
A
b

P
I

a

A
R
R
A
A

K
R
M
M

1

i
r
r
t
B
i
I
a
f
p
o
e
a
r
t
t
w
a
t
r

0
d

Computers and Chemical Engineering 33 (2009) 871–886

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journa l homepage: www.e lsev ier .com/ locate /compchemeng

general resource-constrained scheduling framework for multistage
atch facilities with sequence-dependent changeovers

ablo A. Marchetti, Jaime Cerdá ∗

NTEC (Universidad Nacional del Litoral-CONICET), Güemes 3450, 3000 Santa Fe, Argentina

r t i c l e i n f o

rticle history:
eceived 11 October 2006
eceived in revised form 27 June 2008
ccepted 16 December 2008
vailable online 31 December 2008

a b s t r a c t

This work introduces a new MILP sequential approach to the short-term scheduling of multistage batch
plants that accounts for sequence-dependent changeover times, intermediate due dates and limited avail-
ability of renewable resources. It relies on a continuous-time formulation based on the general precedence
notion that uses different sets of binary variables to handle allocation and sequencing decisions. To avoid
eywords:
esource-constrained scheduling
ultiproduct batch plant
ILP optimization model

resource overloading, additional constraints in terms of sequencing variables and a new set of 0-1 over-
lapping variables are presented. They allow tracking the set of tasks requiring the same resource and
running in parallel at the start of another process operation. In this way, the proposed formulation
involves a reasonable number of binary variables and constraints and features a very good computa-
tional behavior, even in the presence of hard bottleneck resources. Four illustrative examples, one of
them including multiple bottleneck resources shared by several processing stages, have been efficiently

solved.

. Introduction

Batch processing plants generally provide the necessary flex-
bility to produce a wide range of high-value added products by
unning a set of process operations using the same manufacturing
esources. Besides equipment units and storage tanks, processing
asks may require heating steam, electricity, tools or manpower.
atch scheduling methodologies often assume unlimited availabil-

ty of production resources other than processing and storage units.
n this way, such resources never become production bottlenecks
nd can be ignored in the problem formulation. In real-world manu-
acturing environments, however, it is quite usual to prevent certain
rocessing tasks from running in parallel simply because their
verall requirement of some production resources different from
quipment (like utilities, tools or manpower) exceeds their total
vailabilities. To guarantee the development of a feasible schedule,
esource constraints should be added to the problem representa-
ion in order to monitor the overall resource consumption over
he scheduling horizon. In this way, the mathematical formulation

ill be able to avoid the overloading of some resource capacity

t any time. Manufacturing resources are generally grouped into
wo types: renewable and non-renewable resources. A renewable
esource is one that is recovered when the task to which it was allo-

∗ Corresponding author. Tel.: +54 342 4559175; fax: +54 342 4550944.
E-mail address: jcerda@intec.unl.edu.ar (J. Cerdá).

098-1354/$ – see front matter © 2008 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2008.12.007
© 2008 Elsevier Ltd. All rights reserved.

cated has concluded. Renewable resources can be discrete (tools,
manpower) or continuous (heating, refrigeration, electricity). In
contrast, non-renewable resources, like intermediates or raw mate-
rials, are consumed by tasks and every resource capacity allocated
to them is no longer recovered at their completion.

Depending on the way the set of batches and their sizes are
defined, model-based batch scheduling methodologies can be
grouped into two types: monolithic and sequential approaches
(Méndez, Cerdá, Grossmann, Harjunkoski, & Fahl, 2006). Monolithic
approaches are those which simultaneously determine the set of
tasks to be scheduled, the allocation of manufacturing resources
to tasks and the sequence of tasks at any equipment unit. A task
refers to a processing/storage operation performed on a batch of
some intermediate or final product. Finding the set of tasks to be
scheduled implies to establish the set of batches and batch sizes
to be processed at every manufacturing stage over the scheduling
horizon. Although monolithic scheduling models are quite general,
they are more oriented towards the treatment of arbitrary net-
work processes involving complex product recipes. They are based
on either the state-task network (STN) or the resource-task net-
work (RTN) concepts to describe production recipes. Since large
model sizes are usually generated, their application is restricted to
schedule processes with a small number of tasks over rather short

time horizons. The selected time representation divides monolithic
approaches into two groups: discrete-time and continuous-time
representations. Discrete-time monolithic formulations use a fixed
time grid that is valid for all shared resources and the tasks are
constrained to start and finish at predefined grid points. Different

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:jcerda@intec.unl.edu.ar
dx.doi.org/10.1016/j.compchemeng.2008.12.007

872 P.A. Marchetti, J. Cerdá / Computers and Chem

Nomenclature

Subscripts
i, i′ batch
j, j′ equipment unit
s, s′ stage
r resource

Sets
I set of batches
S set of processing stages
Si set of stages for batch i
Sii′ set of common stages for batches i and i′

J set of equipment units
Js set of equipment units at stage s
Jis set of equipments units that can be allocated to

batch i at stage s
Jii′s set of units that can be allocated to batches i and i′

at stage s (Jii′s = Jis ∩ Ji′s)
J(j)
s+1 set of units at stage s + 1 physically connected to unit

j ∈ Js at stage s
JP
isr

set of units where a task sharing resource r and even-
tually overlapping task (i, s) can be allocated

R set of discrete/continuous renewable resources
Ris set of resources required to process batch i at stage

s

Parameters
ptij processing time of batch i at unit j
ddi due date for batch i
rti release time of batch i
ruj ready time of unit j

sf
i
, s�

i
first and last processing stages for batch i

suij setup time of batch i in unit j
�ii′j sequence-dependent setup time between batches i

and i′ in unit j
˛i weight of earliness for batch i
ˇi tardiness weight for batch i
Dr maximum capacity of resource r
�isr rth resource requirement for batch i at stage s
�isjr rth resource requirement for task (i, s) when per-

formed at unit j
ı a very small positive number
H length of the scheduling horizon
ptMin

is
minimum processing time of batch i at stage s

Binary variables
Yij binary variable denoting that batch i is allocated to

unit j
Xi′s′ ,is binary variable denoting that stage s′ of batch i′ is

run before (Xi′s′ ,is = 1) or after (Xi′s′ ,is = 0) stage s of
batch i

Wi′s′ ,is binary variable denoting that stage s′ of batch i′ is
completed after starting batch i at stage s

Continuous variables
Sis starting time of batch i at stage s
Cis completion time of batch i at stage s
Ti tardiness of order i
MK makespan
Qisjr amount of resource r required by the task running

at unit j and overlapping the starting task (i, s)
ical Engineering 33 (2009) 871–886

STN discrete models (Kondili, Pantelides, & Sargent, 1993; Shah,
Pantelides, & Sargent, 1993; Rodrigues, Latre, & Rodrigues, 2000)
and RTN-based discrete formulations (Pantelides, 1994) have been
proposed in the literature. By including a material balance for each
state at every fixed time slot, batch mixing/splitting and mate-
rial recycles can be handled. The fact that resource constraints
have to be satisfied at predefined time points reduces the prob-
lem complexity and makes discrete models very attractive in the
case of considering resource and inventory limitations. A RTN
representation is preferred for batch scheduling problems involv-
ing identical equipment since it leads to a significant saving in
binary variables. Another interesting feature of discrete approaches
is the easy handling of resource requirements varying along the
task execution. However, the treatment of sequence-dependent
changeovers requires a finer time discretization to account for
much smaller setup times, that significantly increases the model
size and the computational requirement. In addition, RTN dis-
crete models need to define further tasks for each processing
unit.

On the other hand, continuous-time monolithic models involve
a variable time grid that can be either common for all shared
resources (Castro, Barbosa-Póvoa, & Matos, 2001; Castro, Barbosa-
Póvoa, Matos, & Novais, 2004; Giannelos & Georgiadis, 2002; Lee,
Park, & Lee, 2001; Maravelias & Grossmann, 2003; Mockus &
Reklaitis, 1997) or unit-specific (Ierapetritou & Floudas, 1998; Janak,
Lin, & Floudas, 2004). By using a variable time grid, not only an
exact problem representation can be developed but also a signif-
icant reduction on the number of time points, 0-1 variables and
constraints is simultaneously achieved. Moreover, variable batch
sizes and batch-size dependent resource requirements can be han-
dled. When a common variable time grid is considered, rather
simple resource constraints monitor the total resource require-
ment to avoid resource overloading at any time point. Since at
least one time point is needed for each different task start time,
the number of global time points mostly determines the prob-
lem size. Usually, problems requiring more than 15 time points
need a considerable CPU time to guarantee optimality. Unit-specific
continuous-time models use a different variable time grid for
each shared resource, thus allowing tasks to start at different
times, despite they have been allocated to the same time event.
Because of such a model flexibility, unit-specific time grids gen-
erally require less event points than continuous-time monolithic
methods using global time points. Despite they were developed
for STN-based processes, unit-specific continuous-time mono-
lithic models can be easily adapted to tackle sequential processes.
However, the lack of reference points for checking the limited
availability of shared resources further increases the model com-
plexity by forcing to define additional problem variables and new
big-M special constraints that deteriorate its computational perfor-
mance.

