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a  b  s  t  r  a  c  t

The  objective  of  this  work  is to  develop  several  metaheuristic  algorithms  to  improve  the  efficiency  of
the MILP  algorithm  used  for  planning  transportation  of  multiple  petroleum  products  in a  multi-pipeline
system.  The  problem  involves  planning  the  optimal  sequence  of  products  assigned  to each  new  package
pumped  through  each  polyduct  of  the network  in order  to meet  product  demands  at  each  destination  node
before the end  of  the  planning  horizon.  All  the  proposed  metaheuristics  are  combinations  of  improvement
methods  applied  to  solutions  resulting  from  different  construction  heuristics.  These  improvements  are
eywords:
ulti-product pipeline network
ixed-integer linear program
lobal Search Metaheuristics
aboo Search
imulated Annealing
ultiple Markov Chain

performed  by  searching  the  neighborhoods  generated  around  the  current  solution  by  different  Global
Search  Metaheuristics:  Multi-Start  Search,  Variable  Neighborhood  Search,  Taboo  Search  and  Simulated
Annealing.  Numerical  examples  are  solved  in  order  to  show  the  performance  of  these  metaheuristics
against  a  standard  commercial  solver  using  MILP.  Results  demonstrate  how  these  metaheuristics  are
able  to reach  better  solutions  in much  lower  computational  time.
. Introduction

Pipelines have been a widely used mode of transportation for
etroleum products and their derivatives for the last 40 years. The
nnual transportation cost in the Petroleum Industry usually sur-
asses billions of dollars since large volumes have to be transported
ver long distances. Evidently, pipeline systems play an important
ole in the industry. Although the initial capital investment required
o setup these transportation systems is high, the operating costs
re very low compared to other transportation modes such as rail
nd highway. Even so, the final price of the product depends on
ts transportation cost, making the optimization of the transporta-
ion process a problem of extreme relevance. Consequently, the
elated scheduling activities for product distribution using pipeline
ystems have been a focus for at least 30 years.

Several authors have been concentrating on solving the pump-
ng schedule of multiple products for a single multi-product
ipeline during the past decade. In such a pipeline, different prod-
cts are pumped back-to-back without any separation devices
etween them as shown in Fig. 1. Since there is no physical separa-

ion between different products as they move through the pipeline,
ome mixing and consequent contamination at product interface
s unavoidable. These product mixtures are called transmixes and
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they cannot be simply discarded. They must pass through a special
treatment that usually involves sending them back to a refinery for
reprocessing. The degree of these interface losses depends on the
products that come in contact inside the pipeline segment. More-
over, if two  products are known to generate high interface losses,
the pumping schedule must avoid pumping them back-to-back into
the pipeline. Sometimes these pairs of products are considered as
forbidden sequences. Moreover, the pumping schedule must take
into account the product availability at the refinery and the con-
sumption of different products at each depot.

All the different aspects mentioned above make the pumping
schedule of multiple petroleum products from a single refinery to
multiple destinations a complex activity. A few papers have been
published on this subject in the last decade. Rejowski and Pinto
(2003) developed a discrete-time MILP model for the scheduling
of a real world multi-product pipeline system with multiple des-
tinations. Later, Rejowski and Pinto (2004) developed a model to
improve the computational efficiency from their previous work
(Rejowski & Pinto, 2003). Additionally, Rejowski and Pinto (2008)
developed a novel continuous-time representation to model the
same process considered in their previous papers. On the other
hand, Cafaro and Cerdá (2004) developed a continuous-time MILP
model for the scheduling of a single pipeline transporting several

refined petroleum products from an oil refinery to several distri-
bution terminals. In a subsequent work, Cafaro and Cerdá (2008)
extended their formulation considering multiple delivery due
dates. Recently, other authors, i.e. Mirhassani and Ghorbanalizadeh

dx.doi.org/10.1016/j.compchemeng.2011.10.003
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:aherrang@fis.ucm.es
dx.doi.org/10.1016/j.compchemeng.2011.10.003
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Nomenclature

Sets
C set of connections indexed by c = 1,. . .,|C|
P set of different petroleum derivatives indexed by

p = 1,.  . .,|P|
S set of product pairs {(p,p′),. . .}  representing forbid-

den pumping sequences
T set of time periods in the planning horizon indexed

by t = 1,.  . .,|T|
N set of nodes indexed by n = 1,. . .,|N|

Parameters
CAn,p unit inventory cost for product p at node n
CIc,p unit pumping cost to deliver a package containing

product p from its source to its destination through
connection c

CTc start/stop cost at each polyduct (connection) c of the
network

CRp,p′ unit reprocessing cost of interface material involv-
ing different products p and p′

� period length in hours
VCp,p′ interface volume between two packages pumped

consecutively through the same polyduct contain-
ing products p and p′

VP unit package volume in cubic meters
xoc,b,p binary parameter denoting if portion b of connection

c is occupied by a package containing product p at
the beginning of the planning horizon

Variables
at,n,p inventory level of product p at node n at period t
qmt,n,p amount of product p transferred at period t from

destination node n to its local market
st,c binary variable denoting if a package is pumped

through connection c at period t
vt,c,p,p′ interface volume between the package pumped at

period t through connection c and the package occu-
pying the first portion of the same connection if the
packages contain products p and p′, respectively

yt,c,p binary variable denoting if the package pumped
through connection c at period t contains product

(
t

o
p

consuming optimal solution with little margin of improvement
p

2008) developed an integer programming formulation to deal with
he same problem.
All the papers reviewed above consider the pumping schedule
f multiple products for a single pipeline system. However, the
olyducts in a specific geographical area (region, country, etc. . .)

Fig. 1. Typical operation o
Fig. 2. Multi-pipeline system model.

are connected together, resulting in a more complex system com-
monly named multi-pipeline system (Cruz, Andrés, Herrán, Besada,
& Fernández, 2003; Cruz, Risco, Herrán, & Fernández, 2004; Cruz,
Herrán, Risco, & Andrés, 2005). Fig. 2 shows an example of a
multi-pipeline system. This network has two source nodes (N1
and N2), two intermediate nodes (N3 and N4) and three desti-
nation nodes (N5, N6 and N7). Moreover, the product can flow
in both directions through the reversible polyduct joining inter-
mediate nodes N3 and N4. Source nodes could be refineries or
other supply systems, for example ports. Destination nodes are
the final distribution centers with a specific demand that has to
be fulfilled at the end of each planning horizon. On  a logistic level,
the problem is in planning the way in which different products
taken from source nodes are temporally transported to destina-
tion nodes, passing through intermediate nodes in order to meet
product demands at all pipeline depots before the end of the
planning horizon. Furthermore, constraints related to the maxi-
mum/minimum inventory levels at each node must be satisfied,
and some forbidden product sequences must be avoided due to
high product contamination.

Since real world planning and scheduling of complex oil sup-
ply chains appears as a challenging problem, several authors have
tried to apply different heuristic algorithms in order to aid the deci-
sion making process. Despite the fact that heuristic approaches may
eliminate the optimal system solution, they are becoming widely
used so as to reduce problem complexity and to obtain results
in real time. Additionally, decision makers and schedulers usu-
ally seek good solutions, close to the optimal, rather than a time
when compared to the others (Relvas, Barbosa-Póvoa, & Matos,
2010). All these facts have motivated the usage of heuristic pro-
cedures for solving the pumping schedule of multiple products

f a polyduct system.
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or both single and multi-pipeline systems during the past
ecade. Sasikumar, Prakash, Patil, and Ramani (1997) presented a
nowledge-based heuristic search technique providing a monthly
umping schedule to minimize interface and pumping costs.
ruz et al. (2003, 2004, 2005) developed several heuristic algo-
ithms to solve a simplified formulation of the problem presented
n Herrán, de la Cruz, and de Andrés (2010).  Altiparmak, Gen,
in, and Paksoy (2006) developed a genetic algorithm for multi-
bjective optimization of supply chain networks. Other heuristic
ules were also used integrated in the short-term scheduling
ierarchical approach for refinery operations proposed by Luo
nd Rong (2007).  More recently, Relvas et al. (2010) developed
equencing heuristic to be used prior to the MILP model imple-
entation to provide a set of information on the most desirable

equences of products to be pumped to a multiproduct oil dis-
ribution system composed of a single pipeline that connects one
efinery to one distribution center. Another issue which increases
he complexity in planning and scheduling problems is the exis-
ence of uncertainty in the parameters of the problem; i.e. market
emands. In these cases, several robust optimization methodolo-
ies have been developed to produce “robust” solutions which
re in a sense immune against bounded uncertainty (Chen & Lee,
004; Janak, Lin, & Floudas, 2007). These robust optimization
odels could be computationally expensive when using classical
ethods, motivating the usage of heuristics approaches. Sum-
arizing, heuristics can support exact solution methods mainly

o provide fast solutions or reduce search space, diminishing
he complexity of formulations representing real world sys-
ems.

