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Abstract 

Many classical multivariate statistical process monitoring (MSPM) techniques assume normal 

distribution of the data and independence of the samples. Very often, these assumptions do 

not hold for real industrial chemical processes, where multiple plant operating modes lead to 

multiple nominal operation regions. MSPM techniques that do not take account of this fact 

show increased false alarm and missing alarm rates. In this work, a simple fault detection tool 

based on a robust clustering technique is implemented to detect abnormal situations in an 

industrial installation with multiple operation modes. The tool is applied to three case studies: 

(i) a two dimensional toy example, (ii) a realistic simulation usually used as a bench-mark 

example, known as the Tennessee Eastman Process, (iii) real data from a methanol plant. The 

clustering technique on which the tool relies assumes that the observations come from 

multiple populations with a common covariance matrix (i.e., the same underlying physical 

relations). The clustering technique is also capable of coping with a certain percentage of 

outliers, thus avoiding the need of extensive preprocessing of the data. Moreover, 

improvements in detection capacity are found when comparing the results to those obtained 

with standard methodologies. Hence, the feasibility of implementing fault detection tools 

based on this technique in the field of chemical industrial processes is discussed. 
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Introduction 

 

Arising from the ever growing possibility of collecting immense amounts of data with 

modern monitoring and control systems, there has been increasing interest in pursuing 

methods that are capable of grasping the essentials in the data. Multivariate statistical process 

control (MSPC) tools are data driven techniques that generally reduce the dimension of 

process data and extract key features and trends that are of interest to plant personnel 

(Venkatasubramanian et al., 2003). MSPC tools used to reduce the explaining dimensions of 

the process data, like Principal Component Analysis (PCA) and subsequent refinements, have 

shown great success. PCA is a method particularly suited to data sets comprising correlated 

and collinear variables. The methodology projects the process data onto a low dimensional 

subspace in order to capture the major sources of variability associated with the process. The 

principal eigenvectors (associated with the principal component loadings) of the sample 

variance-covariance matrix of the data set conform a base of the subspace; i.e., a set of 

orthogonal latent variables formed by linear combinations of the original process variables. 

New data of the process are projected onto the subspace to detect abnormal situations by 

computing statistics that quantify if the new data are within the limits specified as a normal 

control region. Relevant information leading to identification or diagnosis of the problem can 

be found by interrogating the contribution of each process variable to the principal component 

score. 

In spite of the success of applying PCA based MSPC tools to process data for 

detecting abnormal situations, when these tools are applied to a process with multiple 

operating modes, many missing and false alarms can appear even when the process itself is 

operating under other steady-state nominal operating conditions (Zhao et al., 2004). This is 

not fortuitous; it is because many of the current techniques are based on the assumption that 

the process has one nominal operating region while real processes have many. Process data 

generally define different groups based, for instance, on variations in the operating capacity, 

seasonal variations or changes in the feedstock characteristics, and also on modifications in 

the operation strategies introduced purposely by the plant personnel through changes in the set 

points (Ge and Song, 2008). From a geometric point of view, whenever such a change occurs, 

the process data tend to group into a new cluster in a different location in the high 

dimensional space containing the process normal (meaning not faulty) operation region. If all 

the data is considered as belonging to a unique normal operation region, the volume of this 



region becomes incorrectly large. A monitoring tool considering such a region will lead to an 

increased number of missing and false alarms (Zhao et al., 2006; 2004).  

Some approaches have been proposed to address the issues associated with multiple 

operating modes under different assumptions. Lane et al. (2001) adopted a common subspace 

model to monitor a semibatch process to produce several different products. The method is 

based upon the assumption that a common eigenvector subspace exists for the variance-

covariance matrices of the individual product grades or recipes, and through a pooled sample 

variance-covariance matrix the principal component loadings of the multi-group model can be 

calculated. Hwang and Han (1999) proposed a monitoring method using a super-PCA model 

which considers that the number of retained eigenvectors is the same in each of the clusters 

defined by hierarchical clustering of the data. Chen and Liu (1999) proposed a method called 

mixture principal component analysis (MixPCA). In their approach, PCA is used to compress 

and extract process features and a heuristic smoothing clustering (HSC) algorithm based on 

the Gaussian filter automatically determine the proper number of clusters. Choi et al. (2003) 

proposed a method based on Partial Least Squares (PLS) and credibilistic fuzzy c-means 

(CFCM) for modeling and monitoring processes that undergo operating condition changes. 

