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a  b  s  t  r  a  c  t

Uncertainties  are  ubiquitous  and  unavoidable  in process  design  and  modeling.  Because  they  can  signifi-
cantly affect  the  safety,  reliability  and  economic  decisions,  it is important  to  quantify  these  uncertainties
and  reflect  their  propagation  effect  to process  design.  This  paper  proposes  the  application  of  generalized
polynomial  chaos  (gPC)-based  approach  for  uncertainty  quantification  and  sensitivity  analysis  of  complex
chemical  processes.  The  gPC approach  approximates  the  dependence  of  a process  state  or  output  on the
process  inputs  and  parameters  through  expansion  on an  orthogonal  polynomial  basis.  All  statistical  infor-
mation  of the  interested  quantity  (output)  can  be obtained  from  the  surrogate  gPC  model.  The  proposed
methodology  was compared  with  the  traditional  Monte-Carlo  and Quasi  Monte-Carlo  sampling-based
approaches  to  illustrate  its advantages  in terms  of  the  computational  efficiency.  The  result  showed  that
ensitivity analysis
onte-Carlo approach

the gPC  method  reduces  computational  effort  for uncertainty  quantification  of complex  chemical  pro-
cesses  with  an  acceptable  accuracy.  Furthermore,  Sobol’s  sensitivity  indices  to identify  influential  random
inputs  can  be  obtained  directly  from  the  surrogated  gPC  model,  which  in  turn  further  reduces  the  required
simulations  remarkably.  The  framework  developed  in  this  study  can  be  usefully  applied  to  the  robust
design  of  complex  processes  under  uncertainties.

© 2016  Elsevier  Ltd. All  rights  reserved.
. Introduction

Most rigorous process design problems are carried out under
 deterministic setting with fixed specifications. In reality, how-
ver, the process inputs and parameters exhibit some randomness
s depicted in Fig. 1, which can have a significant effect on the
afety, reliability and economic decisions. Therefore, it is important
o examine the effects of these uncertainties and analyze the sen-
itivity of the process model with respect to these uncertainties in
he design stage. Monte-Carlo (MC) and Quasi Monte-Carlo (QMC)

ethods are representative probabilistic approaches for the propa-
ation of uncertainties in the model input to its output (Niederreiter
t al., 1996; Liu, 2001; Kroese et al., 2011; Abubakar et al., 2015). The
rute-force implementation of these models first involves the gen-
ration of an ensemble of random realizations with each parameter

rawn randomly from its uncertainty distribution. Deterministic
olvers are then applied to each member to obtain an ensemble of
esults. The ensemble of results is then post-processed to estimate

∗ Corresponding author. Fax: +82 53 811 3262.
E-mail address: mynlee@yu.ac.kr (M.  Lee).

ttp://dx.doi.org/10.1016/j.compchemeng.2016.03.020
098-1354/© 2016 Elsevier Ltd. All rights reserved.
the relevant statistical properties, such as the mean, standard devi-
ation and quantile. Despite this, estimations of the mean converge
with the inverse square root of the number of runs, making MC-
and QMC-based approaches computationally expensive and even
infeasible for complex chemical process problems.

Recently, uncertainty analysis using a generalized polynomial
chaos (gPC) expansion was studied in various applications includ-
ing modeling, control, robust optimal design, and fault detection
problems. Nagy and Braatz (2007) considered the gPC approach for
uncertainty quantification and robust design of batch crystalized
process. In their work, it was shown that the gPC approach to be
more computationally efficient than the MC/QMC methods for a
system with a moderate number of random inputs. Duong and Lee
(2012, 2014) applied the gPC method to the PID controller design
for fractional order and integer order systems. Du et al. (2015)
considered the fault detection problem by combining maximum
likelihood with the gPC framework. The gPC method originated
from Wiener chaos (Wiener, 1938). This method is a spectral repre-

sentation of a random process by the orthonormal polynomials of a
random variable. Exponential convergence is expected for the gPC
expansion of infinitely smooth functions (i.e., analytic and infinitely
differentiable). Ghanem and Spanos (1991) reported that the gPC

dx.doi.org/10.1016/j.compchemeng.2016.03.020
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2016.03.020&domain=pdf
mailto:mynlee@yu.ac.kr
dx.doi.org/10.1016/j.compchemeng.2016.03.020
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Fig 1. Uncertainty propagation an

s an effective computational tool for engineering purposes. Xiu
nd Karniadakis (2002) further generalized PC for use with non-
tandard distributions.