Recently, Herrán et al. (2010) developed a MILP model able to
olve the planning of the optimal sequence of products assigned
o each new package pumped through each polyduct of the net-
ork in order to meet product demands at each destination node

efore the end of the planning horizon. The criteria used to get this
ptimal planning were to minimize the pumping and start/stop
osts, interface losses, and inventory carrying costs. In order to
eep inventory levels in each node within its permissible range,
he inventory levels in each node must be tracked over the planning
eriod. In this sense, product balance at intermediate nodes is the
ost difficult process to model; however, Herrán et al. (2010) eas-

ly modeled it assuming a discrete transport approach that divides
oth the planning horizon into time intervals of equal duration and
he individual polyducts into packages of equal volume contain-
ng a single product. This method leads to a MILP problem, which
ould be computationally expensive for large networks when using
lassical methods (Bazaraa, Jarvis, & Sherali, 1990; Schrijver, 1986).
he complexity of such a preeminent problem was also analyzed
y Milidiú, Pessoa, and Laber (2003).  This problem falls into the
ommonly named DLSP, Discrete Lot Sizing and Scheduling Prob-
ems (Drexl, 1997), which are, in general, NP-hard. In these cases,
n alternative to classical methods are heuristic methods (Pereira,
arvalho, Pedroso, & Constantino, 2003) which are especially well
uited to solve combinatorial problems, Aarts and Lenstra (2003).
his paper proposes different Global Search Metaheuristics to effi-
iently solve the transportation problem presented in Herrán et al.
2010) without any simplification. The remainder of this paper
s organized as follows. Section 2 shows the problem description
ogether with the solution representation and some useful heuris-
ic operators to generate initial solutions and modify the solutions
uring the search. Section 3 provides a detailed description of all
he Global Search Metaheuristics proposed in this paper. Section

 shows how to improve the efficiency of all the metaheuristics

hown in Section 3 by using Multiple Markov Chains. In Section 5,
everal numerical examples are presented to show the utility of
hese metaheuristics against a standard commercial solver using

ILP. Finally, conclusions are presented in Section 6.
l Engineering 37 (2012) 248– 261

2. Model development

2.1. Problem description

The pipeline network under study can be initially represented
by a set of nodes (N), connections (C) and products (P), of which the
activity is determined by a time interval T (planning horizon) in
which the demand must be fulfilled. For the network components
N = NS∪NI∪ND is the set of nodes, where NS,  NI and ND are the sub-
sets of source, intermediate and destination nodes, respectively. C is
the set of the network connections and CB is the set of bidirectional
ones, whose elements are ordered pairs of elements of C. As an
example, for the network shown in Fig. 2, C = {c1,c2,c3,c4,c5,c6,c7,c8}
and CB is the two-dimensional set CB = {(c3,c6),(c6,c3)}. It is also
defined CIn as the subset of incoming connections to node n and
COn as the outgoing ones. An example for the third node of this
network is CI3 = {c1,c6}and CO3 = {c3,c4,c5}.

To summarize the problem description, fully detailed in Herrán
et al. (2010),  given the following information:

• network configuration: number of source, intermediate and des-
tination nodes; number of polyducts and their length; connection
topology and number of products,

• the initial state of the network and the length of the planning
horizon,

• scheduled production at each refinery according to the planning
horizon,

• maximum/minimum allowed product inventory for each depot
at each node,

• product inventory at each node at the beginning of the planning
horizon,

• demand to be satisfied at each consumer node at the end of the
planning horizon,

• cost associated to each operation process in the network;

together with the following assumptions:

• each individual pipeline is composed of an integral number of
packages – all of which feature the same volume and contain a
single product,

• each package is injected at the same pump rate regardless of
the product that it contains; thus, the planning horizon can be
divided into an integral number of time intervals featuring the
same length,

• direct transfer of product packages between consecutive
pipelines is not allowed,

• every package of product pumped into an individual pipeline
comes from the tank farm of a depot located at the pipeline inlet,

• simultaneous package injections into several pipelines from the
same source or intermediate depot located at their common inlet
are permitted,

• every product demand at all pipeline depots must be satisfied
before the end of the planning horizon,

• shutdown and re-starting operations for each individual pipeline
have a finite cost that can change with the polyduct;

the objective is to establish the optimal sequence of products
assigned to each package pumped through each polyduct of the
network in order to meet product demands at each destination
node before the end of the planning horizon with the minimum
total cost z. This objective can be expressed using the nomencla-
ture in Herrán et al. (2010) as it is shown in Eq. (1).  The first term

is the pumping cost with a different cost factor CIc,p for each con-
nection and product. The second term is the start/stop cost of each
polyduct with a different cost factor CTc for each connection. The
third term is the reprocessing cost of the interface volume between
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MILP repre sentatio n

y(t,c,1)
y(t,c,2)
y(t,c,3)
y(t,c,4)

210 3 654 7 1098 11 141312 15 181716 19t =

F

a
e
i
t
w

m

a
t
a
n
a
o
a
t

(

(

2

a
I
t
w
l
i
t
w
s
(
c

˝

a

4 4 410 0 102 2 023 3 231 1 11y(t,c)

ig. 3. Equivalence between MILP and metaheuristic representations for a solution.

djacent packages with different products p and p′. It has a differ-
nt cost factor depending on the products p and p′, of which, the
nterface volume could also vary. Finally, the last term stands for
he cost of holding product inventory in each node of the network
ith a different cost factor CAn,p for each node and product.

in  z =
∑

t

∑
c

∑
p

CIc,p · VP · yt,c,p +
∑

c

CTc · |soc − s1,c |

+
∑
t>1

∑
c

CTc · |st−1,c − st,c | +
∑

t

∑
c

∑
p

∑
p′

CRp,p′ · vt,c,p,p′

+
∑

t

∑
n

∑
p

CAn,p · � · VP · at,n,p (1)

The MILP model also has a set of constraints to fix the value of
ll the variables included in Eq. (1),  namely: (1) the value of yt,c,p

o ensure that only one package entering a polyduct per period is
llowed; (2) the value of st,c to denote if a polyduct is active or
ot at each period; (3) the value of the interface volume between
djacent packages with different products, vt,c,p,p′ ; and (4) the value
f all the inventory levels at each period of the planning horizon,
t,n,p. Moreover, an additional set of constraints is included in order
o:

(a) avoid collisions in reversible polyducts,
b) avoid forbidden pumping product sequences,

(c) avoid violations of maximum/minimum inventory levels,
d) fulfill market demands.

.2. Solution representation for metaheuristics

In metaheuristics it is convenient to represent the solution with
 different set of variables than those used in the MILP formulation.
n this paper, however, the solution representation also uses the
ransport variable y, but only indexed in time and connection 〈t,c〉
ith values in the range [0, |P|]. Now, yt,c = p means that product p

eaves the origin of connection c at period t, using yt,c = 0 for the case
n which no product is sent; i.e. the connection c is stopped at period
. Hence, a solution y = [yt,c] can be represented by a |C| × |T| matrix
here rows correspond to connections and columns to periods. The

earch space  ̋ is the set of all solutions considered for this problem
feasible and infeasible), and it is given by Eq. (2).  Fig. 3 shows a
omparison between both MILP and metaheuristic representations.
 = {y ∈ [0,  1, . . . , |P|]|C|×|T|} (2)

Since metaheuristic methods can handle non-feasible solutions,
n additional term is needed to measure their deviation from
l Engineering 37 (2012) 248– 261 251

feasibility in order to decide which one is the best when compar-
ing two  solutions. This term, denoted by Infeas(y) for a solution
y ∈ ˝,  is calculated measuring the infeasibility degree of a solution
by the four terms shown in Eq. (3).  A feasible solution must have
Infeas(y) = 0. The first term, Infa(y), is the number of collisions in
reversible polyducts, and it is measured by Eq. (4).  The second term,
Infb(y), is the number of forbidden pumping product sequences, and
it is measured by Eq. (5).  The third term, Infc(y), is the amount of
product below the minimum or over the maximum inventory lev-
els, and it is measured by Eq. (6).  Finally, the fourth term, Infd(y),
is the amount of product not delivered to the consumer nodes to
meet market demands, which is measured by Eq. (7).  Notice that
all the variables yt,c,p, st,c, vt,c,p,p′ , at,n,p and qmt,n,p appearing in Eqs.
(1) and (4)–(7) can be calculated by the model proposed in Herrán
et al. (2010).  Now, given two  solutions y1, y2 ∈ ˝,  we say that y1 is
better than y2 (y1 < y2) if the condition shown in Eq. (8) is fulfilled.