Yoo et al. (2003) used PCA to reduce the dimensionality and to remove collinearity of the 

data. Then, they applied adaptive credibilistic fuzzy-c-means to model diverse kinds of 

operating conditions, and also proposed an adaptive discrimination monitoring (ADM) 

method to distinguish between a large process change and a simple fault. In the approach 

proposed by Srinivasan et al (2004), process data are first segmented based on regions of 

steady-state operations into modes and transitions. Then, a dynamic PCA (DPCA) based 

similarity factor clusters the transitions. 

Different clusters certainly have different means; however, since the physical rules 

governing the process are the same, the covariance structures share common characteristics 

(Hwang and Han, 1999). To enhance the monitoring performance considering the unchanged 

physical grounds, a statistical model of multiple normal distributions sharing a common 

covariance matrix is considered. Therefore, the robust clustering method proposed by 

Gallegos and Ritter (2005) can be used. This method considers that all the clusters share a 

common covariance matrix, computed as a pooled covariance matrix. Moreover, while 

defining the clusters, the method is able to cope with potential contamination of the data. This 

constitutes an important advantage considering that contamination of the data is unavoidable 

when monitoring real processes. 



Standard monitoring tools can be easily extended using this model. In this work, 

examples are given with the statistics associated with Principal Component Analysis (PCA). 

The advantage of this approach is illustrated through its application to a toy example in two 

dimensions. Then, its performance is demonstrated by applying the tool to the Tennessee-

Eastman process (TEP) simulation benchmark and to industrial data belonging to a methanol 

plant subsection. 

 

Model development and Implementation 

 

Clusters can be described as continuous regions of space containing relatively high densities 

of points, separated from other high-density regions by regions containing relatively low 

densities of points (Choi et al. 2003). Statistical approaches to cluster analysis have a strong 

theoretical background, and offer the advantages of being able to compute the cluster criteria 

to be optimized and to yield algorithms that effectively and efficiently reduce them (Gallegos 

and Ritter, 2005). 

We propose to use a statistical model consisting of several normal distributions 

sharing a common covariance matrix for processes with multiple operation modes (MOM) 

where due to the physical relations between variables, the covariance structures share 

common characteristics. This will let us use a very powerful method to find the different 

clusters even in the presence of outliers. 

The method proposed by Gallegos and Ritter (2005) considers precisely a 

contaminated set of n observations on d variables coming from g different, normally 

distributed, populations with a common covariance matrix. In their work, they first introduce 

a criterion for the clustering procedure (the trimmed determinant criterion – TDC) and 

demonstrate that it leads to maximum likelihood estimates of the parameters of the model (i.e. 

the means and the common covariance matrix of the g normal distributions). Moreover, they 

develop an algorithm and demonstrate that converges to the required minimum of the TDC in 

a finite number of steps. Finally, they compute the asymptotic breakdown values of the 

estimators and find results consistent with the robustness claim. Readers interested in the 

theoretical background are referred to the work by Gallegos and Ritter. 

The algorithm partitions the r regular observations into g clusters and simultaneously 

detects n-r outliers. It does so by choosing a subset of size r from the n observations and 

partition it into g clusters so that the pooled sum of squares and products (SSP) matrix has 

minimum determinant (TDC). The maximum likelihood estimate of the mean vectors of the 



different underlying normal distributions are the sample mean vectors of the various clusters, 

whereas that of the common covariance matrix is the pooled SSP matrix divided by r. The 

number n-r of rejected data is a parameter of the model and the estimated means are fairly 

insensitive to the choice of this parameter provided it is not too large in comparison with the 

total available process data. 

Starting from a configuration R (i.e., a subset of the data together with its partition into 

g clusters), the key step of the algorithm is to look for another configuration Rnew such that the 

sum of square distances is smaller than the one in configuration R. This is done by assigning 

each observation to the cluster that minimizes the square distance 2),( jidR . It has been 

demonstrated that the determinant of the pooled covariance matrix corresponding to the new 

configuration is smaller than the one corresponding to the previous one (Gallegos and Ritter, 

2005). 

The algorithm can be briefly described as follows: Given a starting configuration R, 

together with its mean vectors mR, and its SSP matrix WR,  
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(i) Compute the Mahalanobis distance from each data point to the mean of each cluster: 
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(ii) For each ni ..1∈ , find gj ..1∈  that minimizes 2),( jidR ; that is, for each i determine 

the optimal cluster j. 

(iii) Sort the square distances in ascending order. 

