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A novel network-based framework for the short-term scheduling of multi-purpose batch processes is
presented. The novelty of the proposed approach lies in five key concepts. First, it is based on a new
continuous-time representation that does not require tasks to start (end) exactly at a time point; thus
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reducing the number of time points needed to represent a solution. Second, processing units are modeled
as being in different activity states to allow storage of input/output materials. Third, time variables for
“idle” and “storage” periods of a unit are introduced to enable the matching between tasks and time
points without big-M constraints. Fourth, material transfer variables are introduced to explicitly account
for unit connectivity. Fifth, inventory variables for storage in processing units are incorporated to model
non-simultaneous and partial material transfers. The proposed representation leads to MILP formulations

s of e
ixed-integer linear programming which address limitation

. Introduction

The paper addresses the short-term scheduling of general
multi-purpose) batch facilities. Multi-purpose facilities are struc-
urally complex because (a) a processing task can consume and/or
roduce multiple chemicals, called input and output materials,
espectively; (b) a material produced by a single task can be con-
umed by more than one successor task (batch splitting), and
aterials produced by more than one predecessor task can be con-

umed by a single task (batch mixing); (c) processing units are
hared among competing tasks (multi-purpose units); (d) storage
essels (or tanks) can contain different materials which compete
or them; and (e) limited utilities are required by multiple tasks. An
ssential characteristic of such plants is that products do not have
unique processing route. Therefore, the development of effective
ethods for the scheduling of multi-purpose facilities is clearly a

hallenging task.
Most existing approaches rely on network-based repre-

entations. For example, under the state-task network (STN)
epresentation (Kondili, Pantelides, & Sargent, 1993) a task-node is

inked to a state-node via an arc if the state (material) is consumed
r produced by the task. Alternatively, if units, states (materi-
ls) and utilities are viewed as resources consumed/produced
y tasks, then task-nodes are linked to resource-nodes, and the

∗ Corresponding author. Tel.: +1 608 265 9026; fax: +1 608 262 5434.
E-mail address: maravelias@wisc.edu (C.T. Maravelias).

098-1354/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2009.03.007
xisting scheduling methods.
© 2009 Elsevier Ltd. All rights reserved.

representation is referred to as resource-task network (RTN)
(Pantelides, 1994). Although rather general, existing network-based
approaches are based on assumptions that can potentially exclude
a number of feasible schedules, thus often leading to suboptimal
solutions.

The goal of this paper is the development of a new network-
based continuous-time representation that overcomes these
shortcomings. The paper is organized as follows. In Section 2,
we review concepts about multi-purpose facilities and existing
approaches for process scheduling, pointing out their limitations.
In Section 3, we introduce the main concepts of the proposed repre-
sentation, and in Section 4 we present a novel MILP formulation for
the short-term scheduling of multi-purpose batch plants. Finally,
in Section 5 we illustrate the representation capabilities of our
approach via three example problems.

2. Background

2.1. Multi-purpose facilities

Multi-purpose facilities consist of a set of interconnected pro-
cessing units where different types of tasks can be carried out, and
storage vessels (or tanks) in which materials can be stored. Tasks

transform a set of input materials into a set of output ones, where
the concepts of input and output materials are relative since a given
product is considered as an output material in relation to tasks that
produce it and as an input one with regard to tasks that consume
it. Moreover, a material is defined by its composition, phase, pres-

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:maravelias@wisc.edu
dx.doi.org/10.1016/j.compchemeng.2009.03.007
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Nomenclature

Sets/indices
N/n,n′ global time points/intervals
I/i tasks
J/j, j′ processing units
M/m materials
K/k, k′ storage vessels (or tanks)
R/r utilities (i.e. non-unary resources)
IC

m tasks that consume material m
IP

m tasks that produce material m
ICZW tasks that consume an unstable material
IPZW tasks that produce an unstable material
Ij tasks that unit j can perform
Ir tasks that require utility r
Ji units that can perform task i
Jj units connected to unit j
Jk units connected to storage vessel k
MS sold materials
MV materials with commercial value
MP purchased materials
MZW unstable materials (they must be handled under a

ZW policy)
MNIS materials for which no storage vessel has been

assigned (NIS policy)
MFIS materials for which storage vessels of limited capac-

ity have been assigned (FIS policy)
Mk materials that can be stored in storage vessel k
KD dedicated storage vessels
KS shared storage vessels
Km storage vessels that can store material m
Kk storage vessels connected to storage vessel k
Kj storage vessels connected to unit j

Parameters
H time horizon
ai,j fixed duration of task i in unit j
bi,j variable duration of task i in unit j
ˇMAX

i,j
maximum batch size of task i in unit j

ˇMIN
i,j

minimum batch size of task i in unit j

I0
m,k

initial amount of material m in storage vessel k
� i,m mass balance coefficient for the consumption

(−)/production (+) of material m by task i
ςMAX

m,k
maximum storage capacity for material m in storage

vessel k (m ∈ MFIS)
fi,j,r fixed amount of utility r required by task i in unit j
gi,j,r variable amount of utility r required by task i in unit

j
�MAX

r maximum availability of utility r
dm demand of material m
�m price (value) of material m

Variables (binary)
Xi,j,n 1 if task i formally starts in unit j at Tn (the actual

beginning occurs within time interval n)
Yi,j,n 1 if task i formally ends in unit j at Tn (the actual end

occurs within time interval n − 1)
SS

m,k,n
1 if material m is stored in shared storage vessel k

(k ∈ KS) during time interval n
SD

k,n
1 if dedicated storage vessel k (k ∈ KD) stores the
assigned material during time interval n

SI
j,n

1 if in unit j input materials are stored (before the
formal task beginning) during time interval n

SO
j,n

1 if in unit j output materials are stored (after the
formal task end) during time interval n

Continuous (non-negative)
Zj,n 1 if unit j is executing at time point n a task started

in a previous time point
Ej,n 1 if unit j is formally executing a task during time

interval n
Wj,n 1 if unit j is idle during time interval n
Tn time corresponding to global point n
T̄LB

j,n
delay of the actual beginning of a task in unit j within
interval n

T̄EE
j,n

early end of a task in unit j within interval n−1

T̄S
j,n

length of the storage interval n taking place in unit j
from Tn till Tn+1

T̄W
j,n

length of the idle interval n taking place in unit j from
Tn till Tn+1

BS
i,j,n

batch size of task i formally starting at Tn in unit j

BP
i,j,n

batch size of task i being processed at Tn in unit j

BE
i,j,n

batch size of task i formally ending at Tn in unit j

IV
m,k,n

amount of material m stored in storage vessel k dur-
ing time interval n

II
m,j,n

amount of input material m stored in unit j during
time interval n

IO
m,j,n

amount of output material m stored in unit j during
time interval n

FVU
m,k,j,n

amount of material m transferred from storage ves-
sel k to unit j at Tn

FUV
m,j,k,n

amount of material m transferred from unit j to stor-
age vessel k at Tn

FUU
m,j′,j,n amount of material m transferred from unit j′ to unit

j at Tn

FVV
m,k′,k,n

amount of material m transferred from storage ves-
sel k′ to storage vessel k at Tn

Qr,n total amount of utility r required during time inter-
val n
sure and temperature; therefore, the same chemical having two
distinct temperatures is treated as two different materials. On the
other hand, storage vessels can be dedicated (i.e. used to store only
one material) or shared (i.e. used to store more than one mate-
rial) and a given material can be stored in a single vessel or in
multiple ones.

Furthermore, utilities are often required by tasks (e.g. cooling
water and steam are required by cooling and heating tasks, respec-
tively), and are generally available in limited amounts. Finally, the
physical connectivity between processing units and vessels can
actually be limited in two ways: (a) processing units are not con-
nected to all downstream or upstream units (these concepts are
also relative, since they refer to the processing units that produce
the input materials and consume the output ones, respectively),
and (b) processing units are not connected to all vessels used for the
storage of input and output materials. Therefore, any method for the
scheduling of multi-purpose facilities should include the aforemen-
tioned five main elements (tasks, processing units, storage vessels,
materials and utilities) as well as the connections (logical and phys-

ical) among them. An example of a multi-purpose facility is shown
in Fig. 1.
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Fig. 1. Example of a simple multi-purpose facility: elements, connections and task
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nformation. Four tasks consuming two types of utilities are carried out in three
rocessing units. Two products are obtained from two raw materials and three

ntermediates. Six dedicated vessels are available.

