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et al. (2014) is governing or not the process), about its param-
eters (e.g. the reaction rates) or even about the reactions taking
place. The user can empirically elucidate these issues by perform-
ing an experiment, introducing some initial concentrations under
given conditions, letting species react, and afterwards comparing
the concentrations so obtained with those which should have been
obtained under identical conditions if the theoretical models were
correct.

Whether model discrimination would become easier or harder
may strongly depend on the choice of the experimental conditions
used to compare theoretical and empirical concentrations values.
To illustrate this, consider the species S; = (CH3CO),0 (acetic anhy-
dride), S, =H,0 (water), S3=CH3COOH (acetic acid) S4=CH30H
(methanol)and S5 = C3HgO, (methyl acetate), which reactin a batch
reactor according to the following reaction network, Burnham and
Willis (2009), with one reversible reaction:

(CH3C0),0 + H,0 —> 2CH;COOH
CH3COOH + CH30H — C3HgO, + H,0 (1)
C3HgO; + HyO —> CH3COOH + CH30H

Assume that the law of mass action governs the reactions, and
thus, if x1(t) is the 5-dimensional vector indicating the concentra-
tions of species Sy, . . ., S5 ata time instant t € [0, T], then x! satisfies
the system of ordinary differential equations (SODE)

x1(t) —kixlx}

X0 —kix]x} + kyxdx] — ksxxl

() | = | 2kix1x] — koxlx} + kaxix] (2)
x5 (1) —koxix} + k3x1xl

x(t) kaxix) — ksx}xl

with k;, [=1, 2, 3, being the rate coefficients, taken as
(kq, ko, k3) = (0.1,0.15, 0.05)dm> min~! mol™! (3)

Suppose that, as an alternative model to (1), we only have the
same first two reactions, i.e., the second reaction is not considered
to be part of a reversible reaction:

(CH3CO)20 + H;0 — 2CH3COOH (4)
CH3COOH + CH30H — C3HgO, + Hy0

and, as in model (1), the law of mass action is assumed, i.e., the
concentrations x2(t) at time t € [0, T] under (4) is a 5-dimensional
vector satisfying the SODE

x2(1) —k1x2x2

x3(1) —k1x3x2 + kyx2x2

Bt | = | 2kix3x2 — kox3x3 (5)
x3(t) —kox3x5

x2(1) kax2x2

for reaction rates (kq, ko), taken here as
(kq, k2) = (0.1,0.15)dm> min~" mol . (6)

Let us explore how different can be the concentrations of species
S1, ..., S5 along time under models (1) and (4) using identical con-
ditions for both, as a function of the decision variables =(61, ...,
0s) yielding the initial concentration of species S;,i=1, ..., 5. If the
vector 6 of the initial concentrations takes the values

6 =(0.05,0.2,0.11,0.2,0.2) dm > mol, 7)

then the evolution of the concentrations of the different species S;,
and also, the difference between models (1) and (4) is absolutely
clear. See Fig. 1, where the species concentrations under models (1)
and (4) are depicted as solid and dashed lines respectively with the
initial concentrations 6 given by (7).

On the other hand, if the vector 6 of initial concentrations is
given by (8)

6 =(0.2,0.05,0.2, 0.05, 0) dm>mol, (8)

the difference between models (1) and (4) becomes now very weak,
see Fig. 2 and compare with Fig. 1.

It would be quite easy to identify whether the empirical con-
centrations follow model (1) or (4), i.e., if there is or there is not a
reversible reaction, in case the experiment is performed with 0 as
given by the former one, (7), but it would be very hard to make the
discrimination if 6 is chosen as the latter, (8).

The discussion above is a simple illustration of how exper-
imental conditions (e.g. initial conditions) can help the user to
discriminate between two models. In general, the problem of deter-
mining the experimental conditions which allow to discriminate
among several models is known as model selection. According to
Chen and Asprey (2003), there exist two points of view in the design
of conventional discrimination experiments: the Bayesian methods
and the frequentist methods. In Bayesian methods, Masoumi et al.
(2013), Schwaab et al. (2006), Skanda and Lebiedz (2013), Box and
Hill (1967), a probability is assigned to each model. This probability
is updated each time an experimental design is made until there is
a model whose probability is much larger than the others. One of
the drawbacks of this type of methods is that usually a big number
of experiments should be made in order to obtain the best model,
i.e., the model with the largest probability. In practice, perform-
ing just one experimental run may be very expensive in terms of
money and time, and hence we strive to obtain the optimal deci-
sion variables, e.g. the initial conditions, in one single experiment.
To reach this aim the frequentist methods, Chen and Asprey (2003),
Buzzi-Ferraris et al. (1990), Donckels et al. (2009), are very useful,
since although they can be used in a sequential approach, good
results are also obtained by making just one experiment. This is
the methodology followed in this paper.