In monolithic approaches, both the batching problem and the
batch assignment and sequencing problems are solved at once. In
turn, sequential scheduling approaches assume that the batching
problem has already been solved. Based on the production orders
placed by customers and the available plant resources, the batching
problem provides the exact set of batches for each product/state to
be processed, batch sizes, due dates and any other related informa-
tion. As a result, sequential methods deal with a predefined set of
batches and linear product recipes where splitting/mixing opera-
tions never arise. Since the batch integrity is preserved throughout
the processing sequence, allocation and sequencing constraints

can be written in terms of processing tasks on predefined batches
instead of using global or unit-specific time-events. Moreover, no
mass balances need to be included in the problem formulation
because every intermediate is just allocated to a single product.
These assumptions reduce the complexity of the mathematical

d Chem

m
(
f
(
&
&
w
f
s
r
u
1
s
b
a
a
m
a
t
l
i
e
c
f
a
l
a
d
s
t
d
a
a
d
d
a
i
d
p
p
s
s
t
t

s
i
b
p
c
M
a
0
i
s
s
t
M
a
e
s
r
C
s
l
s

P.A. Marchetti, J. Cerdá / Computers an

odel since decision variables are defined for a given set of tasks
each stage of every batch) with known resource requirements. Dif-
erent sequential methods have been published in the last decade
Cerdá, Henning, & Grossmann, 1997; Gupta & Karimi, 2003; Hui

Gupta, 2000; Hui, Gupta, & Meulen, 2000; Méndez, Henning,
Cerdá, 2001; Pinto & Grossmann, 1995, 1996). Some of them

ere generalized to also handle renewable resources different
rom equipment. Pinto and Grossmann (1997) presented a MILP
equential approach based on a slot-based continuous-time rep-
esentation that extends a former mathematical formulation for
nconstrained multistage batch plants (Pinto & Grossmann, 1995,
996). As the number of binary variables and big-M constraints sub-
tantially increased, the general MILP resource-constrained model
ecame almost computationally unsolvable. Consequently, the
uthors developed a problem solution methodology that combines
branch-and-bound MILP algorithm with disjunctive program-
ing. Slot-based representations were also presented by Lamba

nd Karimi (2002) and Lim and Karimi (2003) to tackle semicon-
inuous scheduling problems of single-stage parallel production
ines with resource constraints. Lamba and Karimi (2002) used
dentical slots across all processors while Lim and Karimi (2003)
mployed asynchronous slots. Since the underlying idea of an asyn-
hronous slot is similar to the unit-specific time event, checkpoints
or resource utilization are placed at the start of each slot and
dditional variables and constraints should be included to estab-
ish the slot relative positions. Méndez and Cerdá (2002) developed
n MILP continuous-time representation that independently han-
les unit allocation and task sequencing decisions through different
ets of binary variables. Sequencing variables allow to order the
asks allocated either to the same equipment unit or to another
iscrete resource. In this way, an important saving in binary vari-
bles was achieved. Afterwards, Méndez and Cerdá (2003) reported
more general MILP formulation to deal with both continuous and
iscrete finite renewable resources. Each continuous resource is
ivided into a discrete number of sub-sources or pieces that are
ssigned to tasks through new allocation variables. Then, sequenc-
ng variables are still used to ordering tasks allocated to the same
iscrete or continuous resource item. The maximum number of
ieces into which a continuous renewable can be divided is a model
arameter, while each piece capacity is a non-negative variable
elected by the model. However, the proposed resource repre-
entation may sometimes exclude the problem optimum from
he feasible space and, consequently, optimality is not guaran-
eed.

This work introduces a new MILP formulation for the short-term
cheduling of sequential batch processes that accounts for lim-
ted renewable resources aside from equipment. Different sets of
inary variables allocating equipment units to tasks and sequencing
rocessing tasks on the same queue are defined. The mathemati-
al model is based on the general precedence notion proposed by
éndez et al. (2001). To handle general continuous/discrete renew-

ble resource constraints that guarantee optimality, a new set of
-1 overlapping variables is defined for each pair of tasks shar-

ng a common resource. To reduce the number of 0-1 variables,
equencing variables related to pairs of tasks not allocated to the
ame unit, in combination with the overlapping variables, permit
o detect task overlappings and resource overloading. The resulting

ILP formulation includes a reasonable amount of binary vari-
bles and constraints and shows a good computational behavior
ven for rather hard resource limitations. Resource capacity con-
traints have been extended to account for unit-dependent resource

equirements at reasonable cost in terms of additional variables and
PU time. Four illustrative examples involving the scheduling of
ingle/multistage batch plants with several units running in paral-
el at each stage and multiple limiting resources were successfully
olved.
ical Engineering 33 (2009) 871–886 873

2. Problem formulation

Given:

(i) a multiproduct multistage batch facility with several units j ∈ J
running in parallel at each processing stage s ∈ S,

(ii) the set of batches i ∈ I to be processed and their release times
rti and promised due-dates ddi,

(iii) the sequence of processing stages s ∈ Si required for each batch
i ∈ I,

(iv) the available equipment units j ∈ Js at each stage s ∈ S and their
ready times ruj,

(v) the subset of units j ∈ Jis ⊆ Js available for task (i, s),
(vi) the plant topology structure specifying the interconnections

between units of consecutive processing stages,
(vii) the batch processing times ptij and the sequence-dependent

setup times given as the sum of two components suij and �i′ij,
(viii) a set of renewable resources different from equipment, r ∈ R,

and their available capacities Dr,
(ix) the subset of resources Ris ⊂ R required to run stage s of batch

i,
(x) the amount �isr of resource r ∈ Ris (or �isjr if unit-dependent)

needed per unit amount of task (i, s), and
(xi) the length of the time horizon H.

The problem goal is to find a feasible production schedule
that satisfies all problem constraints while completing all batches
within the specified time horizon, and simultaneously optimizes
the selected plant performance criterion, like the overall weighted
earliness, the overall weighted tardiness or the makespan.

3. Model assumptions

(1) Model parameters are all deterministic.
(2) The set of batches is already known, i.e. a batching procedure

converting product demands into batches has already been per-
formed.

(3) Equipment units operate in non-preemptive mode.
(4) Batch mixing and splitting are not allowed.
(5) Setup times are sequence dependent.
(6) Renewable resources feature constant capacities over the

scheduling horizon.
(7) The resource requirement rate remains constant during the exe-

cution of the processing task.

4. Non-resource constrained mathematical formulation

The mathematical formulation proposed by Méndez et al. (2001)
is extended to rigorously deal with limiting resources other than
equipment units also constraining the problem feasible domain.
Model constraints for the unit assignment, sequencing and timing
of processing tasks are first analyzed. Additional constraints to deal
with discrete/continuous resource requirements are presented on
the next section.

4.1. Allocation constraints

Each stage s of batch i must be assigned to an available unit j ∈ Jis.
Since a multistage multiproduct facility is being considered, each
unit j belongs to a single stage and the stage index s is not needed

in the definition of the allocation variable Yij.∑
j ∈ Jis

Yij = 1 ∀i ∈ I, s ∈ Si (1)

8 d Chem

4

c
i
a
t
j
t
a
t
l

Y

4

(
s
t
c
p
b
b
M
m
v
f
S
v
a
u
C
i
t
l
t
i

m
a
w
s
v
a

4

t
o

S

of tasks (i, s) requiring r and running in parallel at time t. Since the
worst condition for overcapacity occurs just at the start of a process-
74 P.A. Marchetti, J. Cerdá / Computers an

.2. Topological constraints

The plant layout may limit the number of possible routes a batch
an follow throughout the processing structure. Since an equipment
tem is often physically connected to a subset of the units available
t the next downstream stage, the Constraint (2) aims to guarantee
hat the next stage s + 1 of batch i will be scheduled on an equipment
′ eligible for task (i, s + 1) and accessible from unit j, assuming that
ask (i, s) is performed in unit j ∈ Jis. If J(j)

s+1 stands for the set of units
vailable at stage s + 1 that are physically connected to unit j ∈ Jis,
hen unit j′ should belong to J(j)

s+1 ∩ Ji,s+1. In Eq. (2), s�
i

stands for the
ast stage of batch i.

ij ≤
∑

j′ ∈ (Ji,s+1∩J(j)
s+1

)

Yij′ ∀ i ∈ I, s ∈ Si − {s�
i }, j ∈ Jis (2)

.3. Task sequencing constraints

Given a pair of batches (i, i′) ∈ I running at the same stage s ∈ Sii′
where Sii′ = Si ∩ Si′), and assuming Jii′s = (Jis ∩ Ji′s) /= ∅, it may be pos-
ible that the corresponding tasks (i, s) and (i′, s) were allocated
o the same processing unit j ∈ Jii′s. Then, a pair of sequencing
onstraints for tasks (i, s) and (i′, s) to ensure that the tasks are
erformed one by one at some unit j ∈ Jii′s and, in addition, a single
inary variable Xi′s,is to indicate their relative ordering must both
e defined. By using the general precedence concept introduced by
éndez et al. (2001), which allows to independently handle assign-
ent and sequencing decisions through different sets of binary

ariables, the sequencing constraints for tasks (i′, s) and (i, s) veri-
ying the condition i′ < i can be expressed through Eqs. (3) and (4).
ince the subscript j is not needed on the domain of the sequencing
ariables Xi′s,is, a remarkable reduction in the number of binary vari-
bles is achieved. Whenever batches (i, i′) are allocated to the same
nit j ∈ Jii′s at some processing stage s (Yij = Yi′j = 1), then either the
onstraint (3) or (4) becomes active depending on whether Xi′s,is

s one or zero. In case Xi′s,is = 1, then task (i′, s) must finish before
ask (i, s) begins. Otherwise, Xi′s,is = 0 and task (i, s) is executed ear-
ier. Notice that the value of Xi′s,is will be meaningful only if both
asks have been assigned to the same processing queue. Otherwise,
t becomes meaningless and can be used for another purpose.

Ci′s + �i′ij + sui j ≤ Sis + H(1 − Xi′s,is) + H(2 − Yij − Yi′j)

∀ i, i′ ∈ I, s ∈ Sii′ , j ∈ Jii′s : (i′ < i) (3)

Cis + �ii′j + sui′j ≤ Si′s + H Xi′s,is + H(2 − Yij − Yi′j)

∀ i, i′ ∈ I, s ∈ Sii′ , j ∈ Jii′s : (i′ < i) (4)

In the next section, the definition of variables Xi′s,is is extended to
ake its value still meaningful even if tasks (i, s) and (i′, s) have been

ssigned to different equipment units. In this way, such variables
ill also help monitor the overlapping of parallel tasks sharing the

ame renewable resource (different from equipment) so as to pre-
ent temporal overloading of the resource capacity at any time. As
result, a significant saving in additional 0-1 variables is achieved.

.4. Task timing

The relationship between the starting time and the completion

ime of each task is defined based on the processing time required
n the allocated unit.

is = Cis −
∑
j ∈ Jis

ptijYij ∀ i ∈ I, s ∈ Si (5)
ical Engineering 33 (2009) 871–886

4.5. Technological constraints

Constraint (6) defines the relationship between the comple-
tion and the starting times for every pair of consecutive processing
stages on the same batch i.

Cis ≤ Si,s+1 ∀ i ∈ I, s ∈ Si − {s�
i } (6)

4.6. Bounds on batch starting and completion times

Constraints (7)–(9) set up bounds on batch starting and comple-
tion times. In particular, Constraint (7a) establishes a lower bound
on the time at which the first stage of any batch can start taking
into account not only its release time but also both the ready time
and the setup time for the allocated unit. Constraint (7b) consid-
ers the more general case where every stage of each batch has
its own release time rtis. This is a common situation in multistage
batch scheduling problems where some production resources will
be available after the time horizon has begun.

Sis ≥
∑
j ∈ Jis

Max[rti, ruj + suij]Yij ∀ i ∈ I, s = sf
i

(7a)

Sis ≥
∑
j ∈ Jis

Max[rtis, ruj + suij]Yij ∀ i ∈ I, s ∈ Si (7b)

In turn, Constraint (8) defines the tardiness of a batch based on
its own due date and the completion time of the last processing
stage.