This work demonstrates and validates the applicability of poly-
omial chaos theory for uncertainty quantification and sensitivity
nalysis for complex chemical processes such as natural gas and
yngas production. The proposed gPC based method can reduce sig-
ificantly the computational cost (simulation time) for uncertainty
uantification over traditional approaches, such as the MC/QMC
ethods. Moreover, Sobol’s sensitivity indices (Sobol, 2001) can

lso be directly obtained from the gPC surrogate analytical model
Crestaux et al., 2009; Sandoval et al., 2012), which can in turn be
sed to detect the influential inputs in the propagation of process
ncertainty.

. Uncertainty quantification using polynomial chaos
heory

Consider a steady-state process that is described with a set of
ollowing nonlinear equations:

(y,�) = 0 (1)

here � = (�1, �2,. . .�N) is a process input variable vector expressed
y a random vector of mutually independent random components
ith probability density functions of �i(�i):�i → R+; and y denotes

 process state and output variable vector.
The joint probability density of the random vector, �, is � =

N

i=1

�i, and the support of � is � ≡
N∏
i=1

�i ∈ RN . The uncertainties

n the process inputs � are then propagated through the entire pro-
ess, as shown in Fig. 1. The set of one-dimensional orthonormal

olynomials, {�i(�i)dim=0}, can be defined in finite dimension space,
i, with respect to the weight, �i(�i). Based on a one-dimensional

et of polynomials, an N-variate orthonormal set can be constructed
ith P total degrees in space, �, using the tensor product of the one-
ntification in chemical processes.

dimensional polynomials, the basis function of which satisfies the
following:∫
�

˚m(�)˚n(�)�(�)d� =
{

1 , m = n

0 , m /= n
(2)

Consider a response function f(y(�)) for a process state vari-
able, y, with the statistics (e.g., mean, variance) of interest, the
N-variate Pth order approximation of the response function can be
constructed as follows:

f N
P(y(�)) =

M∑
i=1

f̂i˚i(�) ;

M + 1 =
(
N + P

N

)
= (N + P)!

N!P!

(3)

where P is the order of polynomial chaos, and f̂m is the coefficient
of gPC expansion that satisfies Eq. (2) as follows:

f̂i = E[�if (y)] =
∫
�

f (y)�i(�)�(�)d� (4)

where E[·] denotes the expectation operator.
The coefficients of the gPC expansion from Eq. (4) are normally

obtained numerically using the following procedure (Xiu, 2010):

• Choose a N-dimensional integration rule (cubature nodes and
weights)

�Q [g] = (Qq1
(1) ⊗ . . . ⊗ QqN

(N)) [g] =
q1∑
j1=1

. . .

qN∑
jN=1

g(�(j1)
j , . . .,  �(jN )

j )

(w1
(j1). . .w1

(jN )) ∼=
∫
�

g(�)�(�)d� (5)

where ⊗ denotes the tensor product, and �Q[·] denotes the multi-

variate cubature approximation.

• Approximate the gPC coefficients in Eq. (4) using the numerical
integration rule in Eq. (5).
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ˆ
i = �Q [f (y, �)�(�)�] =

Q∑
m=1

f (�(m))�j(�
(m))w(m) for j = 1, . . ., M

(6)

here ˜̂f represents the numerical approximation of f̂ and f(�)�j(�)
lays the role of g(�) in Eq. (5); Q is the number of nodes in cubature
pproximation. The number of cubature nodes (simulations) rises
xponentially and hence the tensor cubature should be used only
or small number of parameters. However, for moderate number
f parameters (5–10 parameters), a sparse grid quadrature can be
sed for calculating the gPC in Eq. (6) (Crestaux et al., 2009; Xiu,
010).

Construct an N-variate Pth order gPC approximation of the
response function in the form:

P
N =

M∑
j=1

˜̂f j�j(�) (7)

Once all the gPC coefficients and the surrogate model in Eq. (7)
ave been obtained, a post-processing procedure is then carried out
o obtain the statistical properties of the response function f(y(�)).