.2. Network-based representations

In the STN representation (Kondili et al., 1993), the first general
ethod for the scheduling of multi-purpose facilities, states (mate-

ials) and tasks are represented as nodes of a network, connected
y arcs if a task consumes or produces a state. Processing units and
tilities, however, are implicitly represented via mappings. The first
apping associates each processing unit with the subset of tasks

hat can be carried out in such a unit. The second one associates
ach utility with the subset of tasks consuming this utility. In turn,
torage vessels are associated with states (materials): in the origi-
al formulation each state has either a dedicated tank or no tank,
ut the representation can be extended to model shared storage
essels. The production/consumption of states by tasks is mod-
led via material balance constraints that resemble flow balance
onstraints in networks. Finally, feasible unit-task assignments and
tility consumption levels are enforced via assignment and utility
onstraints. The STN representation of the multi-purpose facility in
ig. 1 is shown in Fig. 2a. Note that only states and tasks are explicitly
epresented as circles and rectangles, respectively. Unit suitability
nd utility requirement information is informally represented by
ashed lines and the pattern of the task nodes, respectively.

In an effort to develop a unified representation where not
nly task-state but also task-unit and task-utility connections are
xplicitly modeled, Pantelides (1994) proposed the resource-task
etwork (RTN) representation, where states, processing units and
tilities are all treated as resources consumed (produced) by a task
t its beginning (end). Thus, the RTN representation involves only
ask- and resource-nodes and the corresponding arcs (connections)

epresent the consumption/production of states, as well as the
ask-unit and task-utility mappings. Therefore, material balances,
ssignment and utility consumption constraints are all expressed
s flow balance constraints. The RTN representation of the facility
Fig. 2. STN and RTN representations of the facility in Fig. 1. (a) It includes only state-
and task-nodes; the unit-task and resource-task mappings are represented with
dashed lines and patterns. (b) Units and utilities are added as resource-nodes.

in Fig. 1 is shown in Fig. 2b, where additional resource-nodes are
added to model the task-unit and task-utility mappings.

It is important to highlight here that the concept of task is
central to both formulations. This is because all changes in unit
assignments, inventory levels, and utility consumption levels are
triggered by (the beginning and end of) tasks. Thus, a solution is
feasible if and only if all constraints are satisfied simultaneously
at all the time points at which tasks start/end. The choice of these
relevant time points and the corresponding time intervals defines
the time grid and subsequently the time representation for MILP
formulations, a topic discussed in the next subsection. Another
implication of this task-centric approach, however, is that changes
in the state of processing units and storage vessels, due to mate-
rial transfers not directly related to a task beginning/end, cannot be
modeled. Therefore, several solutions to some scheduling problems
cannot be reached using existing approaches.

2.3. Time representations

In terms of computational performance, the most important
characteristic of network-based formulations is arguably the time
representation, a term that refers to: (a) the manner in which
the scheduling horizon is divided into time intervals, and (b) the
nature of the processing time of tasks. As explained in the previous
subsection, to ensure that resource constraints are satisfied over
the entire scheduling horizon, the corresponding constraints are
enforced at some relevant time points that comprise the time-grid.
If time points are fixed (i.e. specified prior to optimization), then,
the resulting time intervals are of constant (i.e. fixed) duration. If
the user defines the number but not the time point locations, the
length of the corresponding time intervals becomes a continuous

optimization decision. Processing times, in turn, can be constant
(fixed) or variable.

The approaches of Kondili et al. (1993), Shah, Pantelides, and
Sargent (1993) and Pantelides (1994) considered fixed processing
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Fig. 3. Time representations for STN and RTN models. (a) Time intervals have a fixed
and uniform length, tasks have constant processing times and start/end at a time
point. (b) Time point locations are variable, tasks may have constant or variable
514 D.M. Giménez et al. / Computers and C

imes and a time grid with intervals of uniform length equal to the
reatest common divisor of all processing times. The advantage of
hese so-called discrete-time formulations is that the number of
ime intervals a task spans is known, thus no matching between
ime points and tasks is necessary, leading to tight MILP formu-
ations. Their major drawback is the large size of the formulation
ue to the large number of time points. In an effort to develop
maller MILP models, several researchers proposed approaches
aving a variable time grid, leading to the so-called continuous-
ime formulations. Continuous-time formulations can be further
lassified into global and unit-specific ones. In the former, the time
rid is common among all units (Castro, Barbosa-Póvoa, Matos, &
ovais, 2004; Giménez & Henning, 2007; Lee, Park, & Lee, 2001;
aravelias & Grossmann, 2003; Mockus & Reklaitis, 1999; Schilling
Pantelides, 1996; Sundaramoorthy & Karimi, 2005; Zhang &

argent, 1996), whereas in the latter different time grids can
e employed for each unit (Castro, Grossmann, & Novais, 2006;
iannelos & Georgiadis, 2002; Ierapetritou & Floudas, 1998; Janak,
in, & Floudas, 2004). Unit-specific formulations can potentially
ead to smaller MILP models but are not as general as global for-

ulations due to limitations in modeling interactions among tasks
nvolving the same materials and utility constraints. In particular,

aterial balances and intermediate storage constraints as well as
esource constraints should be written carefully to avoid infeasible
chedules. Continuous-time formulations can readily handle vari-
ble processing times. However, backlog and holding costs cannot
e calculated linearly, and release times and due dates are expensive
o model. Therefore, most approaches adopt profit maximization
nd/or makespan minimization as their objective functions. Fur-
hermore, continuous-time formulations are not as tight as their
iscrete-time counterparts.

Finally, Maravelias (2005) developed a mixed-time represen-
ation where the time grid is fixed but the processing times may
e variable. The proposed formulation combines the advantages
f discrete- and continuous-time formulations (i.e. accounts for
ariable processing times and handles storage and backlog cost
erms linearly) but it is computationally expensive. Existing time
epresentations are schematically shown in Fig. 3. Note that the
eginning (potentially the end) of a task should coincide with a
ime point in all cases. Reviews on batch scheduling can be found
n Reklaitis, Sunol, Rippin, and Hortascu (1996), Schwindt and
rautmann (2000), Kallrath (2002), Burkard and Hatzl (2005), and
éndez, Cerda, Grossmann, Harjunkoski, and Fahl (2006).

.4. Material transfer and storage

In most existing STN- and RTN-based formulations it is implicitly
ssumed that

(a) All processing units are connected to all the vessels that are used
for the storage of the corresponding input and output materials,
as well as linked to all upstream/downstream processing units.
Thus, material transfer between units is always possible.

b) All input (output) materials consumed (produced) by a task are
transferred simultaneously to (from) the processing unit when
the task starts (ends).

(c) Stable output materials can be temporarily stored in a process-
ing unit after a task is completed, but stable input materials
cannot be temporarily stored before a task actually starts, i.e. in
continuous-time representations the beginning of a task must

coincide with a time point; besides, the storage of stable output
materials is always bounded by the time point representing the
end of the task.

d) Material transfers are viewed as instantaneous activities with
no resource requirements.
processing times and must start/end at a time point. (c) Same as (b), but tasks are
not forced to end at a time point. (d) Different time grids can be used for each unit. (e)
Time intervals have a fixed and uniform length; tasks may have variable processing
times and are not required to end at a time point.

However, these assumptions do not always hold in practice. For
example, if an intermediate chemical is produced in multiple tasks,
then several storage vessels may be used for its storage and each of
these vessels may not be connected to all downstream processing
units. Also, in many processes, input (output) materials associated
with a task are not forced to be transferred simultaneously to (from)
the corresponding processing unit. For instance, in recovery and
purification processes the solvent can be drained earlier. Similarly,
in certain chemical reactions reactants can be fed before the begin-
ning of the task which actually occurs when the catalyst is added.
In this way, the reactor can also be used as a temporary storage
tank. On the other hand, a certain input (output) material may be
fed (discharged) into (from) a processing unit by resorting to mul-
tiple transfers of the same material (“partial” transfer), instead of
making a unique one.

It is interesting to note here that although the scheduling of
multi-purpose facilities has received considerable attention, most
approaches focus on the development of alternative MILP formu-
lations for existing STN and RTN representations, but there are

very few attempts to address the above limitations. The issue of
unit connectivity and material transfer was addressed by Crooks
(1992) and Barbosa-Póvoa and Macchietto (1994) in the context
of discrete-time formulations. Specifically, Crooks (1992) proposed
an extended network representation, the maximal STN (mSTN),
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(c) Output storage (SO
j,n

= 1): If output materials (formally produced
at time point n′ ≤ n) are being stored in unit j during interval n
waiting to be transferred to other processing units or storage
vessels.
D.M. Giménez et al. / Computers and C

ith explicit considerations of connections between units and
ransfer operations. Moreover, Crooks (1992) was the first one to
ring in the notion of unit state to explicitly model the status of
processing unit. In turn, Barbosa-Póvoa and Macchietto (1994)

xtended this work to address the problem of multi-purpose pro-
ess design, where transfer tasks can be used to model non-trivial
ransfer operations (e.g. operations that cannot be assumed to take
lace instantaneously) and multi-purpose storage vessels. Castro,
arbosa-Póvoa, and Novais (2005) tackled a simultaneous design
nd scheduling problem, using an RTN-based continuous-time for-
ulation. They explicitly accounted for transfer tasks, which were

ssumed to be instantaneous, in order to address the synthesis of
he plant pipeline network. They considered the case where several
ransfer tasks regarding different input materials occur at distinct
ime points (i.e. non-simultaneous material transfers); however,
ach material is associated with only one transfer. Finally, Castro
nd Grossmann (2005) discussed storage times in multi-stage pro-
esses. However, to our knowledge none of the existing approaches
eals with the set of shortcomings due to assumptions (c) and (d).

n this paper, we present a network-based global-continuous-time
epresentation that overcomes the first three aforementioned lim-
tations, while in Part II the proposal is generalized and the last
hortcoming is also tackled.

