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The  size  and  shape  of  particles  crucially  influences  the characteristics  of solid  products.  Until  recently
these  quantities  were  evaluated  using  light  microscopy.  However,  extracting  the  three-dimensional
shape  of  a faceted  crystal  from  a  single  image  is a formidable  computer  vision  challenge.  In this  work  we
combine  stereoscopic  imaging  devices  (e.g.,  commercial  stereoscopic  microscopes  or  the  stereoscopic
flow  through  cell that  continuously  draws  samples  from  a  crystallizer  (Schorsch  et  al.,  2014))  with  a
model-based  approach  in which  parametric  polytopes  are  used  to describe  faceted  crystals  (Hours  et  al.,
rystallization
article shape
articulate processes
tereoscopic imaging
aceted crystals
onlinear optimization

2014). In  the  shape  reconstruction  algorithm  these  parametric  polytopes  are  scaled  and  rotated  until
their  projections  closely  match  the  measured  stereoscopic  images,  which  is  formulated  as  a  nonlinear
optimization  problem.  The  proposed  approach  is  assessed  using  simulated  images  and  experimental  data.
We also  assess  in which  cases  the  proposed  approach  does  or  does  not  provide  advantages  over concepts
using  generic  particle  shapes  (Schorsch  et al., 2012).

©  2015  Elsevier  Ltd. All  rights  reserved.
. Introduction

The particle size and shape distribution (PSSD) that results from
 crystallization process influences solid bulk properties that are
ey factors during downstream processing such as filtration and
rying. In the pharmaceutical industry knowledge of the PSSD
f an active pharmaceutical ingredient is essential as the API’s
issolution behavior and bioavailability critically depend on it
Variankaval et al., 2008; Lovette et al., 2008). The shape of faceted
rystals, i.e., their morphology, is the result of the interplay of
rowth rates of individual crystal facets. Data to estimate crys-
al size and shape from experiments, either for single crystals or
or entire ensembles of particles, can be obtained through imag-
ng systems. Traditionally, crystal growth rates of individual facets
re monitored using microscopic observations of stationary single
rystals (e.g., Davey et al., 1986; Kitamura and Ishizu, 2000).

Measurement devices that acquire images of a large number of

rystals that grow in a stirred tank crystallizer (and therefore in
onditions that are closer to an industrial manufacturing process)
ave recently been developed by different groups and have been

∗ Corresponding author. Tel.: +44 161 306 4370.
E-mail address: thomas.vetter@manchester.ac.uk (T. Vetter).

ttp://dx.doi.org/10.1016/j.compchemeng.2015.01.016
098-1354/© 2015 Elsevier Ltd. All rights reserved.
used to demonstrate that optical microscopy or video techniques
coupled with image analysis can be used to obtain useful crystal
shape information. In situ imaging techniques that acquire data
directly from the particle suspension in the crystallizer have been
presented for example by Roberts and co-workers, who were able
to measure two dimensional growth rates (Wang et al., 2007) and
to distinguish between different crystal shapes by applying Fourier
analysis (Calderon De Anda et al., 2005). Rawlings and cowork-
ers have used in situ imaging combined with model-based object
recognition to characterize particles in suspension (Patience and
Rawlings, 2001; Larsen et al., 2007). These initial studies moti-
vated a substantial amount of work that has been performed to
resolve image segmentation problems, i.e., the problem of over-
lapping particles (Larsen et al., 2006; Ahmad et al., 2012; Larsen
and Rawlings, 2009), which is an important consideration because
the number and size of particles during a batch crystallization pro-
cess usually increases substantially. To circumvent this problem
we have recently reported a different approach using an external
flow through channel that allowed adjusting the suspension den-
sity by diluting with saturated solution drawn from the crystallizer

(Eggers et al., 2008a). Moreover, the transparent flow through chan-
nel avoided optical distortion effects and depth of field issues that
are commonly observed with in situ imaging techniques. Using this
setup the evolution of two-dimensional particle size distributions

dx.doi.org/10.1016/j.compchemeng.2015.01.016
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2015.01.016&domain=pdf
mailto:thomas.vetter@manchester.ac.uk
dx.doi.org/10.1016/j.compchemeng.2015.01.016


172 S. Schorsch et al. / Computers and Chemic

Notation

A matrix of normal vectors ∈ R
3×m [–]

ai normal vector of the ith-facet ∈ R
3 [–]

C crystal polytope [–]
D1/2 dataset ∈ R

2 [–]
di 2D data point [–]
M growth dependency matrix ∈ R

m×p [–]
H1, H2 convex hull of a 2D dataset [-]
i index [–]
M number of vertices of a polytope projection [–]
m number of facets considered in a model [-]
N number of points on the convex hull of a projection

[–]
p number of independent growth directions [–]
R rotation matrix ∈ SO3(R) [–]
s scaling constant [�m/pixel]
t scaling vector ∈ R

p [–]
Vi matrix of vertices of a polytope ∈ R

3×p [-]
Di dataset ∈ R

2 [–]
x Cartesian coordinates ∈ R

2 or R
3 [-]

Y data set ∈ R
2 [–]

d Hausdorff distance [pixel]
d̃ averaged Hausdorff distance [pixel]
� reprojection error [–]
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P1, P2 2D projection of a polytope [–]

uring the cooling crystallization of paracetamol (Kempkes et al.,
010b) and of ascorbic acid (Eggers et al., 2008b) was successfully
onitored.
However, all the above-mentioned imaging techniques share a

ommon issue, i.e., they suffer from the orientation dependence
hat occurs when a complex faceted crystal is projected on a single
maging plane. This issue can be overcome by either using a mathe-

atical model that allows to reconstruct a PSSD from a large set of
easured projections by assuming that the particles are randomly

riented (Kempkes et al., 2008; Eggers et al., 2008a) or by obtain-
ng stereoscopic information, i.e., photographing the same particle
rom two different coplanar directions, therefore enabling the cal-
ulation of particle size and shape on a one to one basis. A setup
ased on external cameras taking pictures of suspended crystals in

 reactor has been proposed by Wang et al. (2008), but an experi-
ental implementation has – to the best of our knowledge – yet to

e demonstrated in the open literature. Instead, we have presented
n improved flow through cell in which particles are photographed
rom orthogonal directions using two mirrors, thus yielding a quan-
itative 3D particle size distribution (Kempkes et al., 2010a). In a
ubsequent work, this cell was connected to a sampling and dilution
oop to allow for continuous sampling and real time measurements
f PSSDs using improved image analysis routines and particle size
alculation protocols (Schorsch et al., 2012). The setup was  then fur-
her improved in terms of fluid dynamics, image analysis software,
nd by replacing the mirrors with a second camera yielding higher
uality images (Schorsch et al., 2014). Alternatively, if one is only