(iv) Construct the new configuration Rnew, considering the data subset corresponding to the 

first r sorted distances calculated in (iii) and assign to each point its optimal cluster 

j. Compute the new mean vectors mRnew and SSP matrix WRnew rejecting data 

whose distances sorted in (iii) are in the last n-r places (now considered outliers). 

(v) If det(WRnew) = det(WR), stop. Else, WR = WRnew and mR = mRnew , go to (i). 

 

By iterating these steps, a sequence of configurations Rk that satisfies )det()det( 1 kRkR WW ≤+  

is obtained. The process becomes stationary after a finite number of steps. The final 



configuration is one approximation to the minimum trimmed determinant. Multistart 

optimization (i.e., starting by randomly assigning each data to any of the clusters) is applied to 

the foregoing iterative process; the limit configuration with the least value of the determinant 

of the corresponding SSP matrix is the final approximation to the minimum. Geometrically, 

the reduction in the determinant of the pooled covariance matrix represents a reduction in the 

volume of its associated ellipsoid (Bersimis et al., 2007).  

It is worth mentioning that the computed pooled covariance matrix could be biased. 

Since the algorithm willingly excludes the farthest n-r points, the variance will be 

underestimated if the number of actual outliers is less than n-r. This is not a problem for 

identifying the clusters, but the computed pooled covariance matrix will not be an appropriate 

estimator of the covariance matrix. 

The partitioning procedure of assigning randomly each data point to a cluster has no 

physical meaning if successive data points correspond to successive times. The plant 

operation mode will never jump randomly from one cluster to another; points adjacent in time 

generally belong to the same cluster. Taking into account this consideration, the initial 

configuration is generated dividing the data set in g groups of consecutive (meaning 

sequential in time) data, imposing randomly the separation dates. In this way, fast 

convergence to minimum values of the trimmed determinants is attained. 

 

Determination of the number of clusters 

 

In the algorithm, the parameter g (number of clusters) is assumed to be given “a priori”. This 

is a limitation because, in real multivariate processes, the number of clusters is very often 

unknown. To overcome this limitation, a heuristic rule based on geometric considerations is 

proposed.  

Taking into account that the determinant of the pooled covariance matrix is related to 

the volume of its associated ellipsoid (Bersimis et al., 2007), the algorithm is run for different 

number of clusters, g, and the volume associated with the underlying normal model, V, is 

computed as the square root of the pooled covariance matrix determinant of the final 

configuration.  
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Then, an objective function, Y, that relates the occupied volume of the space, V, with 

the number of clusters, g, and the space dimension, d, is defined as: 
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The objective function considers that, when a new cluster is properly added, the space 

occupied by the ellipsoid associated with the pooled covariance matrix determinant should 

decrease with a factor related to the number of clusters. A cluster in excess will lead to a 

decrease of the associated volume which is less significant. The dimension of the space (i.e., 

the number of variables) will also affect the shrinking of the ellipsoid, which will be more 

important when the dimension is larger than the number of clusters. If a proper factor is used, 

the objective function will indicate when the addition of a new cluster does not reduce 

significantly the volume any more. Then, the value of g that minimizes Y will indicate the 

optimum number of clusters. Many factors have been tested with different simulations 

considering space dimensions between 2 and 100 and 2 to 20 clusters, and those indicated in 

Eqs.(4) and (5) gave the best results. Notwithstanding, research is still ongoing particularly 

comparing the developed heuristic method with others, more computing demanding, 

statistical procedures described in the literature, like the GAP statistic method (Tibshirani et 

al., 2000), to establish the best methodology for determining the number of clusters. 

 

Standard and clustered statistics 

 

A common procedure for reducing the dimensionality of the variable space is the use of 

projection methods like Principal Components Analysis (PCA) (Bersimis et al. 2007). These 

methods are based on reducing the sample variance-covariance matrix S, to a diagonal matrix 

L by premultiplying and postmultiplying it by a particular orthonormal matrix U such that 

UTSU = L.  The diagonal elements of L, λ1 ≥ λ2 ≥ ... ≥ λd are the eigenvalues of S, and the 

columns of U are the eigenvectors of S, also called the loading vectors ( iu ). The covariance 

matrix S is calculated from a given a set of n vectors, corresponding to measurements of d 

variables under normal plant operation. When variables are measured in different units, the 



vectors must be normalized to standard units. In those conditions, the covariance matrix S 

calculated with the normalized vectors is the correlation matrix R of the original vectors. New 

measurements properly normalized and arranged in a dm×  matrix Y, are then projected by  

T = YU, or ti = Yui i = 1, 2, …, d.  The ti , called the score vectors, are the columns of T 

and different statistics can be calculated to decide whether the measurements remain under 

control or not. For instance, charts based on the Hotelling’s T2 can be plotted based on the 

first a principal components (Eq. 6). Another useful statistics is the Q statistics (Eq. 7). Each 

statistics defined by Eqs. 6 and 7 provide complementary information. 
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This procedure can be easily extended to the case where multiple clusters are present, 

considering the different cluster means and the pooled covariance matrix instead of the global 

mean and the standard covariance matrix. 