Infeas(y) = Infa(y) + Infb(y) + Infc(y) + Infd(y) (3)

Infa(y) =
∑

t

∑
(c,c′) ∈ CB

r(a)
t,c,c′ with r(a)

t,c,c′ =
{

1 if yt,c · yt,c′ /= 0

0 otherwise
(4)

Infb(y) =
∑

t

∑
c

r(b)
t,c with

r(b)
1,c =

{
1 if (xoc, y1,c) ∈ S

0 otherwise

r(b)
t,c =

{
1 if (yt−1,c, yt,c) ∈ S

0 otherwise
:  t > 1

(5)

Infc(y) =
∑

t

∑
n

r(c)
t,n with r(c)

t,n

=
{

Aminn,p − at,n,p if at,n,p < Aminn,p

at,n,p − Amaxn,p if at,n,p > Amaxn,p

(6)

Infd(y) =
∑

n

∑
p

r(d)
n,p with r(d)

n,p =

{
DMn,p −

∑
t

qmt,n,p if
∑

t

qmt,n,p < DMn,p

0 otherwise
(7)

[Infeas(y1) < Infeas(y2)] OR [(Infeas(y1)

= Infeas(y2)) AND (z(y1) < z(y2))] (8)

2.3. Construction heuristics

Construction heuristics are used to generate an initial solu-
tion for search metaheuristic procedures. Here, three different
construction heuristics are developed. The first one is a random
construction, which requires a very short computational time, but
it fails to obtain a feasible solution. Therefore, two other construc-
tion heuristics are developed based on the solution of two different
relaxed versions of the MILP formulation proposed in Herrán et al.
(2010).

• Random (Cr). This procedure generates a solution in the most ran-

dom way. It randomly chooses the product to be sent through
each polyduct at each period of the planning horizon taking into
account the product availability at the sources from which the
products are taken. It is also possible to choose the value of zero
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Fig. 4. Effect of the Replace neighborhood operator for |T| = 3 and M = 2.

Fig. 5. Effect of the Batch neighborhood operator for |T| = 3 and M = 2.

eighb

•

•

2

g
p
i

ent connection is again randomly selected to perform the move
neighborhood procedure. Hence, the size of this neighborhood is
(|T| − 1). Fig. 7 shows an example of this neighborhood operator
Fig. 6. Effect of the Swap n

for yt,c denoting a stoppage in the polyduct associated to connec-
tion c at period t.
Linear relaxation of MILP (Cl). The information provided by the
solution given by a linear relaxation of the MILP model can be
used in a construction heuristic to obtain an integer solution.
An initial application of this idea was used in Lengauer (1990,
Chapter 8). This relaxation consists of allowing the values of the
variable y in the MILP formulation to be real and subjected to the
constraint shown in Eq. (9),  leading to a LP problem. Hence, for
each t ∈ T, c ∈ C and p ∈ P the solution of the relaxed problem can
be considered as the probability of sending product p through
connection c at period t. This heuristic provides solutions that,
although still infeasible in general, are better than the ones given
by a purely random construction.

0 ≤ yt,c,p ≤ 1; ∀(t, c, p) (9)

Quadratic relaxation of MILP (Cq). The main problem of Cl con-
struction method is that the probability of sending a product for
a given c and t tends to be the same for all the products. This
fact makes the solutions generated by Cl to be unfeasible regard-
ing product collisions on reversible polyducts, Eq. (5).  To solve
this problem a novel approach has been developed. In order to
force the solution of the linear relaxed version (LP) to be next to
the integer one (MILP), the quadratic function shown in Eq. (10)
is added to the objective function shown in Eq. (1),  leading to a
QP problem. Since this function is zero for integer solutions and
greater than zero for non-integer solutions, by minimizing this
term the solution of this QP problem would have a higher inte-
grality degree than the solutions of the LP problem. In this way,
an initial solution built with Cq would satisfy more constraints
than the one provided by the Cl method.

z5 =
∑

t

∑
c

(
1 −
∑

p

yt,c,p · yt,c,p

)

= |T | · |C| −
∑

t

∑
c

∑
p

yt,c,p · yt,c,p (10)

.4. Neighborhood generation
The optimization methods based on search metaheuristics work
enerating an initial solution by some method, like the ones pro-
osed in the previous section, and modifying the current solution

n search for a better one. In this work, four heuristic methods have
orhood operator for |T| = 3.

been developed to generate a neighborhood of solutions around
the current one.

• Replace (Nr). This operator takes M elements from the solution
matrix y, and it replaces them by all the possible combinations of
these M elements with a value between [0,|P|]. Hence, the size of
this neighborhood is (|P| + 1)M − 1, since we  have to remove the
original solution. An example of this neighborhood operator is
shown in Fig. 4 for |T| = 3 and M = 2. This operator is particularly
efficient in those cases where the initial solution provides some
residual value.

• Batch (Nb). This operator chooses a random number between
0 and |T| − 1, namely M,  and it generates the neighborhood by
replacing all the (|T| − M + 1) sets of consecutive elements of a ran-
domly selected connection from the solution matrix by a batch
of M elements of product p. This operator is repeated for all the
products included 0 (pumping stoppage). Hence, the maximum
size of this neighborhood is (|T| − M + 1)·(|P| + 1). Fig. 5 shows an
example of this neighborhood operator for |T| = 3 and M = 2. This
operator is especially effective when the solution matrix y needs
to change the product type of some batch. Note that this operator
is different from the Replace one since it is applied to batches.

• Swap (Ns). This operator generates the neighborhood by swap-
ping all the (|T| − 1) pairs of elements of a randomly selected
connection from the solution matrix. Hence, the size of this neigh-
borhood should be

∑
n, however, it is generally lower because

the solutions generated by swapping two elements with the
same value are not added to the neighborhood. Fig. 6 shows an
example of this neighborhood operator for |T| = 3. The swap oper-
ator is especially effective when the solution matrix contains all
the products needed to meet demand but product relocation is
needed.

• Move (Nm). This operator generates the neighborhood by mov-
ing from 1 to |T| periods all the elements of a randomly selected
connection from the solution matrix. If all the elements of the
row associated to the selected connection are equal, a differ-
Fig. 7. Effect of the Move neighborhood operator for |T| = 3.
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for |T| = 3. This operator has the same advantages and disadvan-
tages as the swap operator.

. Global Search Metaheuristics

As it was said above, search metaheuristics are those that pro-
ide strategies for exploring the space of candidate solutions to a
roblem by moving iteratively to a neighborhood solution in search
or a better one. Such processes are known as monotonous searches,
ill climbing or local searches. Roughly speaking, a local search is
ased on the study of solutions of the neighborhood or environ-
ent of the solution runs. It consists of iteratively choosing the best

f such solutions as long as there is some possible improvement.
he main drawback of local searches is that local optimal solu-
ions used to be trapped in their environment (Yagiura & Ibaraki,
002). One possible solution is to extend the local search beyond
he local optimum by a global search. Global Search Metaheuris-
ics (GSMs) incorporate guidelines for three basic ways to escape
rom a poor quality local optimum: (a) to restart the search from
nother boot solution by a Multi-Start Search, (b) to modify the
tructure of neighborhoods by a Variable Neighborhood Search;
nd (c) to apply non-monotonous movements during the search by
ccepting worse solutions than the current one. Non-monotonous
earches keep control over the possible worsening movements
y using some memory structures in the search process, whose
ost representative technique is Taboo Search; or some stochastic

cceptance criteria, whose most representative technique is Simu-
ated Annealing. A more detailed description (pseudocode) for the
rocedures required to implement all GSMs presented in this sec-
ion can be found in Appendix A, supplied as online supplementary
nformation.

.1. Multi-Start Search

Multi-Start Search (MSS) is the simplest approach for global
earch to escape from local minima that trap a local search (Martí,
003). It is based on restarting the search each time the algorithm

s trapped in a local minimum. Local search is trapped in a local
inimum when none of the neighbor solutions improves the cur-

ent one. However, this is not a “blockage” situation, since there are
ther neighborhoods to explore (i.e. the ones generated by selecting
ifferent elements as the M elements chosen in Nr or the connection
elected in Nb,  Ns or Nm). For this reason, each time the algorithm
s trapped in a local minimum, the local search is restarted from the
est current solution instead from a new one. Now, if this situation
ontinues after K iterations, the local search is restarted from a new
olution constructed by any of the construction methods explained
bove.

