
Accepted Manuscript

Title: Logic hybrid simulation-optimization algorithm for
distillation design.

Author: J.A. Caballero

PII: S0098-1354(14)00097-0
DOI: http://dx.doi.org/doi:10.1016/j.compchemeng.2014.03.016
Reference: CACE 4929

To appear in: Computers and Chemical Engineering

Received date: 15-1-2014
Revised date: 18-3-2014
Accepted date: 20-3-2014

Please cite this article as: Caballero, J. A.,Logic hybrid simulation-optimization
algorithm for distillation design., Computers and Chemical Engineering (2014),
http://dx.doi.org/10.1016/j.compchemeng.2014.03.016

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.compchemeng.2014.03.016
http://dx.doi.org/10.1016/j.compchemeng.2014.03.016


Page 1 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

Logic hybrid simulation-optimization algorithm for 

distillation design.

J. A. Caballero 

Department of Chemical Engineering, University of Alicante. Apartado de correos 99, 03080, 

Alicante Spain. email: caballer@ua.es.

Highlights

! ! A novel Generalized Disjunctive Model is presented for rigorous distillation design.

! ! A logic based algorithm without MINLP reformulation is used for solving the problem

! ! The model is solved using a hybrid simulation-optimization approach.

! ! We take advantage of the best of algebraic models and process simulators.

Abstract

In this paper, we propose a novel algorithm for the rigorous design of distillation columns that 

integrates a process simulator in a generalized disjunctive programming formulation. The 

optimal distillation column, or column sequence, is obtained by selecting, for each column 

section, among a set of column sections with different number of theoretical trays. The selection 

of thermodynamic models, properties estimation etc., are all in the simulation environment. All 

the numerical issues related to the convergence of distillation columns (or column sections) are 

also maintained in the simulation environment. The model is formulated as a Generalized 

Disjunctive Programming (GDP) problem and solved using the logic based outer approximation 

algorithm without MINLP reformulation. Some examples involving from a single column to 

thermally coupled sequence or extractive distillation shows the performance of the new 

algorithm.

Keywords: Distillation; Generalized Disjunctive Programming; Simulation; Optimization.

1. Introduction
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The general separation problem was defined more than 40 years ago by Rudd & Watson (1968)

as the transformation of several source mixtures into several product mixtures. More than forty 

years later we can say that this general problem has not been completely solved. We will focus, 

in this work, in the more restricted problem of separating a single source mixture into several 

products using only distillation columns.

Distillation is likely the most important separation and purification operation in chemical process 

industries. Typically more than half of the process heat distributed to a plant is dedicated to 

supply heat in the reboilers of distillation columns (Kunesh et al., 1995). However, the energy is 

provided to the bottom of the column and approximately the same amount of energy removed in 

the top, although at lower temperature, which yields an inefficient process, but still one of the 

most effective for homogeneous mixtures separations. To get an idea of the importance of 

distillation, Humphrey (1995) estimated that distillation handles more than 90% of all the 

separations and purifications. Soave & Feliu (2002), using data by Mix et al (1978) estimated 

that distillation accounts about 3% of the total United States energy consumption. This is 

equivalent to 2.87·1018 J per year (91 GW or 54 million tons of crude oil). The capital investment 

for these distillation systems was estimated to be around 8 billion US$.

The optimization of distillation columns involves the selection of the number of trays, the feed 

location and the operating conditions to minimize a performance function, usually the total 

annualized cost that involves investment and operating costs. Discrete decisions are related to 

the calculation of the number of trays and feed and products location, and continuous decisions

are related to the operation conditions. Due to the discrete-continuous nature of the problem 

and to the complex equations involved, it is common use shortcut or aggregated models 

together with some rules of thumb that under some assumptions have proved to produce good 

results, at least in the first stages of design where a rigorous design is neither necessary nor 

convenient due to the large computational effort needed. Some of the most successful shortcut 

methods are:

Fenske – Underwood- Gilliland (FUG). (Fenske, 1932; Gilliland, 1940; Underwood, 1948). The 

FUG method assumes a constant molar overflow and constant relative volatilities in all the trays 

of the distillation column. This method considers two extreme ideal situations. a) The distillation 

column operates at total reflux (no feed is entering or exiting from the column), which allows 

calculating the minimum number of trays for a given separation of two key components, and b) 

when the column operates at pinch conditions, (infinite number of trays), which allows 

calculating the minimum reflux. The optimal situation is in some point in between these two 

extreme cases. Group methods (GM) (Edmister, 1943; Kamath et al., 2010; Kremser, 1930). 

GMs use approximate calculations to relate the outlet stream properties to the inlet stream 

specifications and number of equilibrium trays. They provide only an overall treatment of the 

stages in the cascade without considering detailed changes in the temperature and composition 

of individual stages. However, they are much easier to solve because they involve fewer 

variables and constraints. Aggregated models (AG) (Bagajewicz & Manousiouthakis, 1992; J. A. 
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Caballero & Grossmann, 1999). AG models are similar to group methods, they are based on 

mass balances and equilibrium feasibility, expressed in terms of flows, inlet concentrations, and 

recoveries. The Boundary Value Method (BVM) (Barbosa & Doherty, 1988; Fidkowski et al., 

1993; Fidkowski et al., 1991; Julka & Doherty, 1990; Levy & Doherty, 1986; Levy et al., 1985). 

BVM can be used to determine the minimum reflux ratio and feasible design parameters for a 

column separating a ternary mixture. It allows to obtain the number of trays, composition 

profiles etc. The Rectification Body Method (RBM) (Bausa et al., 1998; von Watzdorf et al., 

1999). RBM is used for the determination of minimum energy requirements for a specified

separation. The method approximates rectification bodies by straight lines. The intersection of 

the rectification bodies of two sections indicates its feasibility. Driving Force Method (DFM)

(Gani & Bek-Pedersen, 2000). The DFM is a graphical method. Its authors proved that the 

minimum energy requirements corresponds to a maximum in the driving force. The Shortest 

Stripping Line (SSL) (Angelo Lucia et al., 2008; A. Lucia & McCallum, 2010; Angelo Lucia & 

Taylor, 2006) Authors showed that the longest residue curve is related with the highest energy 

consumption for a given separation. Then the shortest curve should produce the minimum 

energy required for the same separation. 

