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Abstract15

This paper presents results of parameterisation of typical input-output re-16

lations within process flow sheet of a biodiesel plant and assesses parame-17

terisation accuracy. A variety of scenarios were considered: 1, 2, 6 and 1118

input variables (such as feed flow rate or a heater’s operating temperature)19

were changed simultaneously, 3 domain sizes of the input variables were con-20

sidered and 2 different surrogates (polynomial and High Dimensional Model21

Representation (HDMR) fitting) were used. All considered outputs were heat22

duties of equipment within the plant. All surrogate models achieved at least23

a reasonable fit regardless of the domain size and number of dimensions.24

Global sensitivity analysis with respect to 11 inputs indicated that only 4 or25

fewer inputs had significant influence on any one output. Interaction terms26

showed only minor effects in all of the cases.27
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1. Introduction29

Every industrial actor strives towards better understanding and, ulti-30

mately, optimisation of any and all of its activities. That applies on each31

level beginning with workforce schedules and individual pieces of machinery,32

through specific processes, ending with entire plants. Traditionally the main33

objectives of such an optimisation are minimising resource use and maximis-34

ing profit. However, as environmental concerns become ever more press-35

ing ecologically-focused targets such as reducing pollutants, creating cleaner36

manufacturing processes or reducing carbon footprints rise in prominence.37

Those trends prompted significant academic and industrial interest in the38

concepts of ”sustainable development” [1], ”industrial ecology” [2, 3, 4, 5] and39

”industrial symbiosis” [6]. The latter concept brings together separate indus-40

tries in a collective approach to competitive advantage involving physical ex-41

change of materials, energy, water and by-products [6]. Ecological industrial42

development based thereon is often realised as Eco-Industrial Parks (EIPs).43

An EIP is defined as an industrial park where businesses cooperate with44

each other and, at times, with the local community to reduce waste and45

pollution, efficiently share resources (such as information, materials, water,46

energy, infrastructure, and natural resources), and minimise environmental47

impact while simultaneously increasing business success [7]. An example of48

an EIP exists in Kalundborg, Denmark where an exchange network is centred49

around Asnæs Power Station, a 1500MW coal-fired power plant, and linked50

to the local community and several other companies [6, 8]. Sample exchanges51
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include selling excess steam from the plant to Novo Nordisk, a pharmaceutical52

and enzyme manufacturer, and to Statoil power plant or using extra heat to53

heat local homes and a nearby fish farm. Also, one of the plant’s by-products,54

gypsum, is purchased by a wallboard producer, helping to reduce the amount55

of necessary open-pit mining [9].56

Primary academic interest stems from EIPs’ ability to create more sus-57

tainable industrial activities through the use of localised symbiotic relation-58

ships [10]. To this date a great number of studies concerning various aspects59

of EIPs have been conducted. Many of them probe methods suitable for60

optimal design, focusing primarily on employing mathematical programming61

to create exchange networks of materials, water and energy connecting mem-62

bers of the EIP in question [11, 12, 13, 14, 15]. Utility of such designs is63

evaluated by monitoring environmental, social and economical impacts.64

Holistic modelling of complex, highly interconnected networks is a non-65

trivial and expensive task, especially for EIPs which include numerous phys-66

ical models of disparate processes. That is why many studies apply mathe-67

matical optimisation to simplified models of individual aspects of the parks.68

The limitations of this approach may be overcome by exploiting key fea-69

tures of the concept of Industry 4.0 [7]: creation of virtual copies of the phys-70

ical world and the ability of industrial components to communicate with each71

other. Those virtual copies could be surrogate models of physical models pro-72

duced for a predefined range of inputs. Developing a virtual system primarily73

based on surrogate models would significantly reduce required computation74

time and storage space and allow for dynamic modelling and studies other-75

wise impossible to conduct. Figure 1 presents a framework of EIP modelling76
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based on Industry 4.0.77

A surrogate model (or a metamodel) is an approximation of experimental78

and/or simulation data designed to provide answers when it is too expen-79

sive to directly measure the outcome of interest [16]. Two key requirements80

thereof are reasonable accuracy and significantly faster evaluation than the81

original method. The models are used to:82

• explore design space of a simulation or an experiment,83

• calibrate predictive codes of limited accuracy and bridging models of84

varying fidelity,85

• account for noise or missing data,86

• gain insight into nature of the input-output relationship (data mining,87

sensitivity analysis and parameter estimation).88

Producing a surrogate model involves choosing a sampling plan (an ex-89

perimental design), choosing a type of model and fitting the model to the90

gathered data. Numerous sampling and fitting techniques are available as91

documented in a number of reviews. Simpson et al. [17] provides detailed92

reviews of data sampling and metamodel generation techniques, including93

response surfaces, kriging, Taguchi approach, artificial neural networks and94

inductive learning. It also discusses metrics for absolute and relative model95

assessment, including R2, residual plots and root mean square error. An96

introduction to and analysis of linear regression with a focus on general-97

ized linear mixed models with many examples and case studies is provided98

by Ruppert et al. [18].99
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A book by Forrester et al. [16] puts the process of data sampling and100