 

Results and Discussion 

 

Case 1: Toy Example 

 

To exemplify the performance of the clustering technique, we have applied it to an 

artificially generated data set. The controlled data set consists of four uncontaminated clusters 

with the parameters detailed in Table 1. 

 

Table 1. Parameters of the artificially generated data set for illustrating the clustering method. 

Cluster Covariance Matrix Mean Number of points 

1 [8 8] 400 

2 [4 -4] 800 

3 [-4 4] 1600 

4 

⎥
⎦

⎤
⎢
⎣

⎡
5.85.7
5.75.8

 

[-8 -8] 2000 

 



The result of applying the algorithm with multistart optimization to the artificially 

generated data set is shown in Figure 1. As observed in the figure, the proposed method 

succeeds in determining the clusters in spite of their different density.  

 
Figure 1. Normal operation regions identified by the clustering methods for the toy example 

in two dimensions with uncontaminated data. 

 

To analyze the robustness of the method for handling contaminated data, the same data 

set is contaminated with 200 outliers, following a Gaussian distribution with a standard 

deviation of 10. Note that the number of outliers represents 4% of the data set and 50% of the 

less dense cluster.  



 
(a) 

 
(b) 

Figure 2. Normal operation regions identified by the clustering methods for the toy example 

in two dimensions imposing different values of the parameter r to establish the number of 

outliers: (a) n-r = 200, outliers representing 4% of the total data; (b) n-r = 500, outliers 

representing 10% of the total data. Black dots indicate the outliers identified by the method.  



The algorithm shows its robustness by successfully partitioning the data despite the 

presence of outliers. Figures 2a and b show the results of running the algorithm changing the 

parameter to account for 200 and 500 outliers, respectively. The former case corresponds to 

the “true” number of outliers, while the latter is more conservative, overestimating the number 

of outliers. Both cases lead to the same results (i.e., the same means and clusters sets) and can 

be used as a good starting point for a robust covariance matrix calculation. 

 

Case 2: Tennessee Eastman Process (TEP) 

 

The Tennessee Eastman Process (TEP) simulation benchmark, presented by Downs and 

Vogel in 1993, is the simulation of a complex industrial chemical process. It has been used as 

a benchmark, especially for studying advanced control strategies. In the last decade, it has 

increasingly been used to test the performance of proposed MSPC tools. Figure 3 gives the 

well known flowsheet of the TEP (Ricker, 1996). The process has five major units: a reactor, 

a condenser, a vapor-liquid separator, a recycle compressor, and a product stripper. It involves 

two simultaneous gas-liquid exothermic reactions that produce two desired products (G and 

H) and a byproduct F which is produced from two additional reactions, from four reactants A, 

C, D and E. Within the process there is also an inert B. The process has 12 manipulated 

variables and 41 measured variables for monitoring and control. About half of the measured 

variables are component compositions, available at discrete sampling intervals of 0.1 h or 

0.25 h. The remaining 22 measured variables are available at significantly higher sampling 

frequency. The original process is open-loop unstable and, in the absence of feedback, small 

perturbations eventually lead to a shutdown; then, a control strategy must be introduced.  

Here, the advanced decentralized control strategy presented by Ricker (1996) is employed for 

its capability of less variability in the product rate and quality, and of operating on-spec for 

long periods without feedback from composition measurements. The involved control loops 

for the considered strategy are indicated in Fig. 3. For the sake of practical consideration, the 

22 continuous outputs among the 41 measurements are used for monitoring and the sampling 

interval is 0.01 h. The simulation programs are available at Ricker’s home page (Ricker, 

2008).  



