrate temperature promes of a 1000-s closed loop deposition process with thin film growth rate $W = 0.5$	
	ML/s and final roughness setpoint $r_{rat} = 1.0$ ML	124
5.3	Final thin-film surface profile of a closed-loop (top plot) and of an	121
2.0	open-loop (bottom plot) deposition with the same initial substrate	
	temperature $T = 650$ K, thin-film growth rate $W = 0.5$ ML/s, and	
	deposition length $t_{dep} = 1000 \mathrm{s}$.	124

5.4	Histogram of final surface roughness of 100 closed-loop and 100 open-loop thin-film depositions targeted at the same surface roughness level.	125
5.5	Block diagram of the closed-loop system.	126
5.6	Surface roughness and substrate temperature profiles of a 200-s closed-loop deposition process with a thickness set point of 100 ML and a final roughness set point $r_{\text{set}} = 1.5 \text{ ML}$; the initial deposition conditions are $T = 610 \text{ K}$ and $W = 1.0 \text{ ML/s}$	131
5.7	Thickness and surface adsorption rate profiles of a 200-s closed-loop deposition process with a thickness setpoint of 100 ML and a final roughness set point $r_{\text{set}} = 1.5 \text{ ML}$; the initial deposition conditions are $T = 610 \text{ K}$ and $W = 1.0 \text{ ML/s}$.	132
5.8	Histogram of final surface roughness of 100 closed-loop and 100 open-loop thin-film depositions.	133
5.9	Schematic of the rules of the deposition.	141
5.10	Comparison of the open-loop profile of the expected surface roughness from the kinetic Monte Carlo simulator (solid line) and that from the solution of the SPDE, with adjusted covariance, using 1,000 modes (dotted line).	142
5.11	Closed-loop simulation results by applying the controller designed based on the first 40 modes of the SPDE model to the kinetic Monte Carlo model. (a) The closed-loop surface roughness profile from one simulation run (solid line); (b) the expected closed-loop surface roughness profile (dotted line); and (c) the open-loop surface roughness profile from one simulation run (dashed line)	144
5.12	The open-loop profile of the expected surface roughness resulting from the computation of the average of 100 independent simulation runs of the stochastic KSE in Eq. (5.110).	157
5.13	The closed-loop profile of the expected value of the surface roughness (solid line) vs. the open-loop profile of the expected value of the surface roughness (dotted line) when the controller is designed based on the first 20 modes.	158
5.14	Comparison of the expected closed-loop surface roughness under the nonlinear controller (solid line) and that of the linear controller (dotted line) when the initial surface roughness is 18 (top) and 45 (bottom). The nonlinear controller's performance is superior to that of the linear controller	160
5.15	Comparison of the closed-loop surface roughness under the nonlinear controller (solid line) and that of the linear controller (dotted line) from a single simulation run when the initial surface roughness is 18 (top) and 45 (bottom). The nonlinear controller's performance is superior to that of the linear controller	161

5.16	Comparison of the open-loop profile of the expected surface roughness from the kinetic Monte Carlo simulation (solid line) and that from the solution of the stochastic KSE process model	
	(dotted line)	163
5.17	Surface microconfiguration at the beginning of the closed-loop simulation run	165
5.18	Closed-loop surface roughness profiles in the sputtering process: (a) The expected closed-loop surface roughness profile obtained from 100 independent simulation runs (solid line); (b) the closed-loop surface roughness profile from one simulation run (dotted line).	166
5.19	Histogram of the final surface roughness of 100 closed-loop and 100 open-loop simulation runs.	166
5.20	Surface microconfiguration at the end of the closed-loop simulation run under nonlinear feedback control	167
6.1	Various possibilities that may arise once the ISAT database is probed with a query. (a) ϕ^q lies within the EOA of ϕ^0 . (b) ϕ^q lies outside the EOA of ϕ^0 , but $ \mathcal{R}(\phi^q) - \mathcal{R}^l(\phi^q) < \epsilon_{\text{tol.}}$ (c) ϕ^q lies outside the EOA of ϕ^0 , and $ \mathcal{R}(\phi^q) - \mathcal{R}^l(\phi^q) > \epsilon_{\text{tol.}}$	182
6.2	Flowchart of the multiscale solution algorithm	185
6.3	Schematic of the reactor with a split-inlet showerhead	
	configuration	186
6.4	Surface roughness as a function of time for various lattice sizes $(T_s = 1100 \text{ K}; \text{ adsorption rate} = 10 \text{ atoms/site-s})$.	191
6.5	Surface roughness as a function of time with different initial surface configurations ($T_s = 1150 \text{ K}$; adsorption rate = 8atoms/site-s)	191
6.6	Comparison of deposition rate profiles with macroscale-only (Optimal 1) and multiscale optimization objective (Optimal 2)	
6.7	(time-constant process operation) Optimal substrate temperature profiles across the wafer surface	192
	(time-constant process operation)	193
6.8	Surface roughness profiles with macroscale-only (Optimal 1) and multiscale optimization objective (Optimal 2) (time-constant	102
6.0	Comparison of optimal deposition rate profiles with thin ring	193
0.9	and ring actuation for time-constant process operation. Optimal 1 and 1' correspond to macroscale optimization with thin-ring and ring actuation, respectively. Optimal 2 and 2' correspond to	
	multiscale optimization.	194
6.10	Comparison of surface roughness profiles with thin-ring and ring actuation for optimal time-constant process operation. Optimal 1 and 1' correspond to macroscale optimization with thin-ring and ring actuation, respectively. Optimal 2 and 2' correspond to	
	multiscale optimization.	195