In order to measure the discrepancy among models, one has to
choose one criterion. Two criteria are usually proposed in the liter-
ature, namely, the sum over all model pairs, Donckels et al. (2009),
Schwaab et al. (2006), Chen and Asprey (2003), Hunter and Reiner
(1965) and the worst-case method, in which a max-min approach s
applied, Cooney and McDonald (1995), Bambachetal.(2013).As the
motivating example of Michalik et al. (2009) shows, the first criteria
may lead to a bad solution, since the proposed experiment can orig-
inate a big separation between two particular models, at the same
time that some of them are very close, giving an overall good result
but an inefficient model selection method. Hence, in this paper,
we will use as a discrepancy measure the max-min approach. See
also Donckels et al. (2010) for a multiobjective approach in which
a compromise experiment is sought.

Furthermore, some papers include the possibility of a simul-
taneous methodology, where the parameters of the models are
inferred at the same time that the best model is selected, Donckels
et al. (2010), Bambach et al. (2013), Rodriguez-Fernandez et al.
(2013). However, we will only focus on the model-selection stage,
that is to say, we assume that the models are perfectly defined by
their parameters and we only want to find the experiment which
best separates all the models. Parameter estimation can be made by
using common strategies, see Burnham and Willis (2009), Burnham
et al. (2008), Papamichail and Adjiman (2002), Singer and Barton
(2006) for instance.

Moreover, although our contribution is focused on chemical
reactions networks, there exist other areas modelled by dynamical
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Fig. 1. Example. Models (1) and (4) with 6 given in (7).
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Fig. 2. Example. Models (1) and (4) with 6 given in (8).

systems, where model discrimination is useful and our approach
can be applied. This is the case of models which describe the epi-
demiology of infectious diseases. For more information, the reader
is referred to Toni et al. (2009).

The main contribution of the paper is summarized as follows.
A novel global optimization approach is proposed to choose opti-
mal decision variables in model selection by solving a mathematical
optimization problem. Our method is applicable (and more promis-
ing) when a catalogue of kinetic laws for each reaction is given, and
thus an exponentially large number of models is to be separated.

The remainder of the paper is structured as follows. In Section 2,
a mathematical optimization model is presented to address the
problem of adequately selecting the initial concentrations yielding
maximal discrimination between M models. How to solve such an
optimization problem is the focus of Section 3, where a global opti-
mization metaheuristic, namely, the variable neighborhood search,

is proposed, and some technical details on how to reduce the run-
ning times are given. Special attention is paid to detail how to
address the model selection problem when a catalogue of kinetic
laws is associated with each reaction, and thus a very large num-
ber of models is given. In Section 4 four examples are presented in
detail, showing the usefulness of the approach. The paper finishes
in Section 5 with some extensions, as well as concluding remarks.

2. Optimal initial concentrations. Problem statement

In this section we present the mathematical formulation of the
problem of finding the initial concentrations of a set of species to
produce the maximal discrimination between M models.

We assume that x™, m=1, ..., M are N-dimensional functions
of the independent variable t € [0, T], which give, respectively, the
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state variable under the mth model, and are assumed to be solutions
of the Cauchy problems (9):

t e [0,T]

XM(t, 0) = (e, x™(t, 0)),
(9)

x™M(0,0) =6

Here f", m=1, ..., M are C! functions, and § € ® ¢ (64, 01] x
... x [ON, ON] is the vector of decision variables, representing the
initial conditions of the models, which is allowed to take values in
the parameter space ®, a subset of the Cartesian product of the sets
of admissible values for the initial conditions 6.

Observe that, if one wants the initial concentration of species i
to be fixed to some 6, one simply needs to do 6; = 6; = 6;.

For instance, for the example given in Section 1 where M=2, f!
and f2 denote respectively the right-hand sides of (2) and (5).

Given a vector 8 € ® of initial conditions and two indices my,
my € {1, ..., M}, we need to define A(x™1, x™2, 9), the separation
between the concentrations of the two models x™ and x™2. One
sensible choice is the weighted sum of the squared ¢,-distances
between the curves x;”l and x{”z,

T

AG™, X2, 0)= 3" p / (xmi(t, ) - xm2(t, 6)) dr (10)
1<i<N 0

for some non-negative weights p;,i=1, ..., N, introduced to model

the importance of the different species.