. Proposed approach

The proposed approach is based on the following five novel con-
epts. First, a time representation that does not require tasks to
tart (end) exactly at a time point is adopted. Second, the concept
f processing unit activity state is introduced to enable the mod-
ling of material storage and idling. Third, the matching between
asks and time points is achieved by means of novel time balances
nd without resorting to big-M constraints. Fourth, material trans-
ers are explicitly modeled via “flow” variables; thus taking into
ccount forbidden physical connections between processing units
nd storage vessels. Fifth, input (output) materials for a given task
re allowed to be non-simultaneously and partially transferred to
from) a processing unit at different time points via the introduction
f novel “storage” variables.

.1. Time representation

In this paper we propose a new global-continuous-time rep-
esentation for process scheduling. The time grid is defined by N
lobal points {1, 2, . . ., N}, with their corresponding timings {T1, T2,
. ., TN}, spanning the scheduling horizon from 0 to H and delim-
ting a set of N − 1 time intervals of unknown length, as shown in
ig. 4. Time interval n begins at time point n and finishes at n + 1.
or simplicity reasons, index n is used to denote either a particular
ime point or interval.

The novelty of this time representation is that, unlike previous
pproaches, neither the actual task beginning nor the actual task
nd is forced to necessarily coincide with a time point, as it can
e seen in Fig. 4. Therefore, a task can start after the time point
hat formally defines its beginning, and finish before the time point
hat indicates its formal end, i.e. it can float within a time period.
he main motivation for this is the addition of an extra degree of
reedom that can potentially lead to a reduction in the number of
ime points required to represent an optimal schedule.

The formal beginning (end) of task i is modeled via binary vari-

ble Xi,j,n (Yi,j,n). To accurately account for the floating of a task
etween two global points, we define two non-negative continu-
us “slack” variables: (a) the “late beginning” T̄LB

j,n
that quantifies

he possible delay in the actual beginning of a task executed in
nit j with respect to time point n, related to its formal beginning
Fig. 4. Time representation: global time points and intervals.

(Xi,j,n = 1); and (b) the “early end” T̄EE
j,n

that quantifies the possible
early end of a task taking place in unit j with respect to time point
n, associated with its formal end (Yi,j,n = 1). By definition, the time
gaps related to slack variables T̄LB

j,n
and T̄EE

j,n
cannot be greater than

the corresponding time interval. Specifically, if Tn is the timing of
point n, then T̄LB

j,n′ < Tn′+1 − Tn′ and T̄EE
j,n

< Tn − Tn−1 (see Fig. 5).
This new time representation allows us to tackle different situa-

tions depending on the physicochemical properties of the materials
or on the kinetics of the reaction taking place. For example, stable
input (output) materials could wait in the unit before (after) the task
actually begins (ends). If at least one of the input (output) materi-
als is unstable no late beginning (early end) will be allowed for the
associated task.

3.2. Processing unit activity states

In the proposed approach, a processing unit can be used to carry
out a task, to temporarily store input or output materials or be idle.
Therefore, during each time interval a processing unit is in one of
the following four states (see Fig. 6):

(a) Execution (Ej,n = 1): Unit j is in this state during interval n, if a
task is formally being executed during interval n in unit j.

(b) Input storage (SI
j,n

= 1): If input materials are being stored in
unit j during interval n waiting for a task to start at time point
n′ > n in unit j.
Fig. 5. Task location and associated slack variables. The formal task beginning corre-
sponds to the time point immediately before or coinciding with the actual beginning
of the task. In turn, the formal task end corresponds to the time point immediately
after or coinciding with the actual end of the task.
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Fig. 6. Activity states of processing units. Associated binary variables are shown
above the Gantt charts. Note that slack times and storage periods can exist inde-
pendently of each other, i.e. a late beginning does not imply a preceding storage
period (and vice versa), or an early end does not imply a succeeding storage period
(or vice versa). Furthermore, there are many alternatives for the location or not of
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lack times and storage periods before and after the execution of a given task; e.g. if
ll the output materials are unstable, then a succeeding storage period and an early
nd are not considered.

d) Idle (Wj,n = 1): If unit j during interval n is not used to
carry out any processing task or to store input or output
materials.

The modeling of equipment status is not new. Crooks (1992)
ntroduced the notion of unit state to explicitly model the sta-
us of a processing unit (e.g. dirty, clean, etc.). More recently,
astro et al. (2004) employed the notion of equipment condi-
ion (the state of a unit after processing certain materials) to
ncorporate changeovers, which were treated as additional batch
asks.

Note that in this work the term activity state is employed to
escribe the status of a processing unit from a duty point of view,

hus distinguishing whether the unit is inactive, carrying out a pro-
essing task or just acting as a temporary storage vessel. In this last
ase, we differentiate the storage of input materials from the stor-
ge of output ones. However, in none of the cases the state of the
nit is linked to the material being held.
al Engineering 33 (2009) 1511–1528

3.2.1. Execution state
In order to model the “execution” state of a processing unit, we

use three binary variables: (a) variable Xi,j,n to indicate the formal
beginning of task i in unit j at time point n (or the actual beginning
within interval n); (b) variable Yi,j,n to indicate the formal end of task
i in unit j at time point n (or the actual end within interval n − 1); and
(c) variable Zj,n that indicates whether a task that formally started
in a previous time point is still being executed in unit j at time point
n. The combination of these binary variables allows the modeling of
the “execution” state (Ej,n = 1) of the processing units. Specifically,
the value of Ej,n is obtained from the equation shown in Fig. 6a.
It should be remarked that Ej,n = 1 whenever there is a task being
formally executed in unit j during time interval n, in spite of the fact
that in part of it the unit may be holding stable input materials (late
beginning slack) and/or stable output materials (early end slack).
Finally, the time a unit is in the “execution” state is equal to the
processing time of the task being executed plus the time gaps that
correspond to the “late beginning” and the “early end” of the task
(see Fig. 6a), if they exist.

3.2.2. Input and output storage states
A unit is in the input (output) storage state if it holds stable input

(output) materials before (after) a task formally begins (ends). Note
that these states do not necessarily mean that all the input (output)
materials are being held simultaneously, nor that the total amount
consumed (produced) of a given input (output) material needs to
be stored. In other words, non-simultaneous and partial transfers
of materials are allowed.

Thus, unit j is in the “input storage” state during interval n (SI
j,n

=
1) if at least one input material (of a task that will start in j later)
is held in unit j during time interval n (i.e. from Tn to Tn+1). Note
that this storage state can extend over multiple time intervals, but
it should be followed by an “execution” state to avoid using pro-
cessing units as pure storage vessels. The preceding storage period
during which a unit is in the “input storage” state starts when the
first transfer of input materials is performed (i.e. the “load” begins),
and ends when the task formally begins, a moment at which all
input materials are in the equipment at the correct proportions.
Similarly, a unit j is in the “output storage” state (SO

j,n
= 1) if some

output materials (of a task already finished) are held in j during
interval n. When an “output storage” state takes place, it starts when
a task finishes (i.e. it follows an execution state), it can extend over
multiple time intervals, and ends when the last transfer of an output
material from the unit is performed (i.e. the “discharge” ends).

The time a unit is in either storage state is denoted by means of
a unique continuous variable T̄S

j,n
. The ambiguity that may appear

is resolved by identifying the specific storage state of the unit at
the corresponding time interval. The variables associated with the
two storage states are further illustrated in Fig. 6b. Note that when a
preceding storage period concludes, it does not necessarily coincide
with the actual beginning of a process task, because waiting time
can be extended during the time gap of length T̄LB

j,n′ . Similar analysis
can be done for the succeeding storage period.

