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a  b  s  t  r  a  c  t

A  two-stage  stochastic  multiperiod  LGDP  (linear  generalized  disjunctive  programming)  model  was  devel-
oped  to  address  the  integrated  design  and  production  planning  of multiproduct  batch  plants.  Both
problems  are  encompassed  considering  uncertainty  in  product  demands  represented  by  a set of  sce-
narios.  The  design  variables  are  modeled  as here-and-now  decisions  which  are  made  before  the  demand
realization,  while  the  production  planning  variables  are  delayed  in a  wait-and-see  mode to  optimize
in  the  face  of  uncertainty.  Specifically,  the  proposed  model  determines  the  structure  of  the batch  plant
(duplication  of  units  in  series  and  in  parallel)  and  the  unit  sizes,  together  with  the  production  planning
decisions  in  each  time  period  within  each  scenario.  The  model  also  allows  the  incorporation  of  new
equipment  items  at different  periods.  The  objective  is  to  maximize  the expected  net  present  value  of
the  benefit.  To  assess  the advantages  of the  proposed  formulation,  an  extraction  process  that produces
oleoresins  is  solved.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Batch processes have been widely studied throughout the last
years due to their particular suitability for the production of large
number of low-volume, high-value products in the same facility
(Barbosa-Póvoa, 2007). Usually, at the stage of conceptual design
of a batch plant, there are parameters, either external or internal to
the process, which are subject to considerable uncertainty. These
market and technical parameters include, for instance, product
demands, raw materials availability, prices of chemicals, reaction
constants, efficiencies, etc.

This work is focused on multiproduct batch plants where several
products are produced following the same sequence of processing
stages. A special feature of these facilities is their ability to meet
production requirements and maximize profits given uncertainties
in the market demands for the products.

In dealing with optimization under uncertainty, three research
philosophies have been employed over the last years: stochastic
programming, fuzzy programming and stochastic dynamic pro-
gramming (for a short overview see Sahinidis, 2004). Most of
the existing approaches that address the effect of uncertainty
into batch process optimization have applied stochastic program-
ming (Acevedo & Pistikopoulos, 1998; Aguilar-Lasserre, Bautista
Bautista, Ponsich, & González Huerta, 2009; Cao and Yuan, 2002;
Cui & Engell, 2010; Ierapetritou and Pistikopoulos, 1996; Liu &
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Sahinidis, 1996; Maravelias & Grossmann, 2001; Petkov & Maranas,
1997; Subrahmanyam, Pekny, & Reklaitis, 1994; Wu  & Ierapetritou,
2007).

Stochastic programming deals with optimization problems
whose uncertain parameters are modeled either by continuous
probability distributions or by a finite number of scenarios. The
approach using scenario analysis has been considerably exploited
in the literature and has proven to provide reliable and prac-
tical results for optimization under uncertainty (Alonso-Ayuso,
Escudero, Garín, Ortuño, & Pérez, 2005; Escudero, Kamesam, King,
& Wets, 1993; Gupta & Maranas, 2003; Karuppiah, Martín, &
Grossmann, 2010; Liu & Sahinidis, 1996; Shah and Pantelides, 1992;
Subrahmanyam et al., 1994). In this paper, the uncertainty in prod-
uct demands is tackled by the scenario approach.

In general, the two-stage stochastic programming strategy has
been considered an effective and widely used method for address-
ing the optimization problems under uncertainty. In this approach,
decision variables are explicitly classified according to whether
they are implemented before or after a random event occurs. First-
stage (here-and-now) decisions must be made before the uncertain
parameters reveal themselves while second-stage (wait-and-see)
decisions, also called recourse actions, are made after the out-
come of the random events is observed. Thus, through recourse
actions, stochastic models consider corrective measures that can be
taken after the realization of some uncertain parameters. The two
most common objective functions in the literature are the expected
cost/profit of the problem.

In the area of batch processing, there are significant contri-
butions on design and planning under uncertainty. Approaches
tackling the production planning problem include Liu and Sahinidis
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Nomenclature

Indices
g added units in parallel
h units in series
i products
k discrete sizes for the units
m units in parallel
p operations
s scenarios
t, � time periods

Deterministic parameters
BM big-M constants
coit operating cost coefficient of product i at time period

t
cpit cost coefficient for late delivery of product i in time

period t
dU

its
upper bound of demand of product i in time period
t for scenario s

dL
its

lower bound of demand of product i in time period
t for scenario s

Fit conversion of raw material to produce i at time
period t

Gp set of units in parallel that can be added in operation
p

H time horizon
Ht net available production time for all products in

time period t
Hp set of possible configurations of units in series in

operation p
HU

p the maximum number of units in series that can be
allocated in operation p

MU
p maximum number of units in parallel operating out

of phase in operation p
npit sales price for product i in time period t
NT maximum number of time periods
SFipt size factor of product i in operation p in time period

t
SVp set of available discrete sizes for the batch units in

operation p
ps probability of scenario s
ptiph processing time of product i in operation p with h

units in series in period t
rp number of discrete sizes available for operation p
wpit waste disposal cost coefficient per product i in time

period t
writ waste disposal cost coefficient per raw material i in

time period t
˛p cost coefficient for a batch unit in operation p
ˇp cost exponent for a batch unit in operation p
�pt cost coefficient for a batch unit in operation p at time

period t
εit inventory cost coefficient of raw material i in time

period t
�it purchasing price for the raw material of product i in

time period t
vpk standard volume of size k for batch unit in operation

p
�it inventory cost coefficient of product i in time period

t
�i time periods during which raw materials have to be

used
�i time periods during which products have to be used

Boolean variables (first-stage decision variables)
Zph true if configuration h is selected in unit operation p
Wphk true if the unit size k is selected in operation p with

configuration h
Yphmt true if there are m units in parallel out-of-phase in

operation p with configuration h in time period t
Xpgt true if g units in parallel are added in operation p in

time period t

Deterministic variables (first-stage decision variables)
CEpt investment cost in operation p in time period t
COp batch unit cost in operation p
Npt number of set of units in parallel in operation p in

time period t

Stochastic recourse variables (second-stage decision variables)
Cits amount of raw material for producing i purchased

in time period t under scenario s
IMits inventory of raw material i at the end of a time

period t under scenario s
IPits inventory of final product i at the end of a time

period t under scenario s
nits number of batches of product i in time period t under

scenario s
PWits product i wasted at time period t due to the limited

product lifetime under scenario s
qits amount of product i to be produced in time period t

under scenario s
QSits amount of product i sold at the end of time period t

under scenario s
RMits raw material inventory for product i in time period

t under scenario s
RWits raw material i wasted in time period t due to the

limited product lifetime under scenario s
Tits total time for producing product i in time period t

under scenario s
ϑits late delivery for product i in time period t under

scenario s

(1996) who  presented a two-stage model for the process plan-
ning and process capacity expansion with random variables that
assume values from both discrete and continuous probability.
Petkov and Maranas (1997) extended the multiperiod planning and
scheduling model for multiproduct plants introduced by Birewar
and Grossmann (1990) including uncertain product demands. Wu
and Ierapetritou (2007) proposed a multi-stage stochastic pro-
gramming formulation for the simultaneous solution of production
planning and scheduling problems using a rolling horizon strategy.