generating surrogate models into engineering perspective providing numerous101

case studies and MATLAB code to perform associated calculations. It dis-102

cusses response surfaces, kriging, support vectors machines and radial basis103

functions. An in-depth review of kriging, its application and new extensions104

are provided by Kleijnen [19]. A review and assessment of various sampling105

techniques is provided by Crary [20]. Reich and Barai [21] focuses on assess-106

ment of machine learning techniques, artificial neural networks in particular,107

with case studies of modelling marine propeller behavior and corrosion data108

analysis. An example of surrogate models bridging models of varying fidelity109

is provided by Bakr et al. [22] where a surrogate maps data produced by110

fine and coarse physical models in order to accelerate optimisation of the111

fine model. Jin et al. [23] assesses applicability and accuracy of metamodels112

for optimisation under uncertainty and reports promising results noting that113

only a small-size analytical problem was considered. Surrogate models are114

widely employed in engineering and science for space exploration [24, 25],115

modelling [26, 27, 28], sensitivity analysis [29, 30, 24, 31, 32], parameter esti-116

mation [33, 34, 35], optimisation in areas ranging from circuit design through117

nanoparticle synthesis to flood monitoring [36, 37, 38]. A number of studies118

addressed application of surrogates to process flow sheet models. Caballero119

and Grossmann [39] replace the computationally expensive subsystems of a120

flow sheet with Kriging surrogates to speed up optimisation. Hasan et al.121

[40], First et al. [41], Hasan et al. [42], Nuchitprasittichai and Cremaschi122

[43], Boukouvala and Ierapetritou [44] guide sampling of an expensive rigor-123

ous model using Kriging surrogates to reduce computational time required124
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for optimisation. Fahmi and Cremaschi [45] optimise a design of a biodiesel125

production plant by replacing all subsystems in a process flow sheet model126

with surrogate models based around artificial neural networks (ANNs) and127

solving thus defined mixed-integer non-linear problem. Henao and Maravelias128

[46] propose a systematic method for creating surrogate models of chemical129

engineering systems and arranging them into a solvable network (superstruc-130

ture). The study focuses on ANNs as a base for their surrogate models and131

describes how a superstructure can be optimised. Kong et al. [47] employ132

some of the concepts developed in Henao and Maravelias [46] for design op-133

timisation of a chemical plant with heat integration and an attached utility134

plant. This paper includes a case study of non-enzymatic ethanol produc-135

tion from biomass. However, none of the aforementioned papers presents136

a detailed accuracy analysis of surrogate models describing a process flow137

sheet model of a typical industrial process nor compares the performance of138

various surrogate models when describing a process flow sheet model.139

The main purpose of this paper is to approximate the relations between140

11 inputs typical to a biodiesel plant and its energy requirements using sur-141

rogate models and assess accuracy of the approximations. The models are142

intended to be used in a tool [7] for online, real-time simulations of large143

scale, industrial networks. Additionally, it aims to investigate the effects of144

dimensionality, domain size and surrogate type on the accuracy and analyse145

global sensitivities of the outputs in order to identify opportunities for di-146

mensionality reduction. High Dimensional Model Representation (HDMR)147

is used to perform global sensitivity analysis.148

This paper is structured as follows. Section 2 describes the biodiesel149

6



plant model and its modelling environment. Section 3 presents sampling150

and surrogate generation techniques prodecures and software employed to151

perform those. Section 4 provides implementation details of the surrogate152

models and accuracy indices used to assess them. Section 5 presents results153

of the numerical analysis, while Section 6 summarizes the main findings.154
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2. Model155

2.1. Aspen Plus V8.6156

Aspen Plus is a process modelling and optimisation software used by157

the bulk, fine, specialty, and biochemical industries, as well as the polymer158

industry for the design, operation, and optimisation of safe, profitable man-159

ufacturing facilities [48]. Its capabilities include:160

• optimisation of processing capacity and operating conditions,161

• assessment of model accuracy,162

• monitoring safety and operational issues,163

• identifying energy savings opportunities and reduce greenhouse gas164

(GHG) emissions,165

• performing economic evaluation,166

• improving equipment design and performance.167

The software was used to simulate the process described in Section 2.2.168

2.2. Biodiesel plant simulation169

The process flow sheet model under investigation includes initial stages170

of a biodiesel production line, namely a reaction step and a separation step,171

with auxiliary equipment as seen in Figure 2. The final fuel, fatty acid172

methyl ester, is produced via trans-esterification pathway where triglycerides173

