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bstract
The regulatory architecture responsible for robust maintenance of 24 h cycles is analyzed as a control system. At the gene regulatory level, it
s shown that performance attributes, notably phase timing, are controlled in a robust manner. At the next level in the hierarchy, it is shown that
ynchrony is achieved in populations of neurons to enable clock precision. Finally, at the level of the organism, it is shown that an optimal control
pproach can be used to reset the clock using a light stimulus.

2006 Elsevier Ltd. All rights reserved.
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. Introduction—circadian clock architecture

A circadian clock is a highly conserved feature of life on
arth, imparting an approximately 24 h period to many biolog-
cal behaviors at the cellular, tissular, and organismal levels.
hey serve to impose internal alignments between different bio-
hemical and physiological oscillations. Their ability to antici-
ate environmental changes enables organisms to organize their
hysiology and behavior such that they occur at biologically
dvantageous times during the day (Edery, 2000) just as visual
nd mental acuity fluctuate, affecting complex behaviors.

Many of the molecular aspects of the clock have been elu-
idated for organisms as diverse as Neurospora (Lee, Lores, &
unlap, 2000; Merrow, Roenneberg, Macino, & Franchi, 2001),
rabidopsis (Salom & McClung, 2004), Drosophila (Williams
Sehgal, 2001), and mouse (Reppert & Weaver, 2001, 2002;

hearman et al., 2000). In consequence, models of varying
omplexity, both deterministic (Forger & Peskin, 2003; Leloup
Goldbeter, 1998, 2003; Leloup, Gonze, & Goldbeter, 1999;
ocke, Millar, & Turner, 2005; Ruoff, Vinsjevik, Monnerjahn,
Rensing, 2001; Smolen, Baxter, & Byrne, 2001; Tyson, Hong,
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hron, & Novak, 1999; Ueda, Hagiwara, & Kitano, 2001) and
tochastic (Forger & Peskin, 2005; Gonze, Halloy, Leloup, &
oldbeter, 2003), have been proposed. The biological details

re coming into sharper focus, as new experiments yield clues
o the detailed (and remarkably overlapping) molecular circuitry
f both the fly and mammals (Panda, Hogenesch, & Kay, 2002).

The molecular origins of circadian rhythm are in the func-
ioning of neurons in the suprachiasmic nucleus (SCN), located
n the anterior hypothalmus. There are approximately 100,000
eurons in the this region of the brain that operate in synchro-
ized cyclic firing to generate the “master clock” signal that
rives other 24-h periods in the body. Various peptides and
euro-transmitters have been studied for their role in circa-
ian synchronization in the SCN, including vasoactive intestinal
eptide (VIP), peptide histidine isoleucine (PHI), and gastrin
eleasing peptide (GRP).

An example of a transcriptional feedback network for
ircadian rhythm generation can be taken from Drosophila,
hich is the most heavily studied circadian clock (Hastings,
000; Reppert & Weaver, 2000; Young & Kay, 2001). The
ore of this clock is shown in Fig. 1 (also, in more detail in

ection 3). The transcription rates of the genes period (per)
nd timeless (tim) are accelerated when protein dClk binds to
heir promoter regions. The transcribed per and tim messenger
NAs (mRNAs) are exported from the nucleus and translated

mailto:frank.doyle@icb.ucsb.edu
dx.doi.org/10.1016/j.compchemeng.2006.05.029
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Fig. 1. Circadian gene regulatory archite

nto proteins PER and TIM, respectively. In the cytoplasm the
rotein doubletime (DBT) binds to PER. DBT either phospho-
ylates PER, causing it to be degraded, or allows PER to bind
o TIM after a delay, thereby protecting it from degradation.
fter the DBT–PER–TIM complex is formed, it is imported

nto the nucleus where it represses the transcription of per and
im and activates the transcription of dClk (clock). The dClk
RNA is exported from the nucleus and translated into protein

CLK. Protein dCLK is imported into the nucleus where it
epresses the transcription of Clk and activates the transcription
f per and tim. This system can be characterized by a two
oop transcriptional feedback network, where DBT-PER-TIM
egatively feeds back on per and tim transcription and acti-
ates dClk transcription, and dCLK negatively feeds back on
Clk transcription and activates per and tim transcription. In
ddition to the main (double) negative feedback loop, there
re additional loops involving the genes vri and Pdplε. This
ulti-loop architecture is shared by mammals (Fig. 1), although

ome homologous proteins play different roles (Reppert &
eaver, 2000). Notable changes include: TIM/PER is replaced

y PER/CRY, dCLK by CLK, and the additional circuitry in
his case is comprised of VRI and PDP1ε. In addition, the

ammalian model has light modulation at the transcription
tep, in contrast with the protein degradation modulation in
he fly.