With regard to the batch plant design under uncertainty, Shah
and Pantelides (1992) presented a stochastic formulation for the
design with uncertain product requirements considering differ-
ent scenarios. Subrahmanyam et al. (1994) addressed the design
and scheduling of batch process through a multiperiod model. The
problem is split into two  stages: in the first, the design is obtained
without considering scheduling constraints, while, in the second
stage, a detailed scheduling model is solved. Cao and Yuan (2002)
addressed the problem of the optimal design of batch plants with
uncertainty in product demands considering different operating
modes of parallel units for different products. Alonso-Ayuso et al.
(2005) proposed an approach for the product selection and plant
sizing problems under uncertainty. Aguilar-Lasserre et al. (2009)
developed a multi-objective optimization problem for the design
of batch plants with uncertain market demands for products.
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Even though many contributions dealing with the design of
batch plants under uncertainty have been published, the simul-
taneous optimization of the design and planning decisions with
capacity expansion of the plant has not been sufficiently stud-
ied including all the elements considered in this article. Therefore,
the goal of this work is to propose a scenario-based approach for
the simultaneous design and production planning of multiproduct
batch plants under uncertain demands over a multiperiod context.
From the design perspective, both kinds of unit duplications, in
series and in parallel are considered. A two-stage stochastic model
is proposed, where capacity expansion is admitted. New in par-
allel units working out-of-phase can be added in different time
periods. The selection of the number of units in series can be only
made in the first time period. First-stage decisions consist of design
variables (mainly Boolean variables) that allow determining the
batch plant structure. Second-stage decisions consist of planning
variables (continuous variables) to determine the production, pur-
chases, and inventories of raw materials and products for each
period throughout the time horizon under each scenario, given the
plant structure decided at the first-stage.

The design alternative of duplicating units in series in a unit
operation has been recently introduced in general models for mul-
tiproduct batch plants by Moreno and Montagna (2007).  As they
remarked, this kind of duplication is only used in specific unit oper-
ations and the trade-offs introduced in the process depend on the
operation.

One important characteristic of this work is that generalized
disjunctive programming (GDP) has been employed in order to
formulate the multiperiod stochastic linear model. GDP has been
introduced as an alternative model to the mixed-integer pro-
gramming (MIP), where discrete decisions and constraints are
represented through disjunctions and logical propositions (Lee &
Grossmann, 2000; Vecchietti, Lee, & Grossmann, 2003).

The remaining parts of this article are organized as follows.
First, the problem of design and planning with capacity expan-
sion under uncertainty is described in Section 2. The two-stage
stochastic linear generalized disjunctive programming (LGDP) for-
mulation is developed in Section 3. Section 4 is devoted to the
LGDP model reformulation into a mixed-integer linear program-
ming MILP model. Considering a batch plant producing oleoresins
as a motivating example, numerical results are presented using the
proposed model in Section 5. Finally, some concluding remarks are
summarized in Section 6.

2. Problem description

The problem addressed in this work can be stated as the simul-
taneous optimization of design and production planning decisions
under uncertainty of multiproduct batch plants over a multiperiod
context. Capacity expansions are allowed at different time periods.
In this study, uncertainty is considered in the market demands.

Consider a multiproduct batch plant with a set P of unit oper-
ations that processes a set I of products over a time horizon H.
Since this is a multiperiod problem, the time horizon is divided
into t = 1, 2,.  . .,  NT specified time periods Ht, not necessarily of the
same length.

Each operation p can be performed by different configurations
of units in series. Let Hp denote the set of possible configurations
of units in series h for each operation p. The number of units
in series is selected in the first time period and do not change
thereafter. The selected configuration of units in series can be also
duplicated in parallel operating out-of-phase. The duplication of
units in parallel can be different in each time period t allowing the
capacity expansion of the plant. Let Mp be the set {1, 2, . . . , MU

p }
of possible number of equal units that can be allocated in parallel
in each operation p. Parameter MU

p denotes the maximum number

of elements of this set. Thus, in each time period t, m identical sets
of units in parallel operate out-of-phase. Each set corresponds to
the units arranged in series in that operation.

The variable Npt represents the number of sets of units in parallel
in operation p at each time period t. This value is modified taking
into account that g ∈ Gp = {0, 1, . . . , MU

p } set of units in parallel can
be added in every time period t.

Furthermore, the design problem involves the selection of
equipment sizes for batch units in each operation p, among a set
SVp = { vp1, vp2, . . . , vp,rp } of available discrete sizes. Here, vpk rep-
resents a discrete size k for the batch unit in operation p and rp is the
given number of available discrete sizes from the commercial point
of view for that operation. The basic data for representing the oper-
ations are the size factors SFipt and processing time ptipt required
for each product i in each operation p at every time period t.

The multiproduct batch plant operates with single-product
campaigns (SPC) and zero wait (ZW) transfer policy. In SPC, each
campaign is devoted to produce only one product until fulfill its
demand. In ZW policy, a batch, after being processed in a unit, must
be transferred without delay to the next one in the process.

The product demands along the planning horizon are not known
to the decision maker with certainty, but it is assumed that the
uncertainty can be represented by a set of scenarios S. Moreover,
each scenario s ∈ S has a known probability ps that reflects the like-
lihood of each scenario to take place with

∑
s∈Sps = 1. Besides, the

different possible scenarios are described through lower and upper
bounds on product demand levels in each time period dL

its
and dU

its
.

