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Abstract: 

This study presents the development and application of a systematic model-based 

framework for bioprocess optimization. The framework relies on the identification of 

sources of uncertainties via global sensitivity analysis, followed by the quantification of 

their impact on performance evaluation metrics via uncertainty analysis. Finally, 

stochastic programming is applied to drive the process development efforts forward 

subject to these uncertainties. The framework is evaluated on four different process 

configurations for cellulosic ethanol production including Simultaneous 

Saccharification and Co-Fermentation and Separate Hydrolysis and Co-Fermentation 

(SSCF and SHCF, respectively) technologies in different operation modes (continuous 

and continuous with recycle). The results showed that parameters related to 

pretreatment (e.g. activation energy of the reaction for glucose production, order of 

reaction, etc.), hydrolysis (inhibition constant for xylose on conversion of cellulose and 

cellobiose, etc) and co-fermentation (ethanol yield on xylose, inhibition constant on 
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microbial growth, etc.), are the most significant sources of uncertainties affecting the 

unit production cost of ethanol with a standard deviation of up to 0.13 USD/gal-ethanol. 

Further stochastic optimization demonstrated the options for further reduction of the 

production costs with different processing configurations, reaching a reduction of up to 

28% in the production cost in the SHCF configuration compared to the base case 

operation. Further, the framework evaluated here for uncertainties in the technical 

domain, can also be used to evaluate the impact of market uncertainties (feedstock 

prices, selling price of ethanol, etc) and political uncertainties (such as subsidies) on the 

economic feasibility of lignocellulosic ethanol production.   

Keywords: Uncertainty analysis, sensitivity analysis, stochastic optimization, 

bioethanol production, Monte-Carlo simulations  

 

1. Introduction 

Process optimization is an important area within process systems engineering (PSE), 

actively used in the development, decision making, and subsequent improvement of 

chemical processes (e.g. for the design, synthesis and operation), aiming at maximizing 

the process performance while at the same time minimizing the processing costs 

(Grossmann & Guillén-Gonsálbez, 2010). Many mathematical programming techniques 

are applied in process optimization, such as nonlinear programming, mixed-integer non-

linear programming, multi-objective optimization, quadratic programming, among 

others (Shapiro, Dentcheva, & Ruszczyński, 2009).  

In reality the above-mentioned programming techniques can be further complicated by 

several sources of uncertainties that can be encountered in practice when solving 
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optimization problems, where the variability of uncertain parameters is commonly 

neglected (Acevedo & Pistikopoulos (1996); Grossmann & Guillén-Gonsálbez (2010)). 

The process optimization is a particularly challenging task in (bio)process development, 

notably in processes such as cellulosic bioethanol production because several 

processing configuration options are available and the plant operation is characterized 

by tight cost and yield margins. In addition, the uncertainties present in the system as a 

result of technological factors and, economical factors as well as the uncertainty in the 

mathematical model and parameters employed to perform the optimization task pose 

severe challenges. A number of publications concerning optimization under uncertainty 

are available, covering a range of topics, such as process synthesis, design and control 

under uncertainty (Acevedo & Pistikopoulos (1996); Pintarič & Kravanja (2008); 

Ricardez-Sandoval, Douglas, & Budman (2011)), planning under uncertainty (Hansen, 

Grunow, & Gani, 2011), uncertainty on scheduling (Wang & Rong, 2010), strategic and 

global supply chain networks (Verderame & Floudas (2011); You & Grossmann 

(2008)), etc. Most of those publications, when addressing the uncertainty of the 

optimization problem, have focused on the operational parameters and external sources 

of uncertainties, for example, product demand and uncertainty on raw material 

availability. 

As far as bioethanol production is concerned, optimization techniques have also been 

implemented with the aim of optimizing the production using deterministic approaches, 

which ignores the sources of uncertainties of the production process. The publications 

have mainly focused on reducing production cost (Karuppiah, Peschel, Grossmann, 

Martín, Martinson, & Zullo, 2008), optimization of water consumption (Martín, 

Ahmetovič, & Grossmann, 2011), or identifying the optimal processing route for a 
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biorefinery with ethanol as product (Zondervan, Nawaz, de Haan, Woodley, & Gani 

(2011); Bao, Ng, Tay, Jiménez-Gutiérrez, & El-Halwagi (2011); Alvarado-Morales, 

Terra, Gernaey, Woodley, & Gani, (2009)) .  

Some studies such as Kasaš, Kravajna, & Pintarič (2011) considered uncertainties and 

have performed stochastic optimization for bioethanol production with the aim of 

finding a flexible process flowsheet. However, the uncertainties related to the 

parameters characterizing the processing and separation technologies involved in 

bioethanol production are rarely considered. This in turn may lead to underestimation of 

the uncertainties in the prediction of key performance indices of bioprocesses such as 

yield and unit production cost. To address these uncertainties, it is required to perform a 

formal and thorough uncertainty and sensitivity analysis.   

Therefore, the objective of this paper is to develop a systematic framework for the 

optimization of bioprocesses subject to various sources of uncertainties. The framework 

is evaluated on a case study focusing on lignocellulosic bioethanol production. The 

problem statement in this case study is formulated as follows: given a process 

flowsheet, an operational configuration and feedstock composition, how can an engineer 

predict and identify the uncertainty of the main performance criteria considered in plant 

design and further optimize the performance metrics – e.g. bioethanol yield and 

concentration, water recovery, energy consumption, operational cost, among others? 

The process consists of four main operation steps: acid pre-treatment, enzymatic 

hydrolysis, fermentation and downstream processes. Four different process 

configurations are investigated: 1. Simultaneous Saccharification and Co-Fermentation 

in Continuous operation with Recycle of solids (SSCF-C_RECY), 2. Simultaneous 

Saccharification and Co-Fermentation in Continuous operation (SSCF-C), 3. Separate 
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Hydrolysis and Co-Fermentation in Continuous operation with Recycle for both unit 

operations (SHCF with double recycle), and 4. Separate Hydrolysis and Co-

Fermentation working in continuous mode with recycle for the first unit operation while 

continuous operation is applied to the co-fermentation reactor (SHCF with single 

recycle). 

2. A framework for model-based process optimization under 

uncertainty  

The systematic framework for model-based optimization under uncertainty illustrated in 

Figure 1, consists of 5 main steps and several sub-steps which guide the user in solving 

a stochastic optimization problem. The framework includes a number of methods and 

tools such as the Monte-Carlo method for uncertainty analysis, global techniques for 

sensitivity analysis and Monte-Carlo based stochastic optimization (Figure 2). 

2.1. Systematic Model-Based Framework for Optimization under Uncertainty 

2.1.1. Objective and Needs 

The systematic model-based optimization framework starts with the definition of the 

optimization objective, such as, the yield requirement from the raw materials, a 

productivity enhancement, a reduction in the production cost, among others.  

2.1.2. Process Configurations and Modelling 

The process model development step involves the collection, analysis and identification 

of the reliable mathematical models for the different sections of the bioprocess 

configurations selected for the study. If a suitable overarching model is not available, it 

is necessary to direct a substantial effort towards generating and validating the required 

sub-parts of the model, which in itself needs a focused, systematic and structured 
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approach including model identification and uncertainty analysis techniques addressed 

specifically in Sin et al. (2010).  In certain cases data may be scarce, difficult to obtain 

and/or the available data may be encumbered with great uncertainties, and in such cases 

new experimental data may have to be produced. Following this step, different process 

flowsheets are generated and implemented in simulation software, with the aim of 

analyzing and selecting the best process configuration according to the optimization 

objective (Morales-Rodriguez, Meyer, Gernaey, & Sin (2011a); Morales-Rodriguez, 

Meyer, Gernaey, & Sin (2011b)). 