. Robust yet fragile architecture

The coexistence of extreme robustness and fragility con-
titutes one of the most salient features of highly evolved or
esigned complexity (Stelling, Sauer, Szallasi, Doyle, & Doyle,
004). Optimally robust systems are those that balance their
obustness to frequent environmental variations with their coex-
sting sensitivity to rare events (Morohashi et al., 2002). As a
esult, robustness and sensitivity analysis are key measures in
nderstanding and controlling system performance.

Robust performance reflects a relative insensitivity to pertur-
ations; it is the persistence of a system’s characteristic behavior
nder perturbations or conditions of uncertainty. Measuring the
obustness of a system determines the behavior (the output or
erformance) as a function of the input (the disturbance) (Ma &
glesias, 2002). Formal sensitivity analysis allows the investiga-

ion of robustness and fragility properties of mathematical mod-
ls (Ma & Iglesias, 2002), yielding local properties with respect
o a particular choice of parameter values. Large parametric sen-
itivity suggests that the system’s performance (e.g., periodicity,

s
f
1
a

for Drosophila (left) and mouse (right).

ntrainment, phase-locking) can drastically change with small
ariations in specific parameters. On the contrary, small sensitiv-
ty measures suggest little change in performance. As a result,
ensitive elements have evolved as natural control inputs. For
nstance, experimental data proves that changes in light con-
rol phase-resetting properties of the Drosophila melanogaster
ircadian clock (Myers, Wager-Smith, Rofhenfluh-Hilriker, &
oung, 1996). Meanwhile, elements involved with this light

nput are some of the most sensitive parameters (Bagheri, Taylor,
telling, & Doyle, 2005; Stelling, Gilles, & Doyle, 2004).

It is expected that the clock is robust, i.e., that perturbations in
lock constituents do not radically affect the performance of the
lock. Formal sensitivity analysis can be used to reveal robust-
ess in a system and has been used to analyzed these properties
n the circadian clock of Drosophila (Stelling and Gilles et al.,
004). Here, a similar analysis is performed on three models of
he mouse circadian clock (Forger & Peskin, 2003; Leloup &
oldbeter, 2003).
The Leloup and Goldbeter Model “A” (Leloup & Goldbeter,

003) uses Michaelis-Menten and Hill-type kinetics to describe
he mouse circadian clock in 16 states and 80 parameters. The
lock constituents are produced by the three genes per, cry, and
mal1. The protein Bmal1 activates per and cry and represses
mal1. The proteins PER and CRY dimerize and bind BMAL1,
reating an inactive complex that degrades. Phosphorylation
f PER, CRY, PER:CRY heterodimer, or BMAL1 enhances
egradation, though phosphorylated proteins can be dephos-
horylated. So, rising levels of BMAL1 lead to rising levels
f PER and CRY. But rising levels of PER and CRY lead to
ncreased sequestration and degradation of BMAL1. Rising lev-
ls of BMAL1 also lead directly to lower production of BMAL1.

The Leloup and Goldbeter Model “B” (Leloup & Goldbeter,
003) describes the mouse circadian clock in 19 states and 95
arameters and is similar to the above model with several excep-
ions: (1) there is a fourth gene, rev-erbα, whose protein product,
EV-ERB�, represses expression of Bmal1; (2) BMAL1 acti-
ates rev-erbα; and (3) BMAL1 has no effect on expression
f its gene. Oscillations are produced as in Leloup and Gold-
eter Model “A”, except that the down-regulation of BMAL1 is
ccomplished indirectly, by first increasing REV-ERB� levels.

The Forger and Peskin Model (Forger & Peskin, 2003) uses
ass action kinetics to describe the mouse circadian clock in 74
tates and 235 parameters. Because many states are equal to zero
or all time, the model can be effectively reduced to 62 states and
84 parameters. Though the model does not include BMAL1, as
bove, it does include two versions of PER (PERI and PER2),
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Fig. 2. “Global” and “local” parameter groups. Average normalized ranks for
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wo versions of CRY (CRY1 and CRY2), as well as REV-ERB�.
RY1 and CRY2 repress all system genes, and dimers of REV-
RB� repress the cry genes. Either CRY protein can enter the
ucleus only when dimerized to either singly-phosphorylated
ER protein; CRY cannot enter the nucleus by itself or when
imerized to un-phosphorylated or doubly-phosphorylated PER.
ither PER may be phosphorylated once or twice, but neither
ay be dephosphorylated. So, rising levels of PERs and CRYs

ead to increasing levels of nuclear CRYs and thus lower pro-
uction of all constituents, including REV-ERB�. Since lower
EV-ERB� levels lower the repression on the cry genes, this
ould tend to increase CRY levels. However, the REV-ERB�

oop is parameterized at extremely low concentrations, so the
oop is effectively absent in the system.