It is important to note that only some unit operations admit the
structural option of duplicating units in series. In addition, this type
of duplication not only affects the operation itself but also the rest
of the operations of the process. In order to maintain the posyno-
mial structure of the model (Grossmann & Sargent, 1979), the yield
for all the configurations in series in a given operation is assumed
to be constant, through appropriate size factors values. Thus, the
formulation with fixed size and time factors, widely used in the lit-
erature, is preserved. In consequence, the size factor for product i in
operation p remains equal regardless of the selected configuration
of units in series. However, each configuration of units in series h
has a different operation time ptipht. A detailed description of this
assumption can be found in Moreno and Montagna (2007).

In every scenario s, production planning decisions allow to
determine at each period t and for each product i, the amount to
be produced qits, the number of batches nits, and the total time Tits
to produce product i. Furthermore, at the end of every period t, the
levels of both final product IPits and raw material inventories IMits
are obtained. Moreover, the total sales QSits, the amount of raw
material purchased Cits, and the raw material to be used for the
production RMits of product i in each time period t are determined
with this formulation. In this model, it is assumed that each prod-
uct requires a unique raw material that it is not shared by other
products. This assumption is valid for the oleoresins plant example
solved below. However, more sophisticated transformation pro-
cesses can be easily incorporated. If time periods are equal, wastes
due to the expired product shelf life PWits and due to the limited
raw material lifetime RWits are also added in the formulation. Also,
late deliveries ϑits that take place in each period are determined.
The goal of the problem is to determine the optimal design over all
possible scenarios and the optimal production planning and capac-
ity expansion in each scenario, in the face of uncertainties in market
demand for products.

2.1. Scenario generation

According to Zimmerman (2000),  the choice of the appropri-
ate method for modeling uncertainty depends on the context. Also,
this author argued that no single method is capable of modeling all
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kinds of uncertainty. At present, there exist a considerable num-
ber of theories or methods to model uncertainty, i.e., probabilistic
theories, scenario-based methods, fuzzy set theories, etc. Each of
these approaches makes assumptions about available information.
In this paper, the scenario planning approach is adopted for dealing
with uncertainty in product demands.

The scenario planning approach is a technique for analyzing
alternative futures and developing business strategies. Scenario
planning postulates a set of plausible futures, or scenarios origi-
nated from the present state (Mobasheri, Orren, & Sioshansi, 1989).
Uncertainty is represented by a moderate number of discrete
realizations of stochastic quantities constituting distinct scenarios
(Mulvey, Rosenbaum, & Shetty, 1997). Thus, a scenario is a com-
plete, consistent, and plausible future state of the world that could
take place if one or more major events were to occur.

As proposed by Vanston, Frisbie, Lopreato, and Poston (1977),
the scenarios can be generated in a number of ways with the
method chosen depending on the intended use of the scenario,
the nature of the organization, and the personal preference of the
planning group involved. In this first work, the purpose is to gen-
erate a representative set of scenarios that are both optimistic and
pessimistic within a risk analysis framework (Mulvey, 1996).

Previous works considering uncertainty assume that the
demand of each product is an independent random parameter.
Nonetheless, demands for similar products, like the ones manu-
factured in multiproduct batch plants, tend to be correlated and
controlled by a small number of factors (economic growth, com-
petitor actions, etc.). Thus, it is assumed that a moderate number
of scenarios S is generated in order to appropriately describe the
trends of estimates of product demands along the whole horizon
time.

3. Linear disjunctive programming model

Based on the above definitions, the two-stage stochastic
optimization LGDP model to determine the optimal production
planning policy and the plant structure in a multiproduct batch
plant is as follows.

3.1. Objective function

The objective function (1) maximizes the expected net present
value (ENPV) over a set of scenarios S along the entire time horizon.

max ENPV =
∑
s ∈ S

∑
t ∈ T

∑
i ∈ I

psnpitQSits −
∑
s ∈ S

∑
t ∈ T

∑
i ∈ I

ps

×
{

�itCits +
[

εit

(
IMi,t−1,s + IMits

2

)
Ht

+�it

(
IPi,t−1,s + IPits

2

)
Ht

]
+(wpitPWits + writRWits)

+ (coitqits + cpitϑits)

}
−

∑
t ∈ T

∑
p ∈ P

CEpt (1)

The economic criterion in Eq. (1) is calculated by the probabilis-
tic average of the difference between the revenue due to product
sales and the overall costs in each scenario, minus the last term
corresponding to the capital investment cost for batch units in the
plant. To determine the revenues, the product price, npit, is mul-
tiplied by the amount sold in each time period. The overall costs
in each scenario include costs of raw materials, inventory costs
and waste disposal costs for both raw materials and final prod-
ucts, operating costs, and penalty costs for late delivery. Parameter
�it denotes the price of raw material used to manufacture product

i  in time period t, while εit and �it are the inventory costs per unit
of final product and raw material, respectively. Furthermore, wpit
and writ are the unit costs due to expired product and raw material,
respectively. Parameter coit denotes the operating cost coefficient
and cpit represent the late delivery cost coefficient. Note that all the
above cost coefficients take into account the time value of money,
in other words, they are discounted prices for each time period with
a specified interest rate.

3.2. Modeling structural decisions

The discrete structural decisions, corresponding to the first-
stage decisions, are modeled through Boolean variables in
disjunctions (2)–(4) and logical propositions (5).

∨
h ∈ Hp

⎡⎢⎢⎢⎢⎢⎣
Zph

∨
k ∈ SVp

⎡⎢⎢⎣
Wphk

nits ≥
(

SFipt


pk

)
qits ∀i ∈ I, t ∈ T, s ∈ S

COp = h(˛pvˇp
pk

)

⎤⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎦ ∀p ∈ P

(2)

∨
m ∈ Mp

⎡⎣ Yphmt

Npt = m

Tits ≥ ptipht

m
nits ∀i ∈ I, ∀s ∈ S

⎤⎦ ∀t ∈ T, ∀p ∈ P (3)

∨
g ∈ Gp

[
Xpgt

Npt = Np,t−1 + g
CEpt = gCOp�pt

]
∀t ∈ T, ∀p ∈ P (4)

Zph ⇔
(

∨
m ∈ Mp

Yphmt

)
∀h ∈ Hp, p ∈ P, t ∈ T (5)

Two decision levels are posed in nested disjunctions in Eq. (2)
for each unit operation p. In the first level, Boolean variable Zph
is true when configuration of units in series h is selected in unit
operation p and is false in the opposite case. In the next level, vari-
able Wphk is true when discrete unit size k is selected to carry out
operation p with configuration h. The first constraint into this dis-
junction corresponds to the sizing equation for batch units in the
plant (Moreno & Montagna, 2007). This expression relates the num-
ber of batches, nits, and the amount of product i elaborated, qits, with
the unit size, vpk, through the size factor, SFipt, which specifies the
volume (or mass) of material which must be processed in operation
p to produce a unit volume (or mass) of final product i. The second
constraint calculates the equipment cost, COp, as a power function
of the selected discrete size, vpk, multiplied by the number h of units
in series for each term.