3.2.3. Idle state
Finally, a unit is in the “idle” state (Wj,n = 1) if it is empty, i.e. it

is not used to carry out a task nor to storage materials during time
interval n (i.e. from Tn to Tn+1). The associated “idle” period T̄W

j,n
is

equal to the duration of time interval n in which the unit j is idle
(see Fig. 6c).
3.3. Time balances

The explicit modeling of all possible activity states of a process-
ing unit, and their corresponding durations, enables us to develop
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ovel time balances for each unit along the scheduling horizon.
he underlying idea is to enforce the matching between tasks and
ime points without using big-M constraints. In addition to avoiding
asks overlapping, these balances lead to a tight MILP formulation.
irst, two time balances for each processing unit are posed at each
ime point; one that holds exactly before the time point and the
ther that must be sustained exactly after it. They are expressed
s inequalities and are called partial balances because only a part
f the scheduling horizon is considered. Second, a global balance is
nforced for each unit. In this balance, the sum of all the time ele-
ents corresponding to the states of the processing unit along the

chedule must be equal to the time horizon. In a generic form, the
ime balances corresponding to a certain unit j can be expressed as
ollows:

a) Partial balance before time point n: Tn ≥ {sum of the process-
ing times of all the already finished tasks carried out in unit
j}+ {sum of all the time gaps located before Tn in unit j}+ {sum
of all the idle and storage periods occurring before Tn in unit j}.

b) Partial balance after time point n: H − Tn ≥ {sum of the process-
ing times of all the tasks to be completely executed after Tn

in unit j}+ {sum of all the time gaps occurring after Tn in unit
j}+ {sum of all the idle and storage periods located after Tn in
unit j}.

c) Global balance: H = {sum of all the processing times of tasks
executed in unit j}+ {sum of all the time gaps occurring in unit
j}+ {sum of all the idle and storage periods along the scheduling
horizon in unit j}.

Although similar constraints have been proposed in the past to
ighten the MILP formulation of continuous-time representations
Maravelias & Grossmann, 2003), in this work the time balance con-
traints are sufficient to correctly enforce the timing of the time
oints of the grid and the matching between time points and events.
herefore, unlike previous approaches, no additional big-M match-

ng constraints or ordering inequalities between consecutive time
oints are needed. The ideas pertaining to time balances are exem-
lified in Fig. 7.
.4. Material transfer

To be able to model all possible material transfers to/from a pro-
essing unit or storage vessel four “flow” variables are considered,

ig. 7. Example of the time elements included in the different time balances. Unit 2
nd time point 4 have been chosen to exemplify the time balances. In this case, the
nequalities are satisfied as strict equalities since no task is being executed at the
ime point at which the partial balances are being expressed (e.g. such as the case
f Task 2 in Unit 1 at T4).
Fig. 8. Types of material transfers (flows).

where in the context of this contribution, the concept of “flow”
refers to an instantaneous material transfer at a time point and
not to a rate of transfer. Specifically, these non-negative continuous
variables model four kinds of material transfers, as illustrated in
Fig. 8.

(a) FVU
m,k,j,n

= amount of material m transferred from storage vessel
k to processing unit j at Tn;

(b) FUV
m,j,k,n

= amount of material m transferred from processing
unitj to storage vessel k at Tn;

(c) FUU
m,j′,j,n = amount of material m moved from processing unit

j′ to unit j at Tn;
(d) FVV

m,k′,k,n
= amount of material m moved from storage vessel

k′ to vessel k at Tn.

Note that the letter sequence in the superscript denotes the
direction of the transfer between processing units (U) and storage
vessels (V).

Using these variables, we can model non-simultaneous and par-
tial material transfers, i.e. situations where not all the materials
consumed/produced by a task are loaded/discharged in/from the
processing unit at the same time or not all the consumed/produced
amount of a given material is loaded/discharged by means of
a unique transfer. An example of simultaneous transfer of both
input and output materials is shown in Fig. 9a, while an exam-
ple of non-simultaneous transfers is shown in Fig. 9b. However,
there exist many possible combinations of simultaneous and non-
simultaneous transfers of input and output materials. For example,
a simultaneous transfer of input materials could be combined with
a non-simultaneous transfer of output materials, and vice versa.
The same is valid for partial transfers. Moreover, since material
transfers are explicitly captured, connections between physical
units can be taken into account, thus enabling a detailed rep-
resentation of the process network. For example, in the simple
multi-purpose facility illustrated in Fig. 1, the transfer of materi-
als from vessel V-101 to reactor R-102 is allowed, contrary to the
transfer from reactor R-102 to vessel V-103 which is not permit-
ted. Regarding the time consumed by the transfers, it is considered
insignificant; therefore, the material transfers are assumed to be
instantaneous.

It is important to note that, unlike previous approaches, a trans-
fer does not necessarily coincide with the task beginning/end. This

is possible because the storage of materials in the unit decouples
the material load/discharge from the task beginning/end. Moreover,
input/output materials can be transferred from/to different storage
vessels and processing units.



1518 D.M. Giménez et al. / Computers and Chemic

Fig. 9. Different types of material transfers to/from a processing unit. (a) All input
(output) materials are simultaneously transferred to (from) the processing unit at
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enforced via a set of three time balance constraints.

F

′
n−2 (Tn+1). (b) The first transfer of input materials occurs at T ′

n−2, an intermediate
ransfer takes place at T ′

n−1, and the last one happens at T ′
n; the first transfer of output

aterials occurs at Tn and the last one takes place at Tn+1.

.5. Material storage

.5.1. Processing units
To effectively model the storage of input and output materials in

rocessing units two new storage variables are introduced. Variable
I
m,j,n

represents the inventory of input material m in processing unit

(before a task beginning), during time interval n. Variable IO
m,j,n

uantifies the inventory of output material m in processing unit j
after a task end), during interval n.

When posing the balance of input material m stored in process-
ng unit j, the inventory level will increase any time material m
s transferred to unit j and will decrease if a task taking place in
nit j consumes m. Similarly, when developing the balance of an

utput material m′ stored in processing unit j, the stored amount
f m′ will increase if a task taking place in unit j produces m′ and
ill decrease any time material m′ is transferred to another physical

ite (processing unit or storage vessel). Unlike previous approaches,

(

ig. 10. Inventory evolution of each input (output) material temporarily stored in reactor
al Engineering 33 (2009) 1511–1528

tasks consume input materials which are stored in processing units,
and not directly from storage vessels. Likewise, output materials
produced by a task are added up to the inventory of each output
material in the same unit at the time point in which the operation
formally ends, requiring explicit material transfers from the unit
to make them available in another physical site. These new storage
concepts are illustrated in Fig. 10, where a hypothetical case with
both input and output materials storage is shown.

3.5.2. Storage vessels
In this case, a storage variable IS

m,k,n
denotes the inventory level

of material m in storage vessel k during a time interval n. It increases
any time an extra amount is transferred to such a unit and decreases
any time the stored material is transferred to another physical site
(processing unit or storage vessel). As in the case of processing units,
binary variable SD

k,n
can be used, if necessary, to define the “storage”

state of dedicated vessel k during time interval n. In the case of
shared storage vessels, the binary variable SS

m,k,n
(representing the

“material m storage” state) must be used to identify the material (m)
kept in vessel k during interval n. In both cases, if a storage vessel
is not in a “storage” state, then it is in the “empty” one. Moreover,
“storage” and “empty” periods can be calculated by incorporating
new time variables.

Continuing with the case exemplified in Fig. 10, Fig. 11 shows
the inventory evolution for materials INT3 and P2 stored in vessels
V-104 and V-106, respectively. Also the states of such dedicated
storage vessels are illustrated.

3.6. Key issues summary

The proposed network representation is based upon the five key
ideas already presented in this section:

(a) Tasks are not required to actually start (end) exactly at a time
point.

b) A processing unit can be in one of four activity states at any
given time interval.

(c) Time matching between tasks and the global time grid is
d) Material transfers are explicitly modeled via “flow” variables.
(e) Input (output) materials associated with a given task are

allowed to be temporally stored in a processing unit via the
introduction of novel “storage” variables.

R-103 of the motivating example in Fig. 1 before (after) reaction T4 takes place.
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Fig. 11. Evolution of the mater
Undoubtedly, the flexibility associated with this novel represen-
ation is considerably higher than in previous approaches, and the
ctual behavior of certain processes can be more accurately rep-
esented. Finally, Fig. 12 shows a schematic view of the different
lements that participate in the Gantt chart of the example under

Fig. 12. Schematic view of the elements participating
entory in two storage vessels.
study. In the same figure, the three different concepts related to
the time dimension are depicted: (i) time interval, which is delim-
ited by two consecutive time points; (ii) time period, comprising a
number of consecutive time intervals; and (iii) time gap, that is an
extreme portion of a time interval.

in the Gantt chart of the example under study.
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balance of those time elements that occur after Tn in unit j:

H − Tn ≥
∑ ∑

(ai,jXi,j,n′ + bi,jB
S

′ ) +
∑

T̄EE
′
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. Mathematical formulation

In this section, we present the MILP formulation for the schedul-
ng of multi-purpose batch processes. Before proceeding with the
onstraints of the model, we summarize the different types of vari-
bles:

(a) Execution variables (binary): Variable Xi,j,n/Yi,j,n is equal to one if
task i formally begins/ends in unit j at time point n; also, variable
Zj,n is activated if a task that started earlier is being executed in
unit j at time point n.

b) State variables (binary): Execution Ej,n, input/output storage
SI

j,n
/SO

j,n
, and idle Wj,n variables are activated when processing

unit j is in the corresponding activity state during interval n;
storage SD

k,n
/SS

m,k,n
variables are activated when storage unit k

is in the corresponding state during interval n.
(c) Time grid variable (non-negative continuous): The timing (i.e.

location along the scheduling horizon) of time point n is
denoted by Tn.

d) Time variables (non-negative continuous): Slack variables T̄LB
j,n

and

T̄EE
j,n

are used to quantify the late beginning and early end of a
task executed in unit j in relation to time point n, while the
length of time interval n during which unit j is in the (input or
output) storage or idle state is represented by variables T̄S

j,n
and

T̄W
j,n

, respectively.

e) Flow variables (non-negative continuous): Variables FVU
m,k,j,n

,

FUV
m,j,k,n

, FUU
m,j′,j,n, and FVV

m,k′,k,n
are used to represent material

transfers between the different sites of the facility (see Section
3.4).