2.1.3. Screen and Identify significant Sources of Uncertainties 

In the third step, the uncertainty and sensitivity analysis are performed to identify the 

critical process operational variables and parameters in the system affecting the selected 

performance criteria. An important element here is the identification of sources of 

uncertainties in the system. The uncertainty analysis is carried out using the Monte-

Carlo technique, which involves four steps (see Figure 2): (i) specification of input 

uncertainty, (ii) sampling of (uncertain) parameters (Latin Hypercube Sampling, LHS) 

where it is in fact very important to consider the correlations between the parameters of 

the original model, in order to increase the reliability of the sampling procedure, (iii) 

Monte-Carlo simulations with the sampled parameter values and (iv) representation of 

uncertainty (e.g. mean, standard deviation, variance, percentile (Helton & Davis, 

2003)). 

For the sensitivity analysis, the standardized regression coefficient (SRC) method is 

chosen as it provides a good approximation to a global sensitivity measure with an 

affordable computational demand compared with more computational exhaustive global 

sensitivity analysis methods such as FAST or Sobol’s sensitivity indices (Sin, Gernaey, 
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& Lantz, 2009). The SRC method involves building linear regression models on the 

output of the Monte-Carlo simulations (Helton & Davis, 2003). For each model output, 

a linear multivariate model is fitted to the (scalar) output of the Monte Carlo simulations 

relating model output y to uncertain parameter vectors, iθ : 

 reg i i
i

y a b θ= + ⋅∑  (1) 

To obtain the standardised regression coefficients, βi, the regression coefficients ib  are 

scaled using the standard deviations of uncertain parameters and output of the Monte-

Carlo simulations, ( )ii y ibθβ σ σ= ⋅ . The SRC method provides a global sensitivity 

measure, βi, which is a quantitative measure of how much each parameter contributes to 

the variance (uncertainty) of the model predictions. This sensitivity measure is then 

used as basis to identify and select the most critical parameters involved in the process. 

The main goal of performing the sensitivity analysis is that the complexity of the 

stochastic optimization problem (step 4, see 2.1.4) can be reduced by concentrating the 

effort just on the parameters which are most influential – or ranking highest – on the 

outputs of the process model.  

2.1.4. Optimization under Uncertainty 

In the fourth step, a stochastic process optimization study is carried out. The generic 

mathematical form of the optimization problem is as shown in Eq. (2) (Kleywegt, 

Shapiro, & Homem-de-Mello, 2001): 
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The objective function is composed of a deterministic term on the one hand ( Tc x , 

where Tc represents a constant vector of economic information and x  is the vector of 

continuous variables) and an uncertain term ( )( ), ix θf  on the other hand, of which the 

expected value ( ),s ix θ  E f  is used to represent the uncertainty as a function of the 

optimization variables and uncertain parameters (θi). For θi, i indicates the ith uncertain 

parameter, whose value is located between an upper and lower boundary ( UB
iθ  and LB

iθ , 

respectively). h  is the vector of equality constraints and g  is the set of inequality 

constraints. 

While a standard multivariable stochastic optimization method can be used (e.g., 

formulation of deterministic equivalents of stochastic programming problems and then 

employ linear vs. non-linear programming solvers), this study proposes a Monte-Carlo 

based procedure as a pragmatic tool to this end since the sampling is global rather than 

local thereby reducing the tendency to be entrapped in a local minimum and avoiding a 

dependency on an assumed set of initial conditions (Gallagher & Sambridge, (1994); 

Shapiro, Dentcheva, & Ruszczyński, (2009)). The first sub-step in the optimization step 

is the outer loop that performs sampling (e.g., Latin Hypercube Sampling) from a high-

dimensional operation space, which is formed by a matrix of operating variables with a 

length of N resulting in a N-by-N dimensional space. Then, in the inner loop, a Monte-
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Carlo simulation is performed using sampling from the uncertain parameter (identified 

in section 2.1.3) space to estimate the uncertainty of model outputs used in the objective 

function calculation (Figure 2). The results from the outer loop Monte-Carlo 

simulations are then evaluated in order to identify the optimal operation scenario. The 

evaluation includes statistical descriptors such as, standard deviation, variance and 

percentiles of the objective function values.  

A further refining step can be performed as well, for example if one is not completely 

satisfied with the result of the Monte-Carlo simulations, by employing the optimization 

results from the Monte-Carlo simulations as initial guess using the sample average 

approximation (SAA) method (Kleywegt, Shapiro, & Homem-de-Mello, 2001), as 

illustrated in Eq. (3).   

 ( ) ( )1

1
min ,

NP
T

ix i
Z x c NP f x θ−

=

 = + 
 

∑x  (3) 

This method consists of evaluating the cost optimization function NP (with NP = 

number of parameters of the evaluated unit operation under study) by employing the 

parameter samples (θi) and current values of optimization variables (x), to obtain an 

average cost function that is an approximation of the expected value ( )( ),s ix θ  E f of 

Eq.(2) into a discrete form, which is subsequently optimized by well-known 

deterministic optimization methods such as sequential quadratic programming, to name 

one example. The final results of this step will then provide the optimized operational 

values under an uncertainty scheme. 
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2.1.5. Validation of Optimal Process Operation 

 In step 5, one evaluates the performance of the optimized process operation via 

comparison to data obtained in lab or pilot-scale or demo-scale experiments. If the 

validation results are satisfactory, then the systematic procedure will be terminated by 

accepting the optimal operation scenario results for further implementation in 

demonstration or production scale. Otherwise the procedure needs to be re-iterated, 

either by reviewing the mathematical models used for the optimization or by evaluating 

different sets of critical system parameters. By sequentially applying the optimization 

procedure to different process configurations, one opens up the possibility to compare 

different process configurations. 

2.2. Process Characteristics Data and Simulation Platform 

The model implementation, the simulations and the uncertainty and sensitivity analysis 

have all been performed in Matlab (The Mathworks, Natick, Massachusetts). The basic 

process characteristics and information regarding conversion rates and dimensions of 

key unit operations are from (Aden et al. (2002) and Humbird et al. (2011)), but were 

expanded for dynamic modelling with specific rate equations for enzyme and co-

fermentations kinetics as outlined in Morales-Rodriguez, Gernaey, Meyer, & Sin, 

(2011). Process economic calculations were performed relying on previously published 

values for feedstock, additives (enzyme and sulphuric acid) and utilities (cooling water 

and steam) used in the production process (Alvarado-Morales, Terra, Gernaey, 

Woodley, & Gani, 2009).  
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3. Results 

3.1. Evaluation of the Systematic Model-Based Framework for Optimization 

under Uncertainty 

3.1.1. Step 1: Objective and Needs 

The objective is to identify the optimal operational boundaries considering uncertainties 

in the key unit operations for the lignocellulosic ethanol production case study, with the 

intention to reduce the manufacturing cost per gallon of produced ethanol. This 

manufacturing cost is broken down into contributions related to feedstock (Feedstock), 

utilities (Utilities) used in the production process (cooling water and steam in the 

streams and unit operations to keep the correct operating conditions) and the cost of the 

employed additives (Additives) (such as, enzyme and acid loading). Thus, the objective 

function can be written as follows (Eq. (4)): 

 ( ) ( ) ( ) ( )[ ]min , ,FS i UT i ADD ix

USDZ x c Feedstock +c Utilities x +c Additives x
gal  Ethanol

θ θ θ= =  (4) 

where cFS is the cost of the feedstock (0.03 USD/kg), cUT are the costs of utilities (low-

pressure steam (0.0075 USD/kg), high-pressure steam (0.0094 USD/kg) and cooling 

water (0.0002 USD/kg)) and cADD  are the cost of additives (sulfuric acid (0.085 

USD/kg) and enzymes (1.85 USD/kg) (Alvarado-Morales, Terra, Gernaey, Woodley, & 

Gani, 2009)). 