As mentioned earlier, the units in every operation can be dupli-
cated in parallel working out-of-phase. In order to include this
structural option in the formulation, a set of disjunctions in Eq.
(3) is added. Here, Boolean variable Yphmt is true when there are
m identical units in parallel in operation p with configuration h at
time period t. Each term of these disjunctions includes constraints
that determine the number of set of units in parallel Npt at each
period t and the total time to produce each product Tits.

The following disjunctions, Eq. (4), are associated with the dis-
crete choice of the units to be added at each time period in every
operation, i.e., the capacity expansion of the plant. This is accom-
plished with the Boolean variable Xpgt which is true if g units in
parallel are added at time period t in operation p with configuration
h. The first constraint in these disjunctions determines the number
of units in each period t considering the number in the previous one
plus the units included in the corresponding time period. The last
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constraint determines the expansion cost in each time period, CEpt,
by multiplying the cost in operation p, COp, by the number g of units
added at period t and the parameter �pt, which is a cost coefficient
for operation p taking into account the time period t involved.

Finally, logical constraint (5) establishes that m units in parallel
operating out-of-phase will be selected in operation p with h units
in series at time period t, if and only if, the configuration in series
h is selected to carry out operation p (i.e., Zph is true).

3.3. Production planning constraints

The following planning constraints involve the second-stage
variables explicitly associated with each demand scenario. In these
constraints, it is assumed that each product is manufactured with
a unique raw material that is not shared with other products. This
assumption is valid for the oleoresins plant example solved below.
Nevertheless, the generalization for producing product i from sev-
eral raw materials can be easily made (see, Moreno, Montagna, &
Iribarren, 2007).

IPits = IPi,t−1,s + qits − QSits − PWits ∀i ∈ I, t ∈ T, s ∈ S (6)

IMits = IMi,t−1,s + Cits − RMits − RWits ∀i ∈ I, t ∈ T, s ∈ S (7)

IPits ≤
t+�i∑

�=t+1

QSi�s ∀i ∈ I, t ∈ T, s ∈ S (8)

IMits ≤
t+�i∑

�=t+1

RMi�s ∀i ∈ I, t ∈ T, s ∈ S (9)

IPits ≤ IPU
it ∀i ∈ I, t ∈ T, s ∈ S (10)

IMits ≤ IMU
it ∀i ∈ I, t ∈ T, s ∈ S (11)

ϑits ≥ ϑi,t−1,s + dL
its − QSits ∀i ∈ I, t ∈ T, s ∈ S (12)

RMits = Fitqits ∀i ∈ I, t ∈ T, s ∈ S (13)

Eq. (6) states that the inventory of final product i at the end of
time period t under scenario s, IPits, is equal to the inventory at the
end of the preceding time period t − 1, IPi,t−1,s plus the quantity pro-
duced, qits, minus the amount sold, QSits, and the amount of product
wasted, PWits in the current time period. In the same way, Eq. (7)
calculates the inventory of raw material for manufacturing product
i at the end of time period t, IMits, as the inventory in the previous
time period, IMi,t−1,s, plus the amount purchased, Cits, minus the
quantity utilized in the production, RMits, and the amount of raw
material wasted, RWits, in each time period. The initial inventories
for raw material, IMi0s, and product final, IPi0s, are assumed to be
given. The last term in Eqs. (6) and (7) are added only when the
time periods in the problem have the same length.

In Eqs. (8) and (9),  the amount of final product and raw material
in stock, are constrained by limited lifetimes. Let �i and �i be the
time periods during which final products and raw materials have to
be used. Therefore, any product or raw material stored during time
period t cannot be sold or processed after the next �i or �i time
periods, respectively. Also, constraints (10) and (11) force the total
quantities of both raw material and product in stock to be lower
than the available storage capacities in every time period t.

By using appropriate penalty constraints (12), failures to fulfill
commitments can be quantified. If a given batch of product i in
scenario s meets a minimum product demand dL

its
with delay, then

a late delivery,ϑits, takes place in that time period.
The mass balance in Eq. (13) determines the amount of raw

material necessary for the production of product i in each time
period t, RMits, where the parameter Fit is the process conversion of

product i in time period t assuming that only one main raw material
is used for producing product i.

3.4. Time constraint

Considering the SPC-ZW policy, the time constraint (14)
imposes that the total time required for producing all products
cannot exceed the available time horizon.∑

i

Tits ≤ Ht ∀t ∈ T, s ∈ S (14)

In short, the general stochastic LGDP model optimizes the capac-
ity expansion, production planning and investment decisions for
batch plants over NT time periods under a set S of scenarios. The
proposed LGDP model will be reformulated as a mixed integer lin-
ear program (MILP) through the big-M reformulation (see Lee &
Grossmann, 2000).

4. Reformulation of LGDP model

As Grossmann (2002) remarked, any problem posed as LGDP
can always be reformulated as a mixed-integer linear program-
ming (MILP) problem. For modeling purposes, it is advantageous
to start with LGDP models since it allows for an easy and compact
representation and visualization of the discrete choices posed in the
problem (Vecchietti & Grossmann, 2000; Vecchietti et al., 2003).

In order to solve the above LGDP model, a reformulation has
to be made to obtain a format compatible with the optimization
program solvers. The most straightforward way of transforming
LGDP into MILP is to replace Boolean variables by binary variables,
and the disjunctions by “big-M” constraints. The logical constraints
are converted into linear inequalities. This transformation is termed
big-M (BM) reformulation (Sawaya and Grossmann, 2005).

