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Abstract

Administration of certain drugs at a steady rate results in deterioration of drug effect, also known as drug tolerance.
Periodic delivery is an attractive option for minimizing tolerance and maximizing the desired effect of such drugs. In
this paper, periodic drug infusion strategies for maximizing a time averaged measure of drug effect are investigated. A
simple pharmacokinetic-pharmacodynamic (PKPD) model of a system exhibiting tolerance is considered and optimal
periodic control theory is employed. First, regions of PKPD parameter space in which periodic infusion provides a
locally improved average effect compared to steady infusion are characterized using the so-called π test. Then, optimal
drug delivery strategies, obtained using two different computational approaches, are presented for a representative set
of parameter values, and insight is provided into the results. The first method, proposed by the authors, is based on
the notion of differential flatness, while the second is based on the standard shooting method for dynamic optimization
problems.

1. Introduction

The past several decades have seen many improve-
ments in drug therapy. Not only have a new classes
of drugs been discovered, developed, and commer-
cialized, but fruitful attention has been placed on
the spatiotemporal pattern of drug administration,
or drug delivery. With proper design, dosage forms
can be programmed to release drugs in ways that are
rationally matched to the pharmacokinetics, phar-
macodynamics, and toxicodynamics of the drug.

For most drugs, it is reasonable to assume that, at
steady state, drug effect is a function of present drug
concentration in the blood. For such drugs constant
rate, or zero-order delivery, is considered optimal,
because it leads to a constant blood concentration
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that is sufficiently high to guarantee drug efficacy,
but low enough to avoid toxic side effects. Large
efforts have been therefore been made to develop
zero-order controlled release dosage forms such as
tablets and capsules.

Exceptions to the zero-order rule exist, however.
For certain drugs, effect depends not only on the
present concentration, but also on the previous his-
tory of exposure. When steady exposure leads to at-
tenuated drug effect, the patient is said to develop
tolerance to the drug. While tolerance is best known
to be associated with addiction and drug abuse,
it must also be considered in more mundane clini-
cal settings. As a classic example, nitroglycerin skin
patches were developed in the 1980s to provide zero-
order prophyllaxis against angina. These patches
were intended to be worn for 24 hours and replaced
daily, providing zero order release throughout. It
was found, however, that protection diminished af-
ter about 12 hr, due to development of tolerance.
As a result, patients are now advised to wear the
patches for 1/2 day, followed by a 1/2 day without
the patch [18]. In another example, gonadotropin re-
leasing hormone (GnRH) deficiency, which leads to
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reproductive disorders in both males and females,
must be treated with periodic pulses (period 1–2
hr), as steady infusion leads to nearly complete sup-
pression of gonadal function [24]. This suppression
can be regarded as rapid development of tolerance
to the hormone.

While the need for periodic drug delivery in the
presence of drug tolerance is established in practice,
theoretical considerations of periodic dosing to op-
timize average effect over time are relatively rare
[10,17,1,28]. In this paper, a simple pharmacoki-
netic/pharmacodynamic (PKPD) model of a drug is
considered and the question whether periodic drug
infusion is more effective in a time averaged sense
is investigated. In section 2 the problem is formu-
lated as an optimal periodic control (OPC) prob-
lem so that powerful analytical and computational
techniques developed for OPC problems can be em-
ployed [4,2,14,27]. In section 3, the so-called π-test
is used to assess whether small periodic variations
around the optimal steady state (OSS) can improve
performance, a situation known as local properness.
The region in a two dimensional parameter space
where the problem is locally proper is computed.

Since the π-test is local and only concerns small
sinusoidal inputs, more elaborate computations us-
ing dynamic optimization methods are introduced
in section 4 to obtain a solution to the OPC prob-
lem. Since state constraints are periodic, with ini-
tially unknown period, the OPC problem is compu-
tationally more difficult than other dynamic opti-
mization problems. The solution to the OPC prob-
lem is obtained using two computational methods,
both of which produce a consistent solution. The
first method is based on flatness as described in [27]
and the second is a shooting method implemented
within a commercially available process modeling
software tool, gPROMSTM [22].