Sensitivity analysis quantifies how much the system behav-
or (outputs) depends on the parameters that affect the system
ynamics. First-order sensitivity coefficients capture the linear
ependence of the behavior on these parameters:

i,j = ∂yi

∂pj

(1)

here Si,j is the sensitivity coefficient of the ith system output
i with respect to the jth parameter pj. The output yi typi-
ally consists of a function of the system states, which in this
ase include different mRNA and protein concentrations. The
ircadian rhythm model is represented as coupled ordinary dif-
erential equations that produce an asymptotically stable limit
ycle:

dx

dt
= f (x, t, p) (2)

here x ∈ Rn denotes the state vector, p ∈ Rm the parameter vec-
or, t the time, and f consists of (nonlinear) functions of the
tates, time, and parameters. There exist numerous methods for
omputing Si,j from Eq. (2) such as direct differential, finite dif-
erence and Green’s function (Varma, Morbidelli, & Wu, 1999).

To assess robustness in each of these models, sensitivity
nalyses were performed using the BioSens software (Taylor,
unawan, Gadkar, & Doyle, in press), which ranks parameter

ensitivities according to values generated in the Fisher Infor-
ation Matrix (FIM). These values were normalized so that

he system is most sensitive to parameters with ranks close to
ero and least sensitive to parameters with ranks close to one.
ll three models were analyzed identically, and the conclusions
ere similar in each case. However, for conciseness, the results

re shown for Leloup and Goldbeter Model “B” only.
The robustness inquiry for the Drosophila models (Stelling

nd Gilles et al., 2004) showed that parameters could be segre-
ated into two broad groups: “Global” parameters, like tran-
cription and translation rates, that affect many processes in
ddition to the circadian clock, and “local” parameters, like
hosphorylation rates, that pertain to the clock exclusively. In
ddition, a third category of “mixed” parameters, which are nei-

her entirely global nor local, is indicated. It was found that the
rosophila models were sensitive to perturbations in their global
arameters but less sensitive to perturbations in their local or
ixed parameters. Here, a similar grouping of parameters in the

t
s
C
c

arameter groups in Leloup and Goldbeter Model “B” (19 states, 95 parameters)
ccording to the degree of model sensitivity to parameter perturbations. Normal-
zed ranks near zero indicate model sensitivity to parameter perturbations.

hree mouse models yields identical conclusions, i.e., the models
xhibit greater sensitivity to perturbation of global parameters
han to local or mixed parameters (see Fig. 2).

Again, in an effort to mimic some of the earlier Drosophila
nalysis (Stelling and Gilles et al., 2004), we allowed each
arameter to vary independently, and, provided a stable limit
ycle was reached, performed a sensitivity analysis as above;
arameter sets not yielding stable limit cycles were discarded.
his procedure was repeated 10,000 times for each model, and

or each model the mean and standard deviation of the resulting
arameter sensitivity ranks was plotted, as shown in Fig. 3. Note
hat each parameter inhabits a relatively tight sensitivity range,
nd so the conservation of robustness properties obtained in the
arlier paper is also seen here. Interestingly, we were unable to
ary the parameter sets as widely for the two Leloup and Gold-
eter models as for the Forger and Peskin model without the
oss of oscillations, indicating that the Leloup and Goldbeter

odels are parameterized closer to a bifurcation boundary: in
he Leloup and Goldbeter models, parameters were individu-
lly dropped to 85% of their nominal values, left unchanged, or
ncreased to 118% of their nominal values, but in the Forger and
eskin model parameters were individually dropped to 75% of

heir nominal values, left unchanged, or increased to 133% of
heir nominal values.

When one plots the sensitivity ranks obtained from perturba-

ion to the nominal parameter sets against the means of the sen-
itivity ranks obtained from perturbations on the 10,000 Monte
arlo runs, one sees excellent correlations (Fig. 4). Indeed, the
orrelation value shown in the figure (R2 = 0.92) is exceeded
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Fig. 3. Conservation of robustness properties. Mean parameter sensitivity ranks
and standard deviations as a function of arbitrary parameter number (captured by
center of bars, and range, respectively). Sensitivities were determined throughout
a section of parameter space yielding oscillations in the model. Parameters were
allowed to vary independently. Each parameter took a value at 75% of nominal,
100% nominal, or 133% of nominal. The system was allowed to reach a stable
limit cycle and then sensitivity analyses were made by allowing infinitesimal
perturbations in each parameter. The sensitivity of the system to each parameter
was quantified, ranked and normalized.
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using (Kramer, Rabitz, & Calo, 1984)

Qj(0) = ∂φ

∂xj(0)
= − lim

t′→∞
∂xi(t′)/∂xj(0)

dxi(t′)/dt
(3)
ig. 4. Similarity of nominal sensitivity rankings and mean sensitivity rank-
ngs in 95-dimensional parameter space. Note the high correlation coefficient
R2 = 0.92).

y the correlation value for Leloup and Goldbeter Model “A”
R2 = 0.93) and the correlation value for the Forger and Peskin

odel (R2 = 0.99).