In this way, disjunctions in Eqs. (2)–(4) must be transformed to
the following constraints with positive big-M constants, which are
used to represent sufficient large bounds, in order to obtain a MILP
model.∑
h ∈ Hp

zph = 1 ∀p ∈ P (15)

∑
s ∈ S

wphk = zph ∀p ∈ P, h ∈ Hp (16)

nits ≥
(

SFipt

vpk

)
qits − BM1it(1 − wphk) ∀i ∈ I,

p ∈ P, h ∈ Hp, k ∈ SVp, t ∈ T, s ∈ S (17)

COp ≥ h(˛p
ˇp
pk ) − BM2p(1 − wphk) ∀p ∈ P, h ∈ Hp, k ∈ SVp (18)

COp ≤ h(˛p
ˇp
pk ) + BM2p(1 − wphk) ∀p ∈ P, h ∈ Hp, k ∈ SVp (19)

Npt ≥ m − BM3pt(1−yphmt) ∀p ∈ P, h ∈ Hp, m ∈ Mp, t ∈ T (20)

Npt ≤ m + BM3pt(1 − yphmt) ∀p ∈ P, h ∈ Hp, m ∈ Mp, t ∈ T (21)

Tits ≥ ptipht

m
nits − BM4it(1 − yphmt) ∀i ∈ I, p ∈ P, h ∈ Hp,

m ∈ Mp, t ∈ T, s ∈ S (22)

∑
g ∈ Gp

xpgt = 1 ∀p ∈ P, g ∈ Gp, t ∈ T (23)

Npt ≥ Np,t−1 + g − BM5pt(1 − xpgt) ∀p ∈ P, g ∈ Gp, t ∈ T (24)
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Npt ≤ Np,t−1 + g + BM5pt(1 − xpgt) ∀p ∈ P, g ∈ Gp, t ∈ T (25)

CEpt ≥ gCOp�pt − BM6p(1 − xpgt) ∀p ∈ P, g ∈ Gp, t ∈ T (26)

CEpt ≤ gCOp�pt + BM6p(1 − xpgt) ∀p ∈ P, g ∈ Gp, t ∈ T (27)

Finally, the logical propositions are converted into linear mixed-
integer constraints by applying a systematic procedure. Firstly,
the logical propositions are converted into the conjunctive nor-
mal  form (CNF) or clausal form by removing implications in each
of the clauses and applying De Morgan’s theorem (Grossmann &
Biegler, 2004). Thus, a CNF is a conjunction of logical clauses, i.e.,
each clause is connected with the AND operator. Also, each clause
consists of only OR operators, i.e., disjunctions of Boolean variables
or their negations. This representation allows transforming the log-
ical expressions into an equivalent mathematical representation
(Cavalier, Pardalos, & Soyster, 1990; Cavalier & Soyster, 1987). Thus,
the double implication in the logical propositions in Eq. (5) can be
represented by the following form:∑
m ∈ Mp

yphmt = zph ∀p ∈ P, h ∈ Hp, t ∈ T (28)

In summary, the big-M reformulation to the original problem
consists of objective function (1) subject to constraints (15)–(28),
plus planning constraints (6)–(13), and constraint (14) about the
time horizon. Bounds on the involved variables must be also added.

The tightest values for big-M constants (BM1–BM6) for the above
equations are calculated by means of the following expressions:

BM1it = nU
it ∀i ∈ I, t ∈ T (29)

BM2p = HU
p ˛p(max vˇp

pk ) ∀p ∈ P (30)

BM3p = MU
p ∀p ∈ P (31)

BM4it = TU
it ∀i ∈ I, t ∈ T (32)

BM5p = MU
p ∀p ∈ P (33)

BM6pt = MU
p HU

p �pt(max vˇp
pk ) ∀p ∈ P, t ∈ T (34)

where the parameter HU
p is the maximum number of units in series

that can be allocated in operation p.

5. Motivating example

In this section a motivating example based on a multiproduct
batch plant that produces oleoresins is considered. Furthermore,
in order to verify whether the posed formulation captures the
interactions between different design options taking into account
uncertain demands, five cases of the original problem has been ana-
lyzed. This example and the derived cases were implemented in
GAMS using the GUROBI/MILP solver with a 0% margin of optimality
and were all performed on a Intel(R) Core(TM)2 Duo CPU, 2.40 GHz
with a 1.98GB of RAM.

In order to illustrate the proposed stochastic LGDP model
approach, a multiproduct batch plant that produces four oleoresins
is considered. The products are sweet bay (A), pepper (B), thyme (C)
and rosemary (D) oleoresins. The batch plant consists of four unit
operations: (1) extraction, (2) expression, (3) evaporation, and (4)
blending. A global planning horizon of 2 years has been considered,
i.e., H = 12,000 h. A discretization interval of 3 months is used for the
multiperiod model, resulting in 8 time periods, i.e., Ht = 1500 h. The
process data for this example are shown in Table 1, where the pro-
cessing time of each operation corresponds to the option with only
one unit.

It is assumed that a maximum number of five units in series with
a countercurrent arrangement may  be assigned in the extraction
operation, i.e., HU

1 = 5. In other words, operation 1 can be performed

Table 1
Process data for the motivating example.

i Size factors, Sipt (L/kg) Processing time, tipt (h) Conversion
factor

1 2 3 4 1 (h1) 2 3 4 Fit

A 20 15 12 1.5 25.95 1.0 2.5 0.5 11.11
B 23 15 12 1.5 39.46 2.0 1.5 2.0 11.11
C  30 20 17 1.5 27.93 1.0 2.0 1.0 15.87
D 40 25 24 1.5 34.09 1.0 3.0 1.0 22.22

Table 2
Extraction times tipht (h) for different configurations in series.

i Number of unit in series

1 2 3 4 5

A 25.95 9.28 5.35 3.47 2.37
B 39.46 9.76 5.55 3.59 2.44
C  27.93 9.41 5.41 3.51 2.39
D  34.09 9.63 5.50 3.56 2.42

by either one (h1), two (h2), three (h3), four (h4) or five (h5) units in
series. Processing times for each product i at the extraction opera-
tion take smaller values as the number of units in series grows. In
Table 2 extraction processing times for each configuration in series
h, tipht, are summarized.

All the unit operations in this process can be duplicated in par-
allel up to 3 sets of units operating out-of-phase (MU

p = 3). A set of
5 discrete sizes is provided to select process units. Table 3 shows
the available discrete sizes for each operation and cost coefficients
associated. Coefficients �pt are obtained by using the values of ˛p

(cost coefficient of operation p at the beginning of the project) and
taking into account the time period involved.