nterested in the growth kinetics, where secondary effects (agglom-
ration and breakage) are not an issue, stereoscopic images of still
articles in solution could be obtained, e.g., by using a commercial
tereo microscope (with a typical angle of 12–14◦ between copla-
ar observation directions) or a customized microscope installation
ith a larger angle.
Until recently images obtained via the above-mentioned tech-
iques were interpreted by either using generic particle classes
spheres, cuboids, cylinders, etc.) (Wang et al., 2007; Schorsch et al.,
012) or by assuming that the morphology (i.e., which facets are
al Engineering 75 (2015) 171–183

exhibited on a crystal) of the crystals is known and does not change
during an experiment (Calderon De Anda et al., 2005; Larsen et al.,
2007), so that only the relative importance of the facets changes.
However, the morphology of a crystal evolves during its growth
before a “steady state growth morphology” is obtained (Zhang
et al., 2006), which requires more flexible approaches to extract
size information. Such approaches, in which crystals are described
as parametric polytopes, have been presented by Borchert and
Sundmacher (2012) and Hours et al. (2014) for monoscopic and
stereoscopic setups, respectively.

In this work we follow the approach proposed by Hours et al.
(2014) in order to reconstruct faceted crystals from two  projec-
tions of the same particle. The approach presented in that paper is
one that states the computer vision problem as an optimization
problem in which the configuration of the polytope (i.e., which
facets are present), its scaling and its orientation are optimized
such that the difference between projections of the polytope and
the measured stereoscopic images is minimized. In Hours et al.
(2014) we presented some case studies using this approach. In the
present study however, we  investigate the approach more exten-
sively for a wide variety of particle morphologies and for different
crystal systems, using both simulated and experimentally obtained
images. We  further compare this approach in detail to our previ-
ous approach (Schorsch et al., 2014) using generic particles and
identify advantages and disadvantages of both approaches in the
different cases. In order to investigate if the proposed approach is
applicable to commercial hot stage microscopy setups, we investi-
gate the importance of the stereo angle, i.e., the angle between the
two coplanar observation directions.

The remainder of this manuscript is structured as follows:
First, we briefly describe the particle models used in this work
(Section 2) and the data acquisition and image analysis procedures
(Section 3); then we  explain the reconstruction protocol for the
above-mentioned parametric polytopes in Section 4. Finally, the
applicability of the method is critically assessed for different stereo
angles as well as for different crystal systems and thus different
particle morphologies in Section 5.

2. Particle models

Faceted crystals can be represented by convex polytopes that
can be described from the crystal structure only (unit cell parame-
ters and symmetry) and a list of m experimentally observed facets.
Normal vectors ai are calculated for every facet i based on its Miller
index. Due to the symmetry of the underlying crystal structure
some of the m facets are chemically equivalent, so that they can be
grouped into p independent facet groups. This set of normal vectors
and constraints can be used to define an inequality which separates
the space into two domains. The first is a closed body represent-
ing the crystal, which is bounded by planes defined by the normal
vectors ai and their normal distance to the origin; while the sec-
ond domain is the remaining space around the particle. Therefore,
according to this definition, a crystal can be expressed as a rotated
and scaled polytope C in half space notation:

C(R, t) = {x ∈ R
3|ART x ≤ Mt}  (1)

where t ∈ R
p is a scaling parameter representing the crystal size for

all p independent growth directions as the distance of the bounding
plane to the origin, R is a rotation matrix, A ∈ R

m×3 is the matrix that
contains the normal vectors ai and M ∈ R

m×p is a matrix that groups
the facets into p independent facet ensembles. Note that the shape

of the polytope does not change regardless of the rotation R, how-
ever, the polytope’s projections on the imaging planes are affected
and the rotation has therefore to be considered in the optimization
problem formulated in Section 4. The basis for defining matrices A
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Table  1
Overview of compounds and crystal forms considered in this paper.

Substance Space group Unit cell a [Å] b [Å] c [Å]  ̌ [◦] References

Acetaminophen P21/a Monoclinic 12.93 9.40 7.10 115.9 Hirokawa (1976), Kuvadia and Doherty (2011)
Ascorbic acid P21 Monoclinic 17.30 6.35 6.41 102.11 Hvoslef (1968), Srinivasan and Vanitha Devi (2010)
Ibuprofen P21/c Monoclinic 14.67 7.89 10.73 99.36 Shankland et al. (1997), Cano et al. (2001)
� l-glutamic acid P212121 Orthorhombic 7.06 10.3 8.75 90 Hirokawa (1955), Srinivasan and Dhanasekaran (2011)
� l-glutamic acid P212121 Orthorhombic 5.17 17.34 6.95 90 Hirokawa (1955), Srinivasan and Dhanasekaran (2011)

Table 2
Acetaminophen model data.

Facet ai M

(1 1 0) 0.52 0.85 0 1 0 0
(1 1̄  0) 0.52 −0.85 0 1 0 0
(1̄ 1̄  0) −0.52 −0.85 0 1 0 0
(1̄ 1  0) −0.52 0.85 0 1 0 0
(0  0 1) 0.26 0 0.97 0 1 0
(0  0 1̄) −0.26 0 −0.97 0 1 0
(2  0 1̄) 0.69 0 −0.72 0 0 1
(2̄  0 1) −0.69 0 0.72 0 0 1

Table 3
Ascorbic acid model data.

Facet ai M

(1 0 0) 1 0 0 1 0 0
(1̄  0 0) −1 0 0 1 0 0
(0  0 1) 0.08 0 0.99 0 1 0
(0  0 1̄)  −0.08 0 −0.99 0 1 0
(1  0 1̄) 0.29 0 −0.96 0 1 0
(1̄ 0  1) −0.29 0 0.96 0 1 0
(1 1̄  0) 0.35 −0.94 0 0 0 1
(1̄ 1  0) −0.35 0.94 0 0 0 1

a
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c
(
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r
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C

Table 5
Ibuprofen model data.

Facet ai M

(1 0 0) 1 0 0 1 0 0
(1̄  0 0) −1 0 0 1 0 0
(0  0 1) 0.12 0 0.99 0 1 0
(0  0 1̄) −0.12 0 −0.99 0 1 0
(0  1 1) 0.09 0.8 0.71 0 0 1
(0 1̄ 1)  −0.09 0.8 −0.71 0 0 1
(0  1 1̄) 0.09 −0.8 0.71 0 0 1
(0 1̄ 1̄) −0.09 −0.8 −0.71 0 0 1

Table 6
l-glutamic acid � data.