react with methanol to form methyl ester and glycerin in the presence of an174

alkaline catalyst. The flow sheet was based on an existing plant designed175
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by Lurgi GmbH. It consists of the following elements: a continuously stirred176

tank reactor (CSTR), a flash drum, a decanter, 3 heaters and 11 material177

streams. In the process tripalmitine oil is reacted with methanol in the CSTR178

to produce glycerol and methylpalmitate (biodiesel) and then passed through179

a flash drum and a decanter to separate excess methanol and glycerol. The180

simulation is solved for steady-state operation and produces a wide variety181

of chemical and physical information ranging from throughput to heat duties182

of individual equipment.183

In this study surrogate models were used to describe relations between184

chosen inputs and outputs occurring in the process flow sheet model. The185

choice of variables aimed to study effects of inputs typical for chemical plants186

on energy consumption as it is desired to study interactions between chemical187

and electrical models in the future. Three domain sizes of the input variables188

were considered in order to assess their effect on the parametrisation accu-189

racy. The variables’ names, domain and preferred operating conditions are190

listed in Tables 1 and 2. Plots of heat duties of various equipment against191

molar flow of tripalmitin oil can be seen in Figure 3.192

3. Parameterisation193

3.1. Model Development Suite194

Model Development Suite (MoDS) [49] is an advanced software tool de-195

signed to analyse black-box models (e.g. executables, batch scripts). It in-196

cludes a broad range of tools such as data-driven modelling, multi-objective197

optimisation, generation of surrogate models, data standardisation and visu-198

alisation, global parameter estimation [35, 50, 51, 52, 53, 54, 55, 56, 31], un-199
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Table 1: Input variables.

Name Lower bounds Upper bounds Operating point

Molar flow of tripalmitine oil (kmol/hr) 20, 22.5, 25 40, 37.5, 35 30

Temperature of tripalmitine oil (oC) 20, 22.5, 25 40, 37.5, 35 30

Operating temperature of CSTR 10D01 (oC) 44, 49, 54 64 60

Volume of CSTR 10D01 (m3) 40, 43, 45 50, 49, 47 45

Operating temperature of flash drum 10D02 (oC) 80, 82.5, 85 100, 97.5, 95 90

Operating temperature of heater 10E01 (oC) 60, 62.5, 65 80, 77.5, 75 70

Molar flow of methanol (kmol/hr) 150, 160, 170 210, 200, 190 180

Temperature of methanol (oC) 20, 22.5, 25 40, 37.5, 35 30

Operating temperature of decanter 10D02D (oC) 20, 22.5, 25 40, 37.5, 35 30

Operating temperature of heater 10E02 (oC) 80, 82.5, 85 100, 97.5, 95 90

Operating temperature of heater 10E03 (oC) 60, 62.5, 65 80, 77.5, 75 70

Table 2: Output variables.

Name

Heat duty of heater 10E01 (MW)

Heat duty of heater 10E02 (MW)

Heat duty of heater 10E03 (MW)

Heat duty of reactor 10D01 (MW)

Heat duty of flash drum 10D02 (MW)

Heat duty of decanter 10D02D (MW)
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certainty propagation [57, 58], global and local sensitivity analysis [59, 60, 29],200

and intelligent design of experiments [61, 62, 63, 64, 65, 66]. It was used to201

sample data, produce surrogate models and compute global sensitivities.202

Sobol sequence, a quasi-random low discrepancy sampling method, is203

employed for sampling data and polynomial fitting and HDMR fitting are204

used to generate surrogate models. A brief description of each is included,205

respectively, in Sections 3.4, 4.1 and 4.2.206

3.2. MoDS-Aspen Plus interface - Component Object Model (COM)207

The data collection and parameterization process of a model can be au-208

tomated using MoDS provided an executable file capable of reading an input209

file, running the considered model and producing an output file (input and210

output files need to have either .csv or .xml format).211

For the purpose of this study a script written in Python 3.4 was used212

to manipulate the Aspen Plus simulation via Microsoft Component Object213

Model (COM) interface. COM is a platform-independent, binary-interface214

standard enabling creation of objects and communication between them [67].215

COM object (also known as COM component) is defined as a piece of com-216

piled code that provides a service to the rest of the system. That can be a217

script, an instance of a program e.g. an Aspen Plus simulation. A primary218

feature of this architecture is the fact that COM components access each219

other through interface pointers, rather than directly. It provides a number220

of functions applicable to all components. Any additional functions need to221

be provided by the object or the user, in both cases via a library associated222

with the object. In this project COM interface is primarily used to launch,223

explore data structures, access data entries and solve models simulated within224
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Aspen Plus.225