Some of the previous methods have been automated, although not all of them can be directly 

used with an optimization algorithm. In any case, they are valuable tools for obtaining precise 

initial values or reliable bounds for the rigorous optimization of distillation columns.

2. Overview of rigorous tray by tray optimization models.

As commented in the introduction section, the economic optimization of a distillation column 

involves continuous decisions, related to the operational conditions and energy involved in the 

separation, and discrete decisions related to the total number of trays, and the tray positions of 

each feed and product streams. A major challenge is to perform the optimization using tray by 

tray models that assume phase equilibrium. 

The first approach to solve the above commented problem was due to Sargent &

Gaminibandara (1976). In this case, the authors assumed a fixed number of trays, and the goal 

was to select the optimal feed location. To that end, the feed is split into as many streams as 

trays has the column (condenser and reboiler are excluded). Figure 1 shows the superstructure. 

The model can be written as a Mixed Integer Nonlinear Programming (MINLP) problem by 

considering the MESH equations (Mass balances, Equilibrium equations, molar fraction 

Summation equals one in all phases, and Enthalpy balances). However, computational 

experience shows that this problem is usually solved as a relaxed NLP.

The first model that considers both, the feed tray position optimization and the total number of 

trays was due to Viswanathan & Grossmann (1993). The authors used a superstructure that 

involves a variable reflux location as shown in Figure 2. The superstructure considers a fixed 

feed tray and a column formed by a large enough number of trays above and below the feed. 

The reflux (reboil) is returned to all the trays above (below) the feed. The model takes the form 
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of a MINLP and relies also on MESH equations. A major difficulty with this model is related to 

the non-existing trays. In these trays, there is a zero liquid flow (rectifying section) or a zero 

vapor flow (stripping section), which can produce numerical problems due to the convergence of 

equilibrium equations with a zero value in the flow of one of the phases..

To avoid the numerical problems in MINLP models Yeomans and Grossmann (Yeomans & 

Grossmann, 2000a, 2000b) proposed a Generalized Disjunctive Programming model by 

allowing the bypass of those trays that are not selected. Figure 3 shows the column 

representation for this approach. For each existing tray the mass transfer task is accounted for 

and modeled with the MESH equations. For a non-existing or inactive tray the task considered 

is simply an input-output operation with no mass transfer. Because the MESH equations include 

the solution for trivial mass and energy balances, the only difference between existing and non-

existing trays is the application of the equilibrium equations. As for the permanent trays, all the 

equations for an existing tray apply. The advantage of the disjunctive modeling approach is that 

the MESH equations of the non-existing trays do not have to be converged, and no flows in the 

column are required to take values of zero, making the convergence of the optimization 

procedure more reliable. Also, by using Generalized Disjunctive Programming (GDP) as the 

modeling tool, the computational expense of solving the problem can be reduced. Barttfeld et 

al., (2003) considered different representations for the GDP model. Numerical results studies for 

separation of ternary mixtures in a single column suggests that the GDP formulation requires 

less solution time but is more sensitive toward local optima than MINLP formulations. Even 

though, GDP seems to be more reliable than MINLP models both require good initial values and 

bounds to converge. Barttfeld & Aguirre (2002, 2003), propose to use a reversible distillation 

model that involves the minimum reflux conditions as well as minimum entropy production to 

provide a feasible initial design, and good initial values for the rigorous optimization. Their 

method is mainly limited by the drawbacks of this so-called “preferred separation”, because, for 

azeotropic mixtures, usually nonsharp splits are generated. The extension to the most common 

sharp split is not trivial. Kossack et al (2006) proposed to use the Rectification Body Method 

(RBM) that can be used in all the cases. However, the initialization procedure is rather complex.

Another option was proposed by Harwardt & Marquardt (2012): They start calculating the 

minimum energy demand and the concentration profile estimated based on pinch points. Based 

on these results a simplified model that comprises only component mole balances and 

equilibrium relations, but no energy balances, is solved. In subsequent solution steps the 

energy balance was included again and the model resolved. To solve the problem, they used 

the so called successive relaxed MINLP (SR-MINLP) proposed by Kraemer et al (2007), which 

reformulate the MINLP or GDP problems as pure continuous problems with tailored big-M 

constraints, where all discrete decisions are represented by continuous variables. The discrete 

decisions are enforced by non-convex constraints that force the continuous variables to take 

discrete values
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Even with all these difficulties, complex problems have been successfully solved, including 

reactive distillation (Ciric & Gu, 1994; Jackson & Grossmann, 2001); azeotropic sequences 

(Mariana Barttfeld et al., 2004; Bauer & Stichlmair, 1996, 1998), Thermally coupled distillation 

sequences (Dunnebier & Pantelides, 1999)  or hybrid membrane/distillation systems (Kookos, 

2003) among others.

On other side, process simulators are commonly used tools in both academy, even by 

undergraduate students, and industry to accurately simulate the behavior of complex distillation 

systems. Process simulators include thermodynamic and transport models that allow accurately 

calculate properties of pure components, mixtures and state of the art algorithms to simulate 

distillation columns. Using optimization algorithms with these types of models is a challenging 

problem because some variables cannot be accessed or modified directly by the user; which 

sometimes introduces non-differentiabilities. 

One interesting approach that makes use of available process simulators and optimization tools 

was proposed by Lang & Biegler (2002) These authors proposed a distributed stream-tray 

optimization method (DSTO) in which the reflux and the feed flow rates can be distributed and 

directed to a set of candidate trays according to a differentiable distribution function (DDF). 

Using this DDF, the location of the feed, reflux, and other side streams can be treated as 

continuous instead of integer variables. The drawback, however, is that the DDF function is 

highly non-convex, and the method can easily be trapped in local solutions.

Caballero et al. (2005) proposed a GDP model –reformulated as a MINLP- that combines the 

capabilities of process simulators, taking advantage of the tailored algorithms designed for 

distillation and property estimation implemented in these simulators. The model iterates 

between two problems: a NLP problem, in which the trays are divided in existing or non-existing 

and a specially tailored MILP master problem. The basic idea consists of modifying the master 

by adding to the objective function and to the constraints the 'extra' contributions due to the 

addition or deletion of trays to each section of the column. The model probed to be robust, but 

the necessity of a tailored master problem is an important drawback that avoids the inclusion of 

the model in general flow-sheets. 

3. Problem statement.

Taking into account all the previous comments the problem we will address can be state as 

follows. Given a distillation column (or distillation sequence) for performing a given separation 

determine the best column or column sequence.