3.1.2. Step 2: Process Configurations and Modelling  

Collection of data and implementation of process models (for each unit in the process) 

of the integrated system has been described previously by Morales-Rodriguez, Meyer, 

Gernaey & Sin (2011b). 
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The systematic model-based optimization framework for optimization under uncertainty 

was tested using the Dynamic Lignocellulosic Bioethanol model version 1.0 (DLB1.0) 

as illustrated in Table A.1, A.2 and A.3 for pretreatment, enzymatic hydrolysis and co-

fermentation, respectively (Morales-Rodriguez, Meyer, Gernaey, & Sin, 2011b), which 

was extended further by adding a rigorous dynamic downstream process (distillation) 

model (Seader & Henley, 2006) using the Wilson equation for activity coefficient 

calculations (Smith, Van Ness, & Abbott, 2001), and also including heat exchangers 

and their corresponding energy balances (see Figure 3) to enable calculation of utility 

consumption such as cooling water and steam. The resulting dynamic plant-wide model 

was then employed to identify the operational window under uncertainty to assess the 

operational cost of the conversion of lignocellulose to ethanol. A process configuration 

involving simultaneous saccharification and co-fermentation operating in a continuous 

process (SSCF-C) was selected to be evaluated as base case to highlight the application 

of the framework. 

3.1.3. Step 3: Screen and Identify significant Sources of Uncertainties 

3.1.3.1. Identification of the Sources of Uncertainties 

The complete set of kinetic parameters characterising the pretreatment and SSCF 

mathematical models (Morales-Rodriguez, Meyer, Gernaey, & Sin, 2011b) in addition 

to the feedstock composition were included in the list of potential sources of 

uncertainties, which resulted in a total of 80 parameters. Their uncertainties may come 

from changing feedstock composition, experimental procedures used to estimate 

parameter values, measurement accuracy, changes in enzymatic and microorganism 

activities, among others. Table A.1 lists the total number of parameters analyzed in this 
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study as well as the ranges around the default values which were used as the input 

uncertainties for the individual model parameters. 

3.1.3.2. Uncertainty Analysis based on the Monte-Carlo Procedure  

The first screening was performed for the quantification of the uncertainties of the 

model parameters on model outputs. The sampling of uncertain parameters was 

accomplished using the LHS method, for which 250 was deemed a sufficient sampling 

number (NP) based on the calculation of the Monte-Carlo integration error

( )MCerr NPσ= . The Iman-Conover method was used for taking into account the 

correlation between the uncertain parameters (Iman & Conover, 1982). To this end, the 

correlation matrix for the parameters for enzymatic hydrolysis was obtained from 

previous work (Sin, Meyer, & Gernaey, 2010), while for pretreatment and co-

fermentation models the parameter correlations were obtained by re-estimating model 

parameters on the basis of original publications (Krishnan, Ho & Tsao (1999) and 

Lavarack, Griffin & Rodman (2002), respectively). Subsequently, Monte-Carlo 

simulations were performed with the sampled parameter values (as illustrated in Figure 

2), and the results in the form of key performance indices (KPI) were plotted as 

histograms (see Figure 4). The uncertainty can be inferred from the variance of these 

histograms. For example for the base case process configuration, the average production 

cost is calculated to be 1.56 USD/gal ethanol with a standard deviation (indicating 

degree of uncertainty) as ±0.13 USD/gal-Ethanol. These results typically show the 

extent of technical uncertainties on the estimated unit production costs, which must be 

considered as relatively  high (standard deviation is around 10% of the average unit 

cost).  
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3.1.3.3. Sensitivity Analysis: Regression-Based (SRC) 

For the sensitivity analysis, the standardized regression coefficient (SRC) method was 

used and the aim was to find out which of the uncertain parameters contributed most to 

the uncertainty in the production cost. Figure 5 illustrates the linear model fitted to 

Monte-Carlo simulation outputs as a function of the uncertain parameters. Notice that 

the linear model determination coefficient (R2) is equal to 0.85, meaning that the time-

averaged model outputs could be linearized to a high degree, hence satisfying the 

requirement for βi to be used as a reliable index of the sensitivity measure (threshold = 

R2 > 0.7). 

3.1.3.4. Identification of the most critical parameters.   

Based on the SRC results, Table 1 illustrates that 19 out of 80 parameters were found 

most critical, i.e. significantly affecting the uncertainty on the production cost of 

ethanol. This also shows that the highest uncertainty is introduced by the model 

parameters employed in the SSCF unit operation, which is obvious because the main 

core of this configuration is the conversion of cellulose into glucose and the conversion 

of glucose and xylose to ethanol. The uncertainty in pretreatment parameters and 

feedstock composition also rank high, albeit that the model outputs are less sensitive to 

those parameters compared to the parameters of the SSCF.  

More valuable information can be obtained from Table 1 related to the values and signs 

of the SRC values. For example, the inhibition coefficients for microorganism growth 

by glucose ( 1 G

CF
X IGK ) and xylose ( 2 Xy

CF
X IXyK ) (rank 2 and 3, respectively) are negative 

meaning that decreasing the values of the inhibition coefficients will increase the unit 

production cost. To decrease the unit production cost, therefore, the values of inhibition 
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coefficients should be increased meaning that the microorganisms should be engineered 

to become more inhibition tolerant in order to reduce the operational cost of bioethanol 

production. This is a logic conclusion, from a process point of view. 

Similarly, performing the same analysis for the reaction rate coefficient from cellulose 

conversion into sugar ( 2,
EH

Gk ), it is possible to assume that a higher value of this reaction 

rate coefficient would decrease the unit production cost. From the phenomenological 

point of view this shows that an improvement on enzyme performance through protein 

engineering could also reduce the production cost for bioethanol, which is obviously 

due to the fact that a higher conversion rate of enzyme catalysed conversion of cellulose 

into glucose would result in availability of more glucose to be converted into ethanol 

(all other things being equal). Both of these conclusions are in agreement with the 

experimental efforts focusing on protein and process engineering to improve the 

feasibility of lignocellulosic ethanol processes. However, the added value of the 

uncertainty and sensitivity analysis method shown here is that it quantifies how much 

potential reduction in the unit production cost can be obtained as a consequence of 

improvement in enzyme efficiency (or bioreactor design efficiency enhancing the 

enzyme efficiency), thereby providing a rational basis for process improvements. 

3.1.4. Step 4: Optimization under Uncertainty 

Once sensitivity measures have identified the significant sources of uncertainties in the 

process, the following step is to find out the optimal operating conditions with the aim 

of reducing the unit production cost. The implementation of the Monte-Carlo 

optimization under uncertainty algorithm is illustrated in Figure 6. 
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3.1.4.1. Sampling from operation space  

First of all, the selection of the important operating variables was done in this step. For 

the pretreatment, reactor temperature (TPT) and acid concentration (CAcid) were selected, 

while for the SSCF units enzyme loading of exo-β-1,4-cellobiohydrolase + endo-β-1,4-

glucanase (EL1) and β-glucosidase (EL2), yeast loading (Cyeast) and reactor temperature 

(TSSCF) were chosen as variables to be optimized. In the downstream processes pressure 

set-points in the reboiler and condenser (PR,Dk, PC,Dk, respectively) of the distillation 

columns were the design variables to be optimized, and the water content in the solid 

stream of the separator (%H2O) was the variable to be optimized in the solid-liquid 

separator units. Afterwards, the sampling of the operating variables as well as the 

shortlist of uncertain parameters was performed using LHS. This resulted in a sampling 

matrix of 150x19, where rows correspond to the LHS samples of the parameters and 

columns corresponded to the most influential parameters identified previously.  