If M=2, i.e., if only two models, x! and x? are considered, our
aim would be to find the values of § maximizing A(x!, x2, 8). When
M>2models, x!,.. ., xM are to be separated, different criteria would
be used, such as e.g. maximize the average separation, Donckels
etal.(2009), Schwaab et al. (2006), Chen and Asprey (2003), Hunter
and Reiner (1965), or, as suggested in this paper, maximize the
minimum A(6, x™, x™2), so that all models become sufficiently
separated. In other words, the optimization problem to be solved
takes the form (11):

max Y(f0) = min A(x™, x™M2 6)
o mq,my € {1,..., M}
my #my
st XM(t,0)=fm(t,x™(t,0)), m=1,...,M (11)
xm0,0)=60, m=1,....M
0e®

We discuss in detail how to solve Problem (11) in Section 3.

3. Initial concentrations selection. Solving the problem

Solving Problem (11) is a challenge due to a good number of rea-
sons. First, evaluating the objective function s at a given 6 calls for
the (numerical) resolution of the SODEs (9), and then, once x™(-, 6),
m=1,...,Mare obtained, the (numerical) evaluation of the integral
defining A(x™,x™2,60)is needed for each pair (my,my), m;,m; € {1,
...,M},my # my.Thisis the focus of Section 3.1. Moreover, in order
to use any local search procedure, ascent directions are to be deter-
mined. To do this, the generalized gradient of terms of the form
fOT (XM (¢, 0) — x"2(t, 9))2 dt are to be (approximately) computed,
as described in Section 3.2. Since Problem (11) is likely to be mul-
timodal, local-search procedures may get stuck at local optima. To
avoid this, global optimization approaches, as the one designed in
Section 3.3, are needed. Finally, the whole process becomes cum-
bersome, when the number M of models is large. In Section 3.4 we
show how to address this case.

3.1. Approximating the objective function

The objective function ¥ of Problem (11) consists of the mini-
mum of a summation of terms of the form

T
/ (xM(t, ) — x™2(t, 0))* dt. (12)
0

Quadrature rules allow one to approximate such integrals by
weighted sums

J
> Wi (g, 6) - X (5, 6)
j=1

foragivengrid 0=t; <t <...<t;j=T. As a basic example of the value
of wj, we can use the composite Simpson’s rule, Atkinson (1989),
which states that the expression of w;,j=1, ..., ] is given by

T e
m» ifj=1,]
wi = 27 ifj # 1,Jandjis odd (13)
j = m, J#1, J
T et ..
-1y ifj # Jandjis even
Thus, we set
N ]
W(0) ~ min (XM (85, ) — X2 (87, 0))7,
m1,mze{],...,M};;U P v
my #my

(14)

w1tha,] =pin,i=1, ...,N,j=], ,]

3.2. Searching an approximate ascent direction

For differentiable functions, the gradient at a point gives an
ascent direction (in fact, the steepest ascent one). In order to find an
ascent direction for 1/, we cannot use such strategy, since the “min”
operator may destroy differentiability of 1, and the concept of gen-
eralized gradient, Clarke (1975, 1990), is used instead. In particular,
given 0, let my, my be the indices providing the minimum in (11),
ie, Y(0) = A(x™,xM2, 0), an element of the generalized gradient
of ¥ is VA(x™ , xM2 ). Then we use as approximate ascent direc-
tion VA(x™1, xM2, 6). In what follows we show how to compute
it.

First take into account that, forn=1, ..., N, and for m;, my € {1,

. M}

%(x?l(t,-,e)—xmj, 0))*

(15)

2 (6, 6) — X2 (55, ) <8xi (4.0) ox; (tj,G))

00, 06,

The next step is to find an expression of (3x["(t;, 6)) /(96 ) for all n
and fixed indices,j,and m. This is not a trivial task because we recall
that, for 6 and m fixed, x"( - , 0) is the solution of a Cauchy problem
which, in most of the cases, does not have a closed-form expression.
The strategy followed to obtain the corresponding derivatives is
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described next. We start denoting (9x["(t, #))/(36n) as umn(¢, 6y,

v Bn, .., 0N),
. ox™(t,01,...,6n,...,0
W Gy O Oy) = L i 28
39;—,
iin=1,...Nm=1,...,M (16)

We compute the derivative of ui™" with respect to t in order to
build an auxiliary Cauchy problem:

i 9 oxn g o
’ (tﬁ)_&a@n " 06, Ot
- aien ML XL Or, .y ON), o XI(E B, O)
N N
afm(t, x™) ofm(t, xmy
B ;W 96 Z;Wu :

and the initial condition of ui™(t, ) is,
oXN0.0) B0,
00, 20, "

where §;, denotes the Dirac delta function,

5 1, ifi=n
™7 10, otherwise

Hence, for a fixed 6, finding the value of u'™(., §) is equivalent

uimn(0, 6) =

to solving the following Cauchy problem, for i, n=1, ..., N, m=1,
.. M:
N
. ofm(t, x™)
uimn(t ) = i ’ ulmn
(-0 ,Z: o (17)
umn(0, 6) = 8ip

It is worth-mentioned that the expressions of (9f")/(9x]"), i,
I=1,...,N,m=1, ..., M are known because we have the explicit
form of the functions f(t, x™),i=1,...,N,m=1,..., M.