To that end the designer must specify upper and lower bounds to the total number of trays and 

feeds / products tray positions as well as the purity (or other requirements) of the final streams. 

The «best column« is defined in economic terms (minimize the Total Annualized Cost –TAC-) 

although any other objective can be used.
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It is assumed that all the component and thermodynamic properties are known and accurate.

The solution will include the optimal operating conditions, number of trays and feed(s) and 

product(s) tray positions as well as all the internal flows, temperatures, etc. 

In the rest of the paper we first present a novel algorithm that combines state of the art chemical 

process simulators (AspenHysys TM) with GDP model, without reformulation to MINLP, and that 

does not require modifications in NLP or master sub-problems, overcoming some of the 

difficulties of the previous approaches. Then a set of examples from single columns to complex 

sequences illustrates the approach and its advantages and drawbacks. Finally some 

conclusions and directions for future work are included.

4. GDP disjunctive model for rigorous tray by tray optimization

In this section we propose a novel algorithm for the rigorous design of distillation columns that 

integrates a process simulator in a generalized disjunctive programming formulation. 

The basic idea consists of developing a superstructure that uses as basic unit the distillation 

section. The optimal distillation column, or column sequence, is obtained by selecting among a 

set of column sections with different number of theoretical trays. Figure 4 shows an example of 

superstructure for a conventional two-section column.

In order to write the detailed GDP model let us first introduce the following index sets, 

parameters and variables in the model

The index sets:

REB  [ j | j is a reboiler in the superstructure]

COND [ j | j is a condenser in the superstructure]

Sections [ i | i is a column section] 

Vessels [v | v is the column vessel]

DSi [ k | k is a candidate section formed by Nk trays in column section i]

vSV [ Sections that form part of the column vessel v]

Data:

f Charging factor for annualizing the capital cost. It was calculated by the 

equation (1), as recommended by Smith (2005) taking into account the 

fractional interest rate per year (r) and the horizon time (n). 
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 1

( 1) 1

n

n

r r
f

r




 
(1)

jCH Heating utility cost in reboiler j

jCC Cooling utility cost in condenser j

,i kNTS Number of trays of column section k in disjunction i

Variables

Ix Independent variables ( Degrees of freedom ) in the process simulator

TAC Total annualized cost

iD Diameter of column section i

,i kDS Diameter of column section k, in disjunction i

iNT Number of trays in column section i

iProperty Any property of section i that must be calculated.

,i kY Boolean variable. It takes the value True if the column section k is 

selected in disjunction i, and False otherwise.

The GDP model can be written as follows:
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i Sections
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 
 
  
  

 
 

 
 
 
 
  

  

    



(2)

where (·)Hy  makes reference to the implicit equations solved by the process 

simulators. In other words, it is a call to AspenHysys TM. 

Without loss of generality, the model given by equation (2) is a conceptual representation of the 

actual model. The particular details are case dependent. Some remarks are therefore 

necessary:

Even though, in the model there is not an explicit logical relationship that force that to a 

given section must be assigned exactly a column section, this logical relationship is 

implicitly forced by the set of disjunctions.

It is possible (usually necessary) to add some constraints in order to satisfice some 

problem specifications. For example, to force purity or recovery requirements that 

cannot be specified in the process simulator. However, these constraints are problem 

dependent.

The disjunctions are used to determine all the necessary data to calculate the cost (e.g. 

diameter (D), number of trays (NT)) or any other column section property. The cost of 

the vessel is calculated in terms of the values assigned to each of the sections that form 

the vessel. The sections that form a given column are controlled through the set 

'Vessels', that specifies which sections form part of a given column.
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In equation (2) we do not differentiate between dependent and independent variables. 

In an equation based environment the solver deals with the variables and the user does 

not have to worry about. However, in a process simulator the selection of independent 

variables (degrees of freedom) is critical and problem dependent. Besides, the model 

given by (2), is a hybrid model, formed by implicit equations (solved by the process 

simulator) and explicit equations. The solver can only control the explicit variables –that 

appear in equation form- and the independent variables in the process simulator. A 

critical issue in the optimization with process simulators is that the failure in the 

simulator convergence produces the failure in the optimization. Although it is possible to 

introduce safeguards –the optimization can be recovered from a simulator convergence 

failure-, repeated failures make the optimization impossible. In the particular case of 

distillation columns there are sets of specifications that facilitate the convergence (i.e. 

reflux ratio and boilup ratio or the recovery of key components). However, specifications 

like compositions are usually most difficult to converge. In these last case a better 

approach consists of selecting a set of 'easy to converge' specifications and add the 

difficult constraints as external equations in the model.

The direct implementation of the superstructure presented in Figure 4 is not practical even for 

the case of a single column, at least for two reasons. First, it results in a very complex model in 

the process simulator –Figure 5 shows an example of how the model looks like in 

AspenHysysTM-. The NLP optimization takes large CPU times mainly due to the time to 

converge the complete flow sheet each time the solver calls it.

Fortunately, it is not necessary to use that 'Brute Force Approach'. Instead, the problem can be 

reformulated as a Disjunctive Problem with Net Structure (only two term disjunctions appear, 

and the second term just state that if a Boolean variable is set to False, all the variables related 

to that disjunction are set to zero). It is worth noting that all disjunctive problems can be 

reformulated as disjunctive problems with net structure, and solved using the Logic Based Outer 

Approximation (LBOA) algorithm presented by Turkay & Grossmann (1996). The reformulated 

problem is as follows:
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v i i v
m

sel Cost f D NT i SV v Vessels

Y True False

  

    

(3)

The following remarks are important:

In the LBOA algorithm (Turkay & Grossmann, 1996), each NLP is formed by a potential flow 

sheet configuration, the rest of variables do not appear in the model. Note that strictly speaking 

those variables are set to zero –second term in the disjunctions in equation (3)- but in the 

practical implementation, when solving the NLP those variables are dropped from the model. In 

this case a potential flow sheet is simply a distillation column (or a distillation sequence). This 

fact is really important and what makes the algorithm really useful. Although, from a conceptual 

point of view the superstructure is relatively complex (see Figures 4 and 5) the LBOA algorithm 

decomposed the problem in feasible NLPs that, as commented, results to be regular distillation 

columns. The number of trays in each section at each iteration are «decided» by the algorithm 

without user intervention. Therefore, even though there is complex model formulation, the GDP 

algorithm results in a sequence of relatively easy to solve sub-problems. As a consequence the 

algorithm could be eventually super-imposed to any process simulator without modifying at all 

the simulator internal algorithms.