3.1.4.2. Monte-Carlo Simulations 

Subsequently a robust Monte-Carlo stochastic optimization was performed with 

sampled operating variables and parameters values resulting in 100x150 process model 

evaluations, that is, each of the 100 operating conditions that was sampled was 

evaluated with the 150 parameter samples. Subsequently, the mean and the 95th 

percentile values (providing 95% confidence interval of the estimated unit production 

cost) were calculated for the 150 samples, and this procedure was repeated for each 

operating condition (100 samples). These statistical indicators were then employed to 

determine the optimal set of operating variables under an uncertainty scheme by 

employing Monte-Carlo simulations. 
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3.1.4.3. Identification of Feasible Operating Conditions Based on Statistical Techniques 

Based on the mean value and 95 % confidence intervals of production cost, each 

operation scenario was ranked to identify the optimal operation scenario which will 

correspond to low production cost with narrow uncertainty range (narrow 95% 

confidence interval).   

Table 2 summarizes the most feasible operating conditions yielding a lower production 

cost than the base case. The 95% confidence interval was selected as performance 

criterion rather than only the mean value because this measure considers the total 

number of outputs of the process model evaluated with the parameter samples under 

uncertainty. For instance, if the selection of the optimal operating conditions relies on 

comparing only the mean value of the manufacturing cost, the decision for the optimal 

set of variables would point towards operation scenario number 45 with a 6.23 % lower 

manufacturing cost, and not to operation scenario 67 with 5.3% lower manufacturing 

cost. This is not entirely correct since the use of the mean as a performance measure 

does not take into account the uncertainties of the parameters in the process.  

Therefore, the 95th percentile meaning 95% confidence (the lower value, the better) was 

taken as performance criterion for selecting the optimal operation scenario, which 

revealed that operation scenario number 67 is the optimal result which can reduce the 

manufacturing cost by more than 8% compared with the base case scenario. Thus, the 

resulting optimal operational conditions from Monte-Carlo stochastic optimization are 

illustrated in Table 3. The comparison of the optimal operational conditions with respect 

to the base case illustrates a significant reduction of the additives loading and the 

temperatures in the pretreatment and SSCF reactors, which is reflected in the lower 

production cost. 
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A detailed analysis, section by section, reveals that the new operating conditions result 

in an 18.5% saving in the cost of steam in the pretreatment reactor compared with the 

base case. For the acid loading the expenses are reduced by 33.5% as a result of 

diminishing the acid concentration in the pretreatment reactor.  

In the SSCF unit operation, the cost of enzymes is reduced by 11.5% because the 

amount of enzyme needed for hydrolysis is reduced. Other expenses in the utilities are 

not different since the operating temperature of the SSCF unit is quite similar to the 

base case operation. 

The utility cost in the downstream processes was decreased by 3.1 % in the first 

distillation column, while the expenses for the second distillation column were 

decreased by about 1.6% with respect to the base case. 

Hence, based on these results one can conclude that there is an important potential 

reduction of the production cost of bioethanol and that the presented framework was 

able to achieve this. It is important to note that the framework can be used to study the 

whole process plant or individual sections of the process plant, which in either case 

provides insights and ideas for reducing the production cost of bioethanol even further. 

3.2 Systematic Model-Based Framework for optimization under Uncertainty: 

SSCF-C_RECY, SHCF with double recycle and SHCF with single recycle 

configurations. 

The framework for optimization under uncertainty was also implemented for the 

extended version of the process configurations presented by Morales-Rodriguez, Meyer, 

Gernaey, & Sin (2011b) such as, simultaneous saccharification and co-fermentation 

operating in continuous mode with recycle of solids in the SSCF unit (SSCF-C_RECY), 
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separate hydrolysis and co-fermentation working in continuous mode with recycle for 

both unit operations (SHCF with double recycle) and separate hydrolysis and co-

fermentation working in continuous mode with recycle for the first unit operation while 

continuous operation is applied to the co-fermentation reactor (SHCF with single 

recycle) as illustrated in Figure 7a, Figure 7b and Figure 7c, respectively. 

3.2.1. Screen and Identify significant Sources of Uncertainties: SSCF-C-RECY, 

SHCF with double recycle and SHCF with single recycle.  

Table 4 summarizes the uncertainty and sensitivity analysis results. The variance is used 

as the indicator for the degree of uncertainty of the production cost of different process 

configurations. The results show that the highest uncertainty is found for the SHCF with 

single recycle configuration followed by the SHCF with double recycle and the SSCF-

C_RECY. 

The sensitivity analysis results are also illustrated in Table 4 where the parameters 

which propagate significant uncertainty to the outputs of the model are highlighted. The 

most significant parameters are mostly similar for the three different analyzed 

configurations in this section, as well as for the SSCF-C configuration described in 

section 3.1. It was found that the parameters of the co-fermentation kinetics introduce 

the highest uncertainty in the results of the plantwide simulation for production cost. 

Indeed, the conversion of the five and six carbon sugars into ethanol is predicted in this 

section, and the amount of produced ethanol in this section affects the manufacturing 

cost directly. This also illustrates that it will probably pay off to invest efforts on 

improving the sugar conversion aiming at increasing the bioethanol production with the 

same production resources (additives, utilities, etc.), thus resulting in a lower 

manufacturing cost. 
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3.2.2. Optimization under Uncertainty: SSCF-C_RECY, SHCF with double 

recycle and SHCF with single recycle.  

The results from the Monte-Carlo optimization under uncertainty based on the most 

significant parameters resulting from the sensitivity analysis are summarized in Table 5. 

Again relying on the 95% confidence interval as performance criterion, the SSCF-

C_RECY configurations present the higher saving with respect to the base case with a 

26.63% reduction in the manufacturing cost. As far as the SHCF with double recycle 

configuration is concerned, the optimized conditions reduce the manufacturing cost with 

24.62%, which is a slightly lower saving compared to the base case. The optimization 

results for the SHCF with single recycle configuration pointed towards a reduction of 

the manufacturing cost by 28.35% compared with the base case. 

The analysis for savings in the manufacturing cost at each stage of the process was 

performed using the results from Monte-Carlo optimization under uncertainty for the 

evaluated process configurations.  

For SSCF-C_RECY 99% of the reduction on the manufacturing cost was due to reduced 

enzyme loading, which can be clearly seen because instead of using 40 mg-enzyme/g-

cellulose, the required enzyme loadings were 27.8 and 20.2 mg-enzyme/g-cellulose for 

EL1 and EL2, respectively, meaning that 30% and 49% less enzyme addition was 

required. On the other hand, the required acid concentration was higher, but this is not 

reflected in the cost since sulphuric acid is considerably cheaper than enzymes. 

Moreover, when applying a higher acid concentration it is possible also to reduce the 

temperature of the pretreatment resulting in lower steam consumption, but 

technologically, the drawback is that more salt will end up in the lignin residual fraction 
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affecting the combustion/gasification of this fraction negatively in the co-generation 

section (Pedersen & Meyer, 2010).  

As far as the SHCF with double recycle configuration is concerned, it was found that 

the enzyme loading had the highest impact on reducing the manufacturing cost (94%), 

resulting in a reduction of the enzyme loading by more than 38% and 15% for the total 

amount of needed enzyme (EL1 and EL2), respectively. These results also showed that 

acid loading can be further reduced by about 11%, which also contributes to the total 

savings on the manufacturing expenses compared to the base case. 

Regarding the SHCF with single recycle configuration, the reduction on the 

manufacturing cost was also associated with the enzyme loading where 79.3% of the 

difference between the base case and the optimal calculated manufacturing cost was the 

result of decreasing only the enzyme consumption of EL1. On the other hand, the 

predicted savings on the amount of employed sulphuric acid compared with the base 

case was higher than 38%, whereas the percentage of the cost savings compared with 

the expenses in the base case for the employed sulphuric acid was only 6%. With regard 

to feedstock, it was found that the cost per gallon of produced ethanol was decreased by 

7.3% due to the increased ethanol productivity at the optimal operating conditions. 