3.3. Data harvest and surrogate generation226

Data collection, processing and visualisation were done using MoDS and227

custom-made Python 3.4 and R 3.2.2 scripts. The process of producing a228

surrogate of existing models involves the following steps: generation of input229

data, reception of output data from the studied model and, when both data230

sets are complete, scanning for and excluding erroneous data points and231

executing a parametrisation algorithm. The first two steps are critical to232

ensure high accuracy of the surrogate model and hence a sufficient number of233

points and a suitable sampling method are required to satisfactorily describe234

the input-output relation for a given number of independent variables and235

operating range. In this study the following procedure was used:236

1. A Sobol sequence was used to generate input data for user-specified237

variables within the process flow sheet model.238

2. Model’s input data was altered according to the generated input data.239

3. The simulation was evaluated with the new inputs.240

4. MoDS retrieved values of user-specified outputs.241

5. Data was scanned for errors and corrected.242

6. Polynomial and HDMR fitting were used to generate surrogate models243

describing the relation between inputs and outputs.244

The workflow of MoDS is visualized in Figure 4. A variety of scenarios245

were considered: 1, 2, 6 and 11 input variables were changed simultaneously,246

3 different domain sizes of the input variables were considered and 2 different247

surrogate generation methods (polynomial and HDMR fitting) were used. To248
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ensure that there is always sufficient number of points required to generate249

a surrogate, each simulation produced 400 points per input variable (prior250

to error exclusion). They were used for fitting surrogates and calculating251

R2 and R̄2. Depending on the case, erroneous points made up to 1% of all252

points. They arose due to convergence and stability issues within Aspen253

Plus. Additionally, test sets of points (100 points per dimension) were gen-254

erated for calculating Root-Mean-Square Deviation (RMSD) and residuals255

(see Section 4.3 for further description). In this study three domain sizes256

of the input variables were considered in order to assess their effect on the257

parameterisation accuracy. The domain bounds of input variables during258

simulations and initial steady state values are summarised in Table 1.259

3.4. Sampling260

Data points were generated using Sobol sequences, a type of quasi-random,261

low-discrepancy sequences. Low discrepancy of points in such a sequence262

means that their proportion falling into an arbitrary set is approximately263

proportional to the measure of the set. This property is true on average, but264

not necessarily for specific samples. Their ability to cover considered domain265

quickly and evenly gives them advantages over purely random numbers. Also,266

in contrast to deterministic sequences, they do not require a predefined num-267

ber of samples and their coverage improves continually as more data points268

are added. Sobol sequences uses a base of two to form successively finer uni-269

form partitions of the unit interval, and then reorder the coordinates in each270

dimension [68]. The MoDS implementation of a Sobol sequence generator271

follows the description of Joe and Kuo [69].272
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4. Implementation273

4.1. Polynomial response surfaces274

Polynomial response surfaces are a subset of response surface methodol-275

ogy, a group of mathematical and statistical techniques designed to facilitate276

empirical model building [70]. Polynomials of a predefined degree are opti-277

mized to describe an unknown relation between independent variables (input278

variables) and responses (output variables). Input and output data sets are279

obtained via series of tests, an experiment, in which the input variables are280

modified in order to study the changes in the output responses. As the num-281

ber of adjustable coefficients in a polynomial surrogate increases combinato-282

rially with its order and number of variables so does the minimum number283

of data points required to produce it. Hence applying high-order polynomi-284

als to problems with many inputs may lead to overfitting and hence poorer285

predictive power. Generally, overfitting occurs when a model describes fea-286

tures specific to the data set on which it is trained such as random error or287

noise. For deterministic computer experiments those are not an issue, but an288

overfitted model will suffer from having an exaggerated set of coefficients pro-289

viding no intuitive insight into nature of the relationship under consideration290

and from introducing irrelevant nonlinearity.291

General linear least-squares fit292

When fitting polynomial of a given order k to a data set the objective293

function to be minimised is the weighted sum of the squares of the differences294

between data and model. This analysis assumes N data values y(1), . . . , y(N)
295

obtained at the points x(1), . . . , x(N), and statistical weights W (1), . . . , W (N)
296
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are given. Coefficients of the polynomial are given by297

β∗ = argmin
β

Φ(β)

with298

Φ(β) =
N∑
i=1

W (i)
[
y(i) − fβ

(
x(i)
)]2

In order to simplify the notation, multi-indices are employed. For ex-299

ample, if p is a multi-index of order l, that means p ∈ Nl
0, where N0 :=300

{0, 1, 2, . . .}. Then,301

|p| :=
l∑

i=1

pi.