Facet ai M

(0 0 1) 0 0 1 1 0
(0  0 1̄) 0 0 −1 1 0
(1  1 0) 0.78 0.63 0 0 1
(1 1̄  0) 0.78 −0.63 0 0 1
(1̄ 1  0) −0.78 0.63 0 0 1
(1̄ 1̄ 0) −0.78 −0.63 0 0 1

Schorsch et al. (2012, 2014), will be used as well, i.e., a sphere
with its diameter as its only characteristic length, a cylinder with
(1  1 0) 0.35 0.94 0 0 0 1
(1̄ 1̄ 0) −0.35 −0.94 0 0 0 1

nd M is given by the symmetry of a given crystal system. Even after
efining the crystal structure (cf. Section 4) there are – in principle

 an infinite number of possible facets that could be exposed for a
iven crystal form. However, the list of crystal facets that should
e considered can be narrowed down by only considering the most
table ones (typically the ones that provide opportunities for strong
nteractions, e.g., hydrogen bonds, with the solvent molecules) as
hey are most likely to be present under moderate experimental
onditions (see, e.g., Lovette et al. (2008) and Kuvadia and Doherty
2011) for an in depth discussion). In Table 1 we report the struc-
ures of the crystal systems considered in this paper where the first
eference given in each row reports the crystal structure and the
econd reference gives a list of stable facets. The matrices A and

 can then be reported as in Tables 2–7 for the crystal systems
nvestigated in this work. An example of a crystal polytope can
e found in Fig. 1 where a model of an acetaminophen crystal is
hown for which the facet families {2 0 1}, {1 1 0} and {0 0 1} are
hown in blue, red and yellow, respectively. One can easily generate

wo projections, P1(R, t) and P2(R, t), of the polytope C as it is seen
rom the previously defined coplanar observation directions. The

able 4
ube model data.

Facet ai M

(1 0 0) 1 0 0 1 0 0
(1̄  0 0) −1 0 0 1 0 0
(0  1 0) 0 1 0 0 1 0
(0 1̄  0) 0 −1 0 0 1 0
(0  0 1) 0 0 −1 0 0 1
(0  0 1̄)  0 0 −1 0 0 1
two projections for the acetaminophen crystal are also reported in
Fig. 1.

Depending on the scaling vector t not all of the m facets might
be visible on the crystal, so that domains of t with a common set
of constituting facets and edges can be identified, which can be
accomplished using the analytical expressions reported by Borchert
and Sundmacher (2013) and Singh and Ramkrishna (2013) or
numerically as shown in Hours et al. (2014). An example of such
a morphology map  is given in Fig. 2 for the case of acetaminophen.
Differently shaded regions represent domains with common facets
being present, while black lines separate regions with common
edges within such a facet domain. One can thus identify five dif-
ferent crystal morphologies, for which exemplary polytopes are
shown in Fig. 3.

In order to compare the results obtained with the polytope rep-
resentation to the particle sizing technique as demonstrated in
previous works, three shape classes, that had been introduced in
Table 7
l-glutamic acid � data.

Facet ai M

(0 1 0) 0 1 0 1 0 0
(0 1̄  0) 0 −1 0 1 0 0
(0  2 1) 0 0.89 0.45 0 1 0
(0 2̄  1) 0 −0.89 0.45 0 1 0
(0  2 1̄) 0 0.89 −0.45 0 1 0
(0 2̄ 1̄)  0 −0.89 −0.45 0 1 0
(1  0 1) 0.80 0 0.60 0 0 1
(1̄  0 1) 0.80 0 −0.60 0 0 1
(1  0 1̄) 0.80 0 −0.60 0 0 1
(1̄  0 1̄) −0.80 0 −0.60 0 0 1
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Fig. 1. Projections, fitted contours, and 3D representation of a polytope of a sim-
ulated acetaminophen crystal. Projections: dark grey areas, boundary contours:
dashed red lines, reconstructed polytope: red, blue, and yellow body. (For inter-
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retation of references to colours in this figure legend, the reader is referred to the
eb  version of this article.)

iameter and length as its two characteristic lengths, and a cuboid
ith length, width, and depth as its three characteristic lengths.

. Image acquisition

In order to assess the particle sizing techniques, two  different
ata sources are utilized. First, artificially generated images con-
aining projections of faceted crystals are analyzed. These images
ave the advantage that all aspects of the polytopes in these images,

.e., their orientation R and shape vector t, are known and can be
sed to compare the analysis result to the input. One may  also freely

hoose the angle between the coplanar observation directions. Sec-
nd, images of crystals from five different organic substances are
hotographed and investigated. In this case, a different error metric

ig. 2. Morphology map  of acetaminophen with facet groups reported in Table 2.
ifferent grey values indicate morphology domains with a common set of constitut-

ng facets. Within the white area, two black lines separate regions of different sets
f  characteristic edges. Example polytopes, indicated as (a)–(e), are shown in Fig. 3.

Fig. 3. Sample polytopes of all five morphology regions of acetaminophen corre-
sponding to the regions in Fig. 2 and the scaling vectors used to construct these. The

¯
{1 1 0} family is drawn in red, {0 0 1} in yellow and {2 0 1}  in blue. (For interpreta-
tion of references to colours in this figure legend, the reader is referred to the web
version of this article.)

(see Section 5.1) is necessary as neither the rotation nor the size
vector are known a priori.

3.1. Generation of artificial images

Simulated projections of crystals are generated from the poly-
tope model of the crystal using the Multi-Parametric Toolbox (MPT
3.0 (Kvasnica et al., 2012)) available for Matlab (MATLAB, 2010).
The projections are then converted to images with the same res-
olution as our measurement setup using the poly2mask function
available in the Image Processing Toolbox of Matlab.

3.2. Stereoscopic imaging device
Crystals in suspension are photographed from two ortho-
gonal coplanar directions using our custom built measurement
device which is described and characterized in detail in Schorsch
et al. (2014). In short, two cameras take pictures of crystals in
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Fig. 4. Application of the Douglas–Peucker algorithm to a pair of images of an
acetaminophen crystal. The points extracted from the images appear as black dots.
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he  black squares correspond to the vertices of the polygonal line produced by the
ouglas–Peucker algorithm. The convex polygon corresponds to the convex hull of

he  output points of the Douglas–Peucker procedure.

uspension in a flow through cell made of sapphire glass. The crys-
als are conveyed to this cell and fed back into a crystallizer using

 sampling loop. The projections drawn into the (x1, x3) and (x2,
3) planes in Fig. 1 represent the information captured by the two
ameras as a (simulated) example of a crystal as it passes through
he measurement cell.