2. Drug delivery system model and

formulation of the OPC problem

Several models of drug tolerance have appeared in
recent decades, using mathematical representations
of receptor/effector down regulation [23,10], delayed
indirect inhibition [11,8] and physiological counter-
regulation [20,1]. Here, a variation of a model for
tolerance to the cardio-accelerating effect of nico-
tine [21] is considered. In this model, tolerance is
attributed to the buildup of a drug metabolite that
acts as antagonist to the drug, thus reducing drug

effect over time. As will be seen, periodic drug deliv-
ery leads to better average performance than steady
delivery, given this model.

The system consists of two linked one compart-
ment models, one for drug and one for metabolite,
with nonnegative drug input and so-called mass-
less conversion of drug to metabolite [21]. Drug ef-
fect is represented by a saturable, Langmuir bind-
ing function with noncompetitive antagonism by the
metabolite. All variables, including concentrations,
drug effect, and time are appropriately nondimen-
sionalized. The (dimensionless) drug and metabo-
lite (antagonist) concentrations are denoted, respec-
tively, by c and a.

The nondimensionalized dynamics are linear and
given by

ċ =−c + u (1)

ȧ = ka(c − a) (2)

where u is the drug infusion rate and ka is the rate
constant for antagonist elimination. Drug effect is
described by

E(c, a) =
c

(1 + c)(1 + a/a∗)
(3)

where a∗ is a measure of the relative potency of
antagonist compared to drug. The variables c, a and
u are all constrained to be positive. In addition there
is an upper bound on u reflecting the maximal rate
at which the drug can be delivered.

As an initial consideration, the steady state of the
system resulting from a constant infusion of drug,
for any given u(t) = ū is given by c̄ = ā = ū and
Ē = ū

(1+ū)(1+ū/a∗) . Steady state effect is maximized

when ū =
√

a∗, and hence max(Ē) =
√

a∗

(1+
√

a∗)2
.

A simple objective would be to target E within
a prescribed interval [E1, E2], which can be inter-
preted for the nicotine system as the desired interval
for the heart rate. Obviously, when max(Ē) < E1,
stationary input will ultimately lead to ineffective
drug action due to tolerance. (The case max(Ē) >
E2 is trivial in the present model as it is possible to
reduce Ē at will.) This binary objective may be too
restrictive, however, and anyway it is unsuitable for
the techniques used in the present work. In its place,
we define a smoothed, fuzzy indicator function

I(E) =
(E/E1)

γ

[1 + (E/E1)γ ][1 + (E/E2)2γ ]
.

which is close to unity when E ∈ [E1, E2] and
close to zero otherwise. The parameter γ determines
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Fig. 1. Plot of the indicator function I(E) for E1 = 0.3,

E2 = 0.6, and γ = 10. The desired range of the effect E,

[E1, E2] and the OSS value for Ka = 0.1 and a∗ = 1 are
marked.

the sharpness of the transition of the indicator func-
tion near E1 and E2. The indicator function tends
to the binary objective when γ → ∞. A plot of I(E)
is shown in Fig 1, with E1 = 0.3, E2 = 0.6, and
γ = 10.

In the present context, a more realistic objective
is to maximize the time average of the drug effect
indicator, I with respect to the drug infusion rate,
u. Both steady and periodic profiles for u are con-
sidered. When infusion is steady, this average will
be I(Ē(ū, ū)), which will take the maximal value
I(max(Ē)) provided that one is restricted to the in-
creasing part of the I function. This will be called
the optimal steady state (OSS) solution, or JOSS .
When u is periodic, the time average of the indica-
tor over one period is

J =
1

T

T∫

0

I(E(c(t), a(t)))dt.

The period T is unknown and needs to be deter-
mined from optimization. The internal states of the
system, c and a, are required to be periodic as well,
with period T . This results in an optimal periodic
control (OPC) problem, and the resulting maximal
value of the objective function under periodic input
will be called JOPC

3. Analysis using the π test

When a periodically varying u provides a better
average drug effect than the OSS solution, the OPC
problem is said to be proper. If performance improve-
ments can be obtained by small sinusoidal pertur-

bations of the input around the OSS, then the OPC
problem is said to be locally proper. Local proper-
ness implies properness but the converse is need not
be true. The so-called π-test can be used to deter-
mine local properness of an OPC problem [3,2].