(f) Inventory variables (non-negative continuous): The amount of
input/output material m stored in processing unit j during time
interval n is denoted by IUI

m,j,n
/IUO

m,j,n
; the corresponding amount

stored in a storage vessel is denoted by IV
m,k,n .

g) Batch-size variables (non-negative continuous): Variables BS
i,j,n

,

BP
i,j,n

and BE
i,j,n

are introduced to denote the batch size of task
i that formally starts, is being executed and formally ends,
respectively, in unit j at time point n.

.1. Execution-state constraints

Eq. (1) forces each unit to be in only one activity state at each
ime interval. In turn, Eq. (2) defines the state variable Ej,n in terms
f variables Zj,n and Xi,j,n, as explained in Section 3.2.1.

j,n + Wj,n + SI
j,n + SO

j,n = 1, ∀j, n < N (1)

j,n = Zj,n +
∑

i ∈ Ij

Xi,j,n, ∀j, n < N (2)

here Ij is the subset of tasks that can be performed in unit j.
The expression in Eq. (3) relates task beginnings and ends with

ariable Zj,n in order to identify those time points in which unit j
s executing a task which started in a previous time point. Since
ariable Zj,n assumes binary values, Eq. (3) implies that task i can
tart its execution in unit j at time point n only if there is no other
ask being performed or beginning in the same unit at the same
ime point. Besides, a task can finish its processing only if it began

arlier:

j,n = Zj,n−1 +
∑

i ∈ Ij

Xi,j,n−1 −
∑

i ∈ Ij

Yi,j,n, ∀j, n > 1 (3)
al Engineering 33 (2009) 1511–1528

4.2. Slack time constraints

With respect to slack times, inequality (4) forces T̄LB
j,n

to be equal
to zero if (i) no task starts at Tn, or (ii) a task starts at Tn, but at
least one of its input materials requires to operate under a zero-
wait policy. Similarly, T̄EE

j,n
must be equal to zero if (i) no task ends

at Tn, or (ii) a task ends at such time point, but at least one of its
output materials requires to operate under a zero-wait policy (Eq.
(5)).

T̄LB
j,n ≤ H

∑

i ∈ (Ij\ICZW)

Xi,j,n, ∀j, n < N (4)

T̄EE
j,n ≤ H

∑

i ∈ (Ij\IPZW)

Yi,j,n, ∀j, n > 1 (5)

where ICZW/IPZW is the subset of tasks consuming/producing a zero-
wait material.

4.3. Storage and idle periods constraints

Inequalities (6)–(8) relate variables representing storage and
idle intervals to their corresponding state variables. Expression (6)
makes the length of the storage interval T̄S

j,n
equal to zero if unit

j is not under any of the two possible storage states during time
interval n. The same relation is established between T̄W

j,n
and Wj,n

by means of constraint (7).

T̄S
j,n ≤ H(SI

j,n + SO
j,n), ∀j, n < N (6)

TW
j,n ≤ H(Wj,n), ∀j, n < N (7)

Finally, the inequalities introduced in expression (8) fix the
lengths of both storage and idle intervals.

Tn+1 − Tn − H(1 − SI
j,n − SO

j,n − Wj,n) ≤ T̄S
j,n + T̄W

j,n ≤ Tn+1 − Tn,

∀j, n < N (8)

Execution-state and timing constraints as well as their
corresponding variables are clarified via a simple example in
Appendix A.

4.4. Time balance constraints

For a given unit j, inequality (9) expresses the partial balance
constraint for those time elements (i.e. processing times, time gaps
as well as storage and idle periods) taking place before time point
n:

Tn ≥
∑

1<n′≤n

∑

i ∈ Ij

(ai,jYi,j,n′ + bi,jB
E
i,j,n′ ) +

∑

1<n′≤n

T̄EE
j,n′

+
∑

n′<n

(T̄LB
j,n′ + T̄S

j,n′ + T̄W
j,n′ ), ∀j, n > 1 (9)

where ai,j and bi,j are constants used to determine the duration of
task i carried out in unit j. Similarly, expression (10) models the
n≤n′<N i ∈ Ij

i,j,n

n′>n

j,n

+
∑

n≤n′<N

(T̄LB
j,n′ + T̄S

j,n′ + T̄W
j,n′ ), ∀j, n < N (10)
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Constraint (11) represents the global time balance for each unit:

n>1

T̄EE
j,n+

∑

n<N

(T̄LB
j,n+T̄S

j,n+T̄W
j,n)+

∑

n>1

∑

i ∈ Ij

(ai,jYi,j,n + bi,jB
E
i,j,n)=H, ∀j

(11)

Constraints (8)–(11) enforce timing and matching between tasks
nd time points without resorting to big-M constraints.

.5. Batch size constraints

The expressions in constraints (12)–(14) are used to bound the
ize of a batch of task i executed in unit j. Eq. (15) guarantees batch
ize consistency along the different contiguous time intervals asso-
iated with the formal execution of the same batch.

MIN
i,j Yi,j,n ≤ BE

i,j,n ≤ ˇMAX
i,j Yi,j,n, ∀i, j ∈ J i, n > 1 (12)

S
i,j,n ≤ ˇMAX

i,j Xi,j,n, ∀i, j ∈ J i, n < N (13)

i ∈ Ij

BP
i,j,n ≤ max

i ∈ Ij

{ˇMAX
i,j }Zj,n, ∀j, n (14)

S
i,j,n + BP

i,j,n = BP
i,j,n+1 + BE

i,j,n+1, ∀i, j ∈ J i, n < N (15)

.6. Material storage in storage vessels

Eq. (16) represents the material balance for material m held in
torage vessel k at time point n.

S
m,k,n = IS

m,k,n−1 −
∑

j ∈ Jk

FVU
m,k,j,n −

∑

k′ ∈ Kk

FVV
m,k,k′,n +

∑

j ∈ Jk

FUV
m,j,k,n

+
∑

k′ ∈ Kk

FVV
m,k′,k,n, ∀m /∈ (MNIS ∪ MZW), k ∈ Km, n (16)

here MNIS/MZW is the subset of materials with no-
ntermediate/zero-wait storage policy, Km is the subset of storage
essels where material m can be stored in, and IS

m,k,0 = I0
m,k

is the
iven initial inventory of material m in storage vessel k.

Constraints represented by expression (17) restrain the amount
f material to be stored in a dedicated storage vessel, where variable
D
k,n

can be omitted as discussed in Section 3.5.2. The ones in Eq. (18)
ccount for shared storage vessels.

S
m,k,n ≤ ςMAX

m,k SD
k,n, ∀m ∈ (MFIS ∩ Mk), k ∈ KD, n > 1 (17)

S
m,k,n ≤ ςMAX

m,k SS
m,k,n, ∀m ∈ (MFIS ∩ Mk), k ∈ KS, n > 1 (18)

here MFIS is the subset of finite-intermediate-storage materials,
D/KS is the subset of dedicated/shared storage vessels, Mk is the

ubset of materials that can be stored in storage vessel k, and ςMAX
m,k

s the capacity of storage vessel k to store material m.
Inequality (19) ensures that at most one material is stored in a

iven shared vessel at any time interval:
∑

∈ Mk

SS
m,k,n ≤ 1, ∀k ∈ KS, n > 1 (19)

.7. Material storage in processing units
The amount of input material m stored in processing unit j during
ime interval n, prior to its consumption by a task, is given by Eq.
20). It increases by the transfer of m from physically connected
torage vessels and processing units, respectively, and decreases by
al Engineering 33 (2009) 1511–1528 1521

the amount consumed by a batch that formally starts at Tn:

II
m,j,n = II

m,j,n−1 +
∑

k ∈ (K j∩Km)

FVU
m,k,j,n +

∑

j′ ∈ J j

FUU
m,j′,j,n

+
∑

i ∈ (Ij∩IC
m)

�i,mBS
i,j,n, ∀m, j, n (20)

where Jj/Kj is the subset of processing units/storage vessels physi-
cally connected to j, IC

m is the subset of tasks that consume material
m, and � i,m is the mass balance coefficient of material m in task i
(negative if consumed).