Fixing nand 6, we cansee (17)as a system of ordinary differential
equations (SODE):

ofr(t, x™) of(t, x™)

ulmn(t, 0) A T o ulmn(t, 9)

i fm(e, xm) am(e, xm) .

uNmn(t, 9) N N uNma(t, 9)

oxm oxim (18)
ulmn(o’ 9)
=€y,
ﬂN’""(O, 9)

where e; is a vector with 1 in its nth coordinate and 0 every-
where else. Observe that (18) is a homogeneous linear SODE whose
unknown, u™ = (ylm* _  yNmn) dependsonone variable, t,once
the vector of the initial conditions, 9, is fixed.

Hence, for 8, my and m; fixed, one solves the SODEs associated
with ui™n and uim2" above, and then, since

N J
% DD ey (1. 6) - x5, 0)”

i=1 j=1
N ]
=) ) 20 (XMt 0) - X"2(t;, 0)) (u™n(g, 0) - uma(t;, 0))

the expression (15) can be evaluated, providing an approximation
to an element of the generalized gradient of /(0).

3.3. Solving the Problem

We have addressed above how to (approximately) evaluate the
objective function of the optimization Problem (11) as well as its
generalized gradient. Hence, the optimization can be performed by
means of local search procedure, e.g. Nocedal and Wright (2006),
Dimitri et al. (1999). However, such local-search methods are likely
to converge, at best, to a local optimum. In order to obtain the
global optimum of the problem, we propose to use the well-known
metaheuristic variable neighborhood search, VNS, Mladenovic and
Hansen (1997), adapted to optimization in continuous variables
as in Mladenovic et al. (2008), Carrizosa et al. (2012, 2013, 2014).
The idea is to perform a local search, and, once a local optimum
is obtained, to perturb in a certain neighborhood the so-obtained
solution, in order to have the starting point of a new local search.

More precisely, a class of nested neighborhoods A1 (8) c N>(8) C
o+ C Nrmax (0) of each feasible solution 6 € © ¢ Hf\’:][@, 6_,-] is built:
the neighborhood N;(0) of radius r, 1 <1 < rmax, is defined as

N

20) =T [6:- 76— 0.0+

! T'max
i=1

r

@ -6 ne.

T'max

This way, shaking in the largest neighborhood A;,,,,, (#) amounts
to sampling at random in ®, while for small values of r, just a small
perturbation of the solution is obtained.

The algorithm starts by choosing arandom point 6 € ®, and per-
form a local search to optimize (11) with the objective function as
in (10), yielding 6™ Initially, we set §°Pt := 9ini Then, a local search
is performed starting from some 6 randomly chosen from A/ (6°P!).
This yields a new local optimum #'. If such ' yields better objective
value than 6°Pf, then we replace 6°Pf by ¢ and start the procedure
again. Otherwise, 0’ is discarded and 6°P! is shaked from a bigger
neighborhood N>, (6°Pt). This process is repeated, by sequentially
increasing the value of r, or restarted, if a better local optimum is
found. A pseudocode of this process is shown in Algorithm 1.
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Algorithm 1. VNS pseudocode

Algorithm 1: VNS pseudocode

Initialization

e Find an initial local optimal solution #™, applying some local search

method in the feasible region.
° ant = emz
while the stopping condition is not met do
r:=1
while r < r,,,, do
1. Define the neighborhood of radius r, as

: Tmaz
i=1

solution 6.

if &' is better than 6°P' then

gort .= ¢’
Restarting with r := 1
else
| r:=r+1
end
end
end

N
N6y = T [0 — 2 (0 — 0),67 + (@ — 07| ne.

2. Randomly select an initial point, 0, from the neighbourhood N, (6°P").

3. Obtain a local optimum of the problem, named €', starting from the

3.4. Model selection with a large kinetic laws set

One of the steps of Algorithm 1 aims to find a local optimum
of Problem (11). Observe that just the evaluation of the objective

function ¥(0) for a fixed 6 implies to compute terms of the

2
form A(x™,x™2, 0) for mqy, my € {1,..., M}. Evaluating A(x™1, x™M2,
0) amounts to solving two SODEs and evaluating numerically N

integrals. If M is small, such calculations can be done in a

2

reasonable time, but when M increases, it may be intractable to deal
with such number of terms. Having a (very) large number M of mod-
els appears, in particular, when we consider a set of kinetic laws
associated to each reaction of the network, as happens for instance
in Brendel et al. (2006). In such cases, the number of models, M,
may reach hundreds or even thousands. How to solve Problem (11)
when there exists a set of kinetic laws for each reaction will be the
focus of this section.