Consider the OPC problem of minimizing J =
g(y) over the inputs, u(·) and the period, T for dy-
namical system described by ẋ = f(x, u) with aver-

aged outputs y = 1
T

∫ T

0
φ(x, u) dt. For the present

problem, x = [c, a]′, where prime indicates trans-
pose. Define the Hamiltonian of the system as

H(x, u, y, λ, µ) = g(y) + λ′f(x, u) + µ′(φ(x, u) − y)

where λ(·), µ are the Lagrange multipliers. (The sign
of µ is different from that used in [2]. This definition
ensures consistency of the OSS and OPC Hamil-
tonians). Let G(s) be the transfer function corre-
sponding to the linearized dynamics at the OSS i.e.,

G(s) = (sI− f̄x)−1f̄u where overbar denote the OSS
value. Then the π-test for the local properness of
OSS requires that the self-adjoint matrix π(ω) de-
fined by

π(ω) = G′(−jω)H̄xxG(jω) + H̄uxG(jω)

+G′(−jω)H̄xu + H̄uu

be partially negative for frequency, ω > 0 [2]. Since
the present system is single input-single output, π is
actually a scalar and the criterion reduces to π(ω) <
0 for some ω > 0. The π-test determines whether
small sinusoidal perturbations of the input u around
the OSS value ū improve performance.

As an example, consider the nominal parameter
values: ka = 0.1, a∗ = 1, E1 = 0.3, E2 = 0.6 and γ =
10. Also assume the following bounds on infusion
rate: umin = 0 < umax = 10. In this case the OSS is
at c = a = u = 1, max(Ē) = 0.25, and the OSS ob-
jective function is I(0.25) = 0.139. Note that, for the
model considered here, H̄xu = H̄ ′

ux = 0 and H̄uu =
0 and π(ω) simplifies to G′(−jω)H̄xxG(jω). Since
G(s) is a strictly proper transfer function, π(ω) → 0
as ω → 0. A plot of π(ω), shown in Fig 2, displays
a range of frequency where π(ω) takes on negative
values, indicating that the system is proper, and pe-
riodic operation can improve the time averaged ob-
jective function reflecting drug effect.

A study of the influence of the parameter values ka

and a∗, which characterize the rapidity of metabo-
lite accumulation and potency, respectively, on the
prediction of the π-test reveals that the region over
which the system is locally proper (i.e., with small
amplitude periodic drug delivery being superior to
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Fig. 3. Contour plot of minω π(ω) in the ka-a∗ space (log–log

scale). The darker regions indicate greater improvement in
objective from small sinusoidal forcing relative to steady
state

steady delivery) is rather extensive. This is not sur-
prising since for the model considered, minw π(ω) ≤
0 always holds and local properness is violated only
when the equality holds. Fig 3 shows a contour plot
of minw π(ω) in the ka-a∗ space. The darker regions
in the figure represent regions of greatest improve-
ment from small sinusoidal forcing.

The surface plot of minω π(ω) in Fig 4 shows the
extent of improvement that can be obtained with
small amplitude periodic inputs in the ka-a∗ param-
eter space. Although local properness exists in most
of the space, there is more significant improvement
in areas with the lowest minw π(ω).

4. Computation of the optimal periodic drug

delivery strategy

Since the π-test is local, it cannot be used to deter-
mine the exact shape of the periodic control signal
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Fig. 4. Surface plot of minω π(ω) as a function of ka and a∗.
Large negative values of min π indicate stronger gains from
periodic delivery.

that maximizes the time averaged objection func-
tion reflecting drug effect. Computational methods
for dynamic optimization, with some modifications,
need to be employed for this purpose [5,14]. Com-
putation for the OPC problem is, in general, much
more difficult than for a regular optimal control
problem, since the state constraints on the state are
periodic and the time period is also unknown.

We compute and compare the solution to the OPC
problem formulated in 2 using two different meth-
ods. The intent is to understand the features of the
optimal solution qualitatively, ensure that the solu-
tion is sufficiently robust to variations in the partic-
ular computational approach one chooses and pro-
vide a physical justification for the optimal drug de-
livery profile. A comparison of the numerical and/or
computational performance of different algorithms
for optimal control or optimal periodic control prob-
lems is outside the scope of this paper.