In a single column, with known pressure profile, there are only two degrees of freedom. 

Therefore the CPU time needed to solve each NLP is of a few seconds. Even in systems 
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involving more than one distillation column these NLPs can be efficiently solve, with the same 

degree of difficulty that a regular NLP optimization in a process simulator.

4.1. Implementation details

The logic based outer approximation algorithm has been implemented in Matlab (MATLAB., 

2006.) and completely automatized, i.e. once the model is set there the user intervention is not 

necessary. For solving the NLP and Master-MILP sub-problems used in the LBOA algorithm we 

used the Tomlab optimization environment (Holmström, 1999) that provides a gateway for using 

state of the art NLP/MILP solvers. Although it is possible to use the internal NLP optimizers 

provided by the process simulator, our experience shows (arguable) that external NLP solvers 

like CONOPT (Drud, 1996) or SNOPT (Gill et al., 2002) are more robust and reliable. The MILP 

sub-problems were solved using CPLEX (Holmström et al., 2009). 

Figure 6 shows a scheme of the actual implementation. A description step by step of the 

problem is as follows

Step 1. In the process simulator (AspenHysysTM). Set a distillation column (or distillation 

sequence) the total number of trays or the feed(s) tray positions are not important at this stage. 

The lack of convergence of the process simulator could eventually produce that the entire 

algorithm fails. In order to minimize that eventuality the set of specifications must be selected to 

make the convergence as easy as possible. For example, usually selecting the reboil ratio and 

the boil-up ratio as degrees of freedom results in easy to converge columns (although this is 

case dependent). At this stage, purity requirements or other constrains can be violated. 

The selection of thermodynamic models, properties estimation etc., are all in the simulation 

environment. All the numerical issues related to the convergence of distillation columns (or 

column sections) are also maintained in the simulation environment and must be specified in 

this stage.

Step 2. Initialization. In the model we specified, for each column section, a set of candidate 

column sections with different number of trays. In order to initialize the problem we must solve a 

set of NLP problems that include, at least once, each candidate column section. To this end we 

solve a set covering problem to determine the minimum number of feasible flow-sheets that 

comply with this condition (Turkay & Grossmann, 1996). For example, consider a single column 

with one feed, and two products (distillate and bottoms). Assume that the rectifying section must 

be selected among NR different column section, and that the stripping section must be selected 

among NS different column sections. The minimum number of initial NLP problems will be equal 

to the maximum of NR and NS. Each one of those initial flow-sheets is simply a distillation 

column with fixed number of trays and fixed tray position. In general, the number of initial 

problems is given by equation (4):

 ,º max i kN Initial NLPs NTS (4)
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If this number is too large, it is possible reduce the number of candidate sections by considering 

sections that differentiate in 2, 3, … or n trays. Once the problem has been solved, it is possible 

to refine the search by considering values around the optimal solution obtained in previous 

iteration.

Step 3. Generate and solve the Master problem. The MILP is generated using the approach 

presented in the original LBOA algorithm (Turkay & Grossmann, 1996), with equality relaxation 

to deal with equality constraints (Kocis & Grossmann, 1987) and the augmented penalty 

strategy (Viswanathan & Grossmann, 1990) to ensure that linearizations of non-convex 

problems yield always feasible MILP problems. The derivative information for generating the 

MILP Master problem is provided directly by the last NLP (or the initial sets of NLPs) and 

corresponds to the Jacobian and function gradient in the optimal NLP solution.

It is worth mentioning that in the Master problem depends only on independent variables 

(degrees of freedom in the flow-sheet) and explicit variables in the model. Those variables 

calculated by the flow-sheet (i.e. reboiler and condenser heat loads, compositions, etc.) cannot 

appear in the Master problem. In other words, the Master is defined in the reduced space of 

explicit variables.

The master problem includes also an integer cut (Balas & Jeroslow, 1972) to exclude 

configurations explored by the algorithm in previous iterations.

Step 4. Solve the new NLP problem. The NLP problem is just a flow-sheet in which all the 

structural parameters (number of trays, feed and products tray positions) are known. The 

complexity of these NLPs is equivalent to any regular optimization using a process simulator. As 

previously commented, we obtained good and reliable results using an external solver. A 

detailed discussion about this topic is out of the scope of this paper. The interested reader can 

found information, for example in the following references (Biegler & Cuthrell, 1985; Y.D. Lang 

& Biegler, 1987)

Step 5. Check convergence. Due to the high non-convexity, the lower bounding property of 

the Master does not always hold and therefore, the usual stopping criteria (the last MILP master 

problem and the best NLP upper bound cross each other or the heuristic rule: stop when in two 

consecutive major iterations the objective of the NLPs worsen) are likely to provide a local 

optimal solution. However, the experience with the outer approximation algorithm for both the 

MINLP and logic versions shows that the optimal solution is usually found in the first major 

iterations (usually in the five first and rarely after the 10th major iteration). So we force the 

algorithm to perform at least 10 major iterations. If in these 10 iterations both, worsening of the 

objective function in two consecutive NLPs and crossing of the objective values of NLPs and 

master problems are simultaneously fulfilled, we stop. Otherwise, the iterations continue until 

both conditions hold.

Steps 2 to 5 are completely automatized and do not requires the user intervention. 
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Some final remarks are of interest:

The problem we are solving in a nonconvex discrete/continuous optimization problem. It is clear 

that the approach presented offers no guarantee of convergence to the global optimum. There 

are two issues to consider here. The first is that the NLP subproblems are nonconvex, and 

therefore local optimizers might get trapped in local solutions. Numerical test, however shows 

that most of the NLPs converges to the global optimal solution but if necessary the NLPs can be 

re-initialized from different starting points to increase the chances of identifying the global 

optimum. The second is that the master MILP might cut-off feasible solutions when adding 

supporting hyperplanes constructed from nonconvex functions. This limitation is handled (to 

some extent) through the addition of slack variables and penalty terms and forcing the stopping 

criteria commented in previous paragraphs.