Further, input materials can be maintained in unit j during time
interval n only if the unit remains in the “input storage” state during
such interval.
∑

m ∈ M

II
m,j,n ≤ max

i
{ˇMAX

i,j }SI
j,n, ∀j, n < N (21)

On the other hand, the amount of an output material m stored
in a processing unit j during time interval n, after being generated
by an already finished task, is given by

IO
m,j,n = IO

m,j,n−1 +
∑

i ∈ (Ij∩IP
m)

�i,mBE
i,j,n −

∑

k ∈ (K j∩Km)

FUV
m,j,k,n −

∑

j′ ∈ J j

FUU
m,j,j′,n,

∀m, j, n > 1 (22)

where IP
m is the subset of tasks producing material m.

In turn, output materials are to be maintained in unit j during
time interval n only if the unit remains in the “output storage” state
during such interval:
∑

m ∈ M

IO
m,j,n ≤ max

i
{ˇMAX

i,j }SO
j,n, ∀j, n < N (23)

4.8. Utility constraints

The total amount of utility r consumed at each time interval is
calculated and bounded by the maximum resource availability:

Qr,n = Qr,n−1 +
∑

i ∈ Ir

∑

j ∈ J i

[fi,j,r(Xi,j,n − Yi,j,n) + gi,j,r(BS
i,j,n − BE

i,j,n)],

∀r, n (24)

Qr,n ≤ �MAX
r , ∀r, n (25)

where Ir is the subset of tasks requiring utility r, fi,j,r/gi,j,r is the
fixed/proportional constant for the consumption of utility r by task
i when carried out in unit j, and �MAX

r is the availability of utility r.

4.9. Additional constraints

Expression (26) ensures that the demand dm for product m ∈ MS

to be delivered at the end of the scheduling horizon is satisfied:
∑

k ∈ Km

IS
m,k,n ≥ dm, ∀m ∈ MS, n = N (26)

If we assume that no tasks start and/or end outside the schedul-
ing horizon, then variables Zj,n can be fixed to be zero for n = 1 and
n = N. However, this assumption can be relaxed if necessary. Further,

we do not allow the storage of output materials at the beginning
of the horizon by setting SO

j,1 = 0, ∀j. Also, we do not allow stor-

age of unstable input and output materials by fixing II
m,j,n

= 0 and

IO
m,j,n

= 0, ∀m ∈ MZW, j, n. Finally, if necessary, it is ensured that
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ach unit will be left empty at the end of the scheduling horizon by
dding:

∑

∈ M

II
m,j,n +

∑

m ∈ M

IO
m,j,n = 0, ∀j, n = N (27)

.10. Objective function

The proposed model can be used to address problems with dif-
erent objective functions. For the total profit (TP) maximization,
q. (28) should be incorporated into the formulation:

P =
∑

m ∈ MS

∑

k ∈ Km

�mIS
m,k,n +

∑

m ∈ MV

∑

k ∈ Km

�m(IS
m,k,n − I0

m,k)

−
∑

m ∈ MP

∑

k ∈ Km

�m(I0
m,k − IS

m,k,n), n = N (28)

here �m is the price of material m, MS is the subset of final prod-
cts, MV is the subset of intermediate materials with commercial
alue, and MP is the subset of purchased materials. In this case, the
bjective function can be written as z = max TP.

If the goal is to find the minimum makespan (MK) schedule that
atisfies the required demand pattern, then parameter H (which
s now an upper bound on time gaps and time intervals) should
e replaced by variable MK in Eqs. (10) and (11), and the objective

unction can be written as z = min MK.

.11. Continuous relaxation of some execution and state variables

Despite execution and state variables being binary in nature,
j,n, Ej,n and Wj,n can be defined as non-negative continuous vari-
bles because they are forced to obtain binary values by Eqs. (1)–(3).
ariable Zj,n is uniquely defined in Eq. (3), and since Xi,j,n and Yi,j,n
re strictly defined as binary variables, Zj,n can only be integral at
very feasible solution. Similarly, variable Ej,n is uniquely defined
n Eq. (2), and since variable Xi,j,n is binary and variable Zj,n can only
ssume integral values, Ej,n will also assume integral values. Fur-
hermore, since the left-hand side in Eq. (1) must always be equal
o 1, SI

j,n
and SO

j,n
are strictly defined as binary variables, Ej,n and Wj,n

re defined as non-negative continuous variables, and Ej,n can only
ssume integral values; then, variables Ej,n and Wj,n, and, therefore,
j,n, will always assume binary values at every feasible solution.
hus, the optimization variables in the proposed MILP formulation

an be defined as follows:

Xi,j,n, Yi,j,n, SI
j,n

, SO
j,n

, SS
m,k,n

, SD
k,n

∈ {0, 1}, Ej,n, Wj,n, Zj,n ≥ 0
Tn, T̄LB

j,n
, T̄EE

j,n
, T̄S

j,n
, T̄W

j,n
, BS

i,j,n
, BP

i,j,n
, BE

i,j,n
, IS

m,k,n
, II

m,j,n
, IO

m,j,n
,

FVU
m,k,j,n

, FUV
m,j,k,n

, FUU
m,j′,j,n, FVV

m,k′,k,n
, Qr,n ≥ 0

able 1
rocessing time coefficients, batch size limits, utility requirements and maximum utility

ask i Processing unit j ai,j (h) bi,j (h/kg) ˇMIN
i,j

(kg) ˇMAX
i,j

(

1 R-101 0.5 0.025 40 80

R-102 0.5 0.04 25 50

2 R-101 0.75 0.0375 40 80
R-102 0.75 0.06 25 50

3 R-103 0.25 0.0125 40 80

4 R-103 0.5 0.025 40 80

a Data corresponding to Examples 1–2
b Data corresponding to Example 3.
al Engineering 33 (2009) 1511–1528

4.12. Number of time points

Continuous-time formulations for the short-term scheduling of
multi-purpose batch plants are based on a set of time points (unit
specific or global ones), which are non-uniformly distributed along
the scheduling horizon. A limitation of these approaches is that the
number of time points required to represent the optimal schedule
is unknown a priori, so multiple MILP models need to be solved
to reach the optimal solution. In this paper, we start by adopting a
small number of time points (2 by default) to instantiate the model
at the first iteration. Then, this number is gradually increased and
the model is repeatedly updated and solved until the objective func-
tion does not exhibit an improvement. The development of methods
for the reduction of the computational burden associated with this
aspect will be explored further in Part III of this series, where we
will adapt the procedure for estimating the minimum number of
time points proposed by Giménez and Henning (2008).

4.13. Remarks

4.13.1. Modeling issues
Our goal is the development of a general framework which

expands the scope of batch scheduling methods. The proposed
representation introduces several innovative modeling concepts
that turn it into a powerful tool. As discussed previously, the advan-
tages are considerable in comparison with previous approaches.
In this first part of the series we present the novel concepts of
this representation and the mathematical formulation for short-
term scheduling of multi-purpose batch plants. The proposed
approach can be extended to consider changeover times and
non-instantaneous material transfers, or even modified to account
for continuous processes. Extensions will be presented in Part II of
this series.

4.13.2. Computational performance
The generality of this framework leads inevitably to large MILP

formulations that are perhaps computationally more demanding
than previously proposed models (e.g. network-based discrete-
time formulations). Nevertheless, our preliminary studies indicate
that the computational requirements are comparable to those of
other continuous-time formulations. Furthermore, the develop-
ment of methods for the effective solution of the MILP formulations
resulting from the proposed representation will be discussed in Part
III of this series.

5. Representation capabilities of the proposed approach
To illustrate the advantages of the proposed representation we
study three examples based upon the motivating multi-purpose
facility in Fig. 1. Task information and material related data for
all three examples are given in Tables 1 and 2, respectively. The

availability for Examples 1–3.

kg) Utility r fi,j,r (kg/min) gi,j,r (kg/min kg) �MAX
r (kg/min)

HS 6 0.25 30a

40b

HS 4 0.25 30a

40b

CW 4 0.3 30
CW 3 0.3 30
HS 8 0.2 30a

40b

CWa 4 0.5 30a

HSb 40b
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Table 2
Material prices, storage capacities, and initial inventories for Examples 1–3.

Material m �m ($/kg) Storage vessel k ςMAX
m,k

(kg) I0
m,k

(kg)

RM1 10 V-101 UIS 1000
RM2 15 V-102 UIS 1000
INT1 25 V-103 200 0
INT2 0 NIS 0 0
INT3 0 V-104a 500a 0

NISb 0b

P1 30 V-105 UIS 0
P2 40 V-106 UIS 0

NIS = no-intermediate storage; UIS = unlimited intermediate storage.
a Data corresponding to Examples 1–2.
b Data corresponding to Example 3.
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Fig. 13. Desired task ordering for Example 1.

xamples were solved using the formulation presented in Section
with the aim of getting optimal schedules in cases where existing

pproaches cannot obtain even a feasible solution. The MILP mod-
ls were implemented in GAMS and solved using CPLEX 10.2 (using
ne thread) on a Pentium D (2.80 GHz) PC with 1 GB of RAM. In Part

II of this series, a detailed computational analysis and comparisons
ith other approaches will be presented.