 
 

Figure 3. Flow sheet of the Tennessee-Eastman Process (TEP) indicating the control loops 

used by Ricker (1996) 

 

 

The simulation programs have been implemented and data corresponding to a set of 

two “normal process operation” in the sense that they lead to a product with the same 

specification are obtained by imposing modifications in the operation strategy. The imposed 

modifications are indicated in Table 2 and arise from a controlled change in reactor pressure 

for which drifts in the production output are imposed. It should be mentioned that previous 

works analyzing multiple operation modes for the TEP example have considered modes that 

lead to products with different compositions (Chen and Liu, 1999; Zhao et al., 2004; Ge and 

Song, 2008), which is not the goal of the present work. We have particularly analyzed the 

case of different operation modes that lead to a product with the same specification. It is also 

worthwhile to mention that the method performance highly increase its capabilities if the 

obtained products have modified composition, since the differences considered in this case are 

extremely more subtle. 

 

 



Table 2. Different steady state modes of operation that define the clusters considered for the 

TEP example. 

 Reactor Pressure (kPa) Stripper Underflow drifts (m3/hr) 

Cluster 1 2800 22.4 to 18.6 and 17.9 to 17.2 

Cluster 2 2680 22.9 to 21 and 19.1 to 17.2 

 

 

Figure 4 illustrates how the implemented algorithm clusterizes the data considering the 

22 variables measured with relatively high frequency (0.01h). The minimum in the 

heuristically defined objective function (Eqs. 4 and 5) to estimate the number of clusters is 

obtained with 2 clusters. The figure presents typical relations found among several of the 

considered variables.  

 

 
Figure 4. Normal operation regions identified by the proposed clustering method for the TEP 

example considering no outliers. 

 

It can be observed that the method does separate operation performed under different 

reactor pressure. However, the drift in production output remains within the same cluster, 

even if a discontinuity in the drift was purposely imposed. This result arises from no changes 



in the majority of the physical relations which govern the correlation between variables under 

a given operation strategy, within a reasonable production output. 

To illustrate the advantages of clustering the data in such a way, two examples based 

on the TEP are presented. In both cases, the PCA statistics are calculated for each test point 

with respect to the mean of each cluster, using the pooled covariance matrix resulting from 

the application of the proposed clustering technique. Each data is assigned to a particular 

cluster according to the minimum distance. The number of principal components is selected to 

explain 95% of the variability of the data, resulting in 6 for all cases. The control limit is set at 

the 99 percentile of the statistics calculated from data corresponding to normal operation. 

Then, missing and false alarms are compared with those obtained when the standard statistics 

(i.e., without clustering) are used. Given that PCA involves two different statistics, the results 

are summarized considering the joint information (i.e., if any statistic is over the control limit, 

a fault is detected, and both statistics under the control limit indicate normal operation). 

In the first example, a drift is artificially introduced in each variable of each data point 

to simulate malfunctions in instruments. It is important to start from each data point to make 

sure that the results do not depend on the starting point. Then, the number of detections (i.e., 

occasions when the statistics is greater than its control limit) is computed using either the 

standard or the clustered statistics. Results are shown in Figure 5, proving improvement in the 

sensibility to different drifts in measured variables at two levels of deviations from the mean. 

 

 
(a)      (b) 

Figure 5. Detection capability of the joint output of the complementary statistics, T2
a (Eq. 6) 

and Q (Eq. 7), using the standard and the proposed clustering method when forcing an out-of-

range error of each of the supervised variables in the TEP for each instant. Levels of 

univariate drift: (a) 1 standard deviation; (b) 3 standard deviations. 



The second example consists in the simulation of all the 20 faults defined for the TEP, 

starting from the same initial condition. The faults are listed in Table 3. Again, the statistics 

are calculated in the same way, but in this case the control limits are set to achieve, in all 

cases, 1% of false alarms as recommended by Russell et al. (2000). Two different situations 

are also compared. In the first, the two clusters corresponding to normal operation have a 

similar number of points, whereas, in the second case, the number of points in cluster 1 is ten 

times larger than the number of points in cluster 2. Results of the statistics defined by Eqs. 6 

and 7 are detailed in Tables 4 and 5, respectively, for similar and different cluster sizes. 

Missing and false alarm rates evaluated through the joint information of the complementary 

statistics T2
a and Q are also detailed in the tables. From the results, it comes out that, even if 

many faults are not detected by either method, whenever there is a significant change in the 

missing alarm rate, the clustered statistics have improved detection capability. Note that the 

non faulty testing data is different from the training data and that the control strategy is very 

strong. Actually, if a less advanced control strategy is used, the percentage of missing alarms 

noticeably diminishes for both methods and the performance of the clustered method is highly 

superior to the standard PCA. 