.2. Variable Neighborhood Search

Even with the MSS  algorithm, once all the possible neighbor-
oods around the current solution are explored without reaching a
etter solution than the current one, the algorithm is trapped on a

ocal minimum. In these cases, Variable Neighborhood Search (VNS)
ffers a good alternative to MSS  to escape from local minima by
odifying the structure of neighborhoods each time the algorithm

s trapped on one of these minima. In fact, modifying the structure
f neighborhoods at each iteration allows the algorithm to improve
he quality of solutions along more iterations before restarting the
lgorithm. Hence, the procedures used in this metaheuristic are
imilar to those used in the MSS  algorithm except in the strategy

sed to generate neighborhoods (Hansen & Mladenovic, 1999). In
NS the method used to generate the neighborhoods is modified at
ach iteration before the local search is called. The simplest strat-
gy to do this consists of selecting one of the available methods
l Engineering 37 (2012) 248– 261 253

to generate such neighborhoods (Nr, Nb,  Ns and Nm) in a sequen-
tial way; this method is denoted as Nc.  A better approach consists
of selecting the neighborhood method according to some empir-
ical probability of success when using one of the aforementioned
methods or another; this method is denoted as Np.  This probability,
calculated at each iteration, is given by the expression shown in Eq.
(11) where S(Ni) is the number successful attempt with neighbor-
hood Ni ∈ {Nr, Nb,  Ns,  Nm}, and T(Ni) is the total number of attempt
with this neighborhood.

P(Ni) = S(Ni)
T(Ni)

·

⎛
⎝ ∑

i  ∈{r,b,s,m}

S(Ni)
T(Ni)

⎞
⎠

−1

; i ∈ {r, b, s, m} (11)

3.3. Taboo Search

A  different approach to escape from local minima is non-
monotonous searches. These search metaheuristics are able to
accept worse solutions than the current one each time the algo-
rithm is trapped on a local minimum. Obviously, accepting worse
solutions could lead the algorithm back to a previously visited solu-
tion, and the search could be trapped in a cycle. Taboo Search (TS)
avoids this problem by using memory structures (Glover & Laguna,
1997). Once a potential solution has been determined it is stored
into a “taboo” list, so that the set of solutions that the algorithm
can use in each worsening movement excludes all the previously
accepted solutions in order to avoid cycles. The main difference
between monotonous searches (as MSS  or VNS) and TS is that, while
in MSS  or VNS the search is directed towards a new solution built
any time the algorithm is trapped on a local minimum, in TS the
search is directed towards a non-taboo solution randomly chosen
within the neighborhood.

3.4. Simulated Annealing

Like TS, Simulated Annealing (SA) is a kind of non-monotonous
search able to escape from a local minimum by accepting, with
some probability, worse solutions than the current one during the
search. The first SA algorithm was first introduced by Kirkpatrick,
Gelatt, and Vecchi (1983) based on the work of Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller (1953).  SA can be seen
as a stochastic algorithm generating a sequence y0, y1,. . .,  yn, of
solutions approaching the set of optimal solutions as n → ∞.  This
sequence is generated by iteratively moving to a neighbor solution,
which is accepted by following Eq. (12), where y′

n is the neighbor
solution of yn and z(yn) is the value of its objective function. In this
equation rand(0,1) is a random number generator between (0,1) for
making a stochastic decision on the acceptance of the new solu-
tion. Finally, Tn (>0) is the temperature at the nth iteration, such
that Tn+1 ≤ Tn, which decreases the probability of accepting worse
solutions than the current one as n → ∞.  The SA algorithm starts
building an initial solution according to some construction method.
Then, each cycle performs K attempt movements to improve the
current solution at a constant temperature T, starting at To. Each
attempt only uses the acceptance criteria for new solutions given
by Eq. (12) if both solutions (current and new) have the same fea-
sibility degree. Otherwise, a new solution is only accepted if it has
a lower Infeas()  value than the current one. After that, the tem-
perature is modified according to the cooling schedule given by
the equation T =  ̨ × T, where  ̨ is a value between [0,1] generally

chosen to be close to 1.

yn+1 =
{

y′
n if exp(z(yn) − z(y′

n)/Tn) > r and (0,  1)

yn otherwise
(12)
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. Multiple Markov Chain based algorithms

.1. Sequential Multiple Markov Chain based algorithms

All the GSMs described above can be seen as stochastic algo-
ithms generating a sequence y0, y1,. . .,  yn of solutions approaching
he set of optimal solutions as n → ∞.  This sequence is generated by

oving iteratively to a neighbor solution which is accepted under
ome stochastic criteria. Since the choice of yn+1 depends only on
he current solution yn but not on the previously visited ones, the
earch path of such algorithms follows a first order Markov chain.
hese algorithms used to be referenced as Sequential Single Markov
hain (SSMC) algorithms. In SSMC algorithms, the probability of not
etting an optimal solution after n iterations is characterized by Eq.
13), where Smin is a set of optimal solution points and C > 0 and

 > 0 are constant values associated to a given objective function
nd neighborhood generation method respectively. Thus as n → ∞,
he solution converges to one of the optimal points in Smin with a
robability of 1.

(yn /∈ Smin) ≈
(

C

n

)�

(13)

Although most schemes in the literature follow a single Markov
hain, it could be inefficient from a performance point of view
Defersha & Chen, 2008). To solve this problem, a Sequential

ultiple Markov Chain algorithm (SMMC) performs J indepen-
ent versions of SSMC algorithm on a single processor computer,
sing the same search space, neighborhood generation, and cooling
chedule for SA. Each one of these independent versions is stopped
fter n iterations to provide J independent terminal solutions {yn,1,
n,2,. . .,  yn,J}. Then, out of these terminal solutions, the best one is
hosen as the final solution yn. Now, the probability of not getting
n optimal solution after n iterations shown in Eq. (13) becomes
he one shown in Eq. (14). Thus, for 0 < C/n < 1, this probability
ecreases exponentially as J increases when using SMMC (Azencott,
992), while the CPU time increases only linearly as the function
f J. Hence, given a CPU time Tcpu, it is more efficient to move n/J
terations in a SMMC  than move n iterations in a SSMC.

(yn /∈ Smin) =
∏

j

P(yn /∈ Smin) ≈
(

C

n

)�·J
<
(

C

n

)�

(14)

.2. Distributed Multiple Markov Chain based algorithms

Distributed Multiple Markov Chain (DMMC) algorithms are
hose in which J Markov chains are partitioned into equal sub-
roups as J1, J2,. . .,  Jn and distributed to N concurrently available
MMC algorithms, communicating to each other at every R iteration
n order to further improve the solution quality. This communi-
ation is based on the migration of the best solutions from one
MMC to another according to different interaction topologies.
he most commonly used topologies are Ring, Fully Connected and
aster–Slave. In the first one, Ring, the best solution found by each

MMC is sent to all its neighbors. The second scheme, Fully Con-
ected, is similar to Ring but sending the best solution found by each
MMC to all the rest of the available SMMCs. In the Master–Slave
cheme, the best solution so far found among all the SMMCs  deter-
ines the master algorithm. Then, this solution is sent to all of the

emaining SMMCs, the slaves. Finally, the best solution found by
ach slave is sent to the master SMMC.  Each time a SMMC  receives

 solution, it is only accepted if it improves the worst solution found
y the receiving SMMC.  According to Distributed Parallel Genetic

lgorithms (Alba & Troya, 2000), the best performance of using N
MMCs with J/N Markov chains (each over a single SMMC with J
arkov chains) is attributed to the following characteristics: (1)

heir decentralized search which allows more speciation; (2) the
l Engineering 37 (2012) 248– 261

larger diversity levels, since many search regions are sought at the
same time; and (3) the exploitation inside each SMMC  by refining
the best partial solutions found in each SMMC.

4.3. Parallel Multiple Markov Chain based algorithms

As discussed above, SMMC  may  result in an exponential
reduction of the error probability with a linear increasing of com-
putational time as the number of independent SSMC runs increases.
A promising technique to achieve this exponential reduction of
the error probability with less or no increment of computational
time is to use parallel computing. Assume a SMMC with J Markov
chains requiring ts unit time to perform i iterations in each search
direction. The value of J can be increased manifold keeping ts and
i unchanged using parallel computing to further reduce the error
probability. This can be done by having multiple copies of SMMC
run on several concurrently available computers (Azencott, 1992;
Lee & Lee, 1996). Let J Markov chains be partitioned into equal
subgroups as J1, J2,. . .,  Jp and distributed to P concurrently avail-
able processors. The computational time for the Parallel Multiple
Markov Chain (PMMC), tp will be equal to ts/P, where ts is the com-
putational time for the SMMC.

5. Numerical examples

All the GSMs presented in this paper will be illustrated by solv-
ing the application example developed by Herrán et al. (2010)
under several scenarios. This example involves the network shown
in Fig. 2 transporting four refined petroleum products (P1: gaso-
line; P2: diesel oil; P3: LPG; P4: jet fuel). Tables with common
data for all the scenarios can be found in Appendix A. These data
include the lower and upper limits for all depots, the scheduled
production at each refinery along the planning horizon, the inven-
tory cost, the interface material cost and contact volume for each
ordered pair of products, and the initial state of the network. These
data, together with the demand for all the scenarios are selected to
force the pumping of the product through the reversible polyduct
in both directions. The demand must be fulfilled at the end of
the 100 h planning horizon, composed of |T| = 20 time periods of
length � = 5 h each. Consequently, the problem dimensions are
|N| = 7 nodes, |C| = 8 connections, |P| = 4 products and |T| = 20 periods.
The length of all polyducts is L = 3, measured in terms of the number
of packages that a polyduct is able to store. A value of VP = 5000 m3

is used as the unit package volume. The pumping cost, CIc,p, is usu-
ally proportional to the polyduct length, and in this case it is set to
L US$/m3 for all c and p.