Let us consider C;, the catalogue of kinetic laws associated to the
reactionl, forl=1,.. ., L. The number of kinetic laws of the catalogue
C; is denoted by Q;, and each kinetic law is represented with Glz’ for
q;=1,..., Q. Inthis case, the number of models, M has the following
expression:

M=]]e (19)

=1

Observe that in the catalogue C;, the no-reaction kinetic may be
included, that is to say, it may exist the possibility that the reaction [
does not appear at all in the reactions network, which is equivalent
to saying that the reaction rate k; is equal to zero.

In order to solve Problem (11), Algorithm 1 should be conve-
niently adapted to the combinatorial scheme that emerges under
these conditions. Once again the VNS method is applied, but in its
discrete version, Mladenovic¢ and Hansen (1997). In this context,
a new neighborhood structure is to be defined. Specifically, for a
combination of kinetic laws G=(q, ..., q;), the neighborhood of
radius s, Ms(G), consists of a random selection of s reactions and
aninterchange between their corresponding kinetic laws and other
possible laws chosen at random from their catalogues.

For a fixed 0, the algorithm begins with two initial combina-
tions of kinetic laws, Glm’"1 and G% associated to the models mil”"

and mil, respectively, with objective value AE™", X" 9). Fur-
thermore, the optimal kinetic laws and the models associated are

initialized as follows: Gi\ := G, GP' := G, mSP* := miM, and
m%" := mi". Then, the model m$" or m%”" is randomly selected

to make a perturbation of radius 1. Without loss of generality, we
assume that the model selected is m‘l’pt, and therefore the per-
turbation is made in Ml(anpf). Hence, one reaction is randomly
chosen and its kinetic law in Gﬁflt is replaced by other kinetic law

randomly selected from its catalogue, yielding a new model m. If

, opt opt opt
AX™, %™, O)islessthan A(x™ ,x™2", 6), thenm{”" := m/.Oth-
erwise, a perturbation in MZ(G%’f) is made. This process is repeated
until a stopping criteria, such as the maximum number of iterations,
isreached. A pseudocode of the method is sketched in Algorithm 2.
Observe that Algorithm 2 is included in Algorithm 1 in the search

of a local optimum 6.
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Algorithm 2. VNS pseudocode (discrete version).

Algorithm 2: VNS pseudocode (discrete version)

Initialization
e Fix a value of 6.

e Find an initial solution Gﬁ,’g and Gi,’f; corresponding to the models

mi™ and mi”, respectively.

opt .__ (ini opt ._ (ini opt ,_ , ini opt ,_ ___ini
o G =Gy, GIPY = G omyT = mi™ and my” = my".

my? ma?
while the stopping condition is not met do
si=1

while s < s,,,, do

m i=m), G =G,
Restarting with s :=1
else
| s:=s+1

end

end
end

2. Obtain a perturbed model m} from M, (G).

1. Choose at random the model m®" or m%" to be perturbed. (For the
sake of simplicity, we assume in what follows that m{”" is chosen.)

if A(x""l,xmgm, 0) is better than A(zm(fm, xmgm, 0) then

4. Some examples

In this section, four examples are provided to show how the
theoretical approach presented in the previous sections works. In
all cases, the expression of A in(10) has p;=1foralli=1,...,N.Our
algorithm has been coded in Fortran and compiled using Intel©
Fortran Compiler XE 12.0. Executions were carried out on an Intel
Core i7 computer with 16.00 Gb of RAM memory at 2.6 GHz, running
Windows 8. In the implementation of the VNS algorithm we have
used the following values of the parameters.

® rmax =4
® Smax =10

A quasi-Newton method is used as local-search routine in order
to optimize the continuous variables by means of the functions
bconf, available at the IMSL Fortran Numerical Library. Numerical
integration is done as described in Section 3.1, using the weights
w;j in (13).

In the examples presented in Sections 4.1-4.3, only two models
are considered, i.e. M = 2, whereas in Section 4.4 a set of kinetic laws
is associated to each reaction.

4.1. Example 1

The data come from Burnham and Willis (2009). Discrimination
is to be performed between the two models given by (9), with the
right hand side of the differential equation as in (2), using the values
of kgivenin(3),and (5), where k takes the values in (6). The number
of components is N=5.