 

Table 3. List of the standardized faults in the TEP simulation benchmark 

Fault Description Type 
1 A/C Feed Ratio, B Composition Constant (Stream 4) Step 
2 B Composition, A/C Ratio Constant (Stream 4) Step 
3 D Feed Temperature (Stream 2) Step 
4 Reactor Cooling Water Inlet Temperature Step 
5 Condenser Cooling Water Inlet Temperature Step 
6 A Feed Loss (Stream 1) Step 
7 C Header Pressure Loss - Reduced Availability (Stream 4) Step 
8 A, B, C Feed Composition (Stream 4) Random Variation 
9 D Feed Temperature (Stream 2) Random Variation 
10 C Feed Temperature (Stream 4) Random Variation 
11 Reactor Cooling Water Inlet Temperature Random Variation 
12 Condenser Cooling Water Inlet Temperature Random Variation 
13 Reaction Kinetics Slow Drift 
14 Reactor Cooling Water Valve Sticking 
15 Condenser Cooling Water Valve Sticking 
16 Unknown - 
17 Unknown - 
18 Unknown - 
19 Unknown - 
20 Unknown - 



 

Table 4. Comparison between missing and false alarm rates arising from monitoring with 

the standard statistics and the one computed by present method for the faults in the TEP 

example (similar cluster sizes).  

 
 Standard Clustered 
 T2

a Q Joint T2
a Q Joint 

False Alarms (%) 1,00 1,00 2,00 1,00 1,00 1,99 
Fault 1 58,50 24,13 23,50 63,50 17,63 17,13 
Fault 2 91,88 36,38 35,63 94,00 27,88 27,25 
Fault 3 98,88 98,50 97,50 99,00 100,00 99,00 
Fault 4 86,50 86,88 84,63 85,38 100,00 85,38 
Fault 5 98,88 98,63 97,50 98,63 100,00 98,63 
Fault 6 98,38 64,25 63,50 97,88 49,88 49,25 
Fault 7 71,25 10,38 7,88 50,38 4,75 2,38 
Fault 8 98,00 70,38 69,38 94,25 62,88 61,63 
Fault 9 98,88 98,50 97,38 98,63 100,00 98,63 
Fault 10 98,75 98,50 97,38 98,88 100,00 98,88 
Fault 11 12,13 16,13 10,50 10,63 90,50 10,63 
Fault 12 98,13 98,75 96,88 98,25 100,00 98,25 
Fault 13 98,88 98,50 97,50 98,88 100,00 98,88 
Fault 14 10,25 14,25 9,25 8,63 100,00 8,63 
Fault 15 99,00 98,63 97,63 99,00 100,00 99,00 
Fault 16 98,88 98,50 97,50 98,88 100,00 98,88 
Fault 17 93,50 89,63 85,50 90,50 83,50 80,00 
Fault 18 98,88 98,50 97,50 98,88 100,00 98,88 
Fault 19 99,13 98,63 97,75 98,88 100,00 98,88 

Missing  
Alarms  

(%) 

Fault 20 97,50 96,13 94,13 98,13 85,75 84,50 
 
 



Table 5. Comparison between missing and false alarm rates arising from monitoring with 

the standard statistics and the one computed by present method for the faults in the TEP 

example (different cluster sizes). 

 
 Standard Clustered 
 T2

a Q Joint T2
a Q Joint 

False Alarms (%) 1,00 1,00 2,00 1,00 1,00 1,99 
Fault 1 44,75 23,63 22,75 65,75 16,75 16,25 
Fault 2 89,75 35,50 35,00 94,88 28,00 27,38 
Fault 3 98,88 98,75 97,63 98,88 100,00 98,88 
Fault 4 87,13 86,38 84,38 85,63 100,00 85,63 
Fault 5 98,88 98,75 97,63 98,63 100,00 98,63 
Fault 6 98,00 58,38 57,50 97,88 49,50 48,88 
Fault 7 47,25 14,88 8,50 48,00 5,50 3,00 
Fault 8 97,75 70,88 69,88 93,63 61,88 60,50 
Fault 9 99,00 99,00 98,00 98,75 100,00 98,75 
Fault 10 98,75 99,00 97,75 98,88 100,00 98,88 
Fault 11 12,25 14,50 10,50 10,63 89,75 10,63 
Fault 12 98,50 98,38 96,88 98,38 100,00 98,38 
Fault 13 98,88 99,00 97,88 98,88 100,00 98,88 
Fault 14 10,75 12,75 8,75 8,88 100,00 8,88 
Fault 15 98,88 99,00 97,88 99,00 100,00 99,00 
Fault 16 98,88 99,00 97,88 98,88 100,00 98,88 
Fault 17 93,88 89,38 85,00 90,50 85,00 81,25 
Fault 18 98,88 99,00 97,88 98,88 100,00 98,88 
Fault 19 99,00 99,13 98,13 99,00 100,00 99,00 