The proposed MILP approaches described in Herrán et al. (2010)
were illustrated by solving this application example under sev-
eral scenarios. These MILP approaches are composed by a complete
model and a simplified one which can be used when fulfillment of
depot demands requires pump operations during the entire plan-
ning horizon. All the scenarios were solved by both models using
CPLEX with ILOG OPL-Studio 4.2 (ILOG Inc., 2006) on an Intel Xeon
IV 2.8 GHz/2GB RAM processor. The relative MIP  gap tolerance and
the integrity tolerance were set to 1 × 10−4 and 1 × 10−5, respec-
tively. In Scenarios I and II the demand at all the destinations is 10
VPm3 for all the products. However, while in Scenario I the start/stop
cost factor CTc is set to 100,000 US$ for all polyducts, in Scenario II
this value is set to 500,000 US$. In Scenario III the start/stop cost fac-
tor CTc is reduced again to 100,000 US$, but the demand is increased
to 13 VPm3 for all the products at destinations D1 and D3, and to 18

VPm3 at D2. Table 1 summarizes the main characteristics of these
scenarios. These scenarios were chosen into show the utility of
the simplified model under certain circumstances. For example, if
there is a high start/stop cost (Scenario II) or a high demand pattern
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Table 1
CPU time (in s) needed by each algorithm to reach the optimal solution in all scenarios.

Scenario I Scenario II Scenario III

Demand Low Low High
Start/stop cost factor Low High Low
Model  to use Complete Complete/simplified Complete/simplified
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CPU  time (s) – complete model 19,475 

CPU  time (s) – simplified model × 

Optimal cost (US$) 2,759,400 

Scenario III), the simplified model is able to reach the same optimal
olution as given by the complete model with more than one order
f magnitude less time. However, in a low demand scenario and
hen the start/stop cost is very low compared to the pumping cost

Scenario I) the complete model should be used, since fulfillment
f depot demands would not require pump operations during the
ntire planning horizon, and consequently, the simplified model
ould give non-optimal solutions. In this case, the problem has 5245
ariables and 13,086 constraints, and the MILP algorithm needs
lmost 20,000 s to reach the optimal solution. Therefore, the GSMs
roposed in this paper could be a good alternative to efficiently
olve this problem.

Before solving all these scenarios by the metaheuristic algo-
ithms here proposed, the next sections show an analysis of each
ingle GSM for the problem here treated in Scenario II. We  chose this
cenario since, as can be seen from Table 1, it is less time consum-
ng when it is solved by CPLEX. First, Section 5.1 shows an analysis
f the best construction and neighborhood generation methods by
sing monotonous searches (MSS and VNS). Next, Section 5.2 shows
he performance of non-monotonous searches (TS and SA) together
ith an analysis of the robustness of SA algorithm, which seems to

e the best among all others when solving the problem here consid-
red. The performance improvement from using SMMC algorithms
ver SSMCs is presented in Section 5.3 for SA algorithm. This sec-
ion also shows how to further improve the performance given by
MMCs  by using a DMMC  algorithm. Section 5.4 shows a compar-
son of the best GSM against CPLEX for all the scenarios solved in
errán et al. (2010).  Finally, Section 5.5 shows a larger applica-

ion example than the ones presented in Herrán et al. (2010).  All
hese metaheuristics were implemented in C++ using the Borland
++ Builder 5 compiler and were solved with the same processor
s CPLEX.

.1. Monotonous searches: MSS  and VNS

All the metaheuristic presented in this paper are combina-
ions of improvement methods applied to solutions resulting from
onstruction heuristics (Cr,  Cl and Cq).  These improvements are
erformed by searching the neighborhoods generated around the
urrent solution by four different methods (Nr,  Nb,  Ns and Nm)
r a combination of them (Nc and Np).  This means that there are
ifferent implementations of each metaheuristic according to the
ethods selected to build new solutions and to generate neighbor-

oods. Thus, there are twelve different implementations of the MSS
lgorithm and six different implementations of the VNS algorithm.
eighborhoods are randomly explored in search of a better solu-

ion than the current one. The current solution (y) is automatically
eplaced by the current neighbor explored (y*) whenever y* is bet-
er than y. Experience on solving this problem demonstrates that
his strategy offers better results that a total exploration of neigh-
orhoods. Moreover, a value of K = 100 iterations was  used for both
SS  and VNS.

In order to compare the convergence among all the algorithms

ere developed, each one is run 25 times, and the average value of
he objective function together with the infeasibility degree is com-
ared for all the instances. In this way, results are more reliable than
9227 35,630
889 3685
4,312,275 3,493,650

the obtained ones when trying only one time each metaheuristic.
Note that the infeasibility degree, shown in Eq. (3),  is different from
zero if there are at least one unfeasible solution into the 25 times
each algorithm is run. Table 2 shows the results given by all the dif-
ferent implementations of the MSS  and VNS algorithms. This table
shows the number of feasible and optimal solutions found among
the 25 instances together with the average values of the infeasi-
bility degree and cost (in US$) of the best solutions found by each
algorithm after 100 s of computation. The last column also shows
these values for the best solution found among the 25 times each
algorithm is run.

As can be seen from this table the best construction heuristic is
Cq,  followed by Cl and finally Cr. Looking at the results for the VNS
algorithm, which includes all the neighborhood generation meth-
ods, it can be seen how the three generation methods are able to
reach feasible solutions all 25 times each algorithm is run. How-
ever, by using Cl instead of Cr the results are improved in terms of
cost value in all cases. Additionally, by using Cq instead of Cl,  the
cost values are further improved and some optimal solutions are
reached despite the short time the algorithm is run. Regarding the
neighborhood generation, the Nb operator gives the best results,
followed by Nr, Ns and Nm. Looking at the results for the MSS  algo-
rithm, since it uses different neighborhood generation methods, it
can be seen how Nb is able to reach feasible solutions all 25 times
each algorithm is run even using Cr as a construction method. The
Nr method is also able to reach some feasible solutions for all the
construction methods; however, it has worse quality than Nb in
terms of the average infeasibility degree and cost value. Finally, the
worst neighborhood generation method seems to be Nm,  since it
is unable to reach any feasible solutions even when it is combined
with Cq.  Fig. 8 shows the convergence of the average infeasibility
degree and cost function value along 100 s of computation for all
the construction heuristics used by the MSS–C*–Nr algorithm. In
this figure, and in all the next ones, the cost function values associ-
ated to feasible solutions are marked with a circle. Fig. 9 is similar
to Fig. 8, but comparing all the neighborhood generation methods
used by the MSS–Cr–N* algorithm. Although Fig. 9 shows how the
Nb operator is the only one able to reach feasible solutions, it could
be trapped in a local minimum due to “premature convergence”. To
avoid this problem, the VNS algorithm is able to swap to a different
neighborhood operator according to Nc or Np strategies. As can be
seen from Table 2, both strategies improve the results reached by
MSS–C*–Nb for all the construction methods and feasible solutions
are always reached for all 25 instances run. Fig. 10 shows the con-
vergence of both algorithms (VNS–Cr–Nc and VNS–Cr–Np)  against
MSS–Cr–Nb.

5.2. Non-monotonous searches: TS and SA

The non-monotonous searches, TS and SA, always use Np for
the neighbor generation. Therefore, there are only three different
implementations of these algorithms. A value of K = 100 iterations

was  used for the TS algorithm and a size of 200 solutions was used
for the taboo list. This value was  chosen to be greater than the size
of the neighborhoods generated by any of the methods used by
Np. Experience from solving this problem demonstrates that no
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Table 2
Results of all the implementations of MSS  and VNS algorithms after 100 s of computation.