The independent variable is denoted by x and it is assumed that x ∈ Rn.302

A polynomial in x is then a sum of terms of the form303

xp11 x
p2
2 . . . xpnn ,

which can be abbreviated to xp and is of order |p|. Thus the polynomial304

fβ can be written as305

fβ(x) =
∑
|p|≤k

βpx
p.

where the βs denote the coefficients of the individual terms and k corresponds306

to the polynomial order.307

The necessary condition ∂Φ
∂βq

= 0 for any multi-index q with |q| ≤ k for308

stationary points of Φ then becomes309
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0 =
∂

∂βq
Φ(β) = 2

N∑
i=1

W (i)
[
y(i) − fβ

(
x(i)
)] ∂
∂βq

fβ
(
x(i)
)

= 2
N∑
i=1

W (i)
[
y(i) − fβ

(
x(i)
)] ∂
∂βq

∑
|p|≤k

βp
(
x(i)
)p

= 2
N∑
i=1

W (i)
[
y(i) −

∑
|p|≤k

βp
(
x(i)
)p](

x(i)
)q
.

Rearranging yields310

N∑
i=1

W (i)y(i)
(
x(i)
)q

=
N∑
i=1

W (i)
∑
|p|≤k

βp
(
x(i)
)p(

x(i)
)q

=
∑
|p|≤k

βp

[
N∑
i=1

W (i)
(
x(i)
)p(

x(i)
)q]

.

(1)

This linear system of equations, called normal equations, consists of
(
n+k
k

)
311

equations for as many unknown coefficients β.312

4.2. High Dimensional Model Representation313

High Dimensional Model Representation (HDMR) is a finite expansion314

for a given multivariable function as described by Sobol [71], Rabitz and315

Alış [72]. It allows for readily extracting global sensitivities with respect316

to the independent variables by calculating them from the coefficients of a317

HDMR surrogate. Also, it needs to be noted that the number of parameters318

within HDMR fit increases far slower than within polynomial fit when high-319

dimensional problems are considered.320
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In HDMR representation the output function y is decomposed into a sum321

of functions that only depend on subsets of the input variables such that:322

y = f(x) = f0 +
Nx∑
i=1

fi(xi) +
Nx∑
i=1

Nx∑
j=i+1

fij(xi, xj) + · · ·+ f12...Nx(x1, x2, ..., xNx)

where Nx is the number of input parameters, i and j index the input323

parameters, and f0 is the mean value of f(x). The expansion given above324

has a finite number of terms and exactly represents f(x), however for most325

practical applications terms containing functions of more than two input326

parameters can often be ignored due to their negligible contributions com-327

pared to the lower order terms [73, 72]. Hence for most models or data the328

truncated approximation:329

y ≈ f(x) = f0 +
Nx∑
i=1

fi(xi) +
Nx∑
i=1

Nx∑
j=i+1

fij(xi, xj)

is sufficient. An efficient method of evaluating each of these terms is330

to approximate the functions fi(xi) and fij(xi, xj) with analytic functions,331

φk(xi), [73]. For data produced using random and quasi-random sampling332

these functions are related by:333

f0 = f , (2a)

fi (xi) =
M∑
k=1

αi,kφk (xi) , (2b)

fij (xi, xj) =
M ′∑
k=1

M ′∑
l=k+1

βij,klφk (xi)φl (xj) . (2c)
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The functions, φk(xi) are orthonormal obeying,334

∫
φk (xi) dxi = 0 (3a)∫

φk (xi)φl (xi) dxi = δkl . (3b)

This leads the following equations for the coefficients:335

f0 =

∫
f(x)dx , (4a)

αi,k =

∫
f(x)φk (xi) dx , (4b)

βij,kl =

∫
f(x)φk (xi)φl (xj) dx , (4c)

The separation of the contributions from each individual input parameter336

and each combination of parameters makes the process of calculating the337

global sensitivities almost trivial. It has been described by Rabitz and Alış338

[72] that the contribution of each term in (2), σ2
y,i and σ2

y,ij, to the variance339

of the output parameter can be related to the total variance by340

σ2
y =

Nx∑
i=1

∫ 1

−1

f 2
i (xi) dxi +

Nx∑
i=1

Nx∑
j=i+1

∫ 1

−1

∫ 1

−1

f 2
ij (xi, xj) dxidxj (5a)

=
Nx∑
i=1

σ2
y,i +

Nx∑
i=1

Nx∑
j=i+1

σ2
y,ij . (5b)

The sensitivities, Si and Sij, can then be calculated by dividing by the341

total variance σ2
y to get342

Si =
σ2
y,i

σ2
y

and Sij =
σ2
y,ij

σ2
y

. (6)
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Global sensitivity analysis explores the parameter space and provides343

robust sensitivity measures throughout the region of interest even in the344

presence of nonlinearity and parameter interactions. In nonlinear cases,345

derivative-based local sensitivity analysis can give a false impression of sen-346

sitivity [74].347

4.2.1. Basis functions348

Polynomials, including Lagrange polynomials [75], orthonormal polyno-349

mials, cubic B splines, and ordinary polynomials [73], are commonly used as350

basis functions for HDMR construction.351

In MoDS, Legendre polynomials, Pm(x), are used as the basis functions,352

φ(x). They are normalised according to353

∫ 1

−1

Pm(x)Pn(x) dx =
2

2n+ 1
δmn , (7)