Missing 
Alarms 

(%) 

Fault 20 96,00 93,75 91,13 98,50 85,63 84,50 
 

 

Case 3: Methanol Purification Plant 

 

Process data collected for monitoring the operation of the purification section of a 

methanol plant owned by YPF are employed for assessing the strategy in an actual industrial 

environment. The purification section consists of a standard arrangement of two distillation 

columns. The first column separates the light products from the methanol-water mixture. The 

bottoms of this column are treated in the second column, where the methanol is distilled in the 

top and process water is extracted from the bottom. 

For monitoring and analysis, forty six variables were continuously followed for more 

than 3 years. The process data collected during periods of normal operation were used for 

identifying the clusters corresponding to different operation modes and for training the tools. 



The proposed clustering algorithm is applied to the process data, considering different 

number of clusters (i.e., different values of g), and assuming that 5% of the data are outliers. 

The number of outliers is generally established based on the experience of the plant personnel 

since they depend mostly on the recollection and transmission processes and also on the 

periods when the plant should stop or operate with low capacity due to fuel restrictions and 

following starts-up. 

The data clusters arising from applying the proposed algorithm are shown in Figure 6 

represented as a function of time units. Clusters are marked alternatively in black and white to 

remark the dates corresponding to a cluster change. It is remarkable that, whatever is the 

initial condition imposed, many cluster separation dates are coincident for different values of 

g. For instance, for g > 2, the algorithm always groups in different clusters data measured 

before and after the date corresponding to 15400 time units, which is coincident with a change 

in plant operation strategy. The same observation is valid for the outliers (marked in grey); 

that is, there are points recursively classified as outliers by the algorithm independently of the 

number of clusters considered.  

 
 

Figure 6. Separation among clusters predicted by the algorithm, as different numbers of 

clusters, g, are imposed. 



To establish the optimum number of clusters, the proposed heuristic rule based on 

minimizing the objective function defined by Eqs. 4 and 5 was applied (Figure 7). Once more, 

the number of clusters corresponding to the minimum of this figure is considered as a good 

choice by the YPF personnel, and cluster divisions can be successfully associated to 

modifications in the plant operation.  

 

 
 

Figure 7. Evolution of the objective function defined by Eqs. 4 and 5 as the number of 

clusters is progressively increased. Minimum found for g = 15 clusters. 

 

Some representative projections of the data, grouped in 15 clusters according to the 

result of the minimization, are illustrated in Figure 8. 

 



 
Figure 8. Normal operation regions identified by the proposed clustering method for the 

methanol plant example considering that 5% of the data are outliers (identified by black dots). 



Following the same procedure as in the TEP example, a drift in each variable of each 

data point was artificially introduced to test the improvement in the sensibility of the proposed 

monitoring tool with respect to the standard methodology. For an explained variance of 95%, 

the number of retained components was 22 for the standard methodology and 21 for the 

clustered one. There is a remarkable increase in detection sensibility at the two levels of drift 

examined (Figure 9). When considering the joint information of the Q and T2
a, the 

improvement is remarkable for all the variables particularly at the drift level of 1 standard 

deviation.  

 

 
(a)      (b) 

 

Figure 9. Detection capability of the joint output of the complementary statistics T2
a (Eq. 6) 

and Q (Eq. 7), using the standard and the proposed clustering method when forcing an out-of-

range error of each of the supervised variables in the methanol plant for each instant. Levels 

of univariate drift: (a) 1 standard deviation; (b) 3 standard deviations. 

 

Figure 10 shows the charts for standard and clustered statistics (Eqs. 6 and 7) for a 

period spanning 40 months of plant operation. In both cases the limits for the control charts 

were set as the 99 percentile of each statistics calculated from the databank corresponding to 

normal operation. During this period, two faults occurred. The first one involved the 

malfunction of a manometer at the top of the second column (roughly between 01/03/2003 

and 01/09/2003). The second one was an intermittent failure of a temperature sensor located 

mid-height of the second distillation column (starting about two months after 01/09/2004 and 

repeated intermittently until 01/03/06).  