The first expansion coefficient is the mean value as follows:

[f̃ PN ] = 	f =
∫
�

f̃ PN�(�)d� =
∫
�

⎡
⎣ M∑
j=1

˜̂f j(�)˚j(�)

⎤
⎦�(�)d� = ˜̂f 1 (8)

The variance of the response function f(y(�)) can be evaluated
s follows:

Df = 
2
f = E[(f − 	f )

2]

=
∫
�

(
M∑
j=1

˜̂f j(�)�j(�) − ˜̂f j)(
M∑
j=1

˜̂f j(�)˚j(�) − ˜̂f 1)�(�)d� =
M∑
j=2

˜̂f j
2

(9)

Eqs. (8) and (9) employ the property that the polynomial set
egins with �1(�) = 1. The weight function of the polynomial is the
robability density function.

The distribution function of the response function is obtained
y sampling the surrogate model in Eq. (7).

If a response function f(y) is chosen for as state variable, y, the
ean and variance of the system’s states are given approximately

y Eqs. (8) and (9), respectively. Duong and Lee (2012) and the
eferences therein present different methods for constructing a set
f orthonormal polynomials with respect to a given distribution.

emark. In the MC/QMC methods, it is necessary to simulate
he process numerous times at the sampling points to obtain the
equired probability. On the other hand, the gPC requires solv-
ng Eq. (1) only at the cubature nodes for obtaining the analytical
epresentation in Eq. (7). The analytical model by Eq. (7) can be sam-
led easily with little simulation effort. The statistical moments are
vailable directly from the surrogate model, as expressed in Eqs. (8)
nd (9).

. Variance base sensitivity analysis

.1. Brief theory of variance base sensitivity analysis
In addition to the uncertainty quantification, global sensitivity
nalysis is an essential step to identify the parameters that are rel-
tively more important than the others over the entire parameter
ical Engineering 90 (2016) 23–30 25

space of the models in the science and engineering fields. One pop-
ular approach for sensitivity analysis is variance based; its theory
is given briefly in this section.

Consider the system described in Fig. 1 and Eq. (1). The mean
and variance of the response function f(y(�)) can be expressed as

	fy =
∫
�1

. . .

∫
�N

f (y(�1, . . .,  �N))
N∏
i=1

�i(�i)d�i (10)

Dfy =
∫
�1

. . .

∫
�N

[
f (y(�1, . . .,  �N)) − 	fy

]2
N∏
i=1

�i(�i)d�i. (11)

The response function of the system output can be decomposed
into sum of terms with increasing dimensions (Satelli et al., 2004):

f (y(�)) = f0 +
N∑
i=1

fi(�i) +
N−1∑
i=1

N∑
j>i

fij(�i, �j) + . . . + fi1...iN (�i, . . .,  �N),

(12)

where f0 = 	fy.
The terms in Eq. (12) are functions of the factors in its index and

can be expressed as

fi(�i) = E

[
f (y(�))|�i

]
− 	f

fij(�i, �j) = E

[
f (y(�))|�i, �j

]
− fi − fj − 	f

. . .

,  (13)

where E

[
f (y(�))|�i

]
(resp. E

[
f (y(�))|�i�j

]
) is the conditional expec-

tation of f(y(�)) when �i is set (resp. �i and �j are set). The
decomposition in Eqs. (12) and (13) is unique provided that the
random factors are independent.

Therefore, the variance of the output function can be decom-
posed as follows:

Dfy =
N∑
i=1

Di +
N−1∑
i=1

N∑
j>i

Dij + ... + D1,2,...,N (14)

where

Di = var
(
E

[
f (y(�))|�i

])
Dij = var

(
E

[
f (y(�))|�i, �j

])
− Di − Dj

. . .

D1,2,...,N = Dfy −
N∑
i=1

Di − . . . −
∑

1≤i1<···<in−1≤N
Di1...iN−1

(15)

Note that in var
(
E

[
f (y(�))|�i, �j

])
, the inner expectation is over

all factors except for �i, �j, and the outer variance is over �i, �j.
The first order sensitivity index (function) is defined as follows:

Si =
Di
Dfy

(16)

The first order index represents the main effect contribution of each
random input factor to the variance of the output alone. Si lies in
[0,1]. The sum of the first order functions equals 1 for the additive
models.