6.11	Optimal temperature profiles for ring temperature actuation	105
	(time-constant process operation)	195
6.12	Comparison of (a) deposition rate and (b) roughness profiles across	
	the wafer surface, with macroscale (Optimal 1) and multiscale	
	objective (Optimal 2) (time-varying process operation)	197
6.13	Initial (solid lines) and final (dashed lines) optimal surface	
	temperature profiles, for (a) macroscale-only objective and (b)	
	multiscale objective (time-varying process operation)	198
6.14	Comparison of film-thickness profiles with time-constant and	
	time-varying process operation. Optimal 1 and 1' correspond	
	to macroscale optimization with thin-ring and ring actuation,	
	respectively. Optimal 2 and 2' correspond to multiscale	
	optimization.	199
	•	
7.1	Flowchart of the multiscale solution algorithm for the dynamic	
	optimization of multiscale process systems	206
7.2	Optimal control profile for $N = 10$.	209
7.3	Number of time-stepper evaluations and database interpolations	
	per F computations for $N = 10$. Total equal to 100 per function	
	evaluation.	209
7.4	Optimal control profile for $N = 50$.	210
7.5	Number of time-stepper evaluations and database interpolations	
	per F computations for $N = 50$. Total equal to 100 per function	
	evaluation.	211
7.6	Optimal control profile for catalytic CO oxidation with finite lattice	
	diffusion rate for $N = 10$.	212
7.7	Number of time-stepper evaluations and database interpolations	
	per F computations for $N = 10$. Total equal to 100 per function	
	evaluation.	212

List of Tables

1.1	Process reaction scheme.	3
3.1	Parameters of the thin-film growth process.	38
3.2	All estimator and controller parameters	51
3.3	Parameters of the complex deposition process.	61
6.1	Process conditions and reactor geometry	186
6.2	Process reaction scheme.	187
6.3	Nonuniformity and roughness values for different operating	
	policies	192
6.4	Optimization efficiency.	200
7.1	CO oxidation process parameters.	208
7.2	CO oxidation with lateral interaction process parameters.	212

Preface

Multiscale process systems are characterized by highly coupled phenomena that occur in disparate spatial and temporal scales. Examples include the chemical vapor deposition of thin films, as well as ion-sputtering and catalytic processes where gas-phase and surface processes strongly interact. Detailed modeling of multiscale process systems naturally leads to continuum laws for the macroscopic (gas-phase) phenomena coupled with stochastic simulations for the microscopic (surface) phenomena. Control and optimization of multiscale process systems, targeting regulation of microscopic properties like thin-film surface roughness, cannot be addressed using existing methods that rely on continuum process models in the form of linear/nonlinear differential equations.

This book-the first of its kind-presents general, yet practical, methods for model-based feedback control and optimization of multiscale process systems. Beginning with an introduction to general issues on control and optimization of multiscale processes and a review of previous work in this area, the book discusses detailed modeling approaches for multiscale processes with emphasis on the theory and implementation of kinetic Monte Carlo simulation, methods for feedback control using kinetic Monte Carlo models, stochastic model construction and parameter estimation, predictive and covariance control using stochastic partial differential equation models, and both steady-state and dynamic optimization algorithms that efficiently address coupled macroscopic and microscopic objectives. The methods are applied to various multiscale/microscopic processes—including thin-film deposition processes, an ion-sputtering process, and a catalytic CO oxidation process-and their effectiveness and performance are evaluated through detailed computer simulations. The book also includes discussions of practical implementation issues that can help researchers and engineers understand the development and application of the methods in greater depth.

The book assumes a basic knowledge about differential equations, probability theory, and control theory and is intended for researchers, graduate students, and process control engineers.

In addition to our work, Dr. Dong Ni and doctoral candidate Gangshi Hu at UCLA contributed greatly to the research results included in the book and in the

preparation of the final manuscript. We would like to thank them for their hard work and contributions. We would also like to thank all the other people who contributed in some way to this project. In particular, we would like to thank our colleagues at UCLA and Penn State for creating a pleasant working environment, the staff of Birkhäuser for excellent cooperation, and the United States National Science Foundation for financial support. Last, but not least, we would like to express our deepest gratitude to our families for their dedication, encouragement, and support over the course of this project. We dedicate this book to them.

Panagiotis D. Christofides, Antonios Armaou, Yiming Lou, and Amit Varshney

September 2008