.3. Image analysis

The image analysis algorithm is the same for the artificially gen-
rated images of crystals as well as the actual photographs. It is
ased on OpenCV (Bradski, 2000). The details of this procedure are
escribed in (Schorsch et al., 2012, 2014). After thresholding, con-
our extraction, and comparing both projections with respect to
heir x3 position a matching pair of projections is obtained, whose
ets of boundary points D1 and D2 are then extracted:

1 =
{

d1,i

}N1

i=1
and D2 =

{
d2,i

}N2

i=1
(2)

here D1 is a dataset of coordinates of N1 boundary points of P1, and
2 is a data set of coordinates of N2 boundary points of P2, where
e have used the shorter notation Pi for Pi(R, t), as always in the fol-

owing. For further analysis, the convex hulls, H1 and H2, of these
wo data sets are calculated via a Graham scan (Graham, 1972).
n order to reduce the number of data points and to remove out-
iers we preprocess the data by employing a Douglas-Peucker line
implification (Douglas and Peucker, 1973). The idea is to identify
ood candidates for the vertices of the projection. An example for
n experimental image of an acetaminophen crystal is presented
n Fig. 4. As one can see, this simplification introduces some dis-
repancy between the data points considered in the optimization
lgorithm and the actual projection. However, for most projections
he simplification leads to good reconstruction results. The opti-

ization algorithm, which will be introduced in the next section,
perates on centered and normalized convex hulls, so that dj,i ∈ (−1,
). In order to retrieve the actual size of the particle after the recon-
truction is performed, we introduce the normalization constant s,
hich includes the camera magnification and the normalization

nformation.

. Optimization-based polytope reconstruction

The crystal shape estimation problem can be formulated as a
olytope reconstruction problem from a pair of projections (Hours
t al., 2014). More precisely, the goal is to provide an estimate of

he size vector t from two sets of boundary points on projection
lanes, i.e., from D1 and D2 defined in Eq. (2). As the projections of

 polytope depend strongly on its orientation a good estimate of its
ize vector t relies on a good estimate of its orientation R, so that t
al Engineering 75 (2015) 171–183 175

and R need to be estimated simultaneously. Moreover, a challenging
aspect of the problem is that the solutions are not unique, i.e., more
than one pair of t and R can produce the same datasets D1 and D2.

For estimating both the crystal shape and its orientation, we
propose an approach based on minimizing the re-projection error
between the rotated and scaled polytope C and the two  sets of data
points D1 and D2.

4.1. Definition of the optimization objective

The first key ingredient of our method is an appropriate metric
to measure the discrepancy between data and scaled model. The
metric should be appropriate for optimization purposes and should
measure the shape resemblance in a non-ambiguous way, which
means that a small value of the optimization objective should cor-
respond to a good fit between the projected and rotated model and
the data points. To our knowledge, the Hausdorff distance, d, is an
appropriate way of measuring the resemblance between a model
shape and a shape on a 2D image (Huttenlocher et al., 1993). It is
a measure of the distance between two sets, which can be defined
as follows:

d (X, Y) = max

{
sup
x∈X

inf
y∈Y

‖x − y‖2, sup
y∈Y

inf
x∈X

‖x − y‖2

}
(3)

where ‖ · ‖ 2 is the Euclidean norm in R
2, X and Y are two (possibly

infinite) sets in R
2 and sup and inf are the supremum and infimum,

respectively. In our case, X is one of the projections of our poly-
tope, Pk, and Y is the convex hull Hk of the measured contour Dk
for k ∈ {1 ; 2}. Hours et al. (2014) have shown that the Hausdorff
distance in such cases can be written in a simplified form involv-
ing only the vertices Vk of the projection Pk, so that the Hausdorff
distance becomes (for k ∈ {1 ; 2}):

dk (Vk, Hk) = max

{
max
x∈Vk

min
y∈Hk

‖x − y‖2, max
y∈Hk

min
x∈Vk

‖x − y‖2

}
(4)

Note that in Eq. (4) min  and max  have replaced inf and sup in Eq.
(3) since the two  sets compared in this equation are non-empty
and finite. However, Eq. (4) is not a smooth function and there-
fore leads to optimization problems that are cumbersome to solve
(Lakhtin and Ushakov, 2005). Therefore, we  propose to take an aver-
aged version of the Hausdorff distance, which, accounting for both
projections now, can be written as:

d̃ =
2∑

k=1

⎧⎨
⎩

1
Mk

Mk∑
i=1

min
y∈Hk

‖xi − y‖2 + 1
Nk

Nk∑
j=1

min
x∈Vk

‖x − yj‖2

⎫⎬
⎭ (5)

where Mk is the number of vertices of Pk and Nk is the number of
points in Hk.

4.2. Definition and solution of the optimization problem

The estimates of the size vector t and of the rotation R are taken
to be the solutions of the following nonlinear and nonconvex opti-
mization problem:

min
t,R

d̃ (6)

The rotation matrix is parameterized using quaternions, q, which

gives (Schmidt and Niemann, 2001; Hours et al., 2014):

R(q) = 1

‖q‖2
2

(
r1(q) r2(q) r3(q)

)
(7)
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Fig. 5. Schematic overview of the optimization algorithm.

here

1(q) =

⎛
⎜⎝

q2
0 + q2

1 − q2
2 − q2

3
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q2
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1 − q2
2 + q2

3

⎞
⎟⎠ (8)

t can be shown that q /= 0 and that each element lies within [−1, 1]
Hours et al., 2014). Due to the nonlinearity and nonconvexity of
he problem, we choose to solve the optimization problem Eq.
6) for every region in the morphology map  separately by putting
onstraints on the scaling vector t. These constraints can be pre-
omputed either numerically (as shown in Hours et al., 2014) or
nalytically (as shown in Borchert and Sundmacher, 2013; Singh
nd Ramkrishna, 2013). Furthermore, we warm-start a nonlinear
olver (ipopt, see Wächter and Biegler (2006)) from different initial
onditions for the rotation matrix R. The number of initial points
hat need to be considered for the rotation matrix in order to arrive
t a good reconstruction of the particle morphology is dependent
n the complexity of the crystal, its rotation, as well as on the optical
roperties of the imaging system (the quality of the images). For the
ases presented in Section 5 we found that using a linearly spaced
rid of 7 × 7 × 7 points (in axis-angle representation (Hornegger
nd Tomasi, 1999)) is sufficient to get a good reconstruction. We
rrived at this conclusion by performing a sensitivity analysis on an
xemplary crystal of  ̨ l-glutamic acid. Every grid point is given as
nitial condition to ipopt, which is run until a specified level of accu-
acy on a local optimum is met. In the end, the optimal fit is taken to
e the best parameter estimate (t̂, R̂) resulting in the lowest value
f d̃. Fig. 5 gives a schematic overview of the procedure. Thus, for n
rid points in the discretization of the rotation matrix and m mor-
hology regions, n × m optimization problems need to be solved
or every pair of measured projections, i.e., for every particle. To
et a reconstruction of one typical crystal takes approximately one
inute using the presented methodology. The size of the crystal is

nally obtained by multiplying t̂ with the scaling constant s.