Implementation No. of feasible solutions No. of optimal solutions Average solution Best solution

Infeas Cost (US$) Infeas Cost (US$)

MSS–Cr–Nr 19 0 0.80 10,368,911 0.00 7,966,075
MSS–Cl–Nr  12 0 3.04 7,819,847 0.00 6,482,900
MSS–Cq–Nr  21 0 0.60 8,054,168 0.00 6,372,100
MSS–Cr–Nb 25 0 0.00 4,837,878 0.00 4,817,775
MSS–Cl–Nb 25 0 0.00 4,822,392 0.00 4,812,275
MSS–Cq–Nb  25 0 0.00 4,820,960 0.00 4,813,650
MSS–Cr–Ns  0 0 25.84 15,659,627 14.00 13,123,950
MSS–Cl–Ns  0 0 22.36 6,166,704 11.00 4,469,525
MSS–Cq–Ns  21 0 0.16 8,072,756 0.00 5,454,200
MSS–Cr–Nm 0 0 72.48 31,928,342 56.00 29,898,275
MSS–Cl–Nm 0 0 34.84 7,949,719 22.00 5,507,425
MSS–Cq–Nm  0 0 15.80 15,484,336 14.00 15,430,700
VNS–Cr–Nc  25 0 0.00 4,494,576 0.00 4,316,350
VNS–Cl–Nc  25 0 0.00 4,335,498 0.00 4,315,275
VNS–Cq–Nc  25 0 0.00 4,323,837 0.00 4,314,000
VNS–Cr–Np  25 0 0.00 4,389,946 0.00 4,314,900
VNS–Cl–Np  25 0 0.00 4,335,222 0.00 4,314,425
VNS–Cq–Np  25 0 0.00 4,322,810 0.00 4,313,475
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mprovement is achieved on the quality of solutions by increasing
he size of the taboo list over this value. Regarding SA, a preliminary
tudy was made in order to fix an adequate order of magnitude for K,

 and To, resulting in the values K = 1000,  ̨ = 0.990 and To = 5 × 106.
able 3 shows the results given after 100 s of computation by
ll the different implementations of TS and SA algorithms. These

esults show how both algorithms are able to reach some optimal
olutions for all the construction methods. Moreover, the SA algo-
ithm improves the performance of TS. These algorithms are able to
void the premature convergence to local minima by including the
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possibility to accept worse solutions than the current one during
the search. Fig. 11 shows the convergence of both algorithms (TS
and SA) together with the best implementations of the monotonous
searches when using Cr as a construction method; i.e. MSS–Nb–Cr
and VNS–Np–Cr.  As can be seen, the SA algorithm is the first one
able to reach feasible solutions. Moreover, after 70 s of computation

it provides the best feasible solutions out of all of them. Regard-
ing TS, notice how it gives worse results than VNS. It could be
due to the fact that VNS restarts from new solutions (sometimes
very good solutions) every K iteration, while TS only applies an
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Table  3
Results of all the implementations of TS and SA algorithms after 100 s of computation.

Implementation No. of feasible solutions No. of optimal solutions Average solution Best solution

Infeas Cost (US$) Infeas Cost (US$)

TS–Cr–Np 25 0 0.00 4,537,090 0.00 4,312,950
TS–Cl–Np  25 2 0.00 4,365,985 0.00 4,312,275
TS–Cq–Np  25 4 0.00 4,325,143 0.00 4,312,275
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SA–Cr–Np 25 6  

SA–Cl–Np  25 12 

SA–Cq–Np  25 16 

scaping movement, which used to be closer to the previous solu-
ion. Another cause could be that VNS has a faster implementation
han TS since VNS does not have to check the taboo list, thus, being
ble to explore more solutions than TS along the same CPU time.

Finally, we tested the robustness of the SA algorithm (the best
SM found among all others) by evaluating its performance for five
ifferent parameter settings randomly generated around the refer-
nce values. Results are shown in Table 4, where the first instance
orresponds to these reference values and Cr was  the selected con-
truction method. The average cost function value among all the
nstances for all the tests, including the reference one, is 4,416,313
S$ with a standard deviation of 18,511.74 US$ (0.42%). More-
ver, several optimal solutions are reached in each case. Fig. 12
lso shows the convergence of both terms of the objective func-
ion. It can be seen how all the instances are able to reach feasible
olutions after 10 s of computation and how the cost function value
onverges with the optimal one in each case.
.3. Multiple Markov Chain algorithms

As it was discussed in Section 4.1,  the probability of not
chieving an optimal solution when running SSMC decreases

0 20 40 60 80 100
0

2

4

6

8

10

Time (s)

In
fe

as

MSS-Cr-Nb
VNS-Cr-Np
TS-Cr -Np
SA-Cr-Np

Fig. 11. Convergence of all the proposed GSMs
0.00 4,352,833 0.00 4,312,275
0.00 4,312,275 0.00 4,312,275
0.00 4,312,595 0.00 4,312,275

exponentially as the number of Markov chains (J) increases, with
only a linear increase of the CPU time. Hence SMMC  algorithms are
a good approach to improve the quality of the solutions reached by
the corresponding SSMC algorithms. In order to test the influence of
parameter J over the algorithm performance, different SMMC  have
been run with values from J = 2 to J = 6. This analysis was only done
for SA, since it was  the best SSMC algorithm found among all those
proposed in this paper. Table 5 shows the best solutions found by
each instance of SMMC–SA after 500 s of computation using the
reference parameters K = 1000,  ̨ = 0.990 and To = 5×106. As can be
seen, the number of instances which reach the optimal solution
improves as J increases; however, as it is shown in Fig. 13(a), it
results in a slower convergence since each SSMC runs less number
of iterations on the same computational time. These results show
how the convergence behavior and the robustness of the algorithm
are improved by using multiple short runs instead of one long single
run with the same total computational time. However, it is neces-
sary to have enough CPU time to let the SMMC–SA converge to

good quality solutions. Fig. 13(b) shows how the SMMC–SA algo-
rithm needs more than 100 s of computation to reach better results
than SSMC–SA for J = 2, more than 200 s if J = 3, more than 300 if J = 4,
etc. Notice how the SMMC–SA algorithm is able to reach 25 optimal
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Table 4
Results of five different test cases of SA algorithm after 100 s of computation.

Parameter Reference Test no. 1 Test no. 2 Test no. 3 Test no. 4 Test no. 5

K 1000 119% 80% 134% 77% 145%
To 1,000,000 70% 107% 121% 140% 80%
˛ 0.990 99% 98% 102% 95% 102%

Average cost (US$) 4,352,833 4,393,563 4,361,061 4,392,505 4,356,250 4,361,175
No.  of optimal solutions 6 6 5 7 8 6

0 20 40 60 80 100
0

1

2

3

4

5

Time (s)

In
fe

as

0 20 40 60 80 100
0.5

1

1.5

2
x 107

Time (s)
C

os
t (

U
S$

)

Reference
Test No1
Test No2
Test No3
Test No4
Test No5

Fig. 12. Robustness of the developed SA algorithm.

Table 5
Results of SMMC–SA for different values of J after 500 s of computation.

Implementation No. of feasible solutions No. of optimal solutions Average solution Best solution

Infeas Cost (US$) Infeas Cost (US$)

SSMC–SA 25 10 0.00 4,351,813 0.00 4,312,275
SMMC–SA–J  = 2 25 15 0.00 4,337,540 0.00 4,312,275
SMMC–SA–J  = 3 25 19 0.00 4,327,275 0.00 4,312,275

s
b
u
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e
u
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J
S
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w

T
R

SMMC–SA–J  = 4 25 23 

SMMC–SA–J  = 5 25 25 

SMMC–SA–J  = 6 25 3 

olutions for J = 5 but not for J = 6. Thus, if J × time is very large for
etter results, the time consumption can be a problem limiting the
se of SMMC–SA. This problem may  constrain SMMC–SA to work
n a rather small number of Markov chains and/or require short-
ning the run length of each individual Markov chain. However,
sing fewer number of Markov chains or shortening the run length
f the individual Markov chain can decrease the effectiveness of
he algorithm. This limitation can be solved using parallel comput-
ng by distributing the J Markov chains to P concurrently available
rocessors running J/P Markov chains each in a PMMC–SA algo-
ithm, and where each one uses a separate pseudorandom number
enerator to explore different areas of the search space.

Finally, the performance of DMMC–SA has been evaluated for

 = 6 with N = 3, leading to Jn = 2 Markov chains running on each
MMC–SA algorithm. Notice that there are two other different con-
gurations; i.e. (N = 2, Jn = 3) and (N = 6, Jn = 1), but after testing them
e saw that they gave worse results than the selected one. Again,

able 6
esults of DMMC–SA–(N = 3,Jn = 2) for different migration strategies after 500 s of comput

Implementation No. of feasible solutions No. of optimal solutions 

SMMC–SA–J = 6 25 3 

DMMC–SA–RI 25 15 

DMMC–SA–FC 25 10 

DMMC–SA–MS 25 15 
0.00 4,317,315 0.00 4,312,275
0.00 4,312,275 0.00 4,312,275
0.00 4,313,362 0.00 4,312,275

the cooling schedule is given by a temperature change performed
every K = 1000 iterations, linearly decreasing from To = 5 × 106 with

 ̨ = 0.990. The performance of this distributed SA was evaluated and
compared with a unique SMMC–SA running J = 6 Markov chains
independently. Results are shown in Table 6, where the DMMC–SA
was  run for a value of R (number of iterations without communi-
cation among the N SMMC–SA algorithms) equal to 50 and for the
three different topologies described in Section 4.2.  As can be seen,
the number of optimal solutions increases by allowing the com-
munication between N = 3 different SMMC–SA with Jn = 2 running
in parallel instead of having a single SMMC–SA with J = 6. More-
over, the best migration strategy seems to be Master Slave since it
is able to not only increase the number of optimal solutions, but

also decrease the average cost function value. Finally, notice how
having P = 3 available processors, the parallel version of this algo-
rithm (PDMMC–SA) would decrease the CPU time needed to reach
the same solution to TDMMC–SA/3.

ation.