It is important to mention that the differences of the process variable conditions depend 

on the illustrated process configurations due to the intrinsic behaviour of each process 

configuration. For instance, for SHCF with double recycle the temperature of the 

enzymatic hydrolysis (65°C) cannot be employed for SSCF- C_RECY configurations 

since the microorganisms carrying out the conversion of sugars into ethanol would die 

off as a consequence of the higher temperature conditions. 
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4.3 General Discussion 

The implementation of the systematic framework for model-based optimization of 

bioprocesses under uncertainty, here applied to a bioethanol case study, has shown that 

when following the proposed methodology in a systematic manner, it is possible: 1) to 

identify the significant sources of uncertainties affecting the process performance; and 

2) to solve an optimization problem under uncertainty finding feasible operating 

conditions for bioethanol production with reduced production cost. 

This structured and systematic framework also gives insight into bottlenecks in the 

process and thus generates ideas for prioritising experimental efforts. For example, the 

results from the sensitivity analysis illustrated that reducing yeast inhibition is likely to 

increase productivity and reduce manufacturing cost for two reasons (a) since a stream 

with higher ethanol concentration would be leaving the co-fermentation section and (b) 

increasing the tolerance of microbial growth to inhibition by ethanol would allow 

having higher conversion of glucose into ethanol, thereby, improving process yield in 

the process. Moreover, one can quantify the uncertainty in the unit production cost due 

to technological risks (technology under development, not proven yet). Therefore the 

framework helps paving the way for risk based decision making. From this point of 

view, the results of uncertainty and sensitivity analysis provide a quantitative basis to 

justify safety factors, as well as support better informed decision making thereby 

contributing to cost-savings in engineering projects as demonstrated elsewhere (Sin, 

Gernaey, Neumann, van Loosdrecht, & Gujer, 2009). 

Even though the present results are not verified by experimental works at lab or pilot-

scales, knowledge from molecular-protein engineering as well as process engineering 

was in agreement with the findings of this optimisation study. 
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From the mathematical implementation point of view, while we acknowledged that the 

applicability of the framework requires reasonably reliable mathematical models 

describing different unit operations in bioprocesses, however we believe that such 

models are largely available in the literature (for example in the case of describing 

fermentation processes there  is  a substantial body of literature spanning from simple 

unstructured models to more rigour metabolic network models (Gernaey et al., 2010). 

And when models are not available, there are systematic methodologies available to 

generate models fit for the task at hand (see e.g. Sin et al., 2010). From a computational 

efforts point of view, it can be highlighted that when increasing the number of samples 

for uncertain parameters and operating variables, in general more accuracy will be 

found in the results. Of course, the drawback about having a large number of samples is 

that this will be reflected in a longer computational time, which remains feasible thanks 

to ongoing exponential development of computational capacity (Moore’s law). In any 

case, the outcome of Monte-Carlo simulations must be judged with strong basis in the 

knowledge of the evaluated process model under study in order to end up with feasible 

and reliable results (Dickman & Gilman, 1989). Last but not least, the framework 

evaluated here deliberately focused on analysing the impact of uncertainties related to 

technical feasibility of the process (while assuming all other sources of uncertainties 

known) to identify the bottlenecks so as to better focus the process development efforts 

and resources. As the framework is generic in nature, however, it can be applied in an 

iterative manner to evaluate different future scenarios and to see how these affect the 

process development efforts. Such future scenarios may include uncertainties related to 

markets such as price of feedstock and product, and uncertainties related to the 
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political/social environment, legislation (CO2 footprint, climate change, etc) among 

others.   

5. Concluding Remarks 

This study has introduced a systematic model-based optimization framework, where the 

first steps involved the identification of the most critical parameters under uncertainty. 

Once the most significant parameters are identified and selected (reducing the 

complexity of the stochastic process optimization procedure), these are used to perform 

the stochastic optimization under parameter uncertainty, using in this case the 

bioethanol production from lignocellulosic biomass as a case study. 

The uncertainty and sensitivity analysis identified the following most critical parameters 

involved in the process: For the manufacturing cost, the enzyme loading showed the 

strongest impact for SSCF-C_RECY and SHCF with double recycle configurations. 

The results showed also that it is possible to find a better alternative operation of the 

plant in comparison to the base case. For instance, for the SSCF-C process 

configuration it was found that the manufacturing cost can be decreased by 8.7%, for 

SSCF-C_RECY by 26.63%, for SHCF with double recycle by 24.64% and for SHCF 

with single recycle by 28.35% compared to the base case.  

Hence, based on these results one can conclude that there is an important potential 

reduction of the production cost of bioethanol and that the presented framework was 

able to identify this for the four analyzed process configurations.  
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Nomenclature 

1,
PT

XyA  
Pre-exponential factor for xylose production, h-1 

2,
PT

XyA  
Pre-exponential factor for xylose degradation, h

1,
PT

AA

-1 

 Pre-exponential factor for arabinose production, h-1 

2,
PT

AA  Pre-exponential factor for arabinose degradation, h-1 

1,
PT
GA  Pre-exponential factor for glucose production, h-1 

2,
PT

GA  Pre-exponential factor for glucose degradation, h-1 

1,
PT

FA  Pre-exponential factor for furfural production, h-1 

2,
PT

FA  Pre-exponential factor for furfural degradation, h-1 

1,
PT

ASLA  Pre-exponential factor for reaction to produce ASL, h-1 

2,
PT

ASLA  Pre-exponential factor for reaction to consume ASL, h-1 

3,
PT

ASLA  Pre-exponential factor for reversible reaction to produce ASL, h-1 

b Regression coefficients in the fitted linear multivariate model i 
C Acid concentration, %(wt/v) Acid 

AnC  Arabinan concentration, g/kg 

AshC  
Ash concentration, g/kg 

ASLC  Acid-soluble lignin concentration, g/kg 

LnC  Lignin concentration, g/kg 

XnC  Xylan concentration, g/kg 

GnC  Glucan (cellulose) concentration, g/kg 

CI Confidence interval 

OCC  Other compounds concentration, g/kg 

c Constant vector of economic information, USD/kg T 
Tc x  Deterministic term of the stochastic optimization cost function, 

USD/gal-Ethanol 
C Yeast concentration, g/kg yeast 
SHCF with double 
recycle 

Separate hydrolysis and co-fermentation working in continuous 
and recycle for both unit operations 

SHCF with single 
recycle 

Separate hydrolysis and co-fermentation working in continuous 
and recycle for in the enzymatic hydrolysis and continuous regime 
in the co-fermentation reactor. 

DLB1.0 Dynamic Lignocellulosic Bioethanol model version 1.0 

aE  Activation energy for enzyme 1, cal/mol 

,a GE β  Activation energy for enzyme 2, cal/mol 
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1,
PT

XyEa  Activation energy reaction to produce xylose, J/mol  

2,
PT

XyEa  Activation energy for xylose degradation, J/mol 

1,
PT

AEa  Activation energy reaction to produce arabinose, J/mol  

2,
PT

AEa  Activation energy reaction for arabinose degradation, J/mol 

1,
PT

GEa  Activation energy reaction to produce glucose, J/mol  

2,
PT

GEa  Activation energy reaction for glucose degradation, J/mol 

1,
PT

FEa  Activation energy reaction to produce furfural, J/mol 

2,
PT

FEa  Activation energy reaction for furfural degradation, J/mol 

1,
PT

ASLEa  Activation energy reaction to produce ASL, J/mol 

2,
PT

ASLEa  Activation energy reaction for ASL degradation, J/mol 

3,
PT

ASLEa  Activation energy for reversible reaction to produce ASL, J/mol  

EL Enzyme loading of exo-β-1,4-cellobiohydrolase + endo-β-1,4-
glucanase, mg-Enzyme/g-cellulose 

1 

EL Enzyme loading of β-glucosidase, mg-Enzyme/g-cellulose 2 

1maxE  Maximum mass of enzyme 1 that can be adsorbed onto a unit mass 
of substrate, g-protein/g-substrate. 