Cis − ddi ≤ Ti ∀ i ∈ I, s = s�
i (8)

If batch tardiness is not allowed (Ti = 0), then Constraint (8)
reduces to Eq. (9) stating that each batch must finish before its
promised due-date.

Cis ≤ ddi ∀ i ∈ I, s = s�
i (9)

4.7. Makespan definition

The time required to run all batches on the production facility is
limited by the largest batch completion time. Constraint (10) defin-
ing the schedule makespan MK will be required when the minimum
MK is the selected problem goal.

MK ≥ Cis ∀ i ∈ I, s = s�
i (10)

5. Additional continuous and discrete renewable resource
constraints

Further sets of binary variables and constraints are required to
deal with the limited capacity of discrete and continuous renewable
resources. They are needed in order to avoid exceeding any resource
capacity over the scheduling horizon. Let RTt = {(i, s)|i ∈ I, s ∈ Si :
Sis ≤ t < Cis} be the set of running tasks (i, s) at some time t ∈ [0, H].
If the available capacity Dr of resource r is not exceeded at any time
t, then the following condition

∑
(i,s) ∈ RTt

�isr ≤ Dr will be satisfied
over the entire time interval [0, H], where �isr is the rth-resource
requirement of the running task (i, s). Then, the LHS of the previ-
ous condition stands for the overall demand of resource r by the set
ing task, it is better to control if enough free capacity of resource r
for running a new task (i, s) requiring r is available at its initial time
Sis. In other words, the fulfilment of the resource constraints can be
guaranteed by only monitoring the overall rth-resource demand at
the starting time of any task (i, s) with �isr > 0.

d Chem

5

e
a
t
a
i
r
b
a
i
w
o
i

r
�
c
t
M
n
t
(

(

o
s
e
d

�

n

b
r
a
(

P.A. Marchetti, J. Cerdá / Computers an

.1. Unit-independent task resource requirements

Resource capacity constraints based on the assumption that
very task resource requirement is not unit-dependent will be first
nalyzed. In Section 5.3, such resource constraints are generalized
o also consider the unit-dependent case. To determine the over-
ll rth-resource demand at the start of a processing task (i, s), it
s necessary to identify the set of tasks requiring resource r and
unning at time Sis through additional 0-1 variables. Such required
inary variables are grouped into two classes: sequencing variables
nd overlapping variables. To prevent from defining new sequenc-
ng variables, Constraints (3) and (4) are reformulated in such a
ay that the variables Xi′s′ ,is can also control the relative ordering
f parallel tasks (i, s) and (i′, s′) allocated to different equipment
tems.

As already mentioned, the idle capacity of a required resource
must be checked before deciding to start a new task (i, s) with
isr > 0. To this end, it is important to know which other tasks (i′, s′)
onsuming resource r are running at time Sis. They will be called
he set of overlapping tasks OTis for the task (i, s) at its start time Sis.

oreover, OTis ⊂ RTt=Sis since some running tasks at time Sis may
ot require resource r. By definition, a task (i′, s′) ∈ OTis overlapping
he starting task (i, s) should satisfy the following four conditions
see Fig. 1):

(A) It has been assigned to a processing unit different from the one
allocated to task (i, s).

(B) It starts before (Si′s′ < Sis) or exactly at time Sis (Si′s′ = Sis).
(C) It should end after time Sis, i.e. Ci′s′ > Sis.
D) It should demand some resource r ∈ Ris also required by task (i,

s).

The set OTis is just defined to detect the occurrence of resource
verloads. If the set OTis has been determined, the following con-
traint will prevent the overall rth-resource requirement from
xceeding the rth-resource capacity at the start of any task (i, s)
emanding resource r.

isr +
∑

(i′,s′) ∈ OTis

�i′s′r ≤ Dr ∀ i ∈ I, s ∈ Si, r ∈ Ris

There will be as many rth-resource capacity constraints as the
umber of tasks (i, s) requiring resource r.

In Fig. 1, the starting task (i, s) is just overlapped by task (i′, s′)

eginning before time Sis and ending after Sis. Then, if both demand
esource r the set OTis will include the task (i′, s′) while OTi′s′ is
n empty set (Sis > Si′s′). Let us assume that �isr < Dr, �i′s′r < Dr but
�isr + �i′s′r) > Dr. Consequently, just the rth-capacity constraint for

Fig. 1. Illustrating the task conditions for overlapping a starting task (i, s).
ical Engineering 33 (2009) 871–886 875

task (i, s) will be violated, i.e. the one written for the task starting
later. In the general case, the rth-capacity constraint for at least one
of the overlapping tasks must be violated when the rth-resource
capacity is overloaded. Let us now assume that the overlapping
tasks (i, s) and (i′, s′) both demanding resource r start at the same
time and, in addition, �isr < Dr,�i′s′r < Dr but (�isr + �i′s′r) > Dr. Since
the purpose of the rth-capacity constraint set is to detect resource
overloads and, by so doing, reject infeasible schedules, it is impor-
tant that at least one of the rth-resource constraint for either task
(i, s) or task (i′, s′) will be violated. Assuming arbitrarily that task (i′,
s′) began earlier whenever i′ < i, the rth-capacity constraint for the
“later” task (i, s) is violated and, consequently, the proposed sched-
ule will be infeasible. The reverse assumption will also work but this
time the rth-capacity constraint for task (i′, s′) cannot be satisfied.
For either choice, we can conclude that the schedule is infeasible.
The first choice i′ < i for handling overlapping tasks with the same
start time will be used in this paper. When the overlapping tasks
(i, s) and (i′, s′) demanding resource r have the same starting times
and i′ < i, it will be assumed that task (i′, s′) starts before so that the
resource overload, if any, will be detected by the rth-capacity con-
straint for the overlapping task with the largest index i. This scheme
for equal starting times can be applied whatever the number of
overlapping tasks.

In order to identify the elements of the set OTis fulfilling con-
ditions (A)–(D), a pair of binary variables associated to task (i, s)
and each potential overlapping task (i′, s′) sharing some resource
r ∈ Ris is to be defined. Since only a pair of tasks allocated to dif-
ferent units can overlap each other, conditions (B) and (C) imply
the fulfilment of condition (A). If Jis ∩ Ji′s′ /= ∅ but the tasks (i, s) and
(i′, s′) are not performed in the same unit, then the value of vari-
able Xi′s′ ,is becomes meaningless. To make the value of Xi′s′ ,is still
meaningful for parallel tasks to help monitor if task (i′, s′) over-
laps the starting task (i, s), a more general definition of the variable
Xi′s′ ,is is introduced. In this way, the number of additional binary
variables needed to identify the set of overlapping tasks for the
starting task (i, s) will be significantly decreased. Constraints (3)
and (4) and the sequencing variable Xi′s′ ,is are not required for tasks
(i, s) and (i′, s′) if s /= s′ or Jis ∩ Ji′s′ = ∅. Since we should now also deal
with the relative ordering of parallel tasks, the variable Xi′s′ ,is will be
incorporated in the mathematical model even if such a condition
arises.

In case i′ < i and both tasks (i, s) and (i′, s) are performed in the
same unit, the condition Xi′s,is = 1 means that (i′, s) precedes (i, s) and
consequently Ci′s ≤ Sis and Si′s ≤ Sis are both true. Therefore, Xi′s,is = 1
implies that task (i′, s) satisfies condition (B). If i < i′, Xis,i′s = 0 also
means that (i′, s) precedes (i, s) and thus task (i′, s) satisfies condition
(B). To extend the definition of Xi′s′ ,is so that it also controls the
relative ordering of the starting times of parallel tasks (i, s) and
(i′, s′) and detect task overlapping, more general relaxed versions
of Eqs. (3) and (4) in addition to Eqs. (3) and (4) themselves are
included in the problem formulation. They are:

Si′s′ − Sis ≤ H(1 − Xi′s′,is) ∀ i, i′ ∈ I, s ∈ Si,

s′ ∈ Si′ : (Ris ∩ Ri′s′ /= ∅) ∧ (i′ < i) (11)

Sis − Si′s′ + ı ≤ H Xi′s′,is ∀ i, i′ ∈ I, s ∈ Si,

s′ ∈ Si′ : (Ris ∩ Ri′s′ /= ∅) ∧ (i′ < i) (12)

Eqs. (11) and (12) are written for every pair of tasks sharing a
resource r ∈ R different from equipment. If tasks (i, s) and (i′, s′) have
been allocated to the same equipment unit, Constraints (11) and

(12) are automatically satisfied since they result from relaxing Eqs.
(3) and (4) through the elimination of positive terms on the LHS.
If not, Constraints (3) and (4) become redundant but the variable
Xi′s′ ,is still controls the relative ordering of the starting times of tasks
(i, s) and (i′, s′) through Eqs. (11) and (12). In this way, it monitors the

8 d Chem

f
a
(
m
s
a

c
s
m
S
(
c
p
t
o
r
s
o
t

p
m
p
o

s
f
(
o
a
t
s
r
f
o
i
a

W
s
r
i
s
a
t
t
e
b
W
(
t
W
s
t

O

W
t

76 P.A. Marchetti, J. Cerdá / Computers an

ulfilment of condition (B) by task (i′, s′) with regards to task (i, s)
nd vice versa. If Si′s′ < Sis and i′ < i, then task (i′, s′) meets condition
B) with respect to task (i, s) and Xi′s′ ,is = 1 to satisfy Eq. (11) and

ake redundant Constraint (12). In turn, if Si′s′ < Sis but i < i′, task (i′,
′) still fulfils condition (B) but this time Xis,i′s′ = 0 to satisfy Eq. (12)
nd make redundant Constraint (11).

Constraint (12) includes a small positive scalar ı to cope with the
ase where tasks (i, s) and (i′, s′) start at the same time. A value much
maller than the lowest setup time is chosen for ı. By including the
odel parameter ı in Constraint (12), Xi′s′ ,is must equal 1 whenever

is = Si′s′ and i′ < i. In this way, Constraint (11) is satisfied while Eq.
12) becomes redundant. The other option Xi′s′ ,is = 0 is not a feasible
hoice since Constraint (12) leads to the inequality: Sis ≤ Si′s′ − ı. As
reviously discussed, the task with the largest index i is assumed
o start last and the corresponding set OTis will comprise all the
ther parallel tasks starting at the same time and sharing the same
esource item r. If r is the bottleneck resource, the rth-capacity con-
traint for the task (i, s) with the largest index i will verify if the
verall requirement of resource r by the whole set of overlapping
asks exceeds the available capacity.