Average solution Best solution

Infeas Cost (US$) Infeas Cost (US$)

0.00 4,313,362 0.00 4,312,275
0.00 4,393,010 0.00 4,312,275
0.00 4,313,233 0.00 4,312,275
0.00 4,313,102 0.00 4,312,275
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Fig. 13. Convergence of SMMC–

Table 7
CPU time (s) needed by each algorithm to reach the optimal solution in all scenarios.

Solver Scenario I Scenario II Scenario III

CPLEX–MILP complete model 19,475 9227 15,630
CPLEX–MILP simplified model × 889 1685
DMMC–MSS–Cq–Nb–(N  = 5,Jn = 5)–MS 1245 943 748
DMMC–VNS–Cq–Np–(N  = 5,Jn = 5)–MS 842 854 645
DMMC–TS–Cq–Np–(N  = 5,Jn = 5)–MS 547 763 565
DMMC–SA–Cq–Np–(N  = 5,Jn = 5)–MS 234 312 258
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the GSMs. As can be seen, SA is able to reach the optimal solution.
This optimality was  guaranteed by CPLEX when introducing the
best known SA solution as an initial guess for the MILP formula-
tion. Finally, it can also be seen how the solution given by CPLEX
 = Optimal solution was not found.

.4. Comparison against CPLEX under several scenarios

Usually, at the completion time of the current planning hori-
on it moves forward and a rescheduling process based on updated
roblem data is triggered again over the new horizon. Obviously,
he algorithm employed for this rescheduling process has to be fast
nough to reach the optimal solution before the beginning of the
ew planning horizon. As it was said above, under certain scenarios
he simplified model proposed in Herrán et al. (2010) can be used
nstead of the complete one in order to reduce the CPU time needed
o reach the optimal solution. Such scenarios are those where the
ulfillment of depot demands requires pump operations during the
ntire planning horizon or those where the pumping cost is very
igh to avoid stoppage operations. However, the complete model
hould always be used, since it is able to reach the optimal solution
n any situation, as opposed to the simplified one which could lead to
ub-optimal solutions in some scenarios. In these cases, the GSMs
roposed in this paper, which always evaluate the objective func-
ion over the complete model,  give a good alternative to the MILP
lgorithm. In order to show this, the performance of each GSM is
valuated against CPLEX for all the scenarios presented in Herrán
t al. (2010).

Table 7 shows the CPU time needed to reach the optimal solution
n each scenario by solving both models (complete and simplified)

ith CPLEX together with CPU time needed by the best implemen-
ation of each GSM using the complete model.  After the analysis

ade in the previous section, it resulted that SMMC–J  = 5 is the
est implementation of the SA algorithm for Scenario II, since it

s always able to reach an optimal solution in less than 500 s for
his scenario. However, after doing a similar analysis for all the
cenarios and GSMs it resulted that, in general, the best GSM imple-
entation for that problem is DMMC–(N = 5,Jn = 5)–MS. As can be
een from Table 7, most of the GSMs reduce the CPU time required
y CPLEX in running the complete model in more than one order
f magnitude. Moreover, even in for Scenarios II and III, where the
)b(     Expanded  graph  of  (a)

SA for different values of J.

simplified model can be used, several GSMs perform better results
than CPLEX.

5.5. Solving a larger scenario

Finally, the performance of each GSM is evaluated against CPLEX
under a larger scale problem than the problems seen in the previous
scenarios. This problem (Scenario IV) considers the same network
as before, but with a larger planning horizon composed by |T| = 30
periods of � = 5 h length each. Data for this problem are the same
as for Scenario I but increasing the demand at all the destinations to
13 VPm3 for all the products. Moreover, two additional production
runs were scheduled at each refinery to cover the additional periods
from 21 to 30. They were similar to the scheduled productions from
periods 1 to 10 used in previous scenarios. The complete model
for this larger scenario has 7971 variables and 19,780 constraints.
Fig. 14 shows the convergence of the GSMs implementations shown
in Table 7 along 5 h of computation together with the best cost
function value found by CPLEX after 40 h of computation. As can be
seen, all the GSMs are able to improve the best solution found by
CPLEX within the 5 h these GSMs were run.

Since no improvement was met by all the GSMs after 5 h of
computation, the solution obtained from these GSMs was used as
an initial guess for the MILP formulation. Results can be found in
Table 8. This table shows the lower bound and the best cost func-
tion value found by CPLEX after 40 h of computation together with
the convergence of the implementations shown in Table 7 for all
Fig. 14. Comparison of all GSMs against CPLEX for Scenario IV.
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Table 8
Performance of all the GSMs against CPLEX for Scenario IV.

Time Lower bound CPLEX MSS  VNS TS SA
hh:mm:ss Cost (US$) Cost (US$) Cost (US$) Cost (US$) Cost (US$)

00:00:05 * × 5,520,050 7,872,250 7,502,200 10,546,550
00:03:00 2,920,140.1 × 4,235,275 4,362,450 4,489,750 9,453,175
00:05:00 2,943,984.7 × 4,180,875 4,090,325 4,021,375 9,000,050
00:10:00 2,962,482.6 × 4,115,550 4,061,800 3,917,825 8,765,875
00:50:00 3,084,452.2 8,378,150 4,040,625 3,840,250 3,835,475 6,018,475
02:00:00 3,135,627.1 6,110,500 4,002,300 3,815,175 3,820,425 3,723,650
05:00:00 3,215,547.7 4,875,525 3,981,675 3,759,375 3,797,225 3,710,575
10:00:00 3,239,816.8 4,768,475 3,961,050 3,743,875 3,781,525 �

15:00:00 3,263,188.0 4,445,750 3,916,175 3,741,500 3,770,725 �

20:00:00 3,308,159.0 4,197,825 3,773,500 3,740,250 3,768,025 �

40:00:00 3,323,242.7 4,090,050 3,762,300 3,736,550 3,736,025 �

Improvement on solution quality (%) 8.01% 8.64% 8.66%

× ution 
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= Feasible solution was not found; � = optimal solution was  found; Bold = the sol
tart  used by CPLEX as a post-optimization algorithm. Italic = CPLEX used as a post-

fter 40 h of computation can be improved in more than 8% by sup-
lying a MSS, VNS or a TS solution as a warm start for the MILP
ormulation used by CPLEX.

. Conclusions

The metaheuristic optimization methods described in this
aper provide an easy way for solving a combinatorial opti-
ization problem; namely, planning transportation of multiple

etroleum products in a multi-pipeline system. These methods
re an alternative to the MILP algorithm for large scale problems.
ll the metaheuristics presented in this paper are combinations of

mprovement methods applied to solutions resulting from different
onstruction heuristics: purely random (Cr), based on the solution
f a linear relaxation of the original MILP model (Cl), and based on
he solution of a quadratic relaxation (Cq). The improvements are
erformed by searching the neighborhoods generated around the
urrent solution by four different methods, replace (Nr), batch (Nb),
wap (Ns) and move (Nm), or a combination of them (Nc and Np).
ll these construction and neighborhood generation methods were
pecifically designed by using the knowledge of the problem to be
olved. This makes the proposed metaheuristic optimization meth-
ds converge at an acceptable speed for a good quality solution.

The application example proposed in this paper was solved by
our different GSMs: MSS, VNS, TS and SA. The best results were
chieved by SA using Cq as the method to start the search and Np
or the generation of neighbors around the current solution. This
s due to the fact that SA algorithms can accept worse solutions
han the current one in a stochastic search, avoiding the prema-
ure convergence to local minima. The performance of the basic SA
lgorithm was improved by a Sequential Multiple Markov Chain SA
erforming J independent versions of SA on a single processor com-
uter, using the same search space, neighborhood generation and
ooling schedule. Results showed how the convergence behavior
nd the robustness of SA can be improved by using multiple short
uns instead of one long single run with the same total CPU time.
oreover, a distributed version of this algorithm was  implemented

o further improve the performance given by the SMMC. After ana-
yzing the performance of each single algorithm, a comparison of
he best implementation of each GSM against CPLEX was  presented
or all the scenarios solved in Herrán et al. (2010).  The best GSM
mplementation for the problem under study was a DMMC  with

 = 5 SMMCs  running Jn = 5 Markov chains each with a Master Slave

igration strategy at every R = 50 major iterations. Results showed

ow all these algorithms are able to reduce the time needed to
each the optimal solution by the MILP algorithm run by CPLEX in
ore than two orders of magnitude.
quality improves the best CPLEX solution after 40 h of computation. Italic = warm
ization algorithm.