4.1. Solution using flatness based method

First, we employ a method based on differential
flatness described in [27] to obtain the optimal peri-
odic drug infusion strategy. Differential flatness (or
simply, flatness), is a property of a dynamical sys-
tem that is related to the concepts of absolute equiv-
alence and dynamic feedback linearizability [26,13].
The system described by ẋ = f(x, u) is differentially
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flat if there exist outputs ξ ∈ Rm depending on x, u
and a finite number of time derivatives of u (i.e.,
ξ = h(x, u, u̇, . . . , u(ρ)) ) such that x, u can be ex-
pressed solely as functions of ξ and its derivatives
up to order κ [7]. The vector ξ must be of the same
dimension as u and is called the flat output of the
system. An optimal control problem on a flat system
can be reformulated as a static optimization prob-
lem for efficient computation [9,16,12]. The need for
integration of differential equations is removed by
restating the problem in terms of the so-called flat
outputs. A computational method for OPC prob-
lems using flatness has been presented in [27], and
this approach is used here for the current drug de-
livery problem to compute the OPC solution.

The dynamics in (1)–(2) are linear and flat with
output ξ = a. The states and input are determined
from Ξ := [ξ, ξ̇, ξ̈] using the relations

a = ξ

c =
ξ̇

Ka
+ ξ

u =
ξ̈

Ka
+ (1 +

1

Ka
)ξ̇ + ξ.

The highest order derivative of the flat output is
parametrized using 2N + 1 Fourier basis functions:

ξ(κ)(t, α) = α1 +

N∑
i=1

[α2i sin(iωt)

+α2i+1 cos(iωt)] (4)

where ω = 2π/T and α = [α1, α2, . . . , αN ]′. Then,
lower order derivatives ξ(κ−1), . . . , ξ are obtained by
successively integrating Eq. 4 (e.g. using quadrature
or Simpson’s rule), κ times, with integration con-
stant βj introduced during the jth integration. Im-
posing periodicity constraints on the states, one ob-
tains α1 = 0 and βj = 0 for all j = 1, . . . , κ−1 since
these coefficients lead to polynomial terms in ξ(t).
Thus there are only 2N + 2 unknown parameters,
namely, T , α2, . . . , α2N+1 and βκ to be determined
by optimization. For convenience, these parameters
are gathered into the vector

θ := [T, α2, . . . , α2N+1, βκ]′.

Several local optima were found for the system
and the best solution obtained after several runs
with different initial guesses is taken as the globally
optimal solution. This solution, obtained using the
flatness algorithm, with N = 20 Fourier harmonics

is shown in Fig 5 on the left side. System param-
eters were set to their nominal values (ka = 1,
a∗ = 10, E1 = 0.3, E2 = 0.6,γ = 10). It should
be noted that other locally optimal solutions exist
and may be reached depending on the initial guess
for θ. The initial guess used and the final solution
obtained for the global optimum parameter vector
θ were θ0 = [18, 0.01, 0.03, 0, . . . , 0.0.76]′ and θ =
[17.8138, 0.0051, 0.0295,−0.0058, . . . , 0.0023, 0.744]′

respectively. The average of the indicator under pe-
riodic operation (JOPC) is approximately 0.3537 in
contrast with the value, JOSS = 0.1390 for steady
state operation. The improvement is obviously due
to the dwell time of the optimal periodic solution in
the high effect region.

4.2. Solution using control parametrization and

shooting method

We now employ a very different computational
method for the OPC problem that uses a discrete
representation of the control signal, integration
of the system dynamic equations to perform the
optimization of cost subject to state periodic-
ity and other constraints. We model the problem
in a commercial off-the shelf modeling software,
gPROMSTM [22] and utilize the dynamic opti-
mization algorithm provided within this tool. Two
solvers based on control vector parametrization
(CVP) are provided in gPROMSTM for dynamic
optimization. These are CVP SS (single shooting)
and CVP MS (multiple shooting). CVP stands for
control vector parametrization and refers to the fact
that the infinite dimensional control signals u(t) are
assumed to be of a certain shape (e.g., piecewise
linear and piecewise constant) and are represented
in terms of a finite number of parameters. The
CVP SS (single shooting) and CVP MS (multiple
shooting) algorithms implemented in gPROMSTM

are described in the gPROMSTM Introductory and
Advanced User Guides.