to satisfy (3b). The polynomials are generated at runtime according to Bon-354

net’s recursion formula355

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) , (8)

where P0(x) = 1 and P1(x) = x. This means that maximum polynomial or-356

der, M∗, can be set to an arbitrary natural number. Additionally, maximum357

interaction order, M ′∗, needs to be set to either 1 or 2.358

4.2.2. Automatic order selection359

Accuracy improvement due to each new term is assessed by calculating R2
360

value and comparing it against a predefined minimum value R2∗ (0.00001),361

before continuing on to the next one. If a term’s contribution is smaller than362
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the threshold, the term is discarded. The algorithm terminates once maxi-363

mum polynomial orders M∗ and M ′∗ are reached. It has several advantages364

over employment of a raw polynomial including reduction of data process-365

ing, computational complexity and number of optimisable parameters, which366

greatly helps dealing with high-dimensional problems. All of the functions fi367

have the same polynomial order, M∗, and the fij are all of order M ′∗. Also,368

it is assumed that the magnitude of the coefficients decreases as the order of369

the basis function increases. Whilst this is valid in many situations it may370

not always be applicable.371

4.3. Accuracy measures372

There exist various accuracy measures applicable to surrogate models, but373

there is no single, all-encompassing index. For that reason a number of meth-374

ods were used including R2, R̄2, Root-Mean-Squared-Deviation (RMSD) and375

residual plots. The indices are defined as follows:376

R2 = 1−
∑N

i=1(y(i) − ȳ)2∑N
i=1(y(i) − f (i))2

R̄2 = 1− (1−R2)
N

N − p

RMSD =

√∑N
i=1(y(i) − f (i))2

N

e(i) = y(i) − f (i)

where y(i) is the ith data point, f (i) is an ith model predicted value, ȳ is377

the empirical mean of data points, N is the number of data points, p is the378
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number of adjustable parameters, e(i) refers to residual for ith data point and379

i = 1, 2, .., N . The first three measures are single number indices thus more380

convenient, but less informative than residual plots.381

R2 (coefficient of determination) is a measure indicating fit of a statistical382

model to data [76]. In essence, it compares the discrepancies between the383

predicted data and actual data with the discrepancies between the arithmetic384

average and actual data.385

R̄2 (adjusted R2) is R2, as described above, corrected for the number of386

fitted parameters relative to the number of data points. This measure cannot387

be greater than R2(for N > p) and it decreases as N → p indicating that the388

model overfits the data.389

RMSD is the sample standard deviation of the differences between pre-390

dicted values and observed values [77]. It is a good metric for comparing391

predictive power of different models for a particular variable (but not be-392

tween the variables due to scale dependency).393

5. Numerical experiments394

5.1. Polynomial versus HDMR395

R̄2 values were produced using the training set and are used to assess fit396

of the surrogates to the training data (data sampled from the process flow397

sheet model used for parameterisation), while RMSD and residual plots were398

produced using the test set (data sampled from process flow sheet model used399

for testing, but not parameterisation). Values sampled from entire domain400

of the input variables were used unless specified otherwise. Plots comparing401

surrogate types include polynomial fits of order 1 through 5 (labelled as P1402
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through P5) and HDMR fits with various constraints. Label H1 corresponds403

to a 1st order fit, H2a to a 2nd order without interactions, H2b to 2nd order404

with interactions and H10 to 10th order with 2nd order interactions. Note405

that HDMR fits may consist of terms with powers lower than specified, but406

in such a case it will be explicitly mentioned.407

A number of different behaviours were observed in the study. Most sur-408

rogate models achieved at least a reasonable fit regardless of the domain size,409

number of dimensions and according to R̄2 and RMSD. Neither R2 nor R̄2
410

can be used to effectively differentiate between the models as most achieve411

values in excess of 0.98 (for an example see Figure 5(a)). However, there412

is noticeable increase in R̄2 due to 2nd order interaction terms (P1 to P2413

and H2a to H2b). Also, it needs to be noted that the number of parame-414

ters within HDMR fit increases far slower than within polynomial fit when415

high-dimensional problems are considered. Even the most extensive HDMR416

fit H10 had far fewer parameters than polynomial fits of order > 3, as seen417

on plot 5(b).418

RMSD provides a reasonable measure for comparing accuracy of models,419

as seen in Figure 6. Plots 6(a) and 6(b) suggest that polynomial fit of420

order 3 and HDMR fit H2b (marked by green squares) minimise RMSD421

and hence are the best fit for the duty of reactor 10D01 with respect to all422

11 inputs. The aforementioned plots (marked by orange triangles) also show423

that increasing order of polynomial fit lead to poorer predictive powers, most424