As commented the logic based GDP approach generates only feasible NLPs that in this case 

result in just a sequence of columns with fixed number of trays and fixed feed position. As a 

consequence it is possible super-impose the algorithm in almost any process simulator without 

modifying the internal algorithms. Eventually it could be included as an "Add in" in any 

commercial process simulator.

5. Examples

Example 1. This first example deals with the separation of a mixture of Methanol, Acetone and 

Water (MeOH – Ac – W). Acetone and methanol forms a minimum boiling azeotrope. The 

objective is to obtain a mixture of acetone and methanol with a combined mole fraction greater 

than 0.99 and a combined mole recovery greater than 99%. All relevant data for the example 

are shown in Table 1.

This case study has been included to provide an example that is easy to reproduce and in 

which equations for calculating rigorous costs do not hide the essence of the algorithm. Instead 

of rigorous calculation of the total annual cost, we assume that the cost is given by a simple 

expression in terms of the heat loads and number of column trays:

min :0.2 ( ) ( ) 100( )Qcond kW QReb kW Total number of Trays 

where Qcond and Qreb make reference to the condenser and reboiler heat loads 

respectively.

In order to increase the robustness of the algorithm it is convenient to take as much advantage 

as possible from the specialized algorithms included in the process simulator (Aspen.Hysys TM). 

In this case the two constraints (mole fraction and recovery in distillate) can be used as 

specifications and therefore the problem is transformed in finding the combination of column 

sections with a minimum value of objective function. However, as previously commented, it is 
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worth remarking that transferring constraints (specifications) to the process simulator is not 

always possible because under some specifications the simulator convergence is difficult. Even 

though, the NLP solver can usually recover from a convergence failure, in general the lack of 

convergence in the simulator makes that all the procedure fail. In those cases a good alternative 

consists of selecting a set of specifications that ensure convergence for a large interval of 

values (i.e. reboil ratio and boilup ratio), and let the NLP solver to converge the difficult 

constraints. It is also convenient to carry out a preliminary study to bound the value of variables

to ensure the convergence of the process simulator.

In order to ensure convergence with the current specifications, in this case study the minimum 

number of trays for the rectifying sections was fixed to 2; and to one in the stripping section. The 

maximum number of trays was fixed to the minimum plus 10 trays. For the case in which the 

optimal solution lies at one of these limits, the maximum number of trays is increased or the 

minimum number of trays is decreased.

First we solve the initialization NLPs ensuring that a particular tray in each section is selected at 

least once, see Table 2. The optimal solution was found in the 9th major iteration with an 

objective value of 2578.4 (Qreb =1318 kW; QCond =1304 kW; Number of trays = 10). Table 2

shows also the results of the major iterations. Note that in the 7th major iteration the MILP 

master problem and the best NLP crossed each other, using that stopping criterion the solution 

would be 2635.8, which is also a good solution because only differs from the optimal in one tray 

and only 2.2% in objective function value. Figure 7 shows the optimal solution.

This is a small problem therefore it is possible to systematically check all the alternatives that 

prove that the solution obtained was also the global optimum.

Example 2. In this second example the objective is to separate ethanol from propanol and 

butanol, to obtain a distillate with at least 0.98 mole fraction in ethanol and at least 99.5% 

ethanol recovery. All relevant data for this example are in Table 1.

The objective function consists of minimizing the total annualized cost (TAC), calculated as the 

sum of operating and annualized investment costs. In this example and the following, the sizing 

of the distillation column is done following the procedure proposed by Stichlmair & Fair (1998), 

and the investment cost is calculated using the correlations presented by Turton et al (2003). 

The annualizing factor of the capital cost (f) was calculated by equation (1), as recommended 

by Smith (2005) taking into account the fractional interest rate per year (i) and the horizon time 

(n). Of course, changing the annualizing period can lead to different optimal columns, due to the 

tradeoff between the capital and operating costs.

In this example the number of trays in each section ranges between 5 and 25, which gives a 

column with a maximum of 51 trays (25 per section plus the feed tray). With this configuration 
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we should solve 20 initial NLPs. To reduce the number of initial NLPs we consider only column 

sections that differentiate in n-stages (i.e. n = 2, 3 or 4) and then contract the column around the 

best solution. 

In the first iteration we assume five potential sections (in both stripping and rectifying sections) 

that differentiate in 4 trays, the optimal solution for this first iteration, is obtained for a 

configuration with 13 stages in the rectifying section and 21 in the stripping section (35 trays –

including the feed tray- plus condenser and reboiler) with a total annual cost of $ 564.99·103. In 

the second iteration we consider again 5 potential sections (for both rectifying and stripping 

sections) that differentiate in two trays centered in the optimal solution obtained in previous 

iteration (e.g. 9, 11, 13, 15, and 17 trays in the rectifying section). The optimal solution in this 

iteration was $562.8·103, and was formed by 15 trays in the rectifying section, and 21 in the 

stripping section. In the third iteration, we consider five new sections that differentiate in just one 

tray. The optimal solution was $562.15·103, and was formed by 15 trays in the rectifying section, 

and 20 in the stripping section (Total number of trays equal to 36).

Starting with 10 potential sections that differentiate in 2 trays or starting with different initial 

configurations yield solutions that differs from the one presented above in just one tray. Figure 8

shows the optimal configuration.

Example 3. In this example, instead of a single column we optimize a given sequence of 

partially thermally coupled distillation sequences. Information about thermally coupled distillation 

can be found, for example in (Agrawal, 1996; Blancarte-Palacios et al., 2003; José A. Caballero, 

2009; J. A. Caballero & Grossmann, 2001, 2004; José A. Caballero & Grossmann, 2012; 

Gutérrez-Antonio et al., 2011; Rong et al., 2001; Shah & Agrawal, 2010): 

The objective consists of determining the number of theoretical trays, feed positions in each 

column and operating conditions for separating a mixture of Benzene, Toluene, p-Xylene and 

Bi-Phenyl using the partially thermally coupled sequence of columns presented in Figure 9a. 

The molar fraction of each final product must be greater than 0.99. All relevant data for this 

example can be found in Table 1.

In order to facilitate the convergence of each column, It is convenient to transform the sequence 

given in Figure 9a into another thermodynamically equivalent (Agrawal & Fidkowski, 1998; J. A. 