. Phase behavior and entrainment
In nature, circadian rhythm does not function independently.
his rhythm constantly receives inputs from and synchronizes

o the environment. The most obvious and important of environ-
F
i
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ental cues to circadian rhythm is (sun) light, while other com-
on cyclic synchronizing factors include temperature, humidity,
eals and social interactions (Johnson, Elliot, Foster, Honma,
Kronauer, 2004). The ability of circadian rhythm to reset its

hase to the external clock (referred to as zeitgebers-literally
ime givers in German) allows organisms to adapt their activity
ycle to best suit the surroundings.

The entrainment (synchronization) property is the most
mportant feature of a circadian rhythm, but the least understood
n chronobiology (Johnson, Elliott, & Foster, 2003; Roenneberg,
aan, & Merrow, 2003). Here, entrainment refers to an active

dynamic) synchronization response of a free-running oscilla-
or to a cyclic input. To elucidate the mechanisms of circadian
ntrainment necessitates the understanding of circadian phase
ehavior. This section presents sensitivity analysis methods
or investigating the entrainment mechanisms of a circadian
ene network. The methods are applied to the entrainment of
rosophila circadian rhythm to light using a limit cycle model

Leloup & Goldbeter, 1998).

.1. Phase sensitivity

Phase behavior analysis requires a different approach from
he classical sensitivity computations due to the difficulty in
epresenting phase attributes as a function of states. Here, phase
epresents the time distance (modulo the period) from the refer-
nce point to a position on the limit cycle. One enabling concept
or quantifying phase is known as the isochron. An isochron of
limit cycle is a set of points (in Rn−1) from which state tra-

ectories evolve to the same phase on the limit cycle. Given two
oints in the basin of attraction of a limit cycle (not necessar-
ly on the orbit), one can directly compute the phase difference
ased on the time distance of the isochrons to which these points
elong. This phase definition is equivalent to measuring the time
ifference between two trajectories to reach the same isochron.
hus, the isochrons act as phase grids of a limit cycle as shown

n Fig. 5.
The first type of phase sensitivity analysis directly uses the

efinition of isochrons as an isophasic set of initial conditions.
ere, the phase sensitivity to initial conditions can be computed
ig. 5. A hypothetical limit cycle with the isochrons spaced equally in time. The
sochrons of an integer multiple of the period apart, are equivalent.
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anistic limit cycle model (Leloup & Goldbeter, 1998; Leloup
et al., 1999). The model captures two negative feedback loops
as shown in Fig. 6, which involves 10 states (period and
timeless mRNAs, proteins, and their respective phosphorylated

Fig. 6. An overview of Drosophila circadian rhythm gene regulation model
704 F.J. Doyle III et al. / Computers and C

he numerator can be computed efficiently using the Green’s
unction method. The more interesting phase sensitivity with
espect to model parameters can be defined based on the afore-
entioned sensitivity coefficient. In this case, the parametric

hase sensitivity at a given time represents the phase difference
etween two trajectories starting from the same initial condi-
ion; one with the nominal parameter set and the other with the
erturbed parameter set (each of the parameters is perturbed
ndependently). Mathematically, this accumulated phase shift
an be computed as (Kramer et al., 1984)

∂φ(t)

∂pj

)
η

=
n∑

i=1

Qi(t)
∂xi(t)

∂pj

(4)

ote that the period sensitivity is simply the accumulated phase
hift after one circle around the limit cycle

∂τ

∂pj

=
(

∂φ(t + τ)

∂pj

)
η

−
(

∂φ(t)

∂pj

)
η

(5)

here t is sufficiently large to exclude transient behavior.
In circadian rhythm, the efficacy of an entraining agent

epends on the phase at which it is administered. This efficacy is
ummarized in a phase response curve (PRC) (Johnson, 1999),
iving the induced phase shifts as a function of the circadian
hase. Modeling of environmental cues can be posed within the
ramework of the parametric phase sensitivity above (Leloup
t al., 1999). In this case, the PRC represents the accumulated
hase shift over the duration of external cue (Gunawan & Doyle,
005)

RC(t) =
r∑

j=1

[(
∂φ(t + �θ)

∂pj

)
η

−
(

∂φ(t)

∂pj

)
η

]
�pj (6)

here �θ denotes the (effective) duration of the resetting cue,
is the total number of parameters affected by the entrainment,
nd �pj represents the magnitude of parameter change due to
ntrainment.