 



 
(a) 

 
(b) 

Figure 10. Control charts for standard and clustered statistics. Grey points correspond to 

normal operation, black points correspond to faults and horizontal lines are the estimated 

control limits for each statistics. (a) T2
a (Eq. 6) (b) Q (Eq. 7) 

 



Both methods succeeded in detecting appropriately the first fault. However, there is a 

clear improvement in the detection capability of the clustered method for the second fault, 

which is observed in the computed statistics. Missing and false alarms arising from these 

results are detailed quantitatively in Table 6. 

 

Table 6. Comparison between missing and false alarm rates arising from monitoring with the 

standard statistics and the ones computed by present method for two different faults in the real 

methanol plant. Joint refers to using the joint information of the T2
a and the Q. 

 

 Standard Clustered 
 T2

a Q Joint T2
a Q Joint 

False Alarms (%) 1.0 1.0 1.7 1.0 1.0 1.4 
Fault 1 51.0 46.3 33.3 30.2 39.0 22.9 
Fault 2 98.5 99.3 98.0 46.1 87.9 46.1 Missing Alarms (%) 
Total 77.9 76.0 69.8 39.7 66.5 36.1 

 

 

While both methods lead to similar percentages of false alarms, significant differences 

are found in detecting the two documented malfunctions. These results highlight the benefits 

of using the suggested clustering methodology for properly taking into account the different 

operating modes that existed in the methanol plant. 

 

 

Conclusions 

 

A new MSPC technique is proposed in this paper to address the problem of monitoring 

processes with multiple operations modes. This approach relies on a robust clustering method, 

assuming that the different clusters share a common covariance matrix, preserving the 

physical relations between variables. Moreover, the method is capable to cope with the 

presence of outliers. A procedure to determine the optimum number of clusters is also 

proposed. The performance of this technique is tested on the TEP benchmark and with real 

data from a methanol plant, thus establishing the feasibility of its implementation in industrial 

environments. 
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Captions 

 

Figure 1. Normal operation regions identified by the clustering methods for the toy example 

in two dimensions with uncontaminated data. 

 

Figure 2. Normal operation regions identified by the clustering methods for the toy example 

in two dimensions imposing different values of the parameter r to establish the number of 

outliers: (a) n-r = 200, outliers representing 4% of the total data; (b) n-r = 500, outliers 

representing 10% of the total data. Black dots indicate the outliers identified by the method.  

 

Figure 3. Flow sheet of the Tennessee-Eastman Process (TEP) indicating the control loops 

used by Ricker (1996). 

 

Figure 4. Normal operation regions identified by the proposed clustering method for the TEP 

example considering no outliers. 

 

Figure 5. Detection capability of the joint output of the complementary statistics, T2
a (Eq. 6) 

and Q (Eq. 7), using the standard and the proposed clustering method when forcing an out-of-

range error of each of the supervised variables in the TEP for each instant. Levels of 

univariate drift: (a) 1 standard deviation; (b) 3 standard deviations. 

 

Figure 6. Separation among clusters predicted by the algorithm, as different numbers of 

clusters, g, are imposed. 

 

Figure 7. Evolution of the objective function defined by Eqs. 4 and 5 as the number of 

clusters is progressively increased. Minimum found for g = 15 clusters. 

 

Figure 8. Normal operation regions identified by the proposed clustering method for the 

methanol plant example considering that 5% of the data are outliers (identified by black dots). 

 

Figure 9. Detection capability of the joint output of the complementary statistics T2
a (Eq. 6) 

and Q (Eq. 7), using the standard and the proposed clustering method when forcing an out-of-

range error of each of the supervised variables in the methanol plant for each instant. Levels 

of univariate drift: (a) 1 standard deviation; (b) 3 standard deviations. 



 

Figure 10. Control charts for standard and clustered statistics. Grey points correspond to 

normal operation, black points correspond to faults and horizontal lines are the estimated 

control limits for each statistics. (a) T2
a (Eq. 6) (b) Q (Eq. 7) 

 

 

Table 1. Parameters of the artificially generated data set for illustrating the clustering method. 

 

Table 2. Different steady state modes of operation that define the clusters considered for the 

TEP example. 

 

Table 3. List of the standardized faults in the TEP simulation benchmark. 

 

Table 4. Comparison between missing and false alarm rates arising from monitoring with the 

standard statistics and the one computed by present method for the faults in the TEP example 

(similar cluster sizes). 

 

Table 5. Comparison between missing and false alarm rates arising from monitoring with the 

standard statistics and the one computed by present method for the faults in the TEP example 

(different cluster sizes). 

 

 

 

 