. Results and discussion
In order to evaluate the particle sizing procedure a selection
f five different organic substances (see Table 1) has been inves-
igated both by generating artificial images and by taking actual
hotographs of crystals produced in experiments. The substances
al Engineering 75 (2015) 171–183

are acetaminophen, ascorbic acid, Ibuprofen and the � and � poly-
morphs of l-glutamic acid. The selection covers a wide range of
different crystal shapes from needle like crystals with a very high
aspect ratio to platelets and rather compact crystals with a low
aspect ratio. For reconstructing simulated particles, a cuboidal poly-
tope was considered as well.

5.1. Error metric

Two different error metrics have been used to evaluate the
performance and accuracy of the optimization algorithm. For gen-
erated images, the input data in terms of the true size of all facets
as the scaling vector t was available, hence the ratio t̂i/ti for each
facet i can be calculated. In addition to the recalculation error one
can define the reprojection error ��:

�� =
∥∥H1\P1

∥∥
2

+
∥∥H2\P2

∥∥
2∥∥P1

∥∥
2

+
∥∥P2

∥∥
2

(9)

This error measures the difference between the input projection
and the calculated reprojection. It can thus be considered a measure
of the quality of fit.

5.2. Analysis of generated images

As a first step, artificially generated images of acetaminophen
crystals belonging to each of the five morphology regions (cf. Fig. 2)
have been studied. Secondly, artificial images of the other four crys-
tal systems and of the cuboid model have been analyzed as well.
The model parameters in terms of matrices A and M are reported
in Tables 2–7. The resulting images have been processed according
to Section 3.3 and passed over to the optimization algorithm.

5.2.1. Fitting of different morphologies of the same crystal
The first series of simulations is aimed at proving that the

optimization algorithm is capable of finding satisfactory results
independent of the morphology region where the particle to be ana-
lyzed is located. In a case study for acetaminophen, for which the
morphology map  is reported in Fig. 2, 100 randomly oriented poly-
topes for each of the five regions have been generated and handed
over to the image analysis and size calculation procedures. In Fig. 6,
example polytopes for each region (black solid lines in the first col-
umn), their projections (dark grey areas), and input scaling vectors
t are reported. For each of the randomly selected original polytopes
the reconstructed polytope is reported as an overlay in red. As one
can see, there is an excellent agreement between input and opti-
mization result. The corresponding fitting contour is plotted on top
of the input projection as red dashed lines and the estimated scal-
ing vector t̂  is listed next to the input. It is noteworthy that for
regions (a) and (b) only two characteristic facet families can be
identified because the third facet family is absent from the crys-
tal morphology (which is correctly identified by the optimization
algorithm). For cases where a facet is missing (i.e., regions (a) and
(b)) the optimization algorithm returns the value at the bound-
ary of the corresponding region. In the reported exemplary cases,
the matching between input and fitted polytope is excellent, and
both scale and rotation have been calculated correctly. However,
for some rotations of the same polytopes the estimated scaling vec-
tor deviates slightly from the input scaling vector. To quantify this
effect, we  report statistics of the scaling and reconstruction error
for all 100 reconstructed particles in the last two  columns of this
figure. For the scaling statistics, we  report the mean of the relative

scale t̂i/ti of the ith characteristic facet family as a square. The error
bars indicate the standard deviation. The reprojection error in the
last column is plotted similarly. Additionally, the morphology dis-
tribution is also reported as contour plots in a morphology map,
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Fig. 6. Reconstruction of faceted polytopes for all five morphology regions of acetaminophen. From left to right: Three dimensional polytopes of the input data (solid black
lines)  and the reconstructed polytope (dashed red lines), orthogonal two  dimensional projections of the input polytope (dark gray area) and the fitted polytope (red dashed
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isible.  (For interpretation of references to colours in this figure legend, the reader 

f. Fig. 7. The scaling error distribution shows an overall low devi-
tion of the estimated scale as compared to the input. In cases
b) and (d) the optimization result is almost perfect and contour

ines mostly overlap with the input. In cases (a) and (c), the devi-
tion does also not exceed 10% of the input and the mean of the
caling factors is correctly identified. For the platelet-like mor-
hology of region (e) the standard deviation for both the scaling

ig. 7. Zoom in of the morphology map  for acetaminophen and the position of the
ve  studied cases of the different morphology regions as black/white crosses. The
istributions of the best fitting t̂ of the five case studies as indicated in Fig. 6 are
lotted as red contour curves into the morphology plane at levels of 1%, 2% and 50%
f  the maximum of the distribution. In cases in which only two indices of t̂ can be
btained (due to some facets being only virtual), the value of t̂i at the boundary
f the morphology cone has been used to calculate the ratio. (For interpretation of
eferences to colours in this figure legend, the reader is referred to the web  version
f this article.)
d scaling vectors, reprojection error, error distribution of the scaling vector, error
e scaling vector t can be estimated as the third facet family was detected to be not
rred to the web version of this article.)

and the reprojection error is larger, while the mean value is still
correctly identified. This result reflects the fact that some morphol-
ogy regions result in projections that are easy to analyze due to a
high number of very characteristic facets, while in other cases the
optimization is much more difficult as, depending on the rotation,
ambiguous solutions can be found. A clear indication for this behav-
ior is the fact that even for a reprojection error of zero, the scaling
error can be considerably larger. However in general, the proce-
dure delivers promising results for the majority of cases studied and
even in the worst case the results are still satisfactory, so that we
are confident that one may  obtain meaningful scaling information.