2maxE  Maximum mass of enzyme 2 that can be adsorbed onto a unit mass 
of substrate, g-protein/g-substrate. 

max,GEt  Ethanol concentration above which cells do not grow in glucose 
fermentation, 95.40  Et 95.4 ,for g L≤ 129.90  95.4 129.9 for Et g L< ≤  

max,XyEt  Ethanol concentration above which cells do not grow in xylose 
fermentation, g/L. 

'
max,GEt  Ethanol concentration above which cells do not produce ethanol in 

glucose fermentation, 103  Et 103 ,for g L≤

136.40  103 136.4 for Et g L< ≤  
'
max,XyEt  Ethanol concentration above which cells do not produce ethanol in 

xylose fermentation, g/L 
( ),s if x θ  E  Expected value of the stochastic optimization cost function. 

f(x,(θi Uncertain term of the stochastic optimization cost function, 
USD/gal-Ethanol 

) 

g  Set of inequality constrains 
h   Vector of equality constrains 

1adK  Dissociation constant for enzyme 1, g-protein/g-substrate 

2adK  Dissociation constant for enzyme 2, g-protein/g-substrate 

1 ,ad Eqk  Rate of adsorption in equilibrium for Enzyme 1 

2 ,ad Eqk  Rate of adsorption in equilibrium for Enzyme 2 
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1,
EH
Gk  Reaction rate constant for glucose 1 in the enzymatic hydrolysis, 

g/(mg⋅h) 

2,
EH

Gk  Reaction rate constant for glucose 2 in the enzymatic hydrolysis, h

2
EH
Gk

-

1 

 Reaction rate constant for cellobiose formation in the enzymatic 
hydrolysis, g/(mg⋅h) 

1
EH
IEtK  Inhibition constant for ethanol 1 in the SSCF unit, g/kg 

1
EH
IGK  

Inhibition constant for glucose 1, g/kg 

2
EH
IGK  Inhibition constant for glucose 2, g/kg 

3
EH
IGK  Inhibition constant for glucose 3, g/kg 

1 2
EH
IGK  Inhibition constant for cellobiose 1, g/kg 

2 2
EH
IGK  Inhibition constant for cellobiose 2, g/kg 

1
EH
IXyK  Inhibition constant for xylose 1, g/kg 

2
EH
IXyK  Inhibition constant for xylose 2, g/kg 

3
EH
IXyK  Inhibition constant for xylose 3, g/kg 

1
CF
GK  Monod constant, for growth on glucose, g/L 

2
CF

XyK  Monod constant, for growth on xylose, g/L 

5'
CF

IGK  Inhibition constant, for product formation from glucose, g/L 

6'
CF

IXyK  Inhibition constant, for product formation from xylose, g/L 

5'
CF

GK  Monod constant, for product formation from glucose, g/L 

6'
CF

XyK  Monod constant, for product formation from xylose, g/L 

1 G

CF
X IGK  Inhibition constant, for growth on glucose, g/L 

2 Xy

CF
X IXyK  Inhibition constant, for growth on xylose, g/L 

MK  Substrate (cellobiose) saturation constant, g/kg  

KPI Key performance indices 
LHS Latin Hypercube Sampling 

Gm
 

Maintenance coefficient in glucose fermentation, h

Xym

-1 

 Maintenance coefficient in xylose fermentation, h

PT
An

-1 

 Order of reaction to produce arabinose 
PT
ASLn  Order of reaction to produce ASL 
PT
Fn  Order of reaction to produce furfural 
PT
Gn  

Order of reaction to produce glucose 
PT
Xyn  Order of reaction to produce xylose 
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NP Total number of uncertain parameters 
P Pressure in the condenser of distillation column k=1,2, atm C,Dk 
P Pressure in the reboiler of distillation column k=1,2, atm R,Dk 
PSE Process System Engineering 
R Model determination coefficient 2 
R Universal gas constant, 1.9872 cal/mol⋅K 
SAA Sample average approximation method 
SSCF-C Simultaneous Saccharification and Co-Fermentation operating in 

continuous regime. 
SSCF-C_RECY Simultaneous Saccharification and Co-Fermentation operating in 

continuous and recycle of unreacted solids. 
SRC Standardized regression coefficient 
T Enzymatic hydrolysis reactor temperature, °C EH 
T pretreatment reactor temperature, °C PT 
T SSCF reactor temperature, °C SSCF 
USD United state Dollar 
x  Vector of design variables to optimize 

/GEt GY  Product yield constant (g-ethanol/g-glucose), g/g 

/XyEt XyY  Product yield constant (g-ethanol/g-xylose), g/g  

y Linear multivariate model fit of the Monte-Carlo simulation 
outputs 

reg 

GX GY  Cell yield constant from glucose (g-cells/g-substrate), g/g 

/XyX XyY  Cell yield constant from xylose (g-cells/g-substrate), g/g 

Z Objective function, USD/ gal Ethanol 
  
Subscript and superscript 
ADD Additives 
CF Co-fermentation 
EH Enzymatic hydrolysis 
Et Ethanol 
FS Feedstock 
i Parameters 
j Operating conditions sample 
k Distillation column index, k = 1, 2. 
LB Lower bound 
PT Pretreatment section 
UB Upper bound 
UT Utilities 
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Greek letters  
α  Constant relating substrate reactivity with degree of hydrolysis 

Gβ  Constants in product inhibition model in glucose fermentation 
1.29  Et 95.4 ,  0.25  95.4 129.9for g L for Et g L≤ < ≤  

β Global sensitivity measure of parameter i i 

Xyβ  Constant in the product inhibition model in xylose fermentation, 
g/L  

Gγ  Maximum specific rate of glucose formation 
Xyγ  Maximum specific rate of xylose formation, g/L 

µ Mean value of manufacturing cost 

max,Gµ  Maximum specific growth rate in glucose fermentation, h

max,Xyµ

-1 

 Maximum specific growth rate in xylose fermentation, h

max,Gν

-1 

 Maximum specific rate of glucose formation, h

max,Xyν

-1 

 Maximum specific rate of xylose formation, h-1

θ

  

Values of uncertain parameters i i LB
iθ  Lower bound of uncertain parameters i 
UB
iθ  Upper bound of uncertain parameters i 

σ Standard deviation for manufacturing cost 

iθσ  Standard deviation of uncertain parameters 

yσ  Standard deviation of model output of the Monte-Carlo  

σ Variance of manufacturing cost 2
 

φ Ratio of fed insoluble solid to liquid in the pretreatment 
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Appendix 