In an entrained system, the concept of isochorn is no longer
pplicable, since all points within the basin of attraction will
ventually approach the same phase (the system is synchro-
ized). Here, the phase sensitivity can use relative references
uch as peaks and troughs of the protein and/or mRNA concen-
rations. In such a case, the phase sensitivity of the peak/trough
ith respect to different parameters can be derived:

∂te,i

∂pj

= − (∂fi/∂x)T
p(∂x/∂pj) + (∂fi/∂pj)

x

(∂fi/∂x)p(∂x/∂t)

∣∣∣∣∣
t=te,i

(7)

here te,i is the time of the extrema (peak or trough) of the ith
tate. (The derivation starts from the definition of an extrema
i(x(te,i(p), p), p) = 0 and continues with the total derivative
fi = 0.)

Under entrainment, circadian rhythms maintain a stable phase

ngle with the external cue, which is a function of the free-
unning period (FRP), the period of entrainment and the system
hase response (Johnson et al., 2003; Roenneberg et al., 2003).
he ability to attain such phase angle hinges on the circadian

(
i
p
i
e

al Engineering 30 (2006) 1700–1711

eriod that only approximates 24-h (a period of exactly 24 h will
ot give a stable phase angle). Furthermore, a stable phase of
ntrainment is only possible when the FRP does not significantly
iffer from the period of entrainment, which defines the range
f entrainment. In experiments, the phase of entrainment was
ften obtained as a function of the entraining period, which is
nown as T-cycle experiment. Although the non-24-h periods
ave no real natural counterpart, T-cycles have proven useful in
lucidating the circadian range of entrainment (Johnson et al.,
004). Using peaks/troughs as phase angle measure, the effect
f each parameter variations on the phase of entrainment can be
uantified using Eq. (7).

There exist two competing views of circadian entrain-
ent mechanism: continuous (parametric) and discrete

non-parametric) models (Daan, 2000). In parametric entrain-
ent model, light has a continuum effect on the rhythm
hich is a function of the light intensity. On the other hand,
on-parametric model assumes that circadian entrainment is
chieved by discrete light signals at dawn and dusk. Each of
hese models has strengths and weaknesses. Nevertheless, these
ifferent views can be consolidated by explaining the circadian
ntrainment using limit cycle models (Johnson et al., 2003,
004).

.2. Drosophila circadian rhythm phase sensitivity

The molecular biology of Drosophila circadian rhythm has
een extensively studied as a paradigmatic system (Williams

Sehgal, 2001), which allows for the construction of a mech-
Leloup & Goldbeter, 1998). The key genes are per and tim which correspond-
ngly produce the proteins PER and TIM. In the cell, the proteins can become
rosphorylated and then degraded, or form the dimer PER-TIM which in turn
nhibits the transcription of per and tim in the nucleus. Light preferentially
nhances the rate of degradation of TIM protein.
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orms, and cytoplasmic and nucleic PER-TIM dimers) and 38
arameters (not shown here for brevity) (Leloup & Goldbeter,
998). This model also captures the light input to the circadian
hythm (Zeng, Qian, Myers, & Rosbash, 1996) and thus pro-
ides an example system for studying a circadian entrainment
ehavior.

Fig. 7a presents the free-running parametric phase sen-
itivity, which is growing without bound for the parameter
ariations that affect the FRP. The period sensitivity can be
irectly computed from Fig. 7a according to Eq. (5). Compar-
son of the period sensitivity and the phase sensitivity to an
mpulse parameter perturbation portrays the difference in the
et of important parameters from each analysis, as shown in

ig. 7b. This result indicates that the circadian gene architec-

ure separates the control mechanisms that are responsible for
ctive (instantaneous) phase response and for (long-term) period
odulation.