In order to write the mathematical expression for the overlap-
ing condition (C), let us define a new binary variable Wi′s′ ,is that
ust be equal to one whenever the stage s′ of batch i′ is com-

leted after starting stage s of batch i. Variables Wi′s′ ,is are called
verlapping variables. Therefore,

Ci′s′ − Sis ≤ H Wi′s′,is ∀ i, i′ ∈ I, s ∈ Si,

s′ ∈ Si′ : (Ris ∩ Ri′s′ /= ∅) ∧ (i /= i′) (13)

When Ci′s′ > Sis, condition (C) is satisfied and the LHS of Con-
traint (13) becomes positive. As a result, the variable Wi′s′ ,is is
orced to equal 1. Therefore, the pair of values Xi′s′ ,is = 1 and Wi′s′ ,is = 1
assuming i′ < i) indicates the fulfilment of conditions (B) and (C). In
ther words, such values mean that the task (i′, s′) starts before (i, s)
nd is still running at time Sis. If so, it is said that task (i′, s′) overlaps
he starting task (i, s). It is important to note, however, that task (i,
) does not overlap (i′, s′) since it starts after time Si′s′ . Despite they
un in parallel during some period of time, the task (i, s) does not
ulfill condition (B) to be an overlapping task of (i′, s′). Therefore, an
verlapping task is always a parallel task but the reverse statement
s not always true. Similarly, tasks running at the start of task (i′, s′)
re identified by also considering the variable Wis,i′s′ .

In contrast to variables Xi′s′ ,is defined only for i′ < i, both variables

is,i′s′ and Wi′s′ ,is must be defined for any pair of processing tasks (i,
) and (i′, s′) that can be allocated to a common renewable resource
. Notice that two tasks involving the same batch i can never be run
n parallel. In other words, the task (i, s) can never overlap another
tage s′ of batch i. If two tasks (i, s) and (i′, s′) are running in par-
llel the Boolean condition (Sis < Ci′s′) ∧ (Si′s′ < Cis) is satisfied and
herefore it is true that Wi′s′ ,is + Wis,i′s′ = 2. However, it is important
o keep in mind that not every parallel task (i′, s′) satisfying the nec-
ssary condition Wi′s′ ,is + Wis,i′s′ = 2 is an overlapping task for (i, s),
ut just those running at the starting time Sis. Given the condition

i′s′ ,is + Wis,i′s′ = 2, the variable Xi′s′ ,is is required to decide which task
i, s) or (i′, s′) overlaps the other one. In summary, assuming that i′ < i
he task (i′, s′) is an overlapping task for (i, s) only if Xi′s′ ,is = 1 and

i′s′ ,is = 1. If i < i′ then the task (i′, s′) is an overlapping task for (i,
) only if Xis,i′s′ = 0 and Wi′s′ ,is = 1. As a result, the set of overlapping
asks for the starting task (i, s) can be defined as:

Tis = {(i′, s′)|i′ ∈ I, s′ ∈ Si′ :[(i′ < i ∧ Xi′s′,is = 1) ∨ (i′ > i ∧ Xis,i′s′=0)]
∧Wi′s′,is = 1 ∧ Ris ∩ Ri′s′ /= ∅}, i ∈ I, s ∈ Si

It can be easily proven that Wi′s′ ,is + Xi′s′ ,is ≥ 1 (if i′ < i) and

i′s′ ,is − Xis,i′s′ ≥ 0 (if i < i′) for any pair of tasks (i, s) and (i′, s′). Then,
he constraint preventing from exceeding the rth-resource capacity
ical Engineering 33 (2009) 871–886

at the start time of any task (i, s) is given by:

�isr +
∑

i′ ∈ I:i′ /= i

∑
s′ ∈ Si′ :r ∈ Ri′s′

[∑
i′<i

�i′s′r(Wi′s′,is + Xi′s′,is − 1)

+
∑
i<i′

�i′s′r(Wi′s′,is − Xis,i′s′)

]
≤ Dr ∀ i ∈ I, s ∈ Si, r ∈ Ris (14)

According to condition (B), the task (i′, s′) belongs to the set OTis
only if Si′s′ ≤ Sis with the equality just in case i′ < i. As previously
discussed, if both tasks start at the same time the one related to
the batch arising first in the set I (i.e. the one with the lower i) is
assumed to begin earlier.

5.2. Improving the convergence rate of the solution algorithm

To speed up the solution algorithm, assuming i′ < i, some addi-
tional relationships between variables Xi′s′ ,is, Wi′s′ ,is and Wis,i′s′
can be derived. If Xi′s′ ,is = 1, then Si′s′ ≤ Sis < Cis, and consequently
Cis − Si′s′ > 0 and Wis,i′s′ = 1. Similarly, if Xi′s′ ,is = 0 then Sis < Si′s′ < Ci′s′
(or equivalently Ci′s′ − Sis > 0), and consequently Wi′s′ ,is = 1. There-
fore,

Xi′s′,is ≤ Wis,i′s′ ∀ i, i′ ∈ I, s ∈ Si, s′ ∈ Si′ : (Ris ∩ Ri′s′ /= ∅) ∧ (i′ < i)

(15)

(1 − Xi′s′,is) ≤ Wi′s′,is ∀ i, i′ ∈ I, s ∈ Si, s′ ∈ Si′ : (Ris ∩ Ri′s′ /= ∅) ∧ (i′ < i)

(16)

In order to further improve the convergence rate to the optimal
solution, the sequencing Constraints (11) and (12) that are relevant
for processing tasks executed in different units can be re-written in
the following way:

Si′s′ + ptMin
i′s′ (1 − Wi′s′,is) ≤ Sis + H(1 − Xi′s′,is) ∀ i, i′ ∈ I, s ∈ Si,

s′ ∈ Si′ : (Ris ∩ Ri′s′ /= ∅) ∧ (i′ < i) (17)

Sis + ı + (ptMin
is − ı)(1 − Wis,i′s′) ≤ Si′s′ + H Xi′s′,is ∀ i, i′ ∈ I,

s ∈ Si, s′ ∈ Si′ : (Ris ∩ Ri′s′ /= ∅) ∧ (i′ < i) (18)

so as to get more tightening restrictions by incorporating the
non-negative term ptMin

i′s′ (1 − Wi′s′,is) on the LHS, where: ptMin
i′s′ =

Min
j ∈ Ji′s′

[pti′j]. If task (i′, s′) overlaps the starting task (i, s) and i′ < i, then

Xi′s′ ,is = 1 (Si′s′ < Sis), Wi′s′ ,is = 1 (Ci′s′ > Sis) and the additional term in
Constraint (17) is driven to zero. As a result, Eq. (17) reduces to Eq.
(11). Similarly to Eq. (12), Constraint (18) becomes redundant. On
the other hand, if task (i, s) overlaps task (i′, s′) and i′ < i, then Con-
straints (12) and (18) both become equivalent and Inequalities (11)
and (17) turn to be redundant. Therefore, the Constraints (11) and
(12) can be replaced by Eqs. (17) and (18) since they are equivalent.
To see the tightening effect of the additional non-negative term,
let us assume that the task (i′, s′) overlaps task (i, s) and Xi′s′ ,is = 1
(i′ < i) but the overlapping has not yet been detected by the solution
algorithm because it does not yet branch on the variable Wi′s′ ,is. As
a result, Wi′s′ ,is takes a fractional value and the additional term on
the LHS of Eq. (17) forces such a value to be sufficiently close to one
so that Constraint (17) is satisfied. The closer the starting times of
tasks (i, s) and (i′, s′) the higher the effect of the additional term on
the level of Wi′s′ ,is. In this way, the overlapping is earlier detected.
5.3. Unit-dependent task resource requirements

The resource capacity constraints introduced in Section 5.1
should be generalized to deal with the more complex case involving

d Chem

u
c
a
(
a
w
b
t
c

t
n
e
t
s
t
r
i
t
n
a

v
b
t
o
r
s
t
�
u
o
o
f⎛
⎝
w
i
r
T
d
t
t
r
c
t
i
a
s

c
u
s
i
&

P.A. Marchetti, J. Cerdá / Computers an

nit-dependent task resource requirements. A new set of resource
apacity constraints that still includes the overlapping variables
nd constraints defined in Section 5.1 is introduced. For each task
i, s) demanding resource r, additional continuous variables Qisjr
re defined to monitor the rth-resource utilization on each unit j
here a potential overlapping task also requiring resource r can

e allocated. In spite of its higher model size, it has been found
hat the upgraded unit-dependent problem formulation shows a
omputational performance similar to the unit-independent case.

Let Qisjr be a non-negative continuous variable that represents
he amount of resource r ∈ Ris required by a parallel task (i′, s′) run-
ing at the start time of (i, s) and being performed in unit j. Since
very equipment unit can process tasks one by one, it is expected
hat at most a single task is running in unit j at time Sis. If task (i′,
′) is the one being performed, then no other task can be allocated
o unit j at time Sis. Therefore, Qisjr will be equal to the amount of
esource r required by a task overlapping the task (i, s) and running
n unit j. If no overlapping task is performed in unit j at time Sis,
hen Qisjr = 0. Constraints (19) and (20) are introduced to define the
ew variables Qisjr in terms of sequencing (Xi′s′ ,is), allocation (Yij)
nd overlapping variables (Wi′s′ ,is).

[Wi′s′,is + Xi′s′,is + Yi′j − 2]�i′s′jr ≤ Qisjr ∀ i, i′ ∈ I, s ∈ Si,

s′ ∈ Si′ , j ∈ Ji′s′ , r ∈ (Ris ∩ Ri′s′) : (i′ < i) (19)

[Wi′s′,is − Xis,i′s′ + Yi′j − 1]�i′s′jr ≤ Qisjr ∀ i, i′ ∈ I, s ∈ Si, s′ ∈ Si′ ,

j ∈ Ji′s′ , r ∈ (Ris ∩ Ri′s′) : (i < i′) (20)

Notice that the terms between square brackets involve binary
ariables, and can take any value from the set {−1, 0, 1}. If the
racket is equal one, the variable Qisjr is constrained from below by
he resource requirement �i′s′jr of task (i′, s′) running in unit j and
verlapping task (i, s). Otherwise, Constraints (19) or (20) becomes
edundant since the LHS is lower or equal to zero. In short, two pos-
ible scenarios arise depending on whether or not an overlapping
ask (i′, s′) is performed in unit j. On one hand, Qisjr is made equal to

i′s′jr by the model if task (i′, s′) belongs to OTis and is allocated to
nit j. If not, Qisjr = 0. When the task resource consumption depends
n the allocated unit, the resource capacity constraint preventing
verloading of resource r at the start time of any task (i, s) can be
ormulated in terms of the new variables Qisjr as follows:

∑
j ∈ Jis

�isjrYij

⎞
⎠ +

∑
j ∈ JP

isr

Qisjr ≤ Dr ∀ i ∈ I, s ∈ Si, r ∈ Ris (21)

here JP
isr

={j|i′ ∈ I, s′ ∈ Si′ , j ∈ Ji′s′ : i /= i′ ∧ r ∈ Ri′s′ }, ∀ i ∈ I, s ∈ Si, r ∈ Ris,
s the set of units where a potential parallel task (i′, s′) requiring
esource r and eventually overlapping task (i, s) can be performed.
he first term on the LHS of Constraint (21) provides the unit-
ependent rth-resource requirement of task (i, s), while the second
erm is the total consumption of resource r by the set of parallel
asks different from (i, s) running at the start time Sis and requiring
. In turn, the right side of Constraint (21) is the total rth-resource
apacity that is assumed to remain constant over time. Notice that
he sets Jis and JP

isr
are generally different since the latter one may

nclude units belonging to other stages s′ /= s. Moreover, Qisjr is
utomatically set to zero if unit j ∈ (Jis ∩ JP

isr
) performs the task (i,

).
In this way, the approach just needs a small number of additional
ontinuous variables but no further binary variables to handle
nit-dependent resource requirements. Though a larger set of con-
traints is to be considered, it is still smaller than the one included
n other resource constrained formulations (Janak et al., 2004; Pinto

Grossmann, 1997).
ical Engineering 33 (2009) 871–886 877

To handle discrete/continuous renewable resources aside from
equipment, Constraints (13) and (15)–(18) are always incorporated
in the mathematical model. However, the expression of the resource
capacity constraint depends on whether or not the task resource
requirement is a function of the allocated unit. When it does not
change with the unit, Constraint (14) is to be further considered.
Otherwise, Constraints (19)–(21) are to be included to prevent
overlapping tasks from exceeding the rth-resource capacity. In sum-
mary, the problem constraint set always includes Eqs. (1)–(6), (7a),
(13)–(18) if the task resource requirement (�isr) does not depend
on the assigned equipment unit. Moreover, one of the Constraints
(8)–(10) should also be considered depending on the selected objec-
tive function. Otherwise, when �isjr varies with the allocated unit
j, then the constraint set includes Eqs. (1)–(6), (7a), (13), (15)–(21)
plus one of the Constraints (8)–(10) related to the problem objec-
tive.

5.4. Extending the mathematical formulation for multipurpose
batch plants

The proposed model can be generalized to also account for mul-
tipurpose batch plant configurations in a straightforward manner.
To this end, a pair of changes are required: (i) it should be used
the allocation variable Yisj rather than Yij since unit j may perform
more than a single stage on any batch i. In this way, the number
of allocation variables may increase; (ii) it is necessary to incorpo-
rate the sequencing variables (Xi′s′ ,is) and formulate the sequencing
constraints using the concept of general precedence for any pair of
tasks (i, s) and (i′, s′) involving different batches and stages that can
be allocated to the same unit. As a result, Constraints (3) and (4)
should be written for any (i, i′) ∈ I (i′ < i), s ∈ Si, s′ ∈ Si′ , j ∈ Jis,i′s′ .

6. Alternative objective functions

The proposed MILP mathematical model for the resource-
constrained multistage batch scheduling problem allows to easily
handle different types of objective functions. The Problem Objec-
tive (22) is used to minimize the weighted overall earliness for a
multistage batch facility, assuming that enough production capac-
ity is available to timely meet all batch due dates. A positive weight
parameter ˛is for every task (i, s) should be chosen. Usually, it rep-
resents the inventory cost of either intermediate products between
consecutive stages or final products coming from the last stage.

Minimize
∑
i ∈ I

⎛
⎜⎝˛

is�
i
(ddi − C

i,s�
i
) +

∑
s ∈ Si−{s�

i
}

˛is(Si,s+1 − Cis)

⎞
⎟⎠ (22)

In particular, the problem of minimizing the overall earliness is
equivalent to the problem of maximizing the summation of the task
completion times for a single-stage batch plant.

Minimize
∑
i ∈ I

˛i(ddi − Ci) ≡ Maximize
∑
i ∈ I

˛iCi (23)

Together with Problem Objective (22) or (23), Constraint (9)
must be used in order to properly meet the specified due dates. If the
problem goal is to minimize the overall tardiness, the mathemati-
cal formulation should include the constraint (8) and the objective
function will be given by,∑

Minimize

i ∈ I

ˇi Ti (24)

where ˇi is the weight coefficient for batch i. When the mini-
mization of the makespan is the problem goal, the Constraint (10)

8 d Chemical Engineering 33 (2009) 871–886

d
o

M

7

l
r
b
a
r
e
O
1
g
l

7

s
C
p
e
t
s
d
t
i
u
t
f
a
E
r
E
o
E
s
f
s
u

a

o
d

T
D

O

1
2
3
4
5
6
7
8
9
1
1
1

U

78 P.A. Marchetti, J. Cerdá / Computers an

efining the makespan MK should be considered and the problem
bjective will be given by the following equation:

inimize MK (25)

. Results and discussion

The proposed resource-constrained batch scheduling formu-
ation has been applied to four examples all involving limited
enewable resources. Examples 1 and 2 were previously studied
y other authors while Examples 3 and 4 are new case studies with
pair of additional features: processing tasks with unit-dependent

esource requirements and multiple bottleneck resources. All the
xamples were solved to optimality using ILOG OPL Studio 3.6 (ILOG
PL Studio, 2002) with the solver CPLEX v. 8.0 on a Pentium IV
.8 GHz with 1 Gb of memory. Default solver options (1E−6 relative
ap tolerance) have been used on every example, and a CPU time
imit of 1 h was adopted.

.1. Example 1

This example introduced by Pinto and Grossmann (1997) and
ubsequently studied by other authors (Janak et al., 2004; Méndez &
erdá, 2002) deals with a plastic compounding facility with a single
rocessing stage and 4 extruders running in parallel. The extrud-
rs have different capacities and their processing rates depend on
he product being manufactured. A total of 12 single-batch orders
hould be scheduled over a time horizon of 30 days. Specific order
ue dates are to be satisfied but the plant capacity is large enough
o meet all of them on time. Therefore, the problem goal is to min-
mize the overall order earliness. Processing times, due dates, and
nit-dependent setup times are all presented in Table 1. Assuming
hat a single worker is required to run each extruder, three dif-
erent versions of Example 1 have been solved. While Example 1a
ssumes unlimited available manpower, the other two instances of
xample 1 involve a strong constraint on the number of extruders
unning in parallel by considering a limited manpower capacity.
xample 1b assumes that at most 3 units can be run simultane-
usly, whereas a maximum of 2 extruders can work in parallel in
xample 1c. The non-constrained Example 1a has recently been
olved by Castro and Grossmann (2006) using five conceptually dif-
erent formulations, one of which is relying on global precedence
equencing variables like the one proposed here. The following val-
es for the model parameters were selected: H = Max[ddi] = 30
i ∈ I

nd ı = 0.001.
Fig. 2 shows the optimal schedules found for the three instances

f Example 1. Tasks not being completed just-in-time are depicted
arker in order to appreciate the effect of manpower limita-

able 1
ata for Example 1.

rder Due date (days) Processing time (days)

U1 U2 U3 U4

15 1.538 1.194
30 1.500 0.789
22 1.607 0.818
25 1.564 2.143
20 0.736 1.017
30 5.263 3.200
21 4.865 3.025 3.214
26 1.500 1.440
30 1.869 2.459

0 29 1.282
1 30 3.750 3.000
2 21 6.796 7.000 5.600

nit setup time 0.180 0.175 0.237
Fig. 2. Optimal solutions found for Example (1a) without resource constraints, (1b)
at most 3 parallel units and (1c) at most 2 parallel units.

tions. Alternative optimal solutions have already been reported by
Méndez and Cerdá (2002) and Janak et al. (2004).

Model sizes, optimal objective values, CPU times and number of
explored nodes for the three instances of Example 1 are all included
in Table 2. Such results are not only given for the proposed approach
but also for other resource-constrained scheduling methodologies
(Janak et al., 2004; Méndez & Cerdá, 2002; Pinto & Grossmann,
1997). Results found with the mathematical model of Méndez and
Cerdá (2002) and the proposed approach were both obtained using
the same computer and solver described at the beginning of this
Section.

As shown in Table 2, both methodologies of Pinto and
Grossmann (1997) found a near-optimal solution for Examples 1b
and 1c by considering preordering constraints and using the sum-
mation of the order starting times as the problem objective to be
maximized. Their formulation presents an important number of
binary variables and constraints and a large computational require-
ment even for the non-constrained instance of Example 1. Though
the computer platform used by Pinto and Grossmann (1997) is
not comparable with the one applied in this work, it can be con-
cluded from: (i) the extremely high number of explored nodes,
(ii) the CPU time of 21 h for the most constrained instance 1c and
(iii) the need of preordering conditions to reduce the model size,
that such a scheduling approach is computationally less efficient
than the proposed formulation. In turn, the MILP model of Méndez
and Cerdá (2002) shows a good computational performance. When
Example 1a is considered, this model and the mathematical rep-
resentation introduced in this work both become equivalent to
the one proposed by Méndez et al. (2001), since no renewable
resources different from equipment are considered. Interestingly,
the formulation of Méndez and Cerdá (2002) presents a remark-
able reduction in binary variables and constraints for Example 1c

with regards to Example 1b. Since the approach is based on the
allocation of resource items to tasks, such a decrease in the model
size arises simply because Example 1b has three resource items
(workers) available to allocate to tasks while case 1c has only two.
Despite that, a higher CPU time for the more restricted case 1c that

P.A. Marchetti, J. Cerdá / Computers and Chemical Engineering 33 (2009) 871–886 879

Table 2
Model sizes and computational results for Example 1.

Model Case Binary variables, cont. variables,
constraints

Objective function CPU time (s) Nodes

Pinto and Grossmann (1997) (MILP formulation) 1a 100, 117, 153 269.10 # 71.53 a 1072
1b † 289, 329, 1156 268.24 # 2224 a 1941
1c † 289, 329, 1156 264.98 # 76390 a 99148

Pinto and Grossmann (1997) (MILP + DP) 1a † – 269.10 # 63.56 a 283
1b † – 268.24 # 125.42 a 673
1c † – 264.98 # 927.16 a 7341

Méndez and Cerdá (2002) 1a 82, 24, 214 1.026 0.03 12
1b 127, 24, 622 1.895 2.93 4372
1c 115, 24, 490 7.334 13.28 21583

Janak et al., 2004 1a 150, 513, 1389 1.026 0.07 b 7
1b 458, 2137, 10382 1.895 6.53 b 1374
1c ‡ 444, 2137, 10382 7.334 236.87 b 38621

Proposed Formulation 1a 82, 24, 214 1.026 0.03 12
1b 223, 24, 622 1.895 0.66 121
1c 223, 24, 622 7.334 7.39 3943

† With preordering constraints.

a
T

u
s
c
r
o
t
c
s
m
s
c
b
2
t
c

7

i

Problem goal: max �i∈I Si .
‡ Reported in Janak, Lin, and Floudas (2005).
a IBM 6000-530 w/GAMS/OSL.
b 3.00 GHz Linux workstation w/GAMS 2.50/CPLEX 8.1.

lmost doubles the one required by our formulation is needed (see
able 2).