The interval time has the form [0, T]=[0, 1200] and is mea-
sured in minutes. The number of points in the time grid is

J=11, and the weights a; = pjw; =w;, i=1, ..., N, j=1, ]
are:
j+1 j ies
— ifji=1
tiv1 =t ies .
@ =9 S ifi=2,...,]—1 Vi (20)
ti—ti_
I it =)

where t;=120( —1),j=1, ..., ], that is to say, the step size of the
time grid is 120 min. Therefore, the weights turn out to be:

e — 60, ifji=1,J vi
v 120, ifji=2,...,J—-1

The set ® where the initial conditions are allowed to take values
is given by

©={0:6€[6,6],i=1,....,N}, (21)

# =(0.05,0.05,0,0.05,0) dm > mol,
6 =(0.2,0.2,0.2,0.2,0.2) dm > mol

Solving the optimization problem (11), as described in Section 3,
yielded an optimal objective value of ¥/°P*=68.2611, and provided
the solution #°Pt

6°Pt — (0.05, 0.2, 0.1135, 0.2, 0.2) dm~> mol (22)

The solutions of the Cauchy problems (9) using (2), and (5) as
right hand side, respectively, and taking as initial condition 8Pt in
(22) are plotted in Fig. 1. The continuous line represents the first
model, (9) with (2), while the dashed line represents the second
model, (9) with (5).

As expected, in the problem of determining if the second reac-
tion in (1) is reversible or not, the best discrimination is obtained
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when the initial values of the concentrations of the species S, and
Ss, i.e. the reactants in the backward reaction, are high which coin-
cides with the results in (22).

4.2. Example 2

The data for our second example are taken from Burnham et al.
(2008). The two models differ in the value of the rate coefficients
k! and k2, and they have the form of the Cauchy problems in (23)
and (24):

2
—2k}(x1)” — klx}

131312 _ plyly1
kei(x7)" —kyxy%,

x1(t,0) = klx! — klxl , x10,0)=0 (23)
kix} —klxix}
kixix}
and
—2k3(x2 Y- k3x2
k2(x2 - k2x2x2
X%(t,0) = k3x2 — k2x2 ., x%(0,0)=6 (24)

k2x2 — k2x2x2
k2x3x2
The values of the parameters k! and k2 are
k' =(0.1,0.2,0.13,0.3), k*=(0.2,0.4,0.26,0.6) (25)

The dimension of k], k2, k} and k% is dm® min~" mol~!, while the
dimension of k1, k3, k1 and k% is min~". The number of components
of the two modelsis N=5.The time intervalis [0, 15] minutes, which
is divided in J=16 points. Each point of the grid, ¢;, is given by

921_17 j:17"'a_’a

26

which implies that the step used is a regular step and equals to
1 min. The weights «;; = po;w; = wj, follow the same formula as in
(20), yielding

w05 ifi=1,J vi
Y7, ifj=2,...,)-1

The expression of the set © is the same as in (21), but the values
of 6 and 0 are:

# =(0.33,0.165, 0,0, 0)dm > mol,
6 =(1.34,1.34,1.34, 1.34, 1.34)dm > mol

Our algorithm yields an objective value of 1Pt =7.7083, and an
optimal solution

6°Pt — (1.34,1.34, 1.34, 0, 0.8867)dm > mol (26)

The solutions of the first model (continuous line) given by (23),
and the second model (dashed line) expressed in terms of (24), can
be seen in Fig. 3.

4.3. Example 3

So far, we have considered the initial concentrations as the
control parameters 6. However, the very same approach, namely,
modeling the discrimination problem as an optimization problem,
solved by variable neighborhood search, can be used to find optimal
discrimination for other types of chemical processes. To illustrate
this, let us consider now the problem of model discrimination in a
continuously stirred tank reactor (CSTR), in which the concentra-
tions evolution is governed by ODEs

XM(t, @, W) =f(t, XM (@, W) := A8™(t, X (¢, W))

(W — goucx™(p, W) @7)

for m=1, 2, and where

P
Pout = Z‘Ppy
p=1

Concentrations

— Sp. 1. Model 1
e Sp. 2. Model 1
— Sp. 3. Model 1
= Sp. 4. Model 1
— Sp. 5. Model 1
=— = Sp. 1. Model 2
— = Sp. 2. Model 2
= = Sp.3. Model 2
= Sp. 4. Model 2
= = Sp.5. Model 2

Time

16

Fig. 3. Solution of Cauchy problems (23) (continued line) and (24) (dashed line) with 6 =6 in (26).
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P is the number of input streams, A € My is the stoichiometric
matrix, N is the number of chemical species, L is the number of
reactions, V e R represents the volume of the tank, and §™, m=1,
2 denote the vectors of reaction rates for x™. Finally, the decision
variable 0 is the pair (¢, W) with ¢ =(¢1, . . ., pp) being the flow rate
vector and W € Mpyp being the composition matrix.