Similarly, let the sensitivity functions of a higher order be

defined as

Si1,...,ik =
Di1,...,ik
Dfy

. (17)
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Fig. 2. Syngas produ

he sensitivity function of a higher order is a sensitivity measure
hat describes what part of the total variance is due to the uncer-
ainties in the set of parameters, {�i1 , . . .,  �is }.

The total effect function for the factor, �i, can be written as

i = 1 − var(E(fy(�)|�∼i))
Dfy (t)

. (18)

This total effect index measures the contribution to the output
ariance of �i, including all variances caused by its interactions, of
ny order, with any other input variables. The function, Ti, is the
ducated answer to the question, “Which factor can be fixed any-
here over its range of variability without affecting the output?”

Satelli et al., 2004, 2008).

.2. Variance based sensitivity analysis using gPC

The gPC expansions in Eq. (7) can be reordered to separate the
ingle and collective contribution of each parameter as follows.

Define the set of multi-indices Ik1,...,ks such that (Sandoval et al.,
012):

k1,...,ks =
{

(k1, k2, ..., ks) : 0 ≤ �j
k

≤ P, �j
k

= 0, k �
{

1, ..., n
}

\
{
k1, ..., ks

}}
(19)

where �j
k

is the one-dimensional polynomial degree. Using this
otation, the first order sensitivity function can be expressed as

i =

∑
j ∈ Ii

f̂ 2
j

Df
. (20)

he estimated sensitivity function of a higher order can be obtained
n the same manner as follows:

i1,...,is =

∑
j ∈ I

i1,...,is

f̂j
2

Df
. (21)

emark. Normally, for estimation of first order and total sensi-

ivity indices the computational complexity is (N + 2) × M,  where N
s the number of variables, and M is the number of the MC/QMC
amples (Satelli et al., 2004, 2008). Note that only M samples are
eeded for uncertainty quantification problem.
rocess (Example 1).

4. Chemical process examples

In this section, the proposed gPC based method was applied to
uncertainty quantification and sensitivity analysis of two  chemical
process examples studied in (Abubakar et al., 2015), such as a syn-
gas production process and a sales gas process, and validated using
standard MC/QMC methods.

4.1. Example 1.a: syngas production process with Gaussian
uncertainties

Fig. 2 shows a process flow diagram of a synthesis gas (or alterna-
tively known as syngas) production process. In this process, natural
gas (NG) rich in methane enters the reformer, where a large amount
of methane reacts with steam and produces syngas with CO2. The
effluent from the reformer is then sent to the combustor with an air
stream. Steam is also fed into the combustor to maintain the reac-
tor temperature and ensure the complete combustion of methane.
The product from the combustor passes through the shift reactors,
where the water gas shift reactions are carried out. The synthesis
gas is finally taken as the feedstock for an ammonia production
plant. To facilitate the production of ammonia, the hydrogen to
nitrogen molar ratio (HNr) in the syngas needs to be controlled
precisely at 3:1, which represents the stoichiometric amounts of
the reactants in the ammonia process.

In this example, the NG feed temperature, flow rate, and the
reformer steam flow rate were assumed to be uncertain and
normally distributed independently with a mean and standard
deviation of {370 ◦C, 100 kg mol/h, 240 kg mol/h}  and {55.5 ◦C,
15 kg mol/h, 36 kg mol/h},  respectively. All other process inputs
(such as air stream and combustion steam to the combustor) and
process parameters (such as the vessel volume, heat duty and pres-
sure) were assumed to be deterministic. A code to generate the
cubature nodes and weights in the gPC method was developed in
a MatlabTM environment and connected to HYSYSTM, where the
syngas process in Fig. 2 was modeled rigorously. The cubature
nodes from gPC code are passed to HYSYSTM, and the impact of
the uncertainties on the hydrogen–nitrogen ratio (HNr) was  mon-

itored. The proposed gPC method (5th order gPC) used 125 Gauss
Hermite cubature nodes. From the simulation result obtained with
the cubature nodes, the surrogate gPC model was obtained for HNr
using the theory described in Section 2. It is well known that the
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C/QMC methods cannot offer an accurate result with a low num-
er of samples. Since true estimates of the output for the studied
rocess are not available, the result from the proposed method was
ompared with those from the MC/QMC methods with a sufficiently
arge number of samples. Table 1 lists the statistical properties of
Nr obtained from the gPC method and the conventional MC/QMC
ethods. Fig. 3 compares the density functions of HNr obtained