Prices of raw materials and final products are given in Table 4.
As can be seen, it is assumed that both prices increase after the first
year due to the annual inflation rate of 5%.

Demand for the products is uncertain and 3 scenarios with prob-
abilities p1 = 0.5, p2 = 0.3, and p3 = 0.2 are considered. In the first
time period all the scenarios show the following upper demands,
i.e., 6000, 5000, 7000 and 8000 kg, for product A, B, C, and D,  respec-
tively. It is assumed that product demand for each time period
will increase in comparison with the given conditions. Thus, the
expected growth rates per time period in each scenario are 20%,
10%, and 5%, respectively. Minimum product demands in every time
period for all scenarios are assumed as 50% of maximum product
demands.

Products and raw materials lifetimes in time periods are 3 and
2, respectively. The inventory coefficient costs per ton of both final
products and raw materials for all the products are 1.5$/(ton h) and
0.2$/(ton h), respectively. These values are assumed to be the same
for all time periods. Cost coefficients for late delivery it is assumed
as 50% of product prices. An annual discount rate of 10% is employed
here.

Table 3
Available standard sizes.

Option Discrete volumes, 
pk (L) operation

1 2 3 4

1 500 500 250 50
2  1000 700 500 100
3  1500 1000 750 150
4 2500 1500 1000 200
5  3000 2000 1500 250

Cost  coef. ˛p 1350 1750 1200 975
Cost  exp. ˇp 0.6 0.6 0.6 0.6
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Table  4
Economic data for the motivating example.

i Costs of raw materials, �it ($/kg) Prices of products, npit ($/kg)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

A 1.50 1.50 2.20 2.20 1.58 1.58 2.31 2.31 36.00 36.00 38.00 38.00 37.80 37.80 39.90 39.90
B  2.50 2.50 2.50 2.50 2.63 2.63 2.63 2.63 40.00 40.00 40.00 40.00 42.00 42.00 42.00 42.00
C  1.00 0.80 1.00 0.80 1.05 0.84 1.05 0.84 37.00 37.00 37.00 35.00 38.85 36.75 38.85 36.75
D 1.80  1.80 0.60 0.60 1.89 1.89 0.63 0.63 40.00 40.00 35.00 35.00 42.00 42.00 36.75 36.75

The resulting mathematical model, which comprises 7661 equa-
tions, 368 binary variables, and 1125 continuous variables, was
solved in a CPU time of 85.45 s. The expected net present value
(ENPV) in the optimal solution has a value of 4.41 M$.

Fig. 1 shows the optimal structure of the batch plant obtained
in every time period. In this figure, units in dotted line are included
in different time periods. As can be seen, in time period 1, there
is only one unit in all operations except in operation 1 which has
five units in series. Later, in time period 4, a set of 5 units in series
is incorporated in the operation of extraction. These sets of units
are working in parallel out-of-phase. The operation 3 has one unit
during the three first time periods. Then, in the fourth time period,
a new unit is added in parallel out-of-phase, what allows reducing
idle times. Finally, in the sixth time period another unit is allocated
in this operation, where three units work in parallel out-of-phase.
The other unit operations have a unique equipment item in all
time periods. The unit sizes selected for each operation are 2500 L,
2000 L, 1500 L, and 200 L, respectively.

Production planning decisions for each product are different for
each scenario in the optimal solution. Tables 5–7 summarize the
results of planning decisions for scenarios 1–3.

The following conclusions can be drawn from Tables 4–7.  In all
scenarios, the purchases of material to manufacture product A are
made only in time periods 1, 2, 5 and 6 because the costs have the
lowest values. The excess of raw material bought in time intervals 2
and 6 are held as raw material inventory allowing the production in
subsequent time periods. Moreover, note that production of prod-
uct A in time periods 2, 3, 6 and 7 are higher than the amount sold in
the same interval. For that reason, the extra amount is carried out
forward as inventory for satisfying demands in the following time
intervals. On the other hand, for scenarios 2 and 3, the amounts
produced of product B, in each time period, are sold in the same
time interval. Therefore, the corresponding inventories are zero. In
scenario 1, the excess made in time periods 4 and 5 for this product
is held as a product inventory to satisfy the demands in intervals 6
and 7 where production is reduced.

For product C, the purchases reach maximum values in time
periods 2, 4, 6 and 8 because of the lower prices of raw material.
When prices rise the purchases are stopped as well as the produc-
tion of this product. Likewise, in all scenarios, purchases for product

D are stopped in time intervals 5 and 6, and its production take
places in almost all of the time periods.

5.1. Study of different cases

In order to comprehend the implications of the inclusion of
uncertainty in this formulation, in this subsection several cases has
been solved. First, a deterministic problem with no product demand
increase during the global horizon is presented. Additionally, in the
following three cases below, each scenario presented in the moti-
vating example has been considered in isolation by formulating and
solving the corresponding deterministic problem. Finally, to assess
the interactions and benefits of including several design options
together with the possibility of capacity expansion, another case is
solved without the inclusion of new units in different time periods.

5.1.1. Case (a)
First, in order to analyze the capacity of the proposed approach,

the previous problem is solved considering a hypothetical case
where no increase in product demands occurs. This determinis-
tic multiperiod problem has the same upper demand for the four
products (i.e., 6000, 5000, 7000, and 8000 kg) in each time period.
The optimal solution corresponds to a net present value (NPV) of
2.48 M$.  The optimal configuration of the batch plant is consider-
ably changed compared to the original problem. Even more, the
size requirements for each operation are smaller than in the previ-
ous problem. As a result, in operation 1 there are five equal units
in series and only one unit in the other operations. The unit sizes
selected for operations 1, 2, 3 and 4 are 1500 L, 1000 L, 1000 L, and
100 L, respectively. As expected, the plant maintains this structure
along the planning horizon because there is no change in product
demands.

5.1.2. Case (b)
In this case, the motivating example is solved considering that

product demands in scenario 1 are known with certainty. As was
mentioned above, in scenario 1 a 20% increase in product demands
in every time period over their values in the first time interval is
considered.