.1. Example 1

The process network for this example is identical to the one
hown in Fig. 1. The objective is the maximization of profit over
time horizon of 8 h (H = 8). Note that since no initial inventory

f intermediates is held, the only way to obtain final products P1
nd P2 is to perform task T2 first (so INT1 and INT2 become avail-
ble), then execute T1 (so INT3 can be available), and finally carry
ut either T3 or T4. This situation is graphically illustrated in Fig. 13.
evertheless, since a NIS policy is adopted for INT2, T4 should begin
hen task T2 finishes (at T2 in the representation), but this is infea-

ible because INT3 is not yet available at this time (T2). Therefore,
urrent models cannot find a feasible solution for this example.
n the contrary, the proposed formulation overcomes this limita-

ion by allowing a temporal storage of INT2 in the unit R-103 until
NT3 becomes available (preceding storage). Fig. 14 shows the two
nstances described above.

Fig. 15 presents the Gantt chart corresponding to the optimal

olution and the associated utility consumption. An analysis of
ig. 15 reveals that the task ordering pattern suggested in Fig. 14b
ppears in the initial part of the schedule. In fact, it can be seen that
40 kg batch associated with task T2 is processed in unit R-101 dur-

ng time interval 1. Immediately afterwards, another batch of the

able 3
odel and solution statistics for Example 1.

CPU time (s) Nodes RMILP ($) MILP ($) Bina

No profitable solution exists
0.05 0 1475.3 1420.7 51
0.38 21 3455.6 2730.8 69
0.87 282 4899.4 3592.2 87
9.86 2816 5748.7 3592.2 105
Fig. 14. Improvement in the treatment of the no-intermediate storage policy.

same size, associated with task T1, is executed in the same unit dur-
ing interval 2. While the first of these tasks produced INT2 that is
sent to R-103 (28 kg), the second one produced INT3, which is also
transferred to R-103 (18.67 kg). This allows starting task T4. Thus, a
batch of 46.67 kg is manufactured during interval 3 to produce P2.
The remaining tasks are allocated to different processing units.

Table 3 presents the computational results obtained from the
implementation of the proposed MILP formulation adopting a
zero optimality gap. It can be seen that six global time points (five
time intervals) were required to achieve the optimal schedule. In
this particular case the variable representing the material transfer
between storage vessels (FVV

m,k′,k,n
) was not considered since each

material is allowed to be stored in at most one storage vessel. Also,
variable SD

m,k
was removed. Moreover, the variable Ej,n was replaced

by its equivalent expression (see Eq. (2)) in order to reduce the
model size. Consequently, the model instance involved 87 binary
variables, 655 continuous ones, and 646 constraints. An optimal
solution having a profit value of $3592.2 was found in only 0.87 s,
by exploring 282 nodes.

5.2. Example 2

In this subsection, we discuss the minimization of makespan.
We consider three instances of the problem described in Exam-

ple 1, corresponding to three demand patterns. We first considered
minimum demands of 60 kg and 80 kg, for P1 and P2, respectively.
In the second instance, we increased the demands to dP1 = 80 kg
and dP2 = 120 kg. Finally, demands were modified to dP1 = 150 kg and
dP2 = 100 kg. In all the cases, parameter H, which now only plays

ry variables Continuous variables Constraints Non-zeros

399 412 1720
527 529 2388
655 646 3104
783 763 3868
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Fig. 15. Optimal schedule for Example 1.

Table 4
Model and solution statistics for Example 2.

N CPU time (s) Nodes RMILP (h) MILP (h) Binary variables Continuous variables Constraints Non-zeros

Example 2a (dP1 = 60 kg, dP2 = 80 kg)
5 No feasible solution exists
6 1.06 241 4.786 7.800 87 655 647 3118
7 8.86 1317 4.439 7.781 105 783 764 3885
8 84.5 14351 4.260 7.781 123 911 881 4700

Example 2b (dP1 = 80 kg, dP2 = 120 kg)
6 No feasible solution exists
7 3.08 510 6.528 11.488 105 783 764 3885
8 67.6 9698 6.191 11.417 123 911 881 4700
9 1238 136,637 6.012 11.321 141 1039 998 5563
10 10,000a 802,035 5.893 11.321 159 1167 1115 6474

Example 2c (dP1 = 150 kg, dP2 = 100 kg)
8 No feasible solution exists
9 58.2 4866 9.318 14.723 141 1039 998 5563
10 1493 110,784 9.088 13.902 159 1167 1115 6474
11 10,000b 647,576 8.921 13.902 177 1295 1232 7433

Relative gaps: a10.99%, b15.25%.
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Fig. 16. Optimal schedu

Fig. 17. Process network for Example 3.

Table 5
Computational analysis for Example 2.

N PC A—1 thread PC A—2 threa

CPU time (s) Nodes CPU time (s)

Example 2a (dP1 = 60 kg, dP2 = 80 kg, H = 24 h)
6 1.06 241 0.86
7 8.86 1317 4.06
8 84.5 14,351 29.8

Example 2b (dP1 = 80 kg, dP2 = 120 kg, H = 24 h)
7 3.08 510 1.84
8 67.6 9698 29.6
9 1238 136,637 872

10 >10,000 802,035 6815

Example 2c (dP1 = 150 kg, dP2 = 100 kg, H = 24 h)
9 58.2 4866 27.9

10 1493 110,784 524
11 >10,000 647,576 6332

PC A = Pentium Dual Core (2.80 GHz) PC with 1 GB of RAM. PC B = Pentium Quad Core (2.5
le for Example 2c.

the role of a reasonable upper bound on both slack variables (see
Eqs. (4) and (5)) and time intervals (see Eqs. (6)–(8)), was fixed to
8 h. Table 4 summarizes the results of implementing the proposed
formulation. Since, in general, the efficiency of continuous-time for-
mulations deteriorates when minimizing makespan, we considered
a time limit of 10,000 s for each model run. As Table 4 shows, this
limit was exceeded in the last iteration for instances b and c.

The optimal solution for instance a has a makespan of 7.781 h
and was found in only 8.86 s. Regarding instance b, the best solution
with a makespan of 11.321 h was found in 1238 s. For instance c we
obtained the best solution with a makespan of 13.90 h in 1493 s.

Fig. 16 illustrates the optimal solution for problem instance c. For
clarity reasons, a simplified Gantt chart with no material transfers is
presented. Note that the solution is consistent with the production
pattern identified in the previous subsection (Fig. 14).

Fig. 18. Desired task ordering for Example 3.

ds PC B—4 threads

Nodes CPU time (s) Nodes

400 0.33 370
1043 2.50 1700
9795 11.3 6139

376 2.69 1080
9278 11.2 6000

231,331 73.6 43,918
1,485,592 521 326,309

4573 13.4 5900
87,830 107 51,926

961,955 1356 437,686

0 GHz) PC with 8 GB of RAM.
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Table 6
Model and solution statistics for Example 3.

N CPU time (s) Nodes RMILP ($) MILP ($) Binary variables Continuous variables Constraints Non-zeros

3 No profitable solution exists
4 0.07 0 2042.7 2042.7 51 386 404 1691
5 69
6 87
7 105

P
t
w
I
t
t
c

0.28 38 4130.5 3168.8
2.53 975 5250.5 3273.1
27.1 7195 5806.3 3273.1

According to this solution, 150.00 kg of P1 and 169.35 kg of
2 are obtained. The overproduction of P2 is due to the produc-
ion of intermediate INT2 (which cannot be stored) by task T1,
hich in turn produces the intermediate INT1, necessary to obtain
NT3, which is in turn required by P1. Consequently, the produc-
ions of P1 and P2 are not independent from each other, and all
he amount of INT2 produced has to be consumed to free up the
orresponding processing unit. Hence, the following production

Fig. 19. Optimal schedu
510 519 2350
634 634 3057
758 749 3812

pattern was identified: task T4 has to be executed each time INT2 is
produced.

Finally, we discuss how the selection of hardware and soft-
ware tools affects the computational performance of the proposed

model. In particular, we solved the three instances described in this
subsection running CPLEX using two and four threads on a dual- and
a quad-core PC, respectively. Only computational statistics are pre-
sented in Table 5 since solutions are identical to the ones previously

le for Example 3.
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ound. As it can be seen, the increase in the computational power
esults in a meaningful reduction in the time required to find the
ptimal solution at each run.

.3. Example 3

The process network for Example 3, which is a modification of
he network of Examples 1 and 2, is depicted in Fig. 17. We consider
he maximization of profit for a time horizon of 8 h (H = 8). Similarly
o the preceding examples, an a priori analysis reveals that since
wo intermediates (INT2 and INT3) have no assigned storage vessel,
ll feasible solutions share a pattern where these two materials
re temporarily stored in processing units at the beginning of the
cheduling horizon, as shown in Fig. 18.