Caballero & Grossmann, 2003; Hernandez et al., 2006; Rong et al., 2004) that can be 

associated to a sequence of conventional columns –each column with a rectifying and a 

stripping section- like the sequence shown in Figure 9b. The simulation of thermally coupled 

distillation sequences presents the problem that a thermal couple is formed by two side liquid 

and vapor streams connecting two column sections. In other words, each thermal couple

introduces a recycle. The usual approach in modular process simulator to converge the cycles 

is by using fixed point methods (Biegler et al., 1997), that has only linear convergence. If we 
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have to converge the flow sheet each time the optimizer calls the simulator the total CPU time

quickly becomes prohibitive. Besides, in slightly numerical noisy systems (J. A. Caballero & 

Grossmann, 2008) the recycles act as noise amplifiers. To avoid all these problems we simulate 

the sequence of columns using the procedure proposed by Navarro et al. (2012), that substitute 

the two streams forming a thermal couple by the equivalent set formed by a saturated stream 

and an energy stream. 

For column sections 1 and 2 (referred to Figure 9) we assume a set of ten column sections 

ranging from 10 to 20 trays. For sections 3 to 6 we assume ten column sections ranging from 5 

to 15 trays each one. And for column sections 7 and 8 we assume a set of seven column 

sections ranging from 1 to 8 trays each.

As independent variables we use the recoveries of key components in each separation. The 

optimal solution of the problem is obtained in around 3 minutes of CPU time (Intel Core(TM)2 Quad 

CPU Q6600 @ 2.40GHz 2.39 GHz under Windows 7). The optimal solution with the most relevant values 

is presented in Figure 10

Example 4 This example involves the optimization of an extractive distillation process. 

Extractive distillation is used to separate close boiling or homogeneous binary azeotropes by 

adding an entrainer that must be a higher-boiling component. The proposed case study is 

adapted from Luyben (2011). The objective is to separate an isomolar mixture of acetone and 

methanol using dimethyl sulfur oxide (DMSO) as entrainer. The system acetone-methanol has, 

at atmospheric pressure, a minimum boiling homogeneous azeotrope at 77.6 mol% acetone. 

The normal boiling point of acetone is 239 K and for methanol is 338 K, while for DMSO is 464 

K. Relevant data for this case study is presented in Table 1.

Extractive distillation comprises two columns. The first one is the extractive column, which has 

two feeds. The entrainer is fed to the column above the process feed. The second column is the 

entrainer-recovery column. The acetone is recovered at the top of the extractive column with 

purity higher than 0.9995 mole fraction, while the methanol with the DMSO is obtained as 

bottoms product. In the second column the DMSO is separated from the methanol both with 

purities larger than 0.9995 mole fraction.

In extractive distillation, one of the factors that influence the most the cost is the flow of 

entrainer introduced in the first column. The flow must be large enough to facilitate the 

separation between acetone and methanol, but at the same time, large flows inside a distillation 

column increases the heat duties and column diameters. 

The extractive distillation sequence can be divided in five column sections (see Figure 11). Due 

to the number of trays in each column section can be very different, and in particular due to in 

section 2 the number of trays is considerably larger than in the rest of the sections, we follow a 

sequential approach similar to that in example 2. Initially, for section 1 we select a column

section among a set of five column sections that differentiate in two trays ranging from 3 to 11 



Page 17 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

trays. For sections 2 to 5 we assume a set of 5 column sections for each one that differentiate in 

four trays: Between 20 and 40 for section 2, between 10 and 30 for section 3 and between 2 

and 18 for sections 4 and 5. Then in successive iterations we consider set of columns that 

differentiate in 1 or 2 trays by contracting around the optimal solution of the previous iteration. 

Table 3 shows the details of the three major iterations needed to obtain the optimal solution. 

Figure 11 shows the optimal solution obtained.

The importance of the DMSO flow rate is evident by a sensitivity analysis of the optimal solution 

(Figure 12). This Figure shows that the reboiler heat load in the first column decreases when 

the DMSO flow rate increases. However, the condenser heat load presents a minimum for 

values around 365 kmol/h of DMSO (DMSO to feed ratio equal to 0.73). In the second column, 

as expected, the reboiler and condenser heat loads increases with the DMSO flow rate. The 

minimum total annualized cost is obtained for a DMSO flow rate equal to 344.5 kmol/h.

6. Conclusions

This paper has proposed a systematic method for the rigorous design of distillation columns in

which operational conditions (reflux ratio, internal and external flows, etc.) as well as structural 

parameters (number of trays in each column section and consequently location of feed and 

product streams, etc.) are simultaneously optimized. 

The rigorous optimization of a distillation column, or column sequence, can be performed by 

considering a column as a succession of column sections, separated by feeds, products or heat 

streams. Therefore, the optimal distillation column, or column sequence, is obtained by 

selecting, for each column section, among a set of column sections with different number of 

theoretical trays. This problem is formulated as a generalized disjunctive problem, in which each 

m-term disjunction is related with selection among a set of m candidate column sections.

The model is solved using a Hybrid simulation optimization approach by taking advantage of the 

effective and reliable numerical methods included in process simulators for converging 

distillation columns as well as the thermodynamic packages, property estimation etc., and at the 

same time the flexibility of an equation based environment. Difficult constraints can be 

transferred to the explicit equation part increasing the robustness of the optimization process.

The model is solved using the Logic Based Outer Approximation algorithm. The major 

advantages of this algorithm are

! ! It allows the use of commercial process simulators to perform the rigorous design of 

distillation columns or column sections without the necessity of special algorithms but 

standard logic based GDP solvers. 
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! ! Due to the fact that the LBOA algorithm or its modifications solves a series of NLPs that 

must correspond to feasible alternatives, and that in the context of distillation 

columns/sequences this is a column/sequence with fixed number of trays and fixed 

feeds positions, these NLPs correspond to the continuous optimization of a regular 

distillation column that can be done by internal (included in the simulator) or external 

solvers –in this paper we follow this second approach-. The complex superstructure is 

reduced, from the point of view of the final user, to a single column or column sequence 

in the process simulator. 

! ! As a consequence the implementation of this algorithm in a process simulator is 

relatively easy because there is no needed any modification, or MINLP reformulation.

! ! The examples presented, show that the approach is robust and reliable with CPU times 

lower than 5 minutes in the worst case. However, due to the extremely non-convex 

nature of the problem, we can ensure just an optimal solution. Although the experience 

shows that usually, if not the global optimal, very good solutions are obtained.