rom the gPC/MC/QMC methods. The results from the proposed gPC
ethod matched those from the traditional MC  and QMC  methods.
ote that the number of simulations required by the proposed gPC
ethod was significantly lower than those by the other two meth-

ds. As shown in Fig. 3, the traditional MC  and/or QMC  methods
equire a huge number of samples to get similar results. It is noted
hat the performance of the gPC method may  degrade for high order
tatistical moments of non-smooth quantity of interest (output).

Another unique advantage of the proposed gPC method is that
obol’s sensitivity indices to identify the influential inputs in the
ropagation of process uncertainty can be obtained directly from
he surrogate analytical model, which can be used to reduce the
umber of simulations required from 10–100 times, and the com-
utational efforts needed for the uncertainty quantification. In this
xample, the sensitivity indices for the process variable HNr with
espect to three uncertain inputs (the NG feed temperature and
ow rate, the reformer steam flow rate) can be obtained from the
urrogate gPC model. Table 2 lists the sensitivity indices obtained
rom the surrogate gPC model. The only input that matters is the
econd one, i.e., the NG feed flow rate. The natural gas tempera-
ure and the reformer steam flow are non-influential and can be
xcluded from the analysis of uncertainty propagation. Fig. 4 com-
ares density distributions predicted by the gPC and QMC  methods
ith one random parameter (i.e., the NG feed flow rate) and that by

he QMC  method (with 10,000 simulations from Halton sequence)
ith all three random parameters. Note that in the case of one

andom input, only five simulations were used for the proposed
PC method, whereas 10,000 simulations for the QMC  method. The
ensity functions from both methods with one random variable
howed a close match with that using all three random variables.
he number of samples for the MC/QMC methods was  chosen
ccording to Chernoff bound (Tempo et al., 2013) for accurate esti-
ation of the probability.

.2. Example 1.b: syngas production process with uniform
ncertainties

In this example, all the three process inputs of the syngas
roduction process in Fig. 2 were assumed to have independent
ncertainties distributed uniformly in intervals of {370 ± 50◦C,
00 ± 20 kg mol/h, 240 ± 54 kg mol/h}. The Gauss Legendre cuba-
ure nodes were used to obtain the surrogate gPC model, as
escribed in Section 2. The result from the proposed gPC method
as then compared with the traditional MC  and QMC  methods.

ables 1 and 2 list the statistical properties of the HNr and the
ensitivity indices, respectively.

Fig. 5 compares the density functions predicted using the pro-
osed gPC method (7th order gPC with 343 simulations), the QMC
ethod with 16,000 simulations and the MC  method with 1000

imulations. The MC  method with a low number of samples can-
ot provide an accurate result, even though the number of samples
as much larger than that used in the gPC method. The result by

he gPC method showed a close match with that using the QMC
ethod with a large number of samples. Sobol’s indices in Table 2

lso showed that the important random parameter influencing the

ncertainty propagation was only a NG feed flow rate and two  other
andom inputs can be excluded from the analysis. Fig. 6 compares
he density function of HNr with three random inputs and those
ith one random input (i.e., the NG feed flow), whereas the other Ta
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Table  2
Sobol’s sensitivity indices from the surrogated gPC model for Examples 1.a, 1.b, and 2.

Sobol’s sensitivity indices (Sij . . .n)

Example 1.a S1 S2 S3 S12 S13 S23 S123

2.272E-05 0.9806 0.0137 1.646E-05 0.0020 0.0022 0.0014

Example 1.b S1 S2 S3 S12 S13 S23 S123

4.940E-05 0.9479 0.0062 5.220E-04 8.840E-04 0.0371 0.0074

Example 2 S1 S2 S3 S4 S12 S13 S14 S23

0.9036 0.0795 0.0167 9.7715E-06 6.7285E-05 2.5839E-06 1.8018E-12 6.4715E-05
S24 S34 S123 S124 S134 S234 S1234

3.2377E-09 1.8833E-09 5.4235E-08 3.9457E-14 7.5100E-14 5.8284E-12 4.6192E-14
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Fig. 3. Density distributions of the hydrogen-nitrogen ratio in syngas with 3 Gaus-
sian random inputs (Example 1.a).
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Fig. 5. Density distributions of the hydrogen-nitrogen ratio in syngas with 3 uniform
random inputs (Example 1.b).
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wo inputs are assumed to be constant at their mean values. As
hown in the figure, the results using the important random input
nly were identical to those using all three random inputs. The
roposed gPC method with one random input required only seven
imulations, whereas the QMC  method used 16,000 simulations
o obtain an accurate result. Note that for calculating sensitivity
ndices using the QMC  method, one may  need 16,000 × 5 simula-