In existing approaches, any task beginning coincides with the
tart of the input materials load and task endings with the out-
ut materials discharge operation. Consequently, the previously
escribed pattern might be infeasible due to a fictitious utility
verconsumption (T1 and T4 require the same utility) even though
aterial transfers can be explicitly modelled. Nevertheless, the pro-

osed model decouples the material load/discharge from the task
eginning/end, and therefore from the utility consumption (see
ig. 18).

Using the same variable simplifications proposed for example 1,
e formulated a MILP model which involved 87 binary variables,

34 continuous ones, and 634 constraints. It was solved to optimal-
ty (zero optimality gap) in 2.53 s by exploring 975 nodes. Model and
olution statistics are presented in Table 6. An optimal solution hav-
ng an objective value of $3273.1 was reached when six global time
oints (five time intervals) were used. The schedule of this solu-

ion as well as the utility consumption profile along the scheduling
orizon are shown in Fig. 19.

Once again, we observe that the initial task ordering follows the
attern identified by the previous analysis. A 40 kg batch of task T2

s processed in unit R-101 during time interval 1, immediately fol-

Fig. A1. Values of the execution, state and
al Engineering 33 (2009) 1511–1528 1527

lowed by another batch of task T1 of the same size processed in the
same unit during time interval 2, while 28 kg of INT2 are temporally
stored in unit R-103. Then, two batches of task T4 are successively
processed in unit R-103, requiring a succeeding storage of INT3 in
unit R-101 during time interval 3. Other tasks were allocated in the
different processing units along the scheduling horizon. As it can
be observed, the maximum resource availability is never exceeded.

6. Conclusions

In this paper, we presented a novel approach to the short-term
scheduling of multi-purpose batch facilities. Its novelty lies in the
explicit modeling of processing unit activity states, material trans-
fers, and material storage in processing units. The resulting MILP
formulation accounts for process features that are not considered
in existing process scheduling approaches. Therefore, it can poten-
tially obtain solutions to problems that are found infeasible by
existing methods or obtain substantially better solutions. Therefore,
the proposed representation and its associated MILP formulation
can be considered a step forward in the solution of multi-purpose
batch plant scheduling problems.
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Appendix A

Fig. A1 depicts the values of the so-called execution and state
variables for a simple single-unit schedule. The values of the time
variables are also shown.

time variables for a simple schedule.



1 hemic

R

B

B

C

C

C

C

C

G

G

G

I

J

Sundaramoorthy, A., & Karimi, I. A. (2005). A simpler better slot-based continuous-
528 D.M. Giménez et al. / Computers and C

eferences

arbosa-Póvoa, A. P., & Macchietto, S. (1994). Detailed design of multipurpose batch
plants. Computers and Chemical Engineering, 18, 1013–1042.

urkard, R., & Hatzl, J. (2005). Review, extensions and computational comparison of
MILP formulations for scheduling of batch processes. Computers and Chemical
Engineering, 29, 1752–1769.

astro, P. M., Barbosa-Póvoa, A. P., Matos, H. A., & Novais, A. Q. (2004). Simple
continuous-time formulation for short-term scheduling of batch and continuous
processes. Industrial and Engineering Chemistry Research, 43, 105–118.

astro, P. M., Barbosa-Póvoa, A. P., & Novais, A. Q. (2005). Simultaneous design
and scheduling of multipurpose plants using resource task network based
continuous-time formulations. Industrial and Engineering Chemistry Research, 44,
343–357.

astro, P. M., & Grossmann, I. E. (2005). New continuous-time MILP model for the
short-term scheduling of multi-stage batch plants. Industrial and Engineering
Chemistry Research, 44, 9175–9190.

astro, P. M., Grossmann, I. E., & Novais, A. Q. (2006). Two new continuous-time
models for the scheduling of multistage batch plants with sequence dependent
changeovers. Industrial and Engineering Chemistry Research, 45, 6210–6226.

rooks, C. (1992). Synthesis of operating procedures for chemical plants. Ph.D. Thesis,
University of London.

iannelos, N. F., & Georgiadis, M. C. (2002). A simple new continuous-time formula-
tion for short-term scheduling of multipurpose batch processes. Industrial and
Engineering Chemistry Research, 41, 2178–2184.

iménez, D. M., & Henning, G. P. (2007). An efficient global event-based continuous-
time formulation for the short-term scheduling of multipurpose batch plants.
Computer-Aided Chemical Engineering, 24, 661–667.

iménez, D. M., & Henning, G. P. (2008). The oSTN graph-set: an informed input
that improves the efficiency of continuous-time scheduling formulations. In
M. Ierapetritou, M. Bassett, & S. Pistikopoulos (Eds.), Proceedings of the fifth
international conference on foundations of computer-aided process operations (pp.
409–412). CACHE Publications.

erapetritou, M. G., & Floudas, C. A. (1998). Effective continuous-time formulation

for short-term scheduling. 1. Multipurpose batch processes. Industrial and Engi-
neering Chemistry Research, 37, 4341–4359.

anak, S. L., Lin, X., & Floudas, C. A. (2004). Enhanced continuous-time unit-
specific event-based formulation for short-term scheduling of multipurpose
batch processes: resource constraints and mixed storage policies. Industrial and
Engineering Chemistry Research, 43, 2516–2533.
al Engineering 33 (2009) 1511–1528

Kallrath, J. (2002). Planning and scheduling in the process industry. OR Spectrum, 24,
219–250.

Kondili, E., Pantelides, C. C., & Sargent, W. H. (1993). A general algorithm for
short-term scheduling of batch operations—I. MILP formulation. Computers and
Chemical Engineering, 17, 211–227.

Lee, K.-H., Park, H. I., & Lee, I.-B. (2001). A novel nonuniform discrete time formula-
tion for short-term scheduling of batch and continuous processes. Industrial and
Engineering Chemistry Research, 40, 4902–4911.

Maravelias, C. T. (2005). Mixed-time representation for state-task network models.
Industrial and Engineering Chemistry Research, 44, 9129–9145.

Maravelias, C. T., & Grossmann, I. E. (2003). A new general continuous-time state
task network formulation for the short-term scheduling of multipurpose batch
plants. Industrial and Engineering Chemistry Research, 42, 3056–3074.

Méndez, C. A., Cerda, J., Grossmann, I. E., Harjunkoski, I., & Fahl, M. (2006). State-
of-the-art Review of optimization methods for short-term scheduling of batch
processes. Computers and Chemical Engineering, 30, 913–946.

Mockus, L., & Reklaitis, G. V. (1999). Continuous time representation approach to
batch and continuous process scheduling. 1. MINLP formulation. Industrial and
Engineering Chemistry Research, 38, 197–203.

Pantelides, C. C. (1994). Unified frameworks for optimal process planning and
scheduling. In Foundations of computer-aided process operations. New York: Cache
Publications., pp. 253–274.

Reklaitis, G. V., Sunol, A., Rippin, D., & Hortascu, Ö. (Eds.). (1996). Batch processing
systems engineering. Springer Verlag, NATO ASI Series.

Schilling, G., & Pantelides, C. C. (1996). A simple continuous-time process scheduling
formulation and a novel solution algorithm. Computers and Chemical Engineering,
20, S1221–S1226.

Schwindt, C., & Trautmann, N. (2000). Batch scheduling in process industries:
an application of resource-constrained project scheduling. OR Spectrum, 22,
501–524.

Shah, N., Pantelides, C. C., & Sargent, W. H. (1993). A general algorithm for short-
term scheduling of batch operations—II. Computational issues. Computers and
Chemical Engineering, 17, 229–244.
time formulation for short-term scheduling in multipurpose batch plants.
Chemical Engineering Science, 60, 2679–2702.

Zhang, X., & Sargent, W. H. (1996). The optimal operation of mixed production
facilities—a general formulation and some approaches for the solution. Com-
puters and Chemical Engineering, 20, 897–904.


	A novel network-based continuous-time representation for process scheduling: Part I. Main concepts and mathematical formulation
	Introduction
	Background
	Multi-purpose facilities
	Network-based representations
	Time representations
	Material transfer and storage

	Proposed approach
	Time representation
	Processing unit activity states
	Execution state
	Input and output storage states
	Idle state

	Time balances
	Material transfer
	Material storage
	Processing units
	Storage vessels

	Key issues summary

	Mathematical formulation
	Execution-state constraints
	Slack time constraints
	Storage and idle periods constraints
	Time balance constraints
	Batch size constraints
	Material storage in storage vessels
	Material storage in processing units
	Utility constraints
	Additional constraints
	Objective function
	Continuous relaxation of some execution and state variables
	Number of time points
	Remarks
	Modeling issues
	Computational performance


	Representation capabilities of the proposed approach
	Example 1
	Example 2
	Example 3

	Conclusions
	Acknowledgements
	Appendix A
	References