! ! The simplicity, from the point of view of a final user, make that the algorithm can be 

used by designers without an optimization background.

Two drawbacks should also be mentioned:

! ! Even though the model usually get near global optimal solutions, this fact cannot be 

guaranteed and correspond to the designer the critical analysis of the final solution.

! ! Some knowledge about the system is needed. In general it would not be a good idea try 

to perform a 'blind optimization' from scratch. Adequate bounds on the number of trays 

in each section, reasonable initial values and feasible constraints on purity should be 

provided. In that sense this algorithm can be considered an excellent tool to 

complement other approaches (conceptual design, shortcut methods or any other of 

those outlined in the introduction), and can be used to 'get a rigorous design' from a 

preliminary design.

Future directions include the extension to the synthesis of distillation sequences where a full 

column can completely disappear in a superstructure, and the integration in a general 

superstructure synthesis framework.
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Figure Captions

Figure 1. Superstructure by Sargent and Gaminibandara (left) and a possible solution (right).

Figure 2. Superstructure by Viswanathan and Grossmann (left) and a possible solution (right).

Figure 3. Superstructure by Yeomans and Grossmann.

Figure 4. Superstructure for a single distillation column. Each column section must be selected 

among a set of column sections that differentiate in the number of trays.

Figure 5. Direct Implementation of the proposed superstructure in HysysTM. The complexity of 

the resulting superstructure makes the direct implementation difficult for more than a 

single column.

Figure 6. Scheme of the general modeling framework and the hybrid simulation-optimization 

solution algorithm.

Figure 7. Optimal solution for example 1.

Figure 8. Optimal solution for example 2.

Figure 9. Sequence of partially thermally coupled distillation sequence and its 

thermodynamically equivalent configurations using to section columns.

Figure 10. Optimal solution for example 3.

Figure 11. Optimal solution for example 4.

Figure 12. Results of the sensitivity analysis for the optimal solution of example 4 in terms of 

DMSO flow rate introduced to the first columns.
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Table 1. Data for the Examples

Heat Exchangers

Reboiler: U = 820 W/(m2 K)

Condenser: U = 1000 W/(m2 K)

Utilities

Low Pressure Steam (254 ºC) 17.70 $/GJ

High Pressure Steam (130 ºC) 14.05 $/GJ

Cold Water (20-40 ºC) 0.354 $/GJ

Columns

Calculated based on sieve trays.

Stainless steel.

Tray separation 0.609 m.

Sizing following the procedure by Stichlmair & Fair (1998).

Economics

Annual interest rate (i ) 10%

Time horizon (n) 8 years

Capital cost correlations from Turton et al (2003)

Example 1 Example 2

Feed 100 kmol /h Feed 100 kmol/h
Composition (m.f.) Composition (m.f.)
    Methanol 0.4     Ethanol 0.3
    Acetone 0.3     1-propanol 0.4
    Water 0.3     1-butanol 0.3
Pressure 101.325 kPa Pressure 101.325 kPa
Thermal state Saturated liquid Thermal state Saturated liquid
Thermodynamics NRTL Hysys default Thermodynamics NRTL Hysys default
Specifications Specifications

Acetone + 
Methanol mole 
fractions

>0.99
Ethanol mole 
fraction

>0.98

Acetone + 
Methanol
recovery

>99%
Ethanol 
recovery

>99.5%

Example 3 Example 4
Feed 200 kmol/h Feed
Composition (m.f.) Composition (m.f.)
    Benzene 0.25     Acetone 0.5
    Toluene 0.25     Methanol 0.5
    p-Xylene 0.25 Entrainer 
    Bi-phenyl 0.25     DMSO 1

Pressure 101.325 kPa Pressure 100 kPa
Thermal state Saturated liquid Thermal state Saturated liquid
Thermodynamics Peng Robinson Thermodynamics NRTL Hysys default
Specifications Specifications

Mole fraction of 
each pure 
component

>0.99
Mole fraction of 
each pure 
component

>0.9995
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Table 2. Step by step iterations of example 1.

Initialization

Sub-problem 
Type Nº of trays Feed tray

Objective 
function

CPU time

(s)++
Solver

1 NLP 6 4 4920.7 0.998 CONOPT

2 NLP 8 5 2857.8 0.374 CONOPT

3 NLP 10 6 2688.8 0.328 CONOPT

4 NLP 12 7 2739.4 0.265 CONOPT

5 NLP 14 8 2857.7 0.296 CONOPT

6 NLP 16 9 3006.0 0.218 CONOPT

7 NLP 18 10 3170.4 0.218 CONOPT

8 NLP 20 11 3344.5 0.312 CONOPT

9 NLP 22 12 3525.0 0.187 CONOPT

10 NLP 24 13 3709.8 0.176 CONOPT

Major Iterations

1 Master MILP ---- ---- 2625.8 0.078 CPLEX

1 NLP 10 5 2930.4 0.296 CONOPT

2 Master MILP ---- ---- 2650.3 0.280 CPLEX

2 NLP 9 5 2862.1 0.280 CONOPT

3 Master MILP ---- ---- 2657.7 0.062 CPLEX

3 NLP 11 5 3019.7 0.218 CONOPT

4 Master MILP ---- ---- 2714.6 0.078 CPLEX

4 NLP 12 5 3115.9 0.203 CONOPT

5 Master MILP ---- ---- 2785.0 0.156 CPLEX

5 NLP 13 5 3214.6 0.687 CONOPT

6 Master MILP ---- ---- 2863.4 0.093 CPLEX

6 NLP 14 5 3314.1 0.328 CONOPT

7 Master MILP ---- ---- 2896.3 0.094 CPLEX

7 NLP 9 6 2635.8 0.468 CONOPT

8 Master MILP ---- ---- 2947.1 0.062 CPLEX

8 NLP 15 5 3414.0 0.468 CONOPT

9 Master MILP ---- ---- 2971.4 0.109 CPLEX

9 NLP 10 7 2578.4** 0.250 CONOPT

10 Master MILP ---- ---- 2998.0 0.156 CPLEX

10 NLP 11 6 2773.0 0.234 CONOPT

** Optimal solution.

++Intel Core(TM)2 Quad CPU Q6600 @ 2.40GHz 2.39 GHz under Windows 7
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Table 3. External iterations in example 4.