5.2.2. Fitting of different crystal systems
The size calculation procedure can easily be extended to differ-

ent crystal shapes. Four additional organic crystal systems and a
cube are selected as validation cases. The analysis protocol is sim-
ilar to Section 5.2.1. 100 randomly oriented polytopes of known
size have been generated, analyzed, and the results are presented
in Fig. 8. In this figure we  report the same information as in Fig. 6.
Morphology maps, input scaling vectors (as crosses) and distribu-
tions of estimated polytopes (as red contour curves) are presented
in Figs. 9–11. In general, fitted crystals match the input projections
very well, yielding only small reprojection errors. It is worth not-
ing that the error in the scaling vector for all considered facets is
less than 3% in all cases but for � l-glutamic acid. However, this
might be a result of the very small facets at the tip of the elongated
crystal, which are obviously hard to detect in projections, even by
the human eye. The reprojection errors are smaller than 3% in all
cases except for the � and � polymorph of l-glutamic acid. Even

in these worst case scenarios the error is below 8%. Considering
the statistics for all 100 projected particles (last two  columns), one
can see that for all considered particle shapes, with the exception
of ascorbic acid crystals, the crystal shape is on average correctly
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Fig. 8. Fitting of randomly selected examples of four different crystal systems and a cube. From left to right: Three dimensional polytopes of the input data (solid black
lines)  and the reconstructed polytope (dashed red lines), orthogonal two  dimensional projections of the input polytope (dark gray area) and the fitted polytope (red dashed
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in a projection are not sufficient to uniquely determine the objects
ine),input scaling vector t, calculated scaling vector t̂, error between input and ca
istribution of the reprojection error. (For interpretation of references to colours in

dentified and the standard deviation in the identification is negligi-
le, i.e., the results are again almost perfect. For the platelet-shaped
scorbic acid crystal the particle shape is on average also cor-

ectly identified, but the standard deviation (just as in the case
f the acetaminophen morphology e)) is larger than in the other
ases. This is an indication of the fact that the projections of a

ig. 9. Morphology map  for ascorbic acid where the position of the reconstruction
ase study is indicated with a black cross. The distribution of the best fitting t̂, as
alculated and listed in Fig. 8, is plotted as red contour curves into the morphology
lane at levels of 1%, 2% and 50% of the maximum of the distribution. In cases in
hich only two indices of t̂ can be obtained (due to some facets being only virtual),

he value of t̂i at the boundary of the morphology cone has been used to calculate
he  ratio. (For interpretation of references to colours in this figure legend, the reader
s  referred to the web version of this article.)
d scaling vectors, reprojection error, error distribution of the scaling vector, error
gure legend, the reader is referred to the web  version of this article.)

platelet-shaped object are strongly dependent on its alignment in
space. This can result in cases where the vertices that are visible
rotation, thus yielding non-perfect fits. Overall, these results are
encouraging as the algorithm seems to exhibit a good performance
for most crystal systems using simulated measurements.

Fig. 10. Morphology map  for � l-glutamic acid where the position of the reconstruc-
tion case study is indicated with a black cross. The distribution of the best fitting t̂,  as
calculated and listed in Fig. 8, is plotted as red contour curves into the morphology
plane at levels of 1%, 2% and 50% of the maximum of the distribution. In cases in
which only two indices of t̂ can be obtained (due to some facets being only virtual),
the  value of t̂i at the boundary of the morphology cone has been used to calculate the
ratio. Due to the small variance in the reconstruction results in this case, contour
lines do mostly overlap. (For interpretation of references to colours in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 11. Morphology map  for Ibuprofen where the position of the reconstruction
case study is indicated with a black cross. The distribution of the best fitting t̂, as
calculated and listed in Fig. 8, is plotted as red contour curves into the morphology
plane at levels of 1%, 2% and 50% of the maximum of the distribution. In cases in
which only two indices of t̂ can be obtained (due to some facets being only virtual),
the value of t̂i at the boundary of the morphology cone has been used to calculate the
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The second series of experiments is based on actual photographs
atio. Due to the small variance in the reconstruction results in this case, contour
ines do mostly overlap. (For interpretation of references to colours in this figure
egend, the reader is referred to the web version of this article.)

.3. Importance of the stereo angle

In order to assess the potential of the proposed method for
bserving single crystals in a stereoscopic hot stage setup the
mportance of the observation angle, i.e., the angle between the two
ameras as illustrated in Fig. 12, is investigated. Commercially avail-
ble stereo microscopes typically have observation angles between
2◦ and 14◦. However, customized devices could feature stereo
ngles up to 90◦. The change in the reconstruction performance is
nvestigated on the example of an acetaminophen crystal with ti = 1
or all i, i.e., the same case as in Fig. 6c). Stereo angles of 12◦, 14◦, 30◦,
5◦, 60◦, 75◦ and 90◦ have been investigated using 100 randomly
rientated particles for each stereo angle. Note that the assumption
f random orientation for a compact particle is a valid one, however,

ne can expect to obtain the same trend (see discussion below) for
ases where the particle exhibits a preferential orientation due to
ts morphology. We  are reporting the mean reprojection error and

ig. 13. Statistics for 100 randomly oriented acetaminophen crystals of case (c) from 

eprojection error on the observation angle and (b) accuracy of the estimated sizes to th
ean  value and error bars represent the standard deviation of the distributions.
Fig. 12. Explanation of the meaning of the observation angle for stereo microscopic
hot  stage studies.

its standard deviation in Fig. 13(a). It is apparent from the very low
mean reprojection error (square symbols in Fig. 13(a)) that inde-
pendent of the observation angle, the optimization algorithm is able
to find a set of R̂  and t̂, which is able to match the measured projec-
tions. Note that the underlying histograms of reprojection errors
for each stereo angle are skewed towards low reprojection errors,
so that the lower ends of the error bars (solids lines in Fig. 13(a))
extend below zero. However, when considering the estimated crys-
tal sizes t̂i, one can see that neither the accuracy nor the precision
of the estimates are satisfactory at low stereo angles, which can be
seen in Fig. 13(b) where the exemplary statistics for t̂2 are reported.
Only for stereo angles greater than 60◦ do the precision and the
accuracy become satisfactory. This indicates that for small stereo
angles, the restoration problem becomes less unique, i.e., the algo-
rithm is likely to find a t̂, which is able to match the measured
projection data well, but is far away from the actual crystal size t.
Consequently, the reconstruction of a general faceted crystal from a
single projection is a hopeless endeavor. Thus, the take-home mes-
sage is that a custom made stereoscopic hot stage setup should be
built with a stereo angle of at least 60◦.