V=2500L

5 units in series duplicated inparallel

Operation 1  Operation 2 

V=2000L V=1500L V=200L

t4

t1

t6

Operation 4 Operation 3 

Fig. 1. Optimal structure of the batch plant for the motivating example.
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Table  5
Optimal production planning variables for scenario 1.

t A (×104 kg) B (×104 kg) C (×104 kg) D (×104 kg)

qit QSit IPit Cit IMit qit QSit IPit Cit IMit qit QSit IPit Cit IMit qit QSit IPit Cit IMit

1 0.60 0.60 0.00 6.67 0.00 0.50 0.50 0.00 5.56 0.00 0.70 0.70 0.00 11.1 0.00 0.40 0.40 0.00 8.89 0.00
2  1.58 0.72 0.86 29.1 11.5 0.60 0.60 0.00 6.67 0.00 1.85 0.84 1.01 29.3 0.00 0.48 0.48 0.00 10.7 0.00
3  0.72 0.86 0.72 0.00 3.58 0.72 0.72 0.00 8.00 0.00 0.00 1.01 0.00 0.00 0.00 2.53 1.15 1.38 56.3 0.00
4 0.32  1.04 0.00 0.00 0.00 1.54 0.89 0.65 17.1 0.00 2.66 1.21 1.45 42.2 0.00 3.04 1.38 3.04 176 108
5 1.24  1.24 0.00 13.8 0.00 2.28 1.04 1.89 25.3 0.00 0.00 1.45 0.00 0.00 0.00 2.27 1.66 3.65 0.00 57.8
6  3.28 1.49 1.79 60.4 23.9 0.85 1.24 1.49 9.44 0.00 3.83 1.74 2.09 60.8 0.00 2.60 1.99 4.26 0.00 0.00
7  0.00 1.79 0.00 0.00 23.9 0.00 1.49 0.00 0.00 0.00 0.00 2.09 0.00 0.00 0.00 7.74 12.0 0.00 172 0.00
8  2.15 2.15 0.00 0.00 0.00 1.79 1.79 0.00 19.9 0.00 2.51 2.51 0.00 39.85 0.00 2.87 2.87 0.00 63.7 0.00

Table 6
Optimal production planning variables for scenario 2.

t A (×104 kg) B (×104 kg) C (×104 kg) D (×104 kg)

qit QSit IPit Cit IMit qit QSit IPit Cit IMit qit QSit IPit Cit IMit qit QSit IPit Cit IMit

1 0.60 0.60 0.00 6.67 0.00 0.50 0.50 0.00 5.56 0.00 0.70 0.70 0.00 11.1 0.00 0.40 0.40 0.00 8.89 0.00
2  1.39 0.66 0.73 24.3 8.87 0.55 0.55 0.00 6.11 0.00 1.62 0.77 0.85 25.7 0.00 0.44 0.44 0.00 9.78 0.00
3  0.80 0.73 0.80 0.00 0.00 0.61 0.61 0.00 6.72 0.00 0.00 0.85 0.00 0.00 0.00 2.03 0.97 1.06 45.2 0.00
4  0.00 0.80 0.00 0.00 0.00 0.67 0.67 0.00 7.39 0.00 1.96 0.93 1.03 31.1 0.00 2.24 1.06 2.24 54.7 4.97
5 0.88  0.88 0.00 9.76 0.00 0.73 0.73 0.00 8.13 0.00 0.00 1.03 0.00 0.00 0.00 0.22 1.17 1.29 0.00 0.00
6  2.03 0.97 1.06 35.5 13.0 0.81 0.81 0.00 8.95 0.00 2.37 1.13 1.24 37.6 0.00 0.00 1.29 0.00 0.00 0.00
7  1.17 1.06 1.17 0.00 0.00 0.89 0.89 0.00 9.84 0.00 0.00 1.24 0.00 0.00 0.00 1.42 1.42 0.00 31.5 0.00
8  0.00 1.17 0.00 0.00 0.00 0.97 0.97 0.00 10.8 0.00 1.36 1.36 0.00 21.7 0.00 1.56 1.56 0.00 34.6 0.00

Table 7
Optimal production planning variables for scenario 3.

t A (×104 kg) B (×104 kg) C (×104 kg) D (×104 kg)

qit QSit IPit Cit IMit qit QSit IPit Cit IMit qit QSit IPit Cit IMit qit QSit IPit Cit IMit

1 0.60 0.60 0.00 6.67 0.00 0.50 0.50 0.00 5.56 0.00 0.70 0.70 0.00 11.1 0.00 0.40 0.40 0.00 8.89 0.00
2  1.29 0.63 0.66 22.1 7.72 0.52 0.52 0.00 5.83 0.00 1.51 0.74 0.77 23.9 0.00 0.42 0.42 0.00 9.33 0.00
3 0.70  0.66 0.70 0.00 0.00 0.55 0.55 0.00 6.13 0.00 0.00 0.77 0.00 0.00 0.00 1.81 0.88 0.93 40.2 0.00
4  0.00 0.70 0.00 0.00 0.00 0.58 0.58 0.00 6.43 0.00 1.66 0.81 0.85 26.4 0.00 1.90 0.93 1.90 44.3 2.11
5 0.73  0.73 0.00 8.10 0.00 0.61 0.61 0.00 6.75 0.00 0.00 0.85 0.00 0.00 0.00 0.09 0.97 1.02 0.00 0.00
6  1.57 0.77 0.80 26.8 9.38 0.64 0.64 0.00 7.09 0.00 1.83 0.89 0.94 29.1 0.00 0.00 1.02 0.00 0.00 0.00
7  0.84 0.80 0.84 0.00 0.00 0.67 0.67 0.00 7.44 0.00 0.00 0.94 0.00 0.00 0.00 1.07 1.07 0.00 23.8 0.00
8  0.00 0.84 0.00 0.00 0.00 0.70 0.70 0.00 7.82 0.00 0.98 0.98 0.00 15.6 0.00 1.13 1.13 0.00 25.0 0.00

For this case, an optimal NPV of 6.23 M$  was obtained. The opti-
mal  solution selected five units in series in operation 1 which are
duplicated in parallel in the fourth time period. Operation 3 has
one unit until the third time interval where a new unit is added.
Finally, in time period 6 another unit is allocated in this operation.
Unit operations 2 and 4 have only one equipment item during the
planning horizon. After the sixth time period, the optimal plant
structure for this case is the same as that shown in Fig. 1, obtained
for the original two-stage stochastic problem.