On the other hand, the model of Janak et al. (2004) uses
tility-related tasks and unit-specific time events to detect the
tarting time of every resource usage. Since 12 event points for
ases 1b and 1c should be adopted to guarantee optimality, the
esulting problem formulation includes a relatively large number
f binary/continuous variables and constraints and consequently
he computational time significantly rises. Despite using a faster
omputer, the model of Janak et al. (2004) requires a CPU time sub-
tantially larger than those reported for general precedence based
odels. Therefore, the proposed MILP formulation presents a rea-

onable size in terms of binary variables and constraints and a good
omputational performance for every instance of Example 1. It is
y far the best one when the manpower capacity drops from 3 to
workers. Since just the manpower capacity Dr (a model parame-

er) is diminished, the number of binary/continuous variables and
onstraints for cases 1b and 1c remain the same.
.2. Example 2

Example 2 originally introduced by Pinto and Grossmann (1995)
nvolves the processing of five single-batch orders in a multistage

Fig. 3. Multistage plant stru
multiproduct batch plant producing dyes. The production facility
consists of 25 equipment units distributed among five processing
stages. The presence of limited interconnections between consec-
utive stages (topology constraints) reduces the number of feasible
unit-task assignments. Topology constraints arise between consec-
utive stages I–II and IV–V, respectively. The plant layout is shown
in Fig. 3.

An unlimited intermediate storage (UIS) capacity between
consecutive stages is assumed to be available. Unit-dependent pro-
cessing and setup times for each production order at each stage are
listed in Table 3. Furthermore, Table 4 shows the steam require-
ments for stages I (reaction) and IV (drying) taken from the work of
Méndez and Cerdá (2003). Such steam requirements do not depend
on the allocated unit. Three different instances of Example 2 have
been defined by changing the maximum available steam flow rate.
Example 2a assumes a maximum steam flow of 25 ton/h, that is
reduced to 23 ton/h in Example 2b. In turn, the steam flow is further
constrained to a maximum of 22 ton/h in Example 2c. Examples 2a

and 2b have been previously tackled by Méndez and Cerdá (2003).
The selected problem goal is the minimum makespan.

The following values for the parameters were adopted: H = 400
and ı = 0.1. Model sizes and computational results obtained through
both the proposed approach and the formulation of Méndez and

cture for Example 2.

880 P.A. Marchetti, J. Cerdá / Computers and Chemical Engineering 33 (2009) 871–886

Table 3
Processing and transition times for Example 2.

Order Equipment

Reaction Fluidization Standardization Drying Packing

U1 − U6 U7 U8 − U9 U10 − U17 U18 − U19 U20 − U21 U22 U23 − U24 U25

1 18.1 14.0 5.0 12.0 9.5 24.0
2 23.0 14.0 5.0 12.0 12.0 100.0 48.0
3 18.1 14.0 5.0 24.0 9.3 24.0
4 20.0 11.0 5.0 12.0 7.9 24.0
5 17.0 14.0 5.0 12.0

Setup time 8.0 8.0 1.0 2.5

Table 4
Order steam requirements (in ton/h) for Example 2.

Stage Order

R
D

C
p
E
a
(
n
a

o
r
i
I
s
t
2
s
fi
o
v
p
o
i
o
l
t
(
e
n
r

i

T
M

M

M

P

1 2 3 4 5

eaction (U1 − U6) 8.0 9.0 9.5 8.5 7.0
rying (U20 − U22) 11.0 14.0 12.0 11.0 9.0

erdá (2003) are presented in Table 5. In order to make a fair com-
arison, both methodologies were applied to the three instances of
xample 2 using the same solver and computer platform described
t the beginning of this Section. The approach of Méndez and Cerdá
2003) requires an additional parameter denoting the maximum
umber of pieces into which the steam source can be divided. For
ll instances of Example 2 three steam subsources were defined.

Overall, the proposed model performs very well for all instances
f Example 2. In particular, it is clearly the best one for the most
estrictive instance 2c where the steam flow rate has been lim-
ted to 22 ton/h. It converges to the optimal solution in 424.28 s.
n contrast, the model of Méndez and Cerdá (2003) was unable to
olve Example 2c to optimality after the time limit of 1 h. Besides,
he CPU time reported by Méndez and Cerdá (2003) for Example
b and shown in Table 5 could not be replicated using the current
olver/machine configuration, although the same model definition
le was used. Nonetheless, the CPU time included in Table 5 is the
ne reported in their original work. Though both approaches pro-
ide the same best solution for Examples 2a and 2b, a different
roblem representation has been adopted. The proposed method-
logy does not need to partition a continuous renewable resource
nto several pieces (or sub-sources) in order to handle it as a set
f elementary discrete resources. Instead, it uses a rigorous prob-
em representation that guarantees in any case the discovery of
he optimal resource-constrained schedule. In the other approach
Méndez & Cerdá, 2003), the number of pieces should be large

nough to guarantee solution optimality. However, the higher the
umber of pieces the larger the model size and the computational
equirement.

As shown in Table 5, the proposed mathematical formulation
ncludes a total of 251 binary variables: 105 assignment variables

able 5
odel size and computational results for Example 2.

odel Case Binary variables, cont. variables, con

éndez and Cerdá (2003) 2a 201, 84, 817
2b 201, 84, 817
2c 201, 84, 817

roposed formulation 2a 251, 51, 756
2b 251, 51, 756
2c 251, 51, 756

Seconds on Pentium III PC (933 MHz) with ILOG/CPLEX.
† Time limit exceeded.
a Lower bound = 196, relative gap tolerance = 6.4%.
12.5 24.0

2.5 6.0 24.0 4.0 5.0

(Yij), 80 overlapping variables (Wi′s′ ,is), and 66 sequencing variables
(Xi′s′ ,is). The sequencing variables are distributed as follows: (i) 26
were just used to control the sequencing of tasks on stages S2, S3
and S5; (ii) 16 were defined to account for tasks that can be allocated
to the same equipment unit on stages S1 and S4 but reused by the
model to control task overlapping, in combination with variables
Wi′s′ ,is; (iii) the remaining 24 were needed to detect the overlap-
ping of parallel tasks that cannot share the same equipment unit.
These specific binaries Xi′s′ ,is are to be defined for: (a) the pairs of
tasks (O2, S4) − (Oi, S4), ∀i /= 2, all carried out in the drying stage;
(b) the pairs of processing tasks performed in stages I and IV, (Oi,
S1) − (Oi′ , S4), ∀ i, i′ ∈ I (i /= i′). Such pairs of processing tasks all
require steam (a common resource) but do not have any equipment
unit in common.

The optimal schedules found for all instances of Example 2 are
depicted in Fig. 4 together with the steam usage profiles. When the
less constrained case (Example 2a) is solved, the optimal value still
remains at the same level (196 h) found for the non-constrained
case and, therefore, the steam flow does not arise as a bottleneck
resource. It becomes a limiting resource when it is reduced to a
maximum of 23 ton/h (Example 2b). As a result, the overlapping
of task (O3, S1) at the start time of (O2, S4) and the running of
(O2, S4) at the beginning of (O4, S4) are both no longer permitted
since their overall consumption of 23.5 and 25 ton/h, respectively,
exceeds the available steam flow. Then, the starting time of (O2, S4)
is delayed and the remaining tasks are properly reaccommodated to
meet the resource constraints. Consequently, the optimal makespan
increases from 196 to 200.6 (see Fig. 4). A more restrictive steam
flow capacity of 22 ton/h makes the optimal schedule of Example
2b an infeasible solution. Both tasks (O5, S4) and (O4, S1) can no
longer start during the execution of the overlapping task (O2, S4)
because the overall steam requirement reaches 23 and 22.5 ton/h
respectively. Moreover, task (O3, S4) can no longer overlap (O4, S4).
As a result, unit reassignments and changes in the timing of several

tasks with regards to the best solution of Example 2b should be
made. In particular, task (O4, S1) is scheduled to start at the begin-
ning of the time horizon while task (O5, S5) is completed at the end
of the new optimal schedule (see Fig. 4). Besides, tasks (O4, S4) and
(O3, S4) are now sequentially performed in unit U20.

straints Objective function CPU time (s) Nodes

196 0.88 258
200.6 13.07# –
209.5 a 3600† 2,024,341

196 0.80 130
200.6 72.72 28,160
209.5 424.28 196,837

P.A. Marchetti, J. Cerdá / Computers and Chemical Engineering 33 (2009) 871–886 881

Fig. 4. Optimal solutions and steam demand profiles for Examples 2a–2c.

8 d Chemical Engineering 33 (2009) 871–886

7

s
o
E
p
3
g
ı

p
b
r
(
E
v
w
p
a
s
r
F
D
s
a
f
l
d
c
a
l
a

7

b
T
s
s
u
A
o
p

e
c
r

T
U

O

82 P.A. Marchetti, J. Cerdá / Computers an

.3. Example 3

Example 3 is a modified version of Example 1 that results by con-
idering unit-dependent manpower requirements (see Table 6). The
ther problem data are already given in Table 1. Two instances of
xample 3 were defined by changing the level of the available man-
ower. A total of 5 workers is assumed to be available in Example
a while only 4 workers are on hand in Example 3b. The problem
oal is to minimize the total earliness. Values for model parameters
and H are those chosen for Example 1.

In order to compare their computational performance, the pro-
osed model and the formulation of Méndez and Cerdá (2002) were
oth applied to the two instances of Example 3. Computational
esults are presented in Table 7. The approach of Méndez and Cerdá
2002) needs to define 5 and 4 unary resources in order to handle
xamples 3a and 3b, respectively. Though it requires less binary
ariables and constraints, the model of Méndez and Cerdá (2002)
as unable to discover the optimal schedule for Example 3a and
rove the optimality of the best solution found for both Examples 3a
nd 3b after the time limit of 1 h. In contrast, the proposed approach
olves both instances of Example 3 in few CPU seconds. The cor-
esponding Gantt charts and manpower profiles are presented in
ig. 5. Tasks not being completed just-in-time are depicted darker.
espite the production schedule should be developed under more

tringent conditions, the CPU time for Example 3b does not present
substantial increase compared with Example 3a. Moreover, the

act that manpower requirements are now unit-dependent has a
ittle effect on the CPU time (see Tables 2 and 7). To cope with unit-
ependent resource requirements, 48 continuous variables and 275
onstraints with regards to the unit-independent MILP formulation
re further needed. If the optimal manpower level is to be estab-
ished, the problem goal will aim to minimize the sum of manpower
nd product storage costs.