In order to solve the OPC problem using
gPROMSTM, the problem was reformulated as a
fixed time optimal control problem by rescaling
time. Thus, the rescaled period was fixed at unity
while the actual time period T became an optimiza-
tion parameter appearing on the right hand side
of the differential equations. This rescaling enabled
the objective function J to be correctly evaluated.
The solution obtained using the CVP SS method
with 5 piecewise linear segments for u is shown in
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Fig. 5. Optimal periodic drug infusion strategy computed using the flatness method (left) and a shooting method in gPROMSTM

(right): (a) state space, (b) drug infusion rate and (c) drug effect

Fig 5 on the right. Once again, several local optima
were found. The best solution found by the authors
in several runs with different initial guesses had a
cost of JOPC = 0.3510 and is reported here. The
similarity in the shape of the trajectory in state
space, the input profile and the shape of the drug
effect between the two solutions in Fig 5 is evident.
The differences seen near discontinuities are mainly
due to the difference in the choice of basis func-
tions (sum of smooth sinusoids vs. piecewise linear
representation).

5. Discussion

The numerical improvement in the indicator I(E)
itself is not a significant factor since a higher mag-
nitude of improvement can be obtained by using an

indicator function that is steeper around the OSS.
However, the qualitative features of the solution
merit attention.

The solution is not of bang-bang type, but con-
forms to the intuitive idea that in the presence of
tolerance, the best strategy is to first administer a
“priming” dose, which brings drug effect into the
desired range. Thereafter, drug should be admin-
istered at a rate just high enough to maintain ef-
fect in that range. Any higher infusion rate will ul-
timately accelerate the accumulation of the antag-
onizing metabolite. As metabolite eventually accu-
mulates, drug must be infused at an accelerated rate
to compensate. There will be a diminishing return,
however, due to the saturability of response with re-
spect to drug concentration. At some point, the best
strategy is to stop infusion, and allow both drug and
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metabolite levels to decay to a point where the pro-
cess can be started over again. This general pattern
of drug release has actually been implemented to
compensate for tolerance in an oral once-a-day con-
trolled release formulation of methylphenidate HCl,
a drug used to treat attention deficit hyperactivity
disorder [15]. While the system dynamics are some-
what more complicated than those presented in the
present idealized system, we expect that the general
features of the solutions calculated here will hold for
a large class of systems involving drug tolerance.

While periodic drug delivery as an optimizing
principle was discussed here in the context of drug
tolerance, the periodic mode has been considered
by others as a means for treating cancer. It has been
argued that periodic delivery of cell cycle phase-
specific chemotherapeutic agents, when matched
to the turnover kinetics of cancer cells, will prefer-
entially kill these cells, while reducing toxicity to
normal cells, whose cycles are typically much slower
[6,25,19].

6. Conclusion

A simple pharmacokinetic, pharmacodynamic
model of a drug that exhibits tolerance has been
proposed and an optimal periodic control problem
to determine a periodic drug infusion strategy that
improves the drug effect is formulated. The local
properness of the OPC problem was established
using the π-test. The region in the parameter space
where the problem is locally proper was also deter-
mined using the π-test. The optimal periodic drug
infusion rate as a function of time was computed
using two very different methods and a consistent
solution was obtained which was intuitively ex-
plained. It was noted that periodic drug delivery
has applications beyond the context of drug toler-
ance and these are opportunities for further studies
using rigorous model based design techniques.

Periodic operation has the potential to provide
significantly better performance over optimum
steady state for some systems as is demonstrated
for the drug delivery application here. In general,
this is feasible when there are admissible regions of
state space with favorable objective function “field”
away from the steady state manifold and by suitable
forcing of the dynamics of the system, these regions
become accessible and enable a better time-average
performance. The vast literature on the optimal pe-
riodic control reveals a significant gap between the

mathematical theory and the understanding of the
physical mechanisms and we hope this work will
inspire further research in this direction.
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