ions. Hence due to the large computational burden for calculating
ensitivity indices by the QMC  method, we will not do the QMC
pproach for validation of the gPC method. However, Fig. 6 shows
hat the gPC approach correctly detects non- influential input.
Fig. 6. Density distributions of the hydrogen-nitrogen ratio in syngas with 3 and 1
uniform random inputs (Example 1.b).

4.3. Example 2: sales gas process with Gaussian uncertainties

Fig. 7 shows a process flow diagram of a sales gas process. In
this process, the crude natural gas is refined to a lean dry sales
gas to meet the hydrocarbon dew point requirements, heat duty
specifications, and the production rate, G (kgmol/h). The differ-
ent heavy components removed from the sales gas are then fed

to a depropanizer column, where propane with the remaining
small amount of methane and ethane are obtained from the top,
while butane with the remaining heavy components are extracted
from the bottom. In this example, the crude natural gas feed flow
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Fig. 7. Sales natural gas process (Example 2).
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to model the uncertainty propagation and sensitivity in complex
ig. 8. Density distributions of lean gas production rate with 4 Gaussian random
nputs (Example 2).

ate, pressure, temperature, and the chiller duty were assumed
o be varied independently with a mean and standard deviation
f {300 kg mol/h, 4150 kPa, 15 ◦C, 2 × 105 kJ/h} and {10 kg mol/h,
50 kPa, 3 ◦C, 500 kJ/h}, respectively. Fig. 8 shows the density func-
ions for lean dry gas production predicted from the gPC/MC/QMC

ethods. The result from the gPC method (5th order gPC with 625
imulations) closely matched the result from the MC/QMC methods
ith 10,000 simulations. Table 1 lists the statistical properties of

ean gas production and simulation parameters from the proposed
PC and MC/QMC methods. Table 2 lists the sensitivity indices
btained from the surrogate gPC model. The sensitivity indices indi-

ate that the crude NG feed flow rate and pressure are influential for
ncertainty propagation while the crude NG feed temperature and
he chiller duty are non-influential. Fig. 9 shows the density func-
Fig. 9. Density distributions of lean gas production rate with 4 and 2 Gaussian
random inputs (Example 2).

tions of lean gas production with two influential random inputs
by the gPC method (with 25 simulations) and by the QMC  method
(with 10,000 simulations), and compares with that using all four
random parameters by the QMC  method (with 10,000 simulations).
The sensitivity indices from the gPC method correctly identify the
influential inputs.

5. Conclusions

A stochastic spectral approach based method was  proposed
chemical processes. The gPC method was applied to determine the
solution to these problems. An interface between MatlabTM and
HYSYSTM was used to provide a rigorous result in all simulations.
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Xiu, D., Karniadakis, G.E., 2002. The Wiener-Askey polynomial chaos for stochastic
differential equations. SIAM J. Sci. Comput. 24, 619–644.

Xiu, D., 2010. Numerical Method for Stochastic Computations: A Spectral Method
Approach. Princeton University Press.
0 P.L.T. Duong et al. / Computers and

he results showed precise agreement with those of the conven-
ional approaches such as the MC/QMC methods, which might be
eyond the computational capability for large scale complex chem-

cal process problems. The gPC approach has advantages over the
opular MC/QMC approaches, mainly in terms of the computational
ost: the required number of samples for the uncertainty predic-
ion can be reduced significantly by the gPC method. Moreover,
obol’s sensitivity indices to identify the influential random inputs
or uncertainty propagation can be obtained directly from the sur-
ogated gPC model, which in turn reduces the required samples
emarkably and allows a focus on the important inputs for the
obust design of complex processes under a range of uncertainties.
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