likely due to overfitting the training data. Similarly, HDMR fit H10 produces425

larger RMSD values than H2b. It can be seen that adding interaction (H2a426

to H2b) effect noticeably decreases RMSD in HDMR fitting.427
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Plots 6(c) and 6(d) show how RMSD changes as the domain size of inputs428

increases. The former plot (for 5th order polynomial fit) shows an exponential429

increase, while the latter (for HDMR fit H10) shows decrease of RMSD from430

smallest to intermediate size and sharp increase from intermediate to largest431

size.432

Residual plots are the most informative form of error measurement as433

they show the error size and distribution helping to understand whether the434

fit captures the true nature of the data. In most cases data does not seem435

to follow a polynomial relation resulting in non-random distribution of the436

residuals. Figures 8 and 9 present residual plots for 11-dimensional surrogates437

of heat duties of reactor 10D01 and heater 10E03. Comparison of plots in438

Figures 8 and 7 shows that for output produced by surrogates with multiple439

input variables the non-random features are much more difficult to identify.440

Magnitude of the residuals in most cases is relatively small indicating strong441

predictive powers of the fits. Comparing plots 7(c) and 8(c) reveals that442

performance of polynomial fit of order 5 drops from being the best model443

to the worst. Plots 8(b) and 8(d) show that even though HDMR fit H10444

produced a higher RMSD, its residual plot is as good as seemingly better P3445

fit. Those also confirm that P3 seems to be one of the best fits. Plot 8(c)446

confirms that P5 fit exhibits relatively low accuracy, even worse than that of447

a simple linear fit (see plot 8(a)).448
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5.2. Global sensitivity449

Global sensitivities of the heat duties of all equipment under considera-450

tion with respect to the 11 inputs produced by HDMR fitted over the entire451

domain are summarised in Figures 10 and 11. It can be seen that in all cases452

only 4 or fewer inputs have significant influence on a given output. Addi-453

tionally, interaction terms have only minor effect on any one output. Heat454

duty of each device is significantly affected by its own operating temperature455

and operating temperature of a heating device directly upstream (given such456

exists). While molar flow of oil, main feedstock of the process, has signifi-457

cant effect on all heat duties (except that of the flash drum), molar flow of458

methanol only affects heat duty of heater 10E02. This is because heat capac-459

ity of oil is around 100 higher than that of methanol (1665.0 J/mol/K [78]460

and 79.5 J/mol/K [79]) and only in the flash drum there is significantly more461

methanol than oil.462

Heat duty of heater 10E01 is primarily affected by its operating temper-463

ature and molar flow and temperature of incoming oil. Heat duty of heater464

10E02 is mostly affected by its operating temperature, operating tempera-465

ture of reactor 10D01 and molar flow of oil and methanol. Heat duty of466

heater 10E03 is primarily affected by its operating temperature, operating467

temperature of decanter 10D02D and molar flow of oil. Heat duty of reactor468

10D01 is primarily affected by its operating temperature, operating temper-469

ature of heater 10E01 and molar flow of oil. Heat duty of flash drum 10D02470

is primarily affected by its operating temperature and operating tempera-471

ture of heater 10E02. Heat duty of decanter 10D02D is primarily affected by472

its operating temperature, operating temperature of flash drum 10D02 and473
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molar flow of oil. Global sensitivities with respect to terms and variables not474

mentioned here were negligible.475

These observations show that when performing multi-dimensional anal-476

ysis of heat duties within the system many terms in the surrogate models477

can be ignored due to insignificant influence. Thus calculation complexity478

and computational expense can be greatly reduced. Additionally, it shows479

which inputs are important when heat duties of the equipment needs to be480

controlled.481

6. Conclusions482

This paper presents results of parameterisation of typical input-output483

relations within process flow sheet of a biodiesel plant and assesses parame-484

terisation accuracy. The model under investigation includes a reaction and485

separation steps with auxiliary equipment and was solved for steady-state486

operation. Thus produced data was used to generate surrogate models de-487

scribing relations between chosen inputs and outputs. A variety of scenarios488

were considered: 1, 2, 6 and 11 input variables were changed simultaneously,489

3 different domain sizes of the input variables were considered and 2 different490

surrogate generation methods (polynomial and HDMR fitting). Each simu-491

lation produced 400 points per input variable used for fitting and calculating492