As an example, we consider the following reaction network,
Bhatt et al. (2012):

S] + 52 i) 53
$H+8 5 S
2 + 52 4 (28)
52 —> 55
z
S3+S, — Sg
where S;,i=1, ..., 6 are the set of species, and Z denotes a catalyst,

whose concentration is 0.5 dm~3 mol. Thus, the number of species
is N=6 and the number of reactions is L=4. Furthermore, there
exists one input stream (P=1) and the volume of the tank reactor,
is V=1dm?3. The stoichiometric matrix, A, is given by

-1 0 0 O

-1 -2 -1 -1

1 0 0 -1
A=

0o 1 0 O

o 0 1 O

0O 0 0 1

The expression of the reaction rates, 8! and 2 in (27) are given
by

1p141,1 2,242,2
kix1X3%7 kixix5x7
k1(x1)2x1 K2(x2)*x2

1| %\%) X 2 | K\X5) X7

5 = -

1,1 2,2
k3x; kx5
114151 2,242,572
kyx3x5%; kyxsxsxs

where k! = (0.053, 0.128, 0.028, 0.0001), and k? =3k!.

The dimension of kI, k1, k1, k2, k3 and k2 is dm® mol? min~?,
while the dimension of k} and k% is min~1. Moreover x",i=1, ...,
N, m=1, 2 denote the concentration of the species S; according to
the model m. Finally, the set ® where the decision variables take
values is assumed to take the form

O=((p.W):g € [0.1,05, p=1,...P; W; €[0,10],i=1,... ,N,p=T1,...,P}
(29)

Let us formulate the optimization problem of optimal discrim-
ination for the two models when the vector of control parameters
is 0=(¢, W) and discrimination is to be made in the steady state;
thus the following equation must be fulfilled

fMx™e,W))=0, m=1,2

Hence, the optimization problem to be solved is

N
1 52 2
max Z(xi(w, W) - x3(p, W))
i1 (30)
st.  fM(xM(p,W))=0, m=1,2

(9, W) € ©® CRP x Mpyp

Table 1

Steady state of models (27) with the parameters

(31).
Model 1 Model 2
8.258 7.236
3.979 2.401
1.741 2.761
8.418 8.605
9.931 10.111
3.383 3.384

With all these data, the optimization Problem (30) has been
solved by using the VNS algorithm (see Section 3.3). The optimal
objective value is 4.642, and the optimal solution is:

@OPt = 0.5dm> min~"', (31)
31
Wept — (10, 10, 0, 6.390, 9.708, 3.382)dm > mol

In Table 1 we show the steady state of the concentrations in
dm~3 mol of the species, S1, . . ., S, obtained after solving the non-
linear systems (27) with the values of ¢°Pt and W°P! in (31) yielding
maximal separation.

4.4. Example 4

This example considers the ODEs of the example in Section 4.3,
which appears in (27) for m=1, ..., M, with M > 2, with the initial
condition of the corresponding Cauchy problem, (32), as the deci-
sion variable 6 and where the values of ¢ =0.3 dm? min~1, W=(0,
6,0,0,0,0)dm~3 mol, and T=30 min.

XM(t, 0) = AS™(t, x™(t, 0)) + %(Wq) — ourX™(t, 0)),

tel[0,T], m=1,...,.M (32)

x™(0,0)=60, m=1,....M

The interval time [0, 30] is discretized in J=151 points, i.e. each
point of the grid t;=0.2(j — 1) and hence, the step is 0.2. The weights

used follow the expression in (20) giving for alli=1, ..., 6,
o 01 ifi=1]
Y71 0.2, otherwise

The bounds of the set ® are §; = 0and §; = 10 fori=1,...,6.The
reaction network used is given in (28). The values of the remaining
parameters are taken as in Section 4.3.