ig. 7. (a) Parametric phase sensitivities of the 10-state mechanistic Drosophila
ircadian rhythm model (for brevity, only 5 parameters are shown here). The
arameters k2, KdP (KdT), kd, and kdN refer to the nuclear transport constant of
he dimer PER-TIM, the Michaelis-Menten constant of PER (TIM) degradation,
he degradation rate constant of proteins, and the degradation rate constant of
uclear dimer, respectively, (b) Comparison of the period sensitivity and the
hase sensitivity to impulse parameter perturbations (i.e., the slopes of the curves
n (a)) based on the ranking of the maximum sensitivity magnitudes. The higher
ndexes correspond lower sensitivities.
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The control mechanisms of circadian entrainment to light are
tudied as a function of the length of the day and the period
f entrainment (T-cycle). Using continuous photoperiod (para-
etric model), Fig. 8 indicates the strong correlations between

he period and the phase angle sensitivities to parameters. (The
odel failed to entrain at day length of 20 h.) Such correla-

ions suggest that the entrainment to continuous photoperiod
ntails the modulation of the underlying circadian period. In
xperiments, post-entrainment FRP of Drosophila activity dif-
ered from that before the entrainment (usually referred to as
fter-effects) (Kumar & Sharma, 2004), confirming the afore-
entioned observation.
In T-cycle study, the quantity of interest is the slope of the

hase angle with respect to the period, i.e., the parametric sen-
itivity:

∂

∂pj

(
dte,i

dT

)
(8)

here T is the entraining period. Again, the entrained system
hows strong correlation between the period sensitivity and the
-cycle phase sensitivity (results not shown), which gives sup-
ort for the importance of period modulation in continuous
hotoperiod entrainment.

In the literature, a skeleton photoperiod consisting of two
ight pulses is also known to entrain circadian rhythms (Johnson
t al., 2004). These experiments gave support for the non-
arametric model of entrainment. Fig. 9 presents a comparison
etween the period and the skeleton phase angle sensitivity.
he correlations between the two analysis were inferior to the
ontinuous photoperiod analysis, in which the average devia-
ion from the period sensitivity ranking is doubled to that of
ig. 8. The difference between Figs. 8 and 9 arises from the
ature of light entrainment in the two photoperiods. In the
keleton photoperiod, light pulses only induce a transient phase
esponse from the system, and the system quickly returns to
ts endogeneous limit cycle. On the other hand, the constant
ight input during day in the continuous photoperiod drives the
ystem, albeit temporarily, to another limit cycle correspond-
ng to a circadian rhythm under 24-h daylight condition. Such
esponse correlates better with a long-term period modulation by
ight.

. Multicellular scale—synchronization

We have begun to investigate the properties of robust time
eeping at the level of populations of neurons in the SCN. It
as been shown recently (Herzog, Aton, Numano, Sakaki, &
ei, 2004) that the “precision” in timekeeping emerges only
t the level of interconnected populations of neurons. Such
synchrony” has been studied in many other contexts, and the
athematical details are beginning to emerge in the circadian

euron networks.

In Drosophila, robust self-sustained oscillations persist

or weeks in constant darkness. The neuropeptide pigment-
ispersing factor (PDF) is required to maintain behavioral
hythms under constant darkness. In addition, PDF is required
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Fig. 8. Comparison between the period and phase of entrainment sensitivity in continuous photoperiod (LD, light–dark) entrainment. The phase angle sensitivity
ranking is averaged over the peak and trough sensitivity of all the states in the system.

Fig. 9. Comparison between the period and phase of entrainment sensitivity in skeleton photoperiod entrainment. The phase angle sensitivity ranking is averaged
over the peak and trough sensitivity of all the states in the system. In skeleton photoperiod, the system treats the shorter of the two dark phases as subjective day, and
thus the analyses are unique up to 12 h day length.
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o synchronize the phase and amplitude of rhythms among the
iverse pacemakers (Helfrich-Förster, 2005). PDF is found in
he s-LNv and 1-LNv and its released is rhythmic (Park et al.,
000). It has been speculated that PDF acts on the input side of
he clock cells (Petri & Stengl, 1997). Normally, neu-ropeptides
-protein coupled receptors (GPCRs) (Hewes & Taghert, 2001)

nd GPCRs activate cAMP or Ca2+ singaling pathways. PKC
utants exhibit arrhythmic activity (Park et al., 2000).
Our preliminary studies are based on the 10-state Drosophila

ene regulation model by (Leloup & Goldbeter, 1998). The full
athematical details are available in (To, Henson, & Doyle,

005). A key assumption in this model is that the signaling
gent responsible for coupling in Drosophila (PDF), acts inde-
endently of light. Light was assumed to have no effect on PDF.
n other words, light was only responsible for TIM degradation,
hile PDF was responsible for inducing per transcription. The

elease of PDF was in phase with per transcript.
The synchronization characteristics are evidenced in Fig. 10,

here 100 neurons are simulated. In order to generate a range of
asal clock times (uncoupled), the basal transcription rate of per
sP0 was subjected to zero mean normally distributed perturba-
ions with standard deviation of 25%. With such manipulation,
nly approximately 40% of all neurons displayed circadian
hythms without PDF signaling (top plot, Fig. 10). In order to
ncorporate variations in free-running periods, zero mean nor-

ally distributed perturbation with standard deviation of 10%
as applied to the k , the translation rates of PER. As in the
sP

riginal gene regulation model, PER and TIM were assumed to
e fully symmetrical. Hence, the rates of transcription of per
nd tim, as well as the rates of translation of PER and TIM,

ig. 10. Synchronization of 100 Drosophila circadian oscillators: (top) uncou-
led, constant darkness conditions, (ii) coupled constant darkness conditions,
iii) coupled, alternating light–dark conditions.
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ig. 11. Effect of eliminating PDF signaling on the synchronization dynamics
f the 100-cell ensemble.