Table A.1. Expert review of input uncertainty of parameters for the bioethanol 

production process model 

ID Parameter Units Default 
Value 

Lower 
bound 

Upper 
bound 

Uncertainty 
class 

Section of 
the process 

1 GnC
 

g/kg 112.20 84.15 140.25 2 FS 

2 XnC
 

g/kg 63.30 47.48 79.13 2 FS 

3 AnC
 

g/kg 8.70 6.53 10.88 2 FS 

4 LnC
 

g/kg 54.00 40.50 67.50 2 FS 

5 AshC
 

g/kg 15.60 11.70 19.50 2 FS 

6 OCC
 

g/kg 46.20 34.65 57.75 2 FS 

7 1,
PT

XyA
 

h 1.09⋅10-1 1.04⋅1014 1.15⋅1014 1 14 PT 

8 1,
PT

XyEa
 

J/mol 105900 100605 111195 1 PT 

9 PT
Xyn

 
- 0.97 0.92 1.02 1 PT 

10 2,
PT

XyA
 

h 9.58⋅10-1 9.10⋅1015 1.01⋅1015 1 16 PT 

11 2,
PT

XyEa
 

J/mol 1.18⋅10 1.12⋅105 1.23⋅105 1 5 PT 

12 1,
PT

AA
 

h 5.40⋅10-1 5.13⋅1011 5.67⋅1011 1 11 PT 

13 1,
PT

AEa
 

J/mol 9.03⋅10 8.58⋅104 9.48⋅104 1 4 PT 

14 2,
PT

AA
 

h 7.63⋅10-1 7.25⋅1010 8.01⋅1010 1 10 PT 

15 2,
PT

AEa
 

J/mol 7.92⋅10 7.52⋅104 8.32⋅104 1 4 PT 

16 PT
An  - 0.82 0.78 0.86 1 PT 

17 1,
PT
GA

 
h 2.88⋅10-1 2.74⋅1013 3.02⋅1013 1 13 PT 

18 1,
PT

GEa
 

J/mol 1.07⋅10 1.02⋅105 1.13⋅105 1 5 PT 

19 2,
PT

GA
 

h 9.58⋅10-1 9.10⋅1015 1.01⋅1015 1 16 PT 

20 2,
PT

GEa
 

J/mol 1.29⋅10 1.22⋅105 1.35⋅105 1 5 PT 

21 PT
Gn  - 0.77 0.74 0.81 1 PT 

22 1,
PT

FA
 

h 1.17⋅10-1 1.11⋅1017 1.23⋅1017 1 17 PT 

23 1,
PT

FEa
 

J/mol 1.46⋅10 1.38⋅105 1.53⋅105 1 5 PT 

24 2,
PT

FA
 

h 6.66⋅10-1 6.33⋅1011 6.99⋅1011 1 11 PT 

25 2,
PT

FEa
 

J/mol 8.57⋅10 8.14⋅104 9.00⋅104 1 4 PT 

26 PT
Fn  - 0.84 0.80 0.88 1 PT 
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27 1,
PT

ASLA
 

h 4.16⋅10-1 3.95⋅108 4.37⋅108 1 8 PT 

28 1,
PT

ASLEa
 

J/mol 7.72⋅10 7.33⋅104 8.11⋅104 1 4 PT 

29 2,
PT

ASLA
 

h 2.07⋅10-1 1.96⋅103 2.17⋅103 1 3 PT 

30 2,
PT

ASLEa
 

J/mol 2.06⋅10 1.95⋅104 2.16⋅104 1 4 PT 

31 3,
PT

ASLA
 

h 8.68⋅10-1 8.24⋅108 9.11⋅108 1 8 PT 

32 3,
PT

ASLEa
 

J/mol 7.34⋅10 6.97⋅104 7.71⋅104 1 4 PT 

33 PT
ASLn  - 0.84 0.80 0.89 1 PT 

34 1adK
 

g-protein/g-
substrate 0.40 0.30 0.50 2 EH 

35 2adK
 

g-protein/g-
substrate 0.10 0.08 0.13 2 EH 

36 1maxE
 

g-protein/g-
substrate 0.06 0.05 0.08 2 EH 

37 2maxE
 

g-protein/g-
substrate 0.01 0.01 0.01 2 EH 

38 aE
 

cal/mol -5540 -6925 -4155 2 EH 

39 α  - 1.00 0.75 1.25 2 EH 

40 2
EH
Gk

 
g/(mg⋅h) 22.30 16.73 27.88 2 EH 

41 1 2
EH
IGK

 
g/kg 0.02 0.01 0.02 2 EH 

42 1
EH
IGK

 
g/kg 0.10 0.08 0.13 2 EH 

43 1
EH
IXyK

 
g/kg 0.10 0.08 0.13 2 EH 

44 1,
EH
Gk

 
kg/(g⋅h) 7.18 5.39 8.98 2 EH 

45 2 2
EH
IGK

 
g/kg 132 99 165 2 EH 

46 2
EH
IGK

 
g/kg 0.04 0.03 0.05 2 EH 

47 2
EH
IXyK

 
g/kg 0.20 0.15 0.25 2 EH 

48 2,
EH

Gk
 

h 285.50 -1 214.13 356.88 2 EH 

49 MK
 

g/kg 24.30 18.23 30.38 2 EH 

50 3
EH
IGK

 
g/kg 3.90 2.93 4.88 2 EH 

51 3
EH
IXyK

 
g/kg 201.00 150.75 251.25 2 EH 

52 1 ,ad Eqk
 

h 1.00⋅10-1 7.50⋅105 1.25⋅104 2 5 EH 

53 2 ,ad Eqk
 

h 1.00⋅10-1 7.50⋅105 1.25⋅104 2 5 EH 

54 ,a GE β  
cal/mol -10235.12 -12793.9 -7676.34 2 EH 

55 max,Gµ
 

h 0.66 -1 0.63 0.70 1 CF 

56 max,Gν
 

h 2.01 -1 1.90 2.11 1 CF 

57 5'
CF

GK
 

g/L 1.34 1.27 1.41 1 CF 
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58 1
CF
GK

 
g/L 0.57 0.54 0.59 1 CF 

59 1 G

CF
X IGK

 
g/L 283.7 269.5 297.9 1 CF 

60 5'
CF

IGK
 

g/L 4890 4645.5 5134.5 1 CF 

61 max,GEt
 

g/L 95.40 90.63 100.17 1 CF 

62 '
max,GEt

 
g/L 103.03 97.88 108.18 1 CF 

63 Gβ
 

- 1.290 1.226 1.355 1 CF 

64 Gγ  
- 1.420 1.349 1.491 1 CF 

65 Gm
 

h 0.097 -1 0.092 0.102 1 CF 

66 /GEt GY
 

g-product/g-
substrate 0.47 0.45 0.49 1 CF 

67 
GX GY

 
g-product/g-

substrate 0.12 0.11 0.12 1 CF 

68 max,Xyµ
 

h 0.19 -1 0.18 0.20 1 CF 

69 max,Xyν
 

h 0.25 -1 0.24 0.26 1 CF 

70 6'
CF

XyK
 

g/L 3.40 3.23 3.57 1 CF 

71 2
CF

XyK
 

g/L 3.40 3.23 3.57 1 CF 

72 2 Xy

CF
X IXyK  g/L 18.10 17.20 19.01 1 CF 

73 6'
CF

IXyK
 

g/L 81.30 77.24 85.37 1 CF 

74 max,XyEt
 

g/L 59.04 56.09 61.99 1 CF 

75 '
max,XyEt

 
g/L 60.20 57.19 63.21 1 CF 

76 Xyβ
 

- 1.04 0.98 1.09 1 CF 

77 Xyγ  
- 0.61 0.58 0.64 1 CF 

78 Xym
 

h 0.07 -1 0.06 0.07 1 CF 

79 /XyEt XyY
 

g-product/g-
substrate 0.40 0.38 0.42 1 CF 

80 /XyX XyY
 

g-product/g-
substrate 0.16 0.15 0.17 1 CF 

The uncertainty class 1 and 2 correspond to 5% and 25% of variability of the default 
values, respectively. FS: Feedstock, PT: Pretreatment (Lavarack, Griffin, & Rodman, 
2002)); EH: Enzymatic hydrolysis (Kadam, Rydholm, & McMillan, 2004); CF: Co-
fermentation (Krishnan, Ho, & Tsao, 1999).  
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Table A.2. Pretreatment mathematical model (Lavarack et al. 2002). 