.4. Example 4

Example 4 introduces a new case study involving a multistage
atch facility with five processing stages and 12 processing units.
welve single-batch orders featuring different due dates are to be
cheduled. Multiple discrete/continuous bottleneck resources are
imultaneously considered. The plant layout is shown in Fig. 6 and
nit-dependent processing and setup times are given in Table 8.
dditionally, sequence-dependent changeover times for every pair
f batches are included in Table 9. The problem goal is to find the
roduction schedule that minimizes the total tardiness.
Limited availabilities for production resources different from
quipment like manpower, electricity and steam flow are
onsidered. Resource capacities and order-dependent resource
equirements at some stages are given in Table 10. Manpower must

able 6
nit-dependent manpower requirements for Example 3.

rder Unit-dependent manpower requirement

U1 U2 U3 U4

1 3 – – 2
2 2 – – 1
3 2 – – 1
4 – – 3 2
5 – – 1 3
6 3 – – 2
7 2 – 3 3
8 – – 2 1
9 – – 3 2

10 – 3 – –
11 – 1 – 3
12 – 3 1 2
Fig. 5. Optimal schedules and manpower consumption profiles for Examples 3a–3b.

be allocated to six orders at stage V, while electricity is required by
four orders at stage III. In turn, steam flow is needed to heat up 4
orders at stages III and V.

Several instances of Example 4 have been studied in order to
evaluate the computational performance of the proposed approach
as the number of bottleneck resources increases. Example 4a stands
for the non-constrained case (limitations on resource capacities
are ignored), Example 4b just considers the limitation on man-
power capacity, Example 4c accounts for manpower and electricity
as additional bottleneck resources, and finally Example 4d handles
all resource requirements shown in Table 10. In order to reduce
the number of binary variables, tasks potentially performed at the
same equipment unit are preordered by increasing due dates before
solving the problem. Otherwise, the problem cannot be solved on
a CPU time below the time limit of 1 h. Preordering conditions will
only apply to tasks featuring different due-dates and allocated to
the same equipment item. Such conditions are handled by replacing
Constraints (3)–(4) by Restrictions (26)–(28).

Ci′s + �i′ij + suij ≤ Sis + H(1 − Xi′s,is) + H(2 − Yij − Yi′j) ∀ i, i′ ∈ I,

s ∈ Sii′ , j ∈ Jii′s : (i′ < i) ∧ (ddi = ddi′) (26)

Cis + �ii′j + sui′j ≤ Si′s + H Xi′s,is + H (2 − Yij − Yi′j) ∀ i, i′ ∈ I,

′
s ∈ Sii′ , j ∈ Jii′s : (i < i) ∧ (ddi = ddi′) (27)

Ci′s + �i′ij + suij ≤ Sis + H(2 − Yij − Yi′j) ∀ i, i′ ∈ I,

s ∈ Sii′ , j ∈ Jii′s : (ddi′ < ddi) (28)

P.A. Marchetti, J. Cerdá / Computers and Chemical Engineering 33 (2009) 871–886 883

Table 7
Model size and computational results for Example 3.

Model Case Binary variables, cont. variables, constraints Objective function CPU time (s) Nodes Iterations

Méndez and Cerdá (2002) 3a 151, 24, 886 6.234 a 3600 † 2,125,831 6,543,180
3b 139, 24, 754 11.12 b 3600 † 2,490,249 5,410,129

Proposed formulation 3a 223, 72, 897 5.276 3.63 1,416 9,956
3b 223, 72, 897 11.12 8.59 4,216 27,090

† Time limit exceeded.
a Lower bound = 2.038, relative gap tolerance = 67.3%.
b Lower bound = 8.151, relative gap tolerance = 26.6%.

Fig. 6. Multistage batch facility at Example 4.

Table 8
Data for Example 4.

Order Stage I Stage II Stage III Stage IV Stage V Due date

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12

1 13.2 11.0 9.2 8.5 10.6 13.9 10.3 8.4 10.4 70
2 10.3 12.5 5.5 11.1 11.8 14.1 8.0 9.9 11.5 9.9 8.2 85
3 8.1 8.5 9.7 4.9 14.2 13.5 12.7 12.8 7.2 8.3 100
4 12.7 13.7 9.9 6.1 15.1 11.1 8.7 8.4 9.6 9.4 70
5 8.7 7.3 10.4 11.3 12.7 12.5 8.5 12.5 10.3 56
6 12.8 13.4 6.5 7.9 7.0 11.1 10.3 9.6 12.5 9.4 10.9 110
7 10.3 13.0 9.9 10.4 11.6 14.4 12.0 9.7 9.5 56
8 12.1 7.9 7.3 10.8 9.7 11.8 10.6 11.0 85
9 8.9 10.1 9.9 13.3 14.9 9.2 13.9 9.8 9.3 70
10 11.0 8.9 7.2 6.5 13.7 12.7 13.0 11.5 10.8 8.6 100
11 10.6 8.5 5.3 7.9 10.9 9.9 13.2 8.5 10.4 120
12 9.4 8.0 6.7 4.8 9.6 11.6 13.2 10.3 9.9 10.6 7.7 120

suij 0.4 0.2 0.5 0.4 0.4 0.2 0.3 0.6 0.5 0.3 0.2 0.6

Table 9
Sequence-dependent setup times for Example 4.

�ii′ O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12

O1 – 0.6 0.6 1.0 0.3 0.9 0.9 0.4 0.4 0.6 0.3 0.5
O2 0.7 – 0.6 0.6 0.4 0.6 0.8 0.5 0.6 0.5 0.8 0.9
O3 0.7 0.8 – 0.5 0.8 0.6 0.4 0.3 0.9 0.6 0.9 0.3
O4 0.6 0.8 0.6 – 0.6 0.7 0.7 0.6 0.7 0.7 0.4 0.8
O5 0.8 0.8 0.4 0.8 – 0.5 0.4 0.6 0.5 0.6 0.4 0.8
O6 0.9 0.4 0.5 0.5 0.4 – 0.5 0.8 0.9 0.8 1.0 0.6
O7 0.7 0.7 0.6 0.4 0.7 0.3 – 0.8 0.3 0.7 0.6 0.4
O8 0.5 0.5 0.7 0.5 1.0 1.0 0.9 – 0.6 0.4 0.4 1.0
O9 1.0 0.6 0.8 0.8 0.3 0.5 0.5 0.7 – 0.6 0.3 0.8
O10 0.3 0.7 0.5 0.9 0.9 0.3 0.7 0.4 0.4 – 0.5 0.8
O11 0.3 0.7 0.7 0.4 0.6 0.4 0.7 1.0 1.0 0.5 – 0.9
O12 0.5 0.6 0.5 0.8 0.8 0.4 0.8 0.9 0.5 0.6 0.7 –

Table 10
Resource requirement data for Example 4.

Order

Resource 1 2 3 4 5 6 7 8 9 10 11 12 Capacity

Manpower (Stage V) 1 2 1 2 1 2 3
Electricity (Stage III) 9 10 7 8 15
Steam (Stage III) 8 7 7 5

12Steam (Stage V) 6 6 5 8

884 P.A. Marchetti, J. Cerdá / Computers and Chemical Engineering 33 (2009) 871–886

Table 11
Computational results for Examples 4a–d.

Problem Binary variables, cont. variables, constraints MILP objective value CPU time (s) Nodes Iterations

4a. Without resource constraints 151, 132, 777 9.3 69.73 52,667 258,814
4b. With manpower 193, 132, 873 11.9 70.41 44,666 221,883
4c. With manpower + electricity 210, 132, 913 18.3 119.36 62,510 355,351
4d. With all resources 278, 132, 1065 31.6 114.05 43,945 303,092

Table 12
Number of binary variables for Examples 4a–d.

Binary variables Problem

4a 4b 4c 4d

Allocation Yij 116 116 116 116
Sequencing Xi′s′ ,is 35 47 52 72
Overlapping Wi′s′ ,is 0 30 42 90
Total 151 193 210 278

Table 13
Resource overloads at Example 4a.

Resource Capacity Interval Overlapping tasks Overall
Req.

Overload

Manpower 3 (A) (O7, S5), (O9, S5) 4 +1

Electricity 15 (B) (O9, S3), (O4, S3) 18 +3

S

M
e
a
m
o
a
b
t
o
p
c
v
1
s
a
m

T
S

(C) (O3, S3), (O6, S3) 16 +1

team 12 (D) (O5, S3), (O7, S3) 15 +3
(E) (O11, S5), (O12, S5) 13 +1

Values adopted for the model parameters are H = 240 and ı = 0.1.
odel sizes, optimal objective values, CPU times, and number of

xplored nodes and iterations for each instance of Example 4 are
ll given in Table 11. The rising number of resource constraints by
oving from Example 4a to Example 4d almost doubles the number

f binary variables and produces a significant increase in the over-
ll tardiness at the optimum. Nonetheless, the CPU time just grows
y a factor less than 2 and the number of explored nodes and itera-
ions remains almost the same. Table 12 shows the required number
f binary variables of each type (assignment, sequencing, overlap-
ing) for every instance of Example 4. By including preordering
onditions, the proposed MILP model requires a total of 278 binary

ariables for the most constrained case (Example 4d), from which
16 are assignment variables, 72 are sequencing variables, and 90
tand for overlapping decisions. Therefore, 127 additional variables
re to be incorporated in the non-resource constrained problem for-
ulation to deal with the most constrained instance of Example 4.

able 14
tarting and completion times of the orders at Stages S3 and S5 for Examples 4a and 4d.
Fig. 7. (1) Optimal schedule for Example 4a with resource capacity overloads
(A)–(E); (2) optimal schedule for Example 4d.