R2 and R̄2. Test sets of points (100 points per dimension) were generated493

for calculating RMSD and residuals.494

A number of different behaviours were observed in the study. Most surro-495

gates achieved at least a reasonable fit regardless of the domain size, number496

of dimensions and according to R̄2 and RMSD. Neither R2 nor R̄2 could be497
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used to effectively differentiate between the models as most achieve values498

in excess of 0.98. Also, it needs to be noted that the number of parame-499

ters within HDMR fit increases far slower than within polynomial fit when500

high-dimensional problems are considered. The most extensive HDMR fit501

(H10) had far fewer parameters than polynomial fits of order > 4. RMSD502

provides a reasonable measure for comparing accuracy of models. Fits P3503

and H2b minimised RMSD and hence are the best fit for the duty of re-504

actor 10D01 with respect to all 11 inputs. Increasing order of polynomial505

fit above 3 lead to poorer predictive powers due to overfitting the training506

data. RMSD increases exponentially for polynomial fits as the domain size507

of inputs increases. For fit H10 RMSD decreases from smallest to intermedi-508

ate size and sharply increases from intermediate to largest size. Inclusion of509

2nd order interaction terms accounted for a noticeable, but minor accuracy510

improvement in terms of R̄2 and RMSD. It was observed that non-random511

features in residual plots are much more difficult to identify when multiple512

inputs were considered. Higher order polynomial fits may not be suitable513

for describing high dimensional, chemical data. For example, performance514

of polynomial fit of order 5 drops from being the best model to the worst as515

dimensionality increases from 1 to 11.516

Global sensitivities of the heat duties of all equipment under considera-517

tion with respect to the 11 inputs were produced by HDMR fitted over the518

entire domain. It was observed that in all cases only 4 or fewer inputs have519

significant influence on a given output. Interaction terms have only minor520

effect on any one output. Heat duty of each device is significantly affected521

by its own operating temperature and operating temperature of a heating522
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device directly upstream (given such exists). While molar flow of oil, main523

feedstock of the process, has significant effect on all heat duties (except that524

of the flash drum), molar flow of methanol only affects heat duty of heater525

10E02. These observations show that when performing multi-dimensional526

analysis of heat duties within the system many terms in the surrogate mod-527

els can be ignored due to insignificant influence. Thus calculation complexity528

and computational expense can be greatly reduced. Additionally, it shows529

which inputs are important when heat duties of the equipment needs to be530

controlled.531

In the future a more complex chemical model should be considered as the532

simulation used in this study was relatively simple. For example a number533

of interconnected models forming a feedback loop necessitating coupling sur-534

rogate models and solving them simultaneously. In order to further the goal535

of modelling eco-industrial parks chemical and electrical models and their536

interactions should be considered.537
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Figure 1: Framework of EIP modelling based on Industry 4.0. Adopted from Pan et al.
[7].
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Figure 2: Graphical representation of the process flow sheet model of a biodiesel production
line.
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Figure 3: Plots of heat duties of various equipment against molar flow of tripalmitin oil.
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Figure 4: Model Development Suite work flow.
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Figure 5: Plots of RMSD and number of parameters for the considered surrogates produced
for heat duty of reactor 10D01 with respect to all 11 inputs. Labels P1 through P5
correspond to polynomial fits of order 1 through 5. Label H1 corresponds to a 1st order
fit, H2a to a 2nd order without interactions, H2b to 2nd order with interactions and H10
to 10th order with 2nd order interactions.
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Figure 6: Plots of RMSD for the considered surrogates and domain sizes produced for heat
duty of reactor 10D01 with respect to all 11 inputs. Labels P1 through P5 correspond to
polynomial fits of order 1 through 5. Label H1 corresponds to a 1st order fit, H2a to a 2nd

order without interactions, H2b to 2nd order with interactions and H10 to 10th order with
2nd order interactions. Green squares indicate models (one per type) with lowest RMSD,
while red triangles indicate models (one per type) with suffering most from overfitting.
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(a) Plot of residuals for 1st order polynomial
fit.
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(b) Plot of residuals for 3rd order polynomial
fit.
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(c) Plot of residuals for 5th order polynomial
fit.
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Figure 7: Plot of residuals against molar flow of tripalmitin oil for heat duty of reactor
10D01 produced for 1 input.
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(a) Plot of residuals for 1st order polynomial
fit.
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(b) Plot of residuals for 3rd order polynomial
fit.
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Molar flow of tripalmitin oil 
(kmol/hr)

(c) Plot of residuals for 5th order polynomial
fit.
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(d) Plot of residuals for HDMR fit H10.

Figure 8: Plot of residuals against molar flow of tripalmitin oil for heat duty of reactor
10D01 produced for 11 inputs.
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(a) Plot of residuals for 1st order polynomial
fit.
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(b) Plot of residuals for 3rd order polynomial
fit.
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(c) Plot of residuals for 5th order polynomial
fit.
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Figure 9: Plot of residuals against molar flow of tripalmitin oil for heat duty of heater
10E03 produced for 11 inputs.
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Figure 10: Global sensitivities produced by 11-dimensional HDMR fit over the entire
domain. 47
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Figure 11: Global sensitivities produced by 11-dimensional HDMR fit over the entire
domain. 48
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