Finally, the performance of each metaheuristic was evaluated
against CPLEX under a larger scale scenario than those proposed in
Herrán et al. (2010), leading to solutions that CPLEX could not find
after several hours of computation. For this reason, the authors are
currently working on developing other metaheuristic algorithms,
as population based, to efficiently solve the same problem here
proposed.

Acknowledgments

The authors would like to thank the Spanish Science and
Technology Ministry for their support through project DPI2002-
02924 and Madrid Autonomous Community through project
S-0505/DPI/0391.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.compchemeng.2011.10.003.

References

Alba, E. & Troya, J. M.  (2000). Influence of the migration policy in parallel dis-
tributed GAs with structured and panmictic populations. Applied Intelligence,
12,  163–181.

Aarts, E. & Lenstra, J. K. (2003). Local Search in combinatorial optimization. Princeton
University Press.

Altiparmak, F., Gen, M.,  Lin, L. & Paksoy, T. (2006). A genetic algorithm approach for
multi-objective optimization of supply chain networks. Computers and Chemical
Engineering,  51,  196–215.

Azencott, R. (1992). Sequential simulated annealing: speed of convergence and
acceleration techniques. In R. Azencott (Ed.), Simulated annealing: Parallelization
techniques (pp. 1–9). New York: John Wiley and Sons.

Bazaraa, M.  S., Jarvis, J. J. & Sherali, H. D. (1990). Linear programming and network
flows.  New York: Wiley., 394–418

Cafaro, D. C. & Cerdá, J. (2004). Optimal scheduling of multiproduct pipeline systems
using a nondiscrete MILP formulation. Computers and Chemical Engineering, 28,
2053–2068.

Cafaro, D. C. & Cerdá, J. (2008). Dynamic scheduling of multiproduct pipelines with
multiple delivery due dates. Computers and Chemical Engineering, 32,  728–753.

Chen, C.-L. & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon sup-
ply chain networks with uncertain product demands and prices. Computers and
Chemical Engineering, 28,  1131–1144.

Cruz, J. M.,  Andrés, B., Herrán, A., Besada, E. & Fernández, P. (2003). Multiobjective
optimization of the transport in oil pipelines networks. In 9th IEEE interna-
tional conference on emerging technologies and factory automation (Vol. 1) (pp.
566–573).

Cruz, J. M.,  Risco, J. L., Herrán, A. & Fernández, P. (2004). Hybrid heuristic and math-
ematical programming in oil pipelines networks. In Congress on evolutionary

computation. CEC2004 (Vol. 1) Portland Marriot Downtown, Portland, USA, (pp.
1479–1486).

Cruz, J. M.,  Herrán, A., Risco, J. L. & Andrés, B. (2005). Hybrid heuristic and mathe-
matical programming in oil pipelines networks: Use of immigrants. Journal of
Zhejiang University Science, 6A(1), 9–19.

http://dx.doi.org/10.1016/j.compchemeng.2011.10.003


hemica

D

D

G
H

H

I

J

K

L

L

L

M

A. Herrán et al. / Computers and C

efersha, F. M.  & Chen, M.  (2008). A parallel multiple Markov chain simulated
annealing for multi-period manufacturing cell formation problems. International
Journal of Advanced Manufacturing Technology, 37(1–2), 140–156.

rexl, A. (1997). Lot sizing and scheduling – Survey and extensions. European Journal
of  Operations Research, 99,  221–235.

lover, F. & Laguna, M.  (1997). Tabu search.  Kluwer.
ansen, P. & Mladenovic, N. (1999). An introduction to variable neighborhood

search. In S. Voss, S. Voss, et al. (Eds.), Metaheuristics: Advances and trends in
local  search paradigms for optimization (pp. 433–458). Kluwer.

errán, A., de la Cruz, J. M.  & de Andrés, B. (2010). A mathematical model for plan-
ning  transportation of multiple petroleum products in a multi pipeline system.
Computers and Chemical Engineering, 34,  401–413.

LOG Inc. (2006). ILOG OPL Studio 4.2 users manual. 1080 Linda Vista Ave. Mountain
View, CA 94043. http://www.ilog.com.

anak, S. L., Lin, X. & Floudas, C. A. (2007). A new robust optimization approach for
scheduling under uncertainty: II. Uncertainty with known probability distribu-
tion. Computers and Chemical Engineering, 31,  171–195.

irkpatrick, S., Gelatt, C. D. & Vecchi, M.  P. (1983). Optimization by simulated anneal-
ing. Science, 220, 671–680.

ee, S.-Y. & Lee, K. G. (1996). Synchronous and asynchronous parallel simulated
annealing with multiple markov chains. IEEE Transactions on Parallel and Dis-
tributed Systems, 7, 903–1007.

engauer, T. (1990). Combinatorial algorithms for integrated circuit layout.  John Wiley

and Sons. (pp. 427–446)

uo, C. & Rong, G. (2007). Hierarchical approach for short-term scheduling in refiner-
ies.  Industrial and Engineering Chemical Research, 46,  3656–3668.

artí, R. (2003). Multistart methods. In F. Glover, A. Gary, & Kochenberger (Eds.),
Handbook of metaheuristics (pp. 355–368). Kluwer Academic.
l Engineering 37 (2012) 248– 261 261

Metropolis, N., Rosenbluth, A., Rosenbluth, M.,  Teller, A. & Teller, E. (1953). Equations
of  state calculations by fast computing machines. Journal of Chemical Physics,  21,
1087–1092.

Milidiú, R. L., Pessoa, A. & Laber, E. (2003). The complexity of makespan minimization
for pipeline transportation. Theoretical Computer Science, 306,  339–351.

Mirhassani, S. A. & Ghorbanalizadeh, M. (2008). The multiproduct pipeline schedul-
ing system. Computers and Mathematics with Applications, 56(4), 891–897.

Pereira, A., Carvalho, F., Pedroso, J. & Constantino, M.  (2003). Iterated local search
and Tabu search for a discrete lot sizing and scheduling problem. In META-
HEURISTICS: Computer decision-making (combinatorial optimization book series).
The  Netherlands: Kluwer Academic Publishers.

Rejowski, R., Jr. & Pinto, J. M.  (2003). Scheduling of a multiproduct pipeline system.
Computers and Chemical Engineering, 27,  1229–1246.

Rejowski, R., Jr. & Pinto, J. M.  (2004). Efficient MILP formulations and valid cuts
for  multiproduct pipeline scheduling. Computers and Chemical Engineering, 27,
1511–1528.

Rejowski, R., Jr. & Pinto, J. M.  (2008). A novel continuous time representation for the
scheduling of pipeline systems with pumping yield rate constraints. Computers
and  Chemical Engineering, 32,  1042–1066.

Relvas, S., Barbosa-Póvoa, A. P. F. D. & Matos, H. A. (2010). Heuristic batch sequencing
on a multiproduct oil distribution system. Computers and Chemical Engineering,
33,  712–730.

Sasikumar, M.,  Prakash, P. R., Patil, S. M.  & Ramani, S. (1997). PIPES: A heuristic

search model for pipeline schedule generation. Knowledge-Based Systems, 10,
169–175.

Schrijver, A. (1986). Theory of linear and integer programming.  Chichester: Wiley.
Yagiura, M. & Ibaraki, T. (2002). Local search. In P. M.  Pardalos, & M.  G. C. Resende

(Eds.), Handbook of applied optimization (pp. 104–123). Oxford University Press.

http://www.ilog.com/

	Global Search Metaheuristics for planning transportation of multiple petroleum products in a multi-pipeline system
	1 Introduction
	2 Model development
	2.1 Problem description
	2.2 Solution representation for metaheuristics
	2.3 Construction heuristics
	2.4 Neighborhood generation

	3 Global Search Metaheuristics
	3.1 Multi-Start Search
	3.2 Variable Neighborhood Search
	3.3 Taboo Search
	3.4 Simulated Annealing

	4 Multiple Markov Chain based algorithms
	4.1 Sequential Multiple Markov Chain based algorithms
	4.2 Distributed Multiple Markov Chain based algorithms
	4.3 Parallel Multiple Markov Chain based algorithms

	5 Numerical examples
	5.1 Monotonous searches: MSS and VNS
	5.2 Non-monotonous searches: TS and SA
	5.3 Multiple Markov Chain algorithms
	5.4 Comparison against CPLEX under several scenarios
	5.5 Solving a larger scenario

	6 Conclusions
	Acknowledgments
	Appendix A Supplementary data