5.4. Analysis of actual photos of crystals
Fig. 6 when analyzed using different observation angles. (a) Dependency of the
e input as a function of the observation angle. Squares indicate the position of the

of particles taken in the flow through cell, i.e., for orthogonal projec-
tions. Crystals of all five previously mentioned organic substances
have been prepared according to the following procedure.
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ig. 14. Fitting of different organic crystals. From left to right: Photographs with ex
alculated scaling vector t̂,  reprojection error. (For interpretation of references to co

.4.1. Preparation of crystals
acetaminophen (Sigma Aldrich, purity >98%) crystals were

btained by cooling a saturated water solution from 35◦C to 5◦C
n 6 h, resulting in a suspension that was subsequently wet sieved
nd dried (Kempkes et al., 2010b). The sieve fraction above 200 �m
as used for later analysis.
l-Ascorbic acid (Sigma Aldrich, reagent grade) was  crystallized

rom a saturated methanol (Merck Chemicals, purity >99.9%) solu-
ion by cooling the mixture and pestled seed from 35◦C to 5◦ in 6 h.
he product was wet sieved and analyzed directly afterwards.

Ibuprofen (4-isobutyl-�-methylphenylacetic acid, TCI Europe,
urity >98%) crystals were prepared by a temperature cycle
pproach from a saturated mixture of 50 wt% ethanol (Scharlab,
PLC grade) and 50 wt% water to which 8 wt%  (solvent basis)
luronic F127 (Sigma Aldrich, purity >99%) were added. The solu-
ion was cooled from 28 ◦C to 1 ◦C in 3.25 h, heated up to 25 ◦C in
.5 h and cooled down again to 1 ◦C in 4 h. The product suspension
as filtered and dried before analyzing.

Crystals of the � polymorph of l-glutamic acid have been
recipitated by mixing equimolar amounts of l-glutamic acid
onosodium salt hydrate (Sigma Aldrich, purity >99%) and

ydrochloric acid (Fluka, 37%) in water and continuous stirring for
 h at 5 ◦C (Cornel et al., 2009). The product suspension was split

nto two fractions. The first fraction was wet sieved to obtain crys-
als larger than 125 �m which were directly analyzed afterwards.
he other half was filtered and dried to be used in a transfor-
ation experiment to obtain � l-glutamic acid crystals. To this

nd, a saturated (with respect to the � polymorph) solution of
-glutamic acid monosodium salt hydrate (Sigma Aldrich, purity

99%) and hydrochloric acid (Fluka, 37%) in water at 45 ◦C was  pre-
ared. � crystals were added and the solution was stirred for 48 h
o ensure complete transformation. The product suspension was
hen directly analyzed.
d contours (white) and fitted projections (dashed, red), reconstructed 3D polytope,
 in this figure legend, the reader is referred to the web version of this article.)

Water used during experiments was  always taken from a MilliQ
Advantage A10 system (Merck Chemicals).

5.4.2. Analysis results for actual photographs
After particle production was completed, crystals were sus-

pended and photographed in the flow though cell. Images have
been processed to extract the sets D1 and D2 and furthermore H1
and H2. Fig. 14 shows exemplary images, fitted contours, recon-
structed polytopes, the resulting particle size, the re-projection
error for the example case and the reprojection error distribution.
As explained before, the calculated scaling vector t̂ is multiplied
with the scaling constant s thus yielding the size of the recon-
structed polytope in �m.  As the true vectors t are unknown for these
crystals, only the reprojection error �� can be reported. In general,
the fitting error is in the same low range as for the simulated images
demonstrated in the previous section. The reprojection error is
again highest for ascorbic acid, just as in the case of the simulated
particles. Additional to the reasons for non-perfect fits given for
the simulated particles, one has to realize that real crystals are often
not perfectly faceted objects. As such, the particle model may inher-
ently not be able to represent crystals that have been photographed
in the flow through cell. Additional noise is introduced due to dust
on the images, errors in the contour extraction, a limited resolution,
and a limited depth of field. Despite these limitations, the fitting
results appear to be generally satisfying enough to extract useful
facet information form the reported images.

5.4.3. Crystal growth

Finally, we want to investigate the possibility of applying the

image analysis and polytope recognition procedure to a dynamic
experiment in which crystals grow. A population of acetaminophen
crystals is exposed to supersaturation during cooling crystallization
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Fig. 15. Contour surface plots of the number weighted 3D PSD of acetaminophen crystals measured during seeded cooling crystallization in water. Contour surfaces are
d eeds, 
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n water, and images of particles in suspension are continuously
ecorded for the entire duration of the experiment.

Acetaminophen seeds were produced by rapidly cooling a satu-
ated solution of acetaminophen and water (Sigma Aldrich, purity
8.0%) from 40 ◦C to 10 ◦C. The product was filtered, dried, and
ieved. The sieve fraction between 125 and 250 �m was used. Crys-
als have been suspended in a saturated solution of acetaminophen
nd water at 30 ◦C at a suspension density of 1 g/kg. The resulting
uspension was then cooled to 25 ◦C with a cooling rate of 0.5 ◦C/h.
he temperature was subsequently kept constant for an additional
00 min.

The low cooling rate (and therefore low supersaturation level)
auses the aspect ratio of the acetaminophen crystal population
o increase, which is in agreement with previous observations
Kempkes et al., 2010a). With reference to Fig. 2 the vast majority of
articles was measured in region (c). The change of the distribution
rom the seed crystals (red) to the product crystals (blue) is shown
s isosurface plots and isocontour plots in Fig. 15. Note that infor-
ation during the cooling crystallization experiment was recorded

ut not analyzed due to a lack of computational power, because the
econstruction of one crystal of typical complexity (i.e., obtaining a
olution of the nonlinear problem Eq. (6) from all warm start points)
akes roughly 1 min. However, in order to obtain a smooth PSSD the
nalysis of several thousand particles is necessary, thus resulting in
everal days of computational time. The identical experiment has
een presented before in (Schorsch et al., 2014) using a different
ype of particle model. In contrast to the generic particle analysis
he polytope based approach delivers very scattered distributions.

t is noticeable that the movement of the center of the PSSD is only
ue to an increase in the scaling factors s and cannot be attributed to

 dominant change in t, i.e., the before-mentioned increase in aspect
atio could not be clearly identified. Since the computational cost of

able 8
omparison of the fitting quality between polytope and generic particle models as ratio o
nd  true aspect ratio (AR) as mean and standard deviation of 100 repetitions of fitting the

Input t Average est. volume/true v

Polytope Ge

Cube 1 1 1 1.00 ± 3.8e−4 1.
Acetaminophen 2 1 1 0.99 ± 0.02 1.
Ascorbic acid 1 2 4 0.96 ± 0.16 0.
Ibuprofen 2 2 3 0.95 ± 0.23 0.
l-glutamic acid  ̨ 1 1.3 1.00 ± 2.5e−4 0.
l-glutamic acid  ̌ 1 10 1 1.00 ± 0.02 1.
red) and end (products, blue) of the experiment. The average ti of the distributions
. Additionally the contour line plots of the distributions are plotted into each plane
d, the reader is referred to the web  version of this article.)

the polytope reconstruction in comparison to the generic particle
approach is high, a thorough comparison between the two methods
based on idealized pictures seems to be warranted and is presented
in the following section.