ere set to be equal (vsT = vsP and ksT = ksP). The middle plot
hows the entraining influence of the coupling peptide. The bot-
om plot shows the entrainment of 100 circadian oscillators by
12:12 h light dark cycle. The light dark cycle was generated

y manipulating the rate of TIM degradation as a square wave:
dT = 2 during the dark phase and vdT = 4 during the light
hase.

The impact of the coupling agent is particularly striking in the
esults depicted in Fig. 11. A simulated blocking of the recep-
or corresponding to the coupling protein is carried out. At a
ime of 100 h, the “block” was introduced and the ensuing asyn-
hrony is apparent. Once the signaling is resumed (t = 300 h),
he synchrony is restored.

Work is underway to quantify the robustness of the population
ehavior under perturbations in the transcription process, as well
s environmental stimuli.

. Control insights

.1. Resetting the clock

Using control engineering parlance, one may refer to the
lements that influence or entrain the circadian oscillator (zeitge-
ers) as manipulations, and the elements that exhibit quantifiable
ircadian rhythms as measurements. The use of this terminology
s reflective of the spirit of the work described in this section in
ooking for ways to influence rhythms to fine tune physiologi-

al performance. Continuing the control analogy, the open-loop
haracteristics (i.e., with no intervention) of the typical human
re to adjust at a rate of approximately 60–90 min of phase per
ay (Lamberg, 1994). In other words, jet lag accommodation
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Fig. 12. Phase and transient response curves of the Drosophila circadian model.
(Top) A one-minute light pulse injected at various times throughout an oscillation
results in a corresponding phase shift, captured by the PRC. The maximum phase
advance from a single stimulus is 3.2-h, while the maximum phase delay is 4.6-h.
(Bottom) Transient response dynamics of the model resulting from a 1-minute
light pulse applied at various times within a period of oscillation are depicted on
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he vertical axis. The horizontal relative time axis corresponds directly to that
f the PRC.

ccurs at a rate of approximately 2–3 days for a 3-h time zone
hange. Westward travel is slightly easier, as the natural free-
unning human circadian clock (i.e., in absence of light) has a
eriod of approximately 25 h.

From a control perspective, there are two important attributes
f the resetting response characteristics: the phase shift (captured
y the phase response curve (PRC), and the associated transient,
hich we define via the transient response curve (TRC). These

deas are illustrated in Fig. 12.

.2. Control design

Although period and timeless genes and proteins undergo
imilar oscillations, TIM is known to be unstable in the presence
f light. Light-induced TIM degradation requires neither the
nvolvement of PER, nor any other functional clock protein,
nd is considered a direct control input pathway that catalyzes
ntrainment. The Leloup and Goldbeter mathematical model
ssumes that a 1-min light pulse doubles the maximum TIM
egradation rate over a 3-h time interval (Leloup & Goldbeter,
000).

Phase-resetting control is accomplished through use of an
ptimal control algorithm (Khalil, 2002; Stunners, 1998) with a
ost function, C(k), spanning a single period of oscillation, τ. The
ost function accounts for both the accuracy of the system phase
nd the “cost” of the control input (light pulse). As a result, the
ontroller optimizes the light timing by minimizing τdelay, τtrans,

nd (φ − φ+), suitably weighted: ωdelay, ωtrans, and ωφ. τdelay is
he delay associated with a light pulse at time k, τtrans is the tran-
ient response (from the TRC) associated with a light pulse at
ime k, and (φ − φ+) is the phase difference, measured in units of

t
t
s
p

al Engineering 30 (2006) 1700–1711

ime, between the reference and system models. This weighted
bjective includes penalties for both tracking (last term) as
ell as speed of response (second term). The expressions

re detailed below:

C(k) = ηT(k)Qη(k), k ∈ [t, t + τ)

η(k) = [
τdelay τtrans (φ − φ+)

]T

Q =

⎡
⎢⎣

ωdelay 0 0

0 ωtrans 0

0 0 ωφ

⎤
⎥⎦

(9)

he first entry in η defines the time interval between the current
ime and the relative time at which the control may be applied.

delay =
{

k − t

k − t + τ,

if k ≥ t

if k < t
(10)

complement of the PRC, the transient response curve (TRC)
efines the amount of time it takes for the system output trajec-
ory to return to its stable limit cycle upon light stimulus (Fig. 12,
ottom plot). Eq. (11) describes the TRC function as mapping
1-minute light input occurring at relative time k; to a measure
f the ensuing transient period.

trans = gtrc(k) (11)

imilarly, Eq. (12) describes the PRC function as mapping the
ame light pulse applied at relative time k to the incurred phase
hift, φ+, allowing the system to minimize the phase difference,
, through admission of a series of light pulses.