The novelty of this example is that each component of the
expression of the reaction rates 6™ comes from a set of kinetic laws
associated to each reaction. In our case, we use the set of kinetic
laws of Brendel et al. (2006), which are shown in Table 2. For the

Table 2
Kinetic laws set.
Reaction 1 Reaction 2 Reaction 3 Reaction 4
z z z
S1+S5,—S3 Sy +S,—S4 Sy — S5 S3+ 52— Se
G} =k G% =k G? =Kk Gf]‘ =ky
G; = kiXy G% = koxy G; = k3x G‘z‘ = kaxz
Gl =kixy G3 =kax3 G; =ksx3 G3 = kaxs
GJ‘ = ’(]XZ G‘z1 = kzXzXZ Gz = I<3X2XZ Gj = I<4XZ
Gl = kixax; G2 = kax2xz G2 = k3x2xz G2 =kaXox3
Gl =kixixz G2 = kaxz Gg = ksxz Ga = kaxsxz
G; = kiXoXz G‘7‘ = kaxoXz
Gé = ’<1X1X2XZ Gg = ’<4X1X3XZ
Gl =Ikix3x; Ga = kax1x2
1 _ 2 4 _ Lox2
Gl = kix1x3 Gl = kax5x3
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Fig. 4. Concentrations of the species S3 with the models m; and m, given by the
combination of kinetic laws in (34) and the initial concentrations in (35).

sake of simplicity, the superindex m is omitted. The values of the
rate constants are

k = (0.053, 0.128, 0.028, 0.0001). (33)

Therefore, from (19) we conclude that the number of possible
models is M=10-6-6-10=3600. Let us show an example of §™. If
G =(3,5,6,2), forsomem € {1, ...,3600}, then

m
k1x]
2
ko (XJ1 )X

sm—
m
k3x7

m
kaxJ

Problem (11) has been solved using Algorithms 1 and 2. The
optimal value is 1.86 x 10~4. The optimal models are

Gl =(1,5,6,9), Gpr =(1,5,6,10) (34)

and the optimal initial conditions
0°Pt = (9.7221,1.2273, 5.3541, 2.8771, 3.2835, 2.8185) (35)

We observe from (34) that the optimal models only differ in
the kinetic law of the fourth reaction. This is due to the fact that
we are seeking the initial concentrations that maximize the mini-
mum difference between M models, and this minimum difference is
achieved when all except one of the reactions have the same kinetic
laws in both models. Furthermore, this difference is given in reac-
tion 4 since the values of the parameters force the models G4, m=1,
..., 10 to produce very similar results, as can be seen in the small
objective value. In Fig. 4, a plot of the concentrations of the species
S3 in dm~3 mol obtained by solving the Cauchy problem (32) with
the models m$? and mS* given by the combination of kinetic laws
in (34) and the initial conditions in (35) is depicted. As it is expected
because of the parameter values, it is very difficult to distinguish
both models from the plot, and therefore the model selection will
be challenging in this case. Plots of the remaining species are not
shown, since the conclusions obtained are very similar.

In order to analyze the influence of the fourth reaction in model
selection, we performed again the experiments but omitting such
reaction, which is equivalent to setting the fourth component of k
in (33) equal to zero, that is to say, k4 = 0. In this case, the number

Species3

—— lJodel m1
— lodel m2

T T y T T

20 22 24 26 28 30

Fig. 5. Concentrations of the species S3 with the models m; and m, given by the
combination of kinetic laws in (36) and the initial concentrations in (37).

of models M =360, the objective value is 1.0010 and the optimal
models are given by the following combinations of kinetic laws

Gl =(6,2,2), G =(4,2,2) (36)
with initial concentrations
0°Pt = (6.4956, 10, 1.7188, 2.6581, 2.8323, 2.1284) (37)

Once more, the minimum difference between the models is
achieved in two models which have two of the three reactions with
the same kinetic laws, and there is only one reaction with different
kinetic laws. As an illustration, the concentrations of species S3 in
dm~3 mol obtained after solving (32) with the models in (36) and
the initial concentrations in (37), are shown in Fig. 5. We observe
that, in this case, it is easier to discriminate between the models.

5. Concluding remarks

Model selection in chemical reaction networks (determine the
reactions, the kinetic law, etc.) implies the knowledge of some
experimental conditions (initial concentrations, flow rate, etc.).
In this paper, we have proposed a method to find the decision
variables that maximize the distance between theoretical models.
Global optimization techniques (VNS) are used, since multiple local
solutions are likely to exist. The numerical results show the strength
of our approach.

The analysis performed here can be gracefully extended to dis-
crimination problems for other reactors or other experimental
conditions. Several extensions, which deserve further study, are
now discussed. First, the use of alternative discrimination criteria,
such as using the £1-norm instead of the sum of squares criterion
used here, would be more suitable for problems with aberrant data
or heavy measurement errors. On the other hand, for simplicity
we have just focused on the model discrimination problem in one
stage. Extensions to multistage processes or the problem of simul-
taneously estimating the parameters and separating models are
both nontrivial extensions which call for a deeper analysis.

From a computational point of view, the approach presented in
the paper, solves in satisfactory times small instances (e.g. about
10s for Examples 1-3) but increases for larger number of models
(about 15 min for Example 4). Developing more efficient strategies,
including parallel computing, is a promising research line.
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