5.5. Comparison to generic particles

In previous works (Schorsch et al., 2012, 2014) we have reported
a set of generic particle models to describe crystals. These models
are spheres, cylinders and cuboids; as such these generic particles
are able to cover a wide range of prototypical shapes. The size infor-
mation in this case is computed from geometric information that is
available in a stereoscopic setup, but without directly minimizing
the reprojection error. Clearly, the additional computational effort
of the polytope reconstruction procedure needs to be justified. A
direct comparison between the two  techniques is difficult because
the output of the two models is quite different (generic particle
vs. faceted polytope). Hence, we  compare the two most important
macroscopic properties of the crystals, i.e., their aspect ratio (the
ratio of maximum to minimum size) and the particle volume. The
analysis is performed using an exemplary particle of each of the
previously mentioned organic substances and a cube-shaped par-
ticle, which were randomly oriented 100 times (each). The input
size vectors, estimated volumes and aspect ratios, as well as the
true aspect ratio are reported in Table 8 for each of these cases. The
outcome of this comparison depends on the chosen inputs, i.e., one
may  find conditions for which either approach is better. Therefore,
we have chosen cases which cover a reasonable range of different

geometries.

For the needle-like � glutamic acid and the cubes, there is
no advantage in using the polytope model because the shape
gets almost perfectly matched in all cases independent of the

f the estimated and true particle volume and a comparison between the estimated
 respective crystal to the polytope particle and generic particle model each.

olume Average est. AR True AR

neric Polytope Generic

00 ± 1.5e−15 1.00 ± 0.01 1.00 ± 1.2e−13 1
04 ± 0.19 2.03 ± 0.09 1.97 ± 0.59 2
89 ± 0.22 5.37 ± 7.59 4.30 ± 1.35 4
95 ± 0.30 1.50 ± 5.9e−5 1.65 ± 0.58 1.5
96 ± 0.29 1.30 ± 1.5e−4 1.50 ± 0.38 1.3
03 ± 0.07 9.99 ± 0.00 9.91 ± 0.60 10
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article model. For the other cases in average the generic case
elivers a reasonable estimation. However the standard devia-
ion of the underlying recovered distribution is wider than for
he polytope reconstruction, which means that generic models
ometimes over- or underestimate the particle size due to an inher-
nt mismatch between generated particle and fitted shape. The
latelet-like ascorbic acid crystals are not captured well by either
article model, which is not surprising for the reasons mentioned
lready above. It is worth noting that the set of generic particle
hapes can also be easily extended to get a better model represen-
ation for a specific crystal shape if required, so as to improve the
econstruction accuracy, while preventing an increased computa-
ional effort.

Calculating the faceted shape of a crystal requires particles of
 certain size or an imaging system with an excellent resolution
hat equals the quality of a microscope in order to have sufficient
ontour data to solve the polytope reconstruction problem. It also
equires crystals of a very high quality, i.e., crystals without dam-
ged vertices, etc., to obtain meaningful results. Given that many
rystals obtained from a real crystallizer do exhibit some kind of
mperfection, the advantage that a polytopic model describes the
rystal morphology of primary particles on a first principles level
anishes when moving from idealized generated images to crystals
roduced in real crystallization experiments. The generic particle
lasses on the other hand are more robust and deliver good esti-
ates of the most important macroscopic properties (aspect ratio

nd volume of the crystal) at a much lower computational effort.

. Concluding remarks

An optimization-based approach is applied to reconstruct the
aceted morphology of crystals from its two stereoscopic pro-
ections. These projections are obtained from two different but
oplanar observation directions. To investigate the influence of the
eometry of the measurement device and the crystal’s shape,
e have varied the angle between the two coplanar observation
irections (the so-called stereo angle) and the orientation and mor-
hology of the analyzed particles. Using simulated images, we
ave demonstrated that the approach works satisfactorily with a
tereo angle of 90◦ by using simulated images of crystals of five
rganic substances. In these cases, the procedure delivers nearly
erfect reconstructions of the input projections, except for rare
ases where particles are seen from unfavorable angles where
nly an insufficient number of vertices is visible or where the
acets themselves were rather small. A rotational dependence of the
econstruction quality is especially noticeable for platelet shaped
articles. However, even in these worst cases the error in the esti-
ated sizes never exceeded 10%.
In our investigation of different stereo angles, we have found

hat a minimum of 60◦ is required in order to obtain trustworthy
acet size information using our optimization based approach. It
an be argued that the information content of the two projections
ecreases as the stereo angle becomes smaller, so that a number
f different orientations and size vectors yield indistinguishably
imilar projections when they are compared to the measured pro-
ections. Consequently, a stereoscopic hot-stage apparatus that can
e used to obtain high quality information about the faceted mor-
hology of a crystal should be constructed with a stereo angle of at

east 60◦. Comparing calculated reprojections with photographs of
rystals from a real crystallization process (obtained using the setup
resented in Schorsch et al. (2014)) yields a satisfactory agreement

ith respect to the reprojection error as well. However the cor-

ectness of the estimated facet sizes appears questionable, since
 shape change of the crystals that occurred in a cooling crystal-
ization experiment of Acetaminophen crystals, that was clearly
al Engineering 75 (2015) 171–183

identifiable using generic model particles and by a visual compar-
ison of initial and final particles, could not be identified anymore.
We believe that the growing crystals from a real crystallization
experiment carried out in a crystallizer are often of too low quality
to accurately and convincingly reconstruct a faceted morphology
from two  projections obtained of such particles. Therefore, we find
that, at least for an on-line measurement technique such as the flow
through cell, generic particle models yield a reasonable estimate
of shape and size distributions for many applications at a much
lower computational cost that enables the use of the measurement
device for control purposes. Nevertheless, we think that a possi-
ble area of application for the proposed polytopic reconstruction
method could be in hot stage microscopy where the crystals grown
are typically of higher quality with fewer imperfections.
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