+ = gprc(k) (12)

inimizing the cost function by choosing an optimal k (where
= [t, t + τ)) yields the optimal control time k̃ along with its

espective time delay, τ̃delay, and transient period, τ̃trans. The
eal-time control input occurs once time t is equal to k̃.

.3. Results

For simplicity, the system is studied in a constant dark envi-
onment with a one-minute light pulse as the controlling agent.
sing the weight Q = diag (1, 1, 1000), the controller is able

o recover approximately 12-h of phase difference with 0.2-
accuracy in approximately three and half days, as shown in

igs. 13 and 14.
Performance functions are varied in order to optimize specific

riteria. When transient weights are greater, the system recovers
hase almost immediately after the light input has terminated.
hen time delay weights are greater, the control input is applied

ooner, but the total recovery time suffers as it takes the system
onger to track the reference.

Phase resetting dynamics are captured in the recovery plot
Fig. 14). The phase recovery time is greater for negative ini-

ial phase differences. This discrepancy evolves from the fact
hat the PRC is asymmetric for positive and negative phase
hifts. The maximum achievable phase delay by a single light
ulse is 4.6-h, whereas the maximum phase advance is 3.2-h.



F.J. Doyle III et al. / Computers and Chemic

Fig. 13. Optimal phase-tracking of the Drosophila circadian oscillator. Control
inputs are depicted as square waves indicating the time and duration of light-
induced TIM degradation. This light impulse corrects for an +11.5-h (upper
simulation) and −11.5-h (lower simulation) initial phase difference, terminating
control once the difference in phase is less than or equal to 0.2-h. The reference is
depicted through a solid line oscillation while the controlled signal is represented
by the dashed line.

Fig. 14. The Drosophila circadian recovery plot. The asymmetry of the recovery
time relates directly to the discrepancy between the maximum phase delay vs. the
maximum phase advance with respect to identical control inputs. Initial phase
differences ranging from −12 to +12 h are reduced to a maximum difference of
0.2-h, after which the signals are considered in phase. This data was constructed
from detailed simulations of 97-runs with initial phase difference intervals of
0.25-h.
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s a result, capturing a 12-h phase difference may be more effi-
ient by forcing phase delays rather than advances. The apparent
outliers” reflect the tradeoffs between the phase response and
he transient response terms and are affected by the tuning
eights.

.4. Discussion

The combination of robustness and sensitivity allow bio-
ogical systems to adapt to their environments. For instance,
et lag occurs as a result of robust circadian properties that

aintain the synchrony between biological clocks and their nat-
ral environment. Concurrently, jet lag diminishes due to the
ystem’s sensitivity toward light cues; a change in light pat-
erns resets the circadian phase. Therefore, one may control
he biological clock through pulses of light and alleviate cir-
adian related disorders or assist individuals working in rotating
hifts. Circadian disorders include chronic sleep disorders in
he elderly, manic-depression, and seasonal affective disorders
Edery, 2000). Controlling the circadian clock may also help
urses on a repetitive shift work schedule who are two- to three-
old more likely to misdiagnose and wrongly treat patients than
heir daytime counterparts (Gold et al., 1992). As a result, con-
rolling the circadian clock may reduce the risk of accidents
elated to the ill effects of “un-natural” work schedules, some of
hich include the Chernobyl nuclear plant (1986), the chemical

xplosion of the Union Carbide plant (1984), and the grounding
he oil tanker Exxon Valdez (1989) as a few examples (Lamberg,
994).

. Summary

The generation of circadian rhythms in organisms as sim-
le as Drosophila and as complex as a mammal are remarkable
aradigms of robust hierarchical control. The structures, at the
ene regulation level, are largely preserved, and the robust per-
ormance characteristics (both at the single cell level, and at the
nsemble level) are nothing short of amazing.

Through detailed analyses of the control theoretic proper-
ies of these circuits, we aim to: (i) shed light on the design
rinciples that underly the circadian clocks; and (ii) through
his understanding, point to promising directions for therapeutic
nterventions for medical problems as well as optimized perfor-

ance for civilian and military applications.
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