5.1.3. Case (c)
In the next case, the deterministic problem is solved with the

demands for the products corresponding to scenario 2, i.e., con-
sidering a 10% increase in product demands in each time interval.
Here, the value of the objective function (NPV) for this problem is
3.71 M$.  Fig. 2 illustrates the optimal configuration obtained for the
batch plant. It can be seen that the optimal configuration is dras-
tically changed compared to the original problem. Here, four units

V=2500L

Operation 1  Operation 2 

V=2000L V=1500L V=200L

t1

Operation 4 Operation 3 

Fig. 2. Optimal structure of the batch plant for case (c).

in series are selected in the operation of extraction and there is
one unit in the remaining operations of the plant. It is important
to highlight that all units are added in the first time period for this
case.

5.1.4. Case (d)
In this last deterministic case, the problem was  solved consider-

ing that product demands for scenario 3 are known with certainty.
The resulting total benefit for this case is 3.06 M$.  In the first time
period, the optimal structure consists in one unit in all operations
except for operation 1 where five units in series are selected. Later,
in the time period 3, a second equipment item is added in oper-
ation 3 that works out-of-phase with the first one to reduce the
limiting cycle time. Here, the unit sizes selected for each operation

V=1500L

Operation 1  Operation 2 

V=1000L V=100L

t1

V=1000L

t3

5 units in series 

Operation 4 Operation 3 

Fig. 3. Optimal structure of the batch plant for case (d).
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are smaller than those obtained in previous cases as can be seen
from Fig. 3.

5.1.5. Case (e)
Now, the motivating example was solved without considering

the structural option of adding units in parallel at different time
periods. In other words, the structure and the number of units in
the batch plant are selected at the beginning and remain the same
along the time horizon. Here, the optimal solution selected two sets
of five units in series that are working in parallel in the operation of
extraction; three units in parallel were allocated in the third oper-
ation, and only one unit for the remaining operations. Optimal unit
sizes are the same as those shown in Fig. 1. The optimal solution in
this case was 4.25 M$,  which is lower than the best value of 4.41 M$
attained in the original problem. Comparing these results, it can
be concluded that the approach proposed considering the capac-
ity expansion of the plant during the time horizon yields better
solutions.

Interesting observations can be concluded from the results of
every case solved. Since product demands are time invariant for
case (a) the plant structure is selected at the beginning of the time
horizon and no new unit is installed in subsequent periods. The
resulting plant is considerably different from the solution of the
stochastic formulation for the motivating example. As a result, this
case does not take advantage of the proposed multiperiod formu-
lation which accounts for the variability of cost and demands due
seasonal or market changes.

In cases (b)–(d) each scenario of the motivating example is con-
sidered separately. They are based on the on the assumption of
perfect knowledge of product demands in every time period. Note
that the plant structure obtained solving these cases, with excep-
tion of case (b), are quite different from the optimal configuration
found for the original example. Since they are deterministic prob-
lems, the net present value NPV was calculated and their values
range from 6.23 for case (b) to 3.06 M$  for case (d). In order to
compare the numerical results of each case solved with the opti-
mal  solution of the initial stochastic example, the ENPV has been
obtained by fixing the structure of the plant to those obtained in
each case and optimizing, in the original stochastic formulation, the
production planning variables only. The resulting ENPVs are 4.40,
2.45, and 1.79 M$  for cases (b)–(d), respectively. It should be noted
that the slight difference of case (b) from the solution of the original
problem is due to the plant structures are highly similar allowing
to meet the production targets of the scenarios. For the other two
cases the solution has an associated significant penalty cost because
the minimum product demands in all scenarios cannot be fulfilled
with those plant configurations.

This analysis shows that the decomposition of the problem
in two levels, design and planning, obtains suboptimal solutions.
Note that cases (b)–(d) do not consider the simultaneous impact of
design and planning for several scenarios. It is not possible to design
the plant considering only one scenario and assume that the other
ones will achieve an appropriate performance in that facility. Only
the proposed stochastic formulation allows obtaining a result that
balances the impact of various scenarios simultaneously as well as
design and planning decisions.

Finally, the last case posed includes the uncertainty in prod-
uct demands through different scenarios but no unit addition is
allowed at different time periods. Here, the plant configuration is
selected in the first time period. Such configuration is the same as
the final structure of the original example after the sixth period,
where the last unit is added in operation 3, but with a higher ENPV.
This difference is due to the fact that equipment installed in the
first periods has a larger impact in the objective function than those
included later.

6. Conclusions

In this work, a two-stage stochastic LGDP model has been
formulated to address the design and production planning of
multiproduct batch plants in presence of demand uncertainty.
Several contributions can be emphasized in this article.

The proposed model considered a dynamic context where
variations in prices, product demands, costs, and raw materials
availability due to seasonal or market fluctuations are taken into
account. Therefore, the optimal structure initially adopted cannot
be maintained during the plant lifetime. So, in this work, the plant
configuration can be modified and new units can be added in order
to fulfill new product requirements considering all the fluctuations.

Design and production planning decisions are simultaneously
considered. Many previous approaches prioritize decomposition
of the problem in two levels: while in the first one the design is
attained, in the second one the production is planned using the
plant configuration previously obtained. Taking into account the
proposed approach, critical trade-offs between design and pro-
duction decisions are appropriately assessed as was  shown in the
example.

The proposed approach using a LGDP optimization model is
capable of handling different levels of decisions. Structural deci-
sions (the duplication of units in parallel working out-of-phase),
design decisions (unit sizes) and planning decisions (production,
inventory, purchases, etc.) are appropriately represented using lin-
ear disjunctions. The disjunctive formulation of this problem allows
for an easy and compact representation and visualization of the
discrete choices posed. In order to obtain a linear model the size
units are considered available in discrete sizes which correspond
to the real procurement of equipment. In order to solve the LGDP
model, the “big-M” reformulation was  adopted to transform the
LGDP model into a MILP one which can be solved to global opti-
mality.

Finally, the proposed model considers uncertainty in product
demands represented by a set of scenarios. The formulation of the
problem through scenarios allows for the simultaneous treatment
of several variable elements: demands not only change along the
time horizon but also they fluctuate taking into account the uncer-
tain context.

The design variables, such as the selection of equipment of
standard size and the addition of new units in parallel in each
time period, are independent of the scenarios, i.e., they are first-
stage variables. On the other hand, production planning variables,
which include working levels of the plants for each time period, are
scenario-dependent variables, i.e., they are second-stage variables.

The performance of the proposed formulation has been assessed
through a motivating example dealing with a batch plant that pro-
duces vegetable extracts, particularly oleoresins. Several cases have
been solved in reasonable computation times, showing the advan-
tages of the presented model.
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