Iteration 1
Nº of trays in 
candidate sections

Nº of trays in 
optimal solution

Column 1

Section 1 3, 5, 7, 9, 11 5 DMSO Feed Tray 6

Section 2 19, 23, 27, 31, 35 31 Feed Tray 37

Section 3 14, 18, 22, 26, 30 18 Nº of total trays 56

Column 2

Section 1 2, 6, 10, 14, 18 6 Feed Tray 7

Section 2 2, 6, 10, 14, 18 6 Nº of total trays 13

TAC ($106/yr) 4.827

Iteration 2
Nº of trays in 
candidate sections

Nº of trays in 
optimal solution

Column 1

Section 1 3, 4, 5, 6, 7 3 DMSO Feed Tray 4

Section 2 27, 29, 31, 33, 35 29 Feed Tray 33

Section 3 14, 16, 18, 20, 22 16 Nº of total trays 50

Column 2

Section 1 2, 4, 6, 8, 10 6 Feed Tray 7

Section 2 2, 4, 6, 8, 10 6 Nº of total trays 13

TAC ($106/yr) 4.818

Iteration 3
Nº of trays in 
candidate sections

Nº of trays in 
optimal solution

Column 1

Section 1 1, 2, 3, 4, 5 3 DMSO Feed Tray 4

Section 2 27, 28, 29, 30, 31 29 Feed Tray 33

Section 3 14, 15, 16, 17, 18 16 Nº of total trays 50

Column 2

Section 1 4, 5, 6, 7, 8 6 Feed Tray 7

Section 2 4, 5, 6, 7, 8 6 Nº of total trays 13

TAC ($106/yr) 4.818 (same as in iteration 2)
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Distillate 

Bottoms 

Feed 

Figure 1 

Distillate 

Bottoms 

Figure(s)
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Figure 2 
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Conditional trays 

Fixed Tray 

Conditional trays 

Figure 3 



Page 32 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 4 
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Figure 5 



Page 34 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Logic Based Outer Approximation Algorithm 
 

  

 

 

 

Set up HYSYS flow-sheet: 
 

Column or columns sequence 

Thermodynamics 

Convergence parameters … 

Set up communication 

MATLAB-HYSYS 

(Windows COM) 

Modeling language 

 
Variable declarations 

Disjunctions 

Logical relationships… 

 

MATLAB (interpreter) 

 

HYSYS 

FLOWSHEET 

xI variables 

xD variables 

Generation of initial 

NLP problems 

NLP Solver 

(CONOPT/ 

SNOPT) 

MASTER 

Solver 

(CPLEX) 

MILP Master 

Generation 

Convergence? 

NLP sub-problem 

Results 

Figure 6 
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min : ( ) 0.2 ( ) 100( º )QReb kW QCond kW N of Trays 

6 trays 

3 trays 

Methanol (m.f.) 0.4  

Acetone (m.f.)  0.3 

Water (m.f.)   0.3 

100 kmol / h 
7th Tray 

70 kmol/h 
56.9 ºC 

96.2 ºC 

Q = 1318 kW 

Q = 1304  kW 

P = 1 atm 

MeOH (m.f.)   0.5614  

Acetone (m.f.)  0.4286 

Water (m.f.)   0.01 

MeOH (m.f.)   0.0233   

Acetone (m.f.)  0.000 

Water (m.f.)      0.9767 

0.99( )

( ) 0.99

MeOH Acetonex x mol fraction

recovery MeOH Acetone

 

 

Figure 7 
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15 trays 

20 trays 

Ethanol   (m.f.) 0.3  

1-Propanol  (m.f.) 0.4 

1-Butanol  (m.f.) 0.3 

100 kmol / h 
16th tray 

30.6 kmol/h 
78.5 ºC 

104.2 ºC 

Q = 10.24  MW 

P = 1 atm 

Q = 10.27  MW 

Ethanol   (m.f.) 0.98 0 

1-Propanol  (m.f.) 0.019 

1-Butanol  (m.f.) 0.001 

Ethanol   (m.f.) 0.002 

1-Propanol  (m.f.) 0.567 

1-Butanol  (m.f.) 0.431 

Figure 8 
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7

Benzene
( > 0.99 m.f.)

Toluene
( > 0.99 m.f.)

p-Xylene
( > 0.99 m.f.)

Bi-Ph
( > 0.99 m.f.)

3

4

5

3

4
1

2

7

8

Benzene
( > 0.99 m.f.)

Toluene
( > 0.99 m.f.)

p-Xylene
( > 0.99 m.f.)

5

6

Bi-Ph
( > 0.99 m.f.)

Figure 9 

(a) (b) 
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3 
 
 
 

4 
1 
 
 

2 

7 
 
 
 

8 

Benzene 
( > 0.99 m.f.) 

Toluene 
( > 0.99 m.f.) 

p-Xylene 
( > 0.99 m.f.) 

Bi-Ph 
( > 0.99 m.f.) 

200 kmol/h 
(isomolar) 

 
5 
 
 
 

6 
 

2366 kW 

551.9 kW 

3843 kW 

29 Trays 
Feed 15th Tray 

24 Trays 

27 Trays 

15 Trays 

11th Tray 

12th Tray 

7th  Tray 

D = 1.47 m 

D = 1.53 m 

D = 1.89 m 

D = 1.26 m 

D = 1.26 m 

D = 2.02 m 

D = 0.98 m 

D = 2.45 m 

154.0 kmol/h 

83.1 kmol/h 

274.2 kmol/h 

145.1 kmol/h 

331.2 kmol/h 

231.3 kmol/h TAC = M$ 2.489 

Figure 10 
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6792 kW 

5697 kW 

2687 kW 

3848 kW 

Methanol (m.f.) 0.5  

Acetone (m.f.)  0.5 

500 kmol / h 

P = 100 kPa 

DMSO 
( > 0.9995 m.f.) 

Acetone 
( > 0.9995 m.f.) 

Methanol 
( > 0.9995 m.f.) 

344.5 kmol/h DMSO makeup 
3 Trays 

29 Trays 

16 Trays 

4th  Tray 

33rd  Tray 

6 Trays 

6 Trays 

7th Tray 

DMSO (m.f.)  0.5795 

Methanol (m.f.) 0.4203  

Acetone (m.f.) 0.0002 

594.5 kmol/h 

D = 2.5 m 

D = 3.0 m 

D = 2.3 m 

D = 1.4 m 

D = 1.4 m 

Figure 11 
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