Glucan (cellulose)

[ ]g kg h⋅  
1,

, 1,

PT
G

PT
G PT

Ea
n RTPT

Gn PT Acid G Gnr C A e C
−

= −  
Eq. (A.1) 

Glucose [ ]g kg h⋅  1, 2,

, 1, 2,

PT PT
G G

PT PT
G GPT PT

Ea Ea
n nRT RTPT PT

G PT Acid G Gn Acid G Gr C A e C C A e Cφ
− −

= −  
Eq. (A.2) 

Xylan [ ]g kg h⋅  1,

, 1,

PT
Xy

PT
Xy PT

Ea
n RTPT

Xn PT Acid Xy Xnr C A e C
−

= −  
Eq. (A.3) 

Xylose [ ]g kg h⋅   1, 2,

, 1, 2,

PT PT
Xy Xy

PT PT
Xy XyPT PT

Ea Ea
n nRT RTPT PT

Xy PT Acid Xy Xn Acid Xy Xyr C A e C C A e Cφ
− −

= −  
Eq. (A.4) 

Arabinan [ ]g kg h⋅  1,

, 1,

PT
A

PT
A PT

Ea
n RTPT

An PT Acid A Anr C A e C
−

= −  
Eq. (A.5) 

Arabinose [ ]g kg h⋅  1, 2,

, 1, 2,

PT PT
A A

PT PT
A PT A PT

Ea Ea
n RT n RTPT PT

A PT Acid A An Acid A Ar C A e C C A e Cφ
− −

= −  
Eq. (A.6) 

Lignin [ ]g kg h⋅  1,

, 1,

PT
ASL

PT
ASL PT

Ea
n RTPT

Ln PT Acid ASL Lnr C A e C
−

= −  
Eq. (A.7) 

Acid-Soluble lignin 

[ ]g kg h⋅  
1, 2,

, 1, 2,

PT PT
ASL ASL

PT PT
ASL ASLPT PT

Ea Ea
n nRT RTPT PT

ASL PT Acid ASL Ln Acid ASL ASLr C A e C C A e Cφ
− −

= −  
Eq. (A.8) 

Other comps 

[ ]g kg h⋅  

2,2,

2, 2,

3,

2, 2,

, 2, 2,

3,

PTPT
XyG

PTPT
XyG PT PT

PT PT
A ASL

PTPT
ASLA PT PT

PT
ASL

PT
ASL PT

EaEa
nn RT RTPT PT

Acid G G Acid Xy Xy

Ea Ea
nn RT RTPT PT

OC PT Acid A A Acid ASL ASL

Ea
n RTPT
Acid ASL OC

C A e C C A e C

r C A e C C A e C

C A e C

φ

−−

− −

−

 
 + +
 
 
 = + −
 
 
 

 



 Eq. (A.9) 
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Table A.3. Kinetic expressions of the enzymatic hydrolysis model (Kadam et al., 2004). 

Cellulose to cellobiose, 

[ ]g kg h⋅  

1

2

2
1,

1 2 1 1

1

B

EH
G E Gn Gn

EH
G XyG
EH EH EH
IG IG IXy

k C R C
r

C CC
K K K

=
+ + +

  

Eq. (A.10) 

Cellulose to glucose , 

[ ]g kg h⋅  

( )1 2

2

1,
2,

2 2 2 2

1

B B

EH
G E E Gn Gn

EH
G XyG
EH EH EH
IG IG IXy

k C C R C
r

C CC
K K K

+
=

+ + +
 

Eq. (A.11) 

Cellobiose to glucose, 

[ ]g kg h⋅  

2 2

2

2,
3,

3 3

1

F

EH
G E G

EH
XyG

M GEH EH
IG IXy

k C C
r

CCK C
K K

=
 

+ + +  
 

  
Eq. (A.12) 

Enzyme Adsorption, 

[ ]g kg h⋅   
F

F

max ad

ad1
i

iB

i

i i E Gn
E

i E

E K C C
C

K C
=

+
 Eq. (A.13) 

Enzyme, [ ]g kg  Ti Fi BiE E EC C C= +  Eq. (A.14) 

Substrate reactivity  0
Gn Gn GnR C Cα=  Eq. (A.15) 

Temp. dependence  ( )1 1 1 2
( 2) ( 1) , 30 55aiE R T T

ir T ir Tk k e C T C− −= ° ≤ ≤ °  Eq. (A.16) 

Cellulose kinetic, 

[ ]g kg h⋅  
, 1, 2,Gn EH EH EHr r r= − −  Eq. (A.17) 

Cellobiose kinetic, 

[ ]g kg h⋅  2 , 1, 3,1.056G EH EH EHr r r= −  Eq. (A.18) 

Glucose kinetic, 

[ ]g kg h⋅  
, 2, 3,1.111 1.053G EH EH EHr r r= +  Eq. (A.19) 

Water kinetic, [ ]g kg h⋅  , 1, 2, 3,0.055 0.111 1.05263W EH EH EH EHr r r r= − − −  Eq. (A.20) 
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Table A.4. Kinetic expressions of the co-fermentation model (Krishnan et al., 1999). 

Biomass Glucose, [ ]g L h⋅  

max,
1, 2

max,
1

1

1
G

G G

G

X EtG G
CF

CF GG
G G CF

X IG

dC CC
r

dt EtCK C
K

β
µ   

 = = −      + +

 
Eq. (A.21) 

Biomass Xylose, [ ]g L h⋅  

max,
2, 2

max,
2

2

1
Xy

Xy Xy

Xy

X EtXy Xy
CF

XyXyCF
Xy Xy CF

X IXy

dC CC
r

dt EtC
K C

K

β
µ   

 = = −      + +

 
Eq. (A.22) 

Biomass kinetic, 

[ ]g L h⋅  
, 1, 2,X TOT G CF Xy CFr x r x r= +  Eq. (A.23) 

Glucose, [ ]g L h⋅  3,
/

1 1G G

G

G G

Et X
CF G X

Et G X G

dC dC
r m C

Y dt Y dt
− = = +  Eq. (A.24) 

Xylose, [ ]g L h⋅  4,
/ /

1 1Xy Xy

Xy

Xy Xy

Et X
CF Xy X

Et Xy X Xy

dC dC
r m C

Y dt Y dt
− = = +  Eq.(A.25) 

Ethanol Glucose, [ ]g L h⋅  

max,
5, 2

max,
5

5

1 1
''

'

G

G G

G

Et EtG G
CF

CFX G G
G G CF

IG

dC CC
r

C dt C EtK C
K

γ
ν   

 = = −      + +
 Eq.(A.26) 

Ethanol Xylose, [ ]g L h⋅  

max,
6, 2

max,
6

6

1 1
'

'
'

Xy

Xy Xy

Xy

Et EtXy Xy
CF

X Xy XyCF
Xy Xy CF

IXy

dC CC
r

C dt C Et
K C

K

γ
ν   

 = = −      + +

 
Eq.(A.27) 

Ethanol kinetic, 

[ ]g L h⋅  
, 5, 6,Et TOT CF CFr r r= +  Eq.(A.28) 
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Figure Captions 

Figure 1. A framework for bioprocess optimization under uncertainty 

 

Figure 2. Monte-Carlo technique (adapted from Gernaey, Lantz, Tufvesson, Woodley, 

& Sin (2010)). 

 

Figure 3. Extended process flowsheet for the SSCF-C configuration for bioethanol 

production. 

 

Figure 4. Averaged plant manufacturing cost criteria obtained from Monte-Carlo 

simulations plotted as a histogram for the 250 parameter samples. 

 

Figure 5. Linear model fit obtained from Monte-Carlo simulations for the 

manufacturing cost. 

 

Figure 6. Pseudo-code for Monte-Carlo Optimization under Uncertainty. 

 

Figure 7. Extended process flowsheet configurations for bioethanol production: a) 

SSCF-C_RECY, b) SHCF with double recycle and c) SHCF with single recycle. 
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