Although it represents a significant growth in the number of binary
variables, the increase in CPU time is relatively low.
Fig. 7 presents the optimal schedules found for Examples 4a and
4d where processing tasks are identified by the concatenation of
the batch number and the batch stage, i.e. 121 refers to the stage 1
of batch 12. Since limitations on resource availabilities are ignored,
the optimal solution for Example 4a depicted in Fig. 7.1 includes five

d Chem

s
h
t
o
c
t
(
h
r
r
r
t
a
t
p
o
t
a
p
c
c
t
p
E
w

8

r
o
i
h
o
a
u
d
t
t
c
t
v
a
s
d
v
o
v
r
l
C
m
t
k
s
r
p
t
o
f
t
t
p
C
w
a

P.A. Marchetti, J. Cerdá / Computers an

hortages on resource capacities at different time intervals, being
ighlighted through the shaded blocks (A)–(E). Detailed informa-
ion for each interval is given in Table 13. For instance, task (O7, S5)
verlaps the starting task (O9, S5) and consequently the manpower
apacity is overloaded by 1 unit over the time interval (A). Likewise,
he electric power capacity is overloaded at time intervals (B) and
C), and steam shortages arise at periods (D) and (E). On the other
and, Fig. 7.2 depicts the optimal solution for Example 4d where all
esource constraints are fully satisfied. Overlapping tasks causing
esource constraint violations have been shifted right or left and/or
e-allocated to other equipment units. Detailed starting/completion
imes of tasks performed at stages III and V for Examples 4a and 4d
re listed in Table 14. A rectangle is depicted around the start/end
imes of parallel tasks causing a resource capacity overload at Exam-
le 4a. Besides, bold typeface is used to highlight the starting time
f a task at which a resource overload occurs. It can be observed
hat task overlappings causing resource overloads no longer arise
t Example 4d. However, the minimum overall tardiness for Exam-
le 4d is significantly larger. In order to decide which schedule to
hoose it is necessary to compare the cost of the extra resource
apacities required (1 additional worker and 3 units of both elec-
ricity and steam) against the price of delivering orders after their
romised due dates (e.g. the client dissatisfaction cost). Solutions to
xamples 4b and 4c can also be considered as intermediate options
here less additional resources are needed.

. Conclusions

A new MILP continuous-time mathematical model for the
esource-constrained batch scheduling problem has been devel-
ped. Likewise previous papers (Méndez & Cerdá, 2002, 2003),
t relies on the general task precedence notion to independently
andle allocation and sequencing decisions through different sets
f 0-1 variables. In contrast to such contributions, however, it is
ble to cope with both discrete and continuous resources using a
nified resource constraint framework. Since it does not need to
iscretize continuous renewable resources, the proposed formula-
ion introduces a more general modeling of the resource constraints
hat rigorously prevents from temporal overloading of resource
apacities at any time of the scheduling horizon. This novel fea-
ure of the approach comes from the definition of 0-1 overlapping
ariables which, in combination with “global” sequencing vari-
bles, monitor the idle capacity of any required resource at the
tart time of every task. Relaxed versions of the general prece-
ence sequencing constraints are included so that sequencing
ariables also monitor the relative ordering of the starting times
f parallel tasks sharing a common resource. Compared to pre-
ious batch scheduling methodologies also dealing with finite
enewable resources, the new modeling of the resource constraints
eads to a significant saving in binary variables, equations and
PU time. Similar to other sequential approaches, the proposed
ethodology assumes that the products being manufactured fea-

ure linear recipes and the set of batches to be processed is
nown beforehand. However, it is well suited to efficiently manage
equence-dependent setup times, unit-dependent task resource
equirements, preordering rules and intermediate due dates. The
roposed MILP resource-constrained batch scheduling formula-
ion has been applied to solve four medium-size case studies. Two
f them have been introduced in this paper to tackle problems
eaturing unit-dependent resource requirements and multiple bot-
leneck resources demanded at one or several processing stages. For

he remaining two examples proposed by other authors the pro-
osed approach provides the optimal solution at very competitive
PU time, and has a sizable edge over other scheduling methods
hen hard resource limitations were considered. A remarkable

dvantage of the approach is a rather low sensitivity of the model
ical Engineering 33 (2009) 871–886 885

size and the computational effort with the number of bottleneck
resources and the severity of the resource limitations. Moreover,
preordering conditions can be easily embedded in the proposed for-
mulation to cope with very large resource-constrained scheduling
problems.

Acknowledgments

Financial support received from FONCYT-ANPCyT under Grant
PICT 11-14717, from CONICET under Grant PIP-5729 and from Uni-
versidad Nacional del Litoral under Grant CAI+ID 003-13 is fully
appreciated.

References

Castro, P. M., & Grossmann, I. E. (2006). An efficient MILP model for the short-term
scheduling of single stage batch plants. Computers and Chemical Engineering, 30,
1003–1018.

Castro, P., Barbosa-Póvoa, A. P., & Matos, H. (2001). An improved RTN continuous-
time formulation for the short-term scheduling of multipurpose batch plants.
Industrial and Engineering Chemistry Research, 40, 2059–2068.

Castro, P. M., Barbosa-Póvoa, A. P., Matos, H. A., & Novais, A. Q. (2004). Simple
continuous-time formulation for short-term scheduling of batch and continuous
processes. Industrial and Engineering Chemistry Research, 43, 105–118.

Cerdá, J., Henning, G. P., & Grossmann, I. E. (1997). A mixed-integer linear pro-
gramming model for short-term scheduling of single-stage multiproduct batch
plants with parallel lines. Industrial & Engineering Chemistry Research, 36(5),
1695–1707.

Giannelos, N. F., & Georgiadis, M. C. (2002). A simple new continuous-time formula-
tion for short-term scheduling of multipurpose batch processes. Industrial and
Engineering Chemistry Research, 41, 2178–2184.

Gupta, S., & Karimi, I. A. (2003). An improved MILP formulation for scheduling multi-
product, multistage batch plants. Industrial and Engineering Chemistry Research,
42, 2365–2380.

Hui, C. W., & Gupta, A. (2000). A novel MILP formulation for short-term scheduling
of multistage multi-product batch plants. Computers and Chemical Engineering,
24, 1611–1617.

Hui, C. W., Gupta, A., & Meulen, H. A. (2000). A novel MILP formulation for short-term
scheduling of multi-stage multi-product batch plants with sequence-dependent
constraints. Computers and Chemical Engineering, 24, 2705–2717.

Ierapetritou, M. G., & Floudas, C. A. (1998). Effective continuous-time formulation
for short-term scheduling. I. Multipurpose batch processes. Industrial and Engi-
neering Chemistry Research, 37, 4341–4359.

ILOG (2002). OPL Studio 3.6 user’s manual. France: ILOG S.A.
Janak, S. L., Lin, X., & Floudas, C. A. (2004). Enhanced continuous-time unit-

specific event-based formulation for short-term scheduling of multipurpose
batch processes: Resource constraints and mixed storage policies. Industrial and
Engineering Chemistry Research, 43, 2516–2533.

Janak, S. L., Lin, X., & Floudas, C. A. (2005). Additions/corrections: Enhanced
continuous-time unit-specific event-based formulation for short-term schedul-
ing of multipurpose batch processes: Resource constraints and mixed storage
policies. Industrial and Engineering Chemistry Research, 44, 426.

Kondili, E., Pantelides, C. C., & Sargent, R. W. H. (1993). A general algorithm for
short-term scheduling of batch operations. I. MILP formulation. Computers and
Chemical Engineering, 17, 211–227.

Lamba, N., & Karimi, I. A. (2002). Scheduling parallel production lines with resource
constraints. 1. Model formulation. Industrial and Engineering Chemistry Research,
41, 779–789.

Lee, K., Park, H. I., & Lee, I. (2001). A novel nonuniform discrete time formulation
for short-term scheduling of batch and continuous processes. Industrial and
Engineering Chemistry Research, 40, 4902–4911.

Lim, M., & Karimi, I. A. (2003). Resource-constrained scheduling of parallel pro-
duction lines using asynchronous slots. Industrial and Engineering Chemistry
Research, 42, 6832–6842.

Maravelias, C. T., & Grossmann, I. E. (2003). New general continuous-time state-task
network formulation for short-term scheduling of multipurpose batch plants.
Industrial and Engineering Chemistry Research, 42, 3056–3074.

Méndez, C. A., & Cerdá, J. (2002). An MILP framework for short-term scheduling
of single-stage batch plants with limited discrete resources. Computer-Aided
Chemical Engineering, 10, 721–726.

Méndez, C. A., & Cerdá, J. (2003). Short-term scheduling of multistage batch pro-
cesses subject to limited finite resources. Computer-Aided Chemical Engineering,
15B, 984–989.

Méndez, C. A., Henning, G. P., & Cerdá, J. (2001). An MILP continuous-time approach
to short-term scheduling of resource-constrained multistage flowshop batch
facilities. Computers and Chemical Engineering, 25, 701–711.
Méndez, C. A., Cerdá, J., Grossmann, I. E., Harjunkoski, I., & Fahl, M. (2006). State-
of-the-art review of optimization methods for short-term scheduling of batch
processes. Computers and Chemical Engineering, 30, 913–946.

Mockus, L., & Reklaitis, G. V. (1997). Mathematical programming formulation for
scheduling of batch operations based on nonuniform time discretization. Com-
puters and Chemical Engineering, 21, 1147–1156.

8 d Chem

P

P

P

86 P.A. Marchetti, J. Cerdá / Computers an

antelides, C. C. (1994). Unified frameworks for optimal process planning and
scheduling. In Proceedings of the second international conference on foundations
of computer-aided process operations, Crested Butte, Colorado, (pp. 253–274).
into, J. M., & Grossmann, I. E. (1995). A continuous time mixed integer linear pro-
gramming model for short term scheduling of multistage batch plants. Industrial
and Engineering Chemistry Research, 34, 3037–3051.

into, J. M., & Grossmann, I. E. (1996). An alternate MILP model for short-term
scheduling of batch plants with preordering constraints. Industrial and Engineer-
ing Chemistry Research, 35, 338–342.
ical Engineering 33 (2009) 871–886

Pinto, J. M., & Grossmann, I. E. (1997). A logic-based approach to scheduling
problems with resource constraints. Computers and Chemical Engineering, 21,
801–818.
Rodrigues, M. T. M., Latre, L. G., & Rodrigues, L. C. A. (2000). Short-term planning
and scheduling in multipurpose batch chemical plants: A multi-level approach.
Computers and Chemical Engineering, 24, 2247–2258.

Shah, N., Pantelides, C. C., & Sargent, R. W. H. (1993). A general algorithm for short

	A general resource-constrained scheduling framework for multistage batch facilities with sequence-dependent changeovers
	Introduction
	Problem formulation
	Model assumptions
	Non-resource constrained mathematical formulation
	Allocation constraints
	Topological constraints
	Task sequencing constraints
	Task timing
	Technological constraints
	Bounds on batch starting and completion times
	Makespan definition

	Additional continuous and discrete renewable resource constraints
	Unit-independent task resource requirements
	Improving the convergence rate of the solution algorithm
	Unit-dependent task resource requirements
	Extending the mathematical formulation for multipurpose batch plants

	Alternative objective functions
	Results and discussion
	Example 1
	Example 2
	Example 3
	Example 4

	Conclusions
	Acknowledgments
	References

