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Abstract

In many experimental settings, one is tasked with obtaining information
about certain relationships by applying perturbations to a set of independent
variables and noting the changes in the set of dependent ones. While traditional
design-of-experiments methods are often well-suited for this, the task becomes
significantly more difficult in the presence of constraints, which may make
it impossible to sufficiently excite the experimental system without incurring
constraint violations. The key contribution of this paper consists in deriving
constraint back-off sizes sufficient to guarantee that one can always perturb
in a ball of radius δe without leaving the constrained space, with δe set by
the user. Additionally, this result is exploited in the context of experimental
optimization to propose a constrained version of G. E. P. Box’s evolutionary
operation technique. The proposed algorithm is applied to three case studies
and is shown to consistently converge to the neighborhood of the optimum
without violating constraints.

Keywords: design measures for robustness, evolutionary operation, optimization
under uncertainties, experiment design

1. Introduction

In most branches of science, one often encounters systems where the
relationship between some experimental response and a finite number of
independent variables needs to be studied (Montgomery, 2012; Myers et al.,
2009), and it is generally assumed that the response is a dependent variable and
a function of the independent ones. Mathematically, the experimental quantity
may be stated as the function f : Rnu → R, while u ∈ R

nu may be used to
denote the vector of independent variables u = (u1, ..., unu

). One is then left
with the task of identifying f(u). The identification may be either local or
global, and is usually done by conducting a series of experiments with different

Email address: gene.bunin@ronininstitute.org (Gene A. Bunin)

Preprint submitted to Elsevier October 1, 2018

http://arxiv.org/abs/1503.08239v5


values of u, observing the resulting f(u) values, and performing some sort of
regression. Such procedures are typically used to:

(i) construct data-driven model approximations of f for when f is difficult
to model via first principles (Jones et al., 1998; Montgomery, 2012;
Myers et al., 2009),

(ii) estimate the uncertain parameters of an already available model (Box,
1990; Chen & Joseph, 1987; Pfaff et al., 2006; Quelhas et al., 2013),

(iii) explore how the function value changes so as to find conditions for
which the value is minimized, maximized, or equal to a certain
quantity (Box & Wilson, 1951; Conn et al., 2009; Lewis et al., 2000;
Robbins & Monro, 1951).

It is the case for many problems that the experimental space of interest
is a box defined by the constraints uL

i ≤ ui ≤ uU
i , i = 1, ..., nu, where

uL =
(

uL
1 , ..., u

L
nu

)

and uU =
(

uU
1 , ..., u

U
nu

)

are the lower and upper limits on
the independent variables, respectively. Such problems typically correspond to
simple set-ups that do not possess major safety limitations, and where testing
any variable combination in the experimental space is permissible. Obtaining
knowledge about f is not difficult in such conditions, and the traditional
design-of-experiments techniques (Montgomery, 2012) are perfectly appropriate
here.

However, there still exists a fair share of problems – many of them
corresponding to continuous or batch chemical processes (Bunin, 2016) – where
additional constraints enter to reduce the experimental space in a nontrivial
manner. These constraints may be expressed as the ng inequalities

gj(u) ≤ 0, j = 1, ..., ng.

In some problems, the functions gj may represent experimental relationships
that, like f , can only be divined empirically. It often happens that such
experimental constraints are safety or economic limitations – they could, for
example, represent an upper limit on the temperature in a continuous reactor,
or a lower limit on the purity of a batch-produced chemical. Despite the violation
of such constraints being highly undesirable, or even dangerous, there currently
exists no easy-to-implement, theoretically rigorous method for guaranteeing that
the perturbations carried out on the system satisfy these constraints.

Notably, there does exist a fairly established literature on methods that
suppose the existence of a parametric model approximation gm,j(u, θ) ≈ gj(u),
define Θ as the uncertainty set to which θ belongs, and then attack the problem
via probabilistic formulations by ensuring that gm,j(u, θ) ≤ 0 with sufficiently
high probability (Kall & Wallace, 1994; Li et al., 2008; Quelhas et al., 2013;
Sahinidis, 2004; Zhang et al., 2002). However, while such methods are
theoretically just and robust, they suffer from four major practical drawbacks:

(i) the requirement of a parametric model,
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(ii) the restriction that the uncertainty be parametric, and that Θ be known,

(iii) the computational issues that arise with probabilistic constraints,

(iv) the conservatism that results from the probabilistic constraints reducing
the set of admissible u.

Drawback (i) becomes debilitating when the system at hand is difficult to
model, while (ii) is more problematic since many employed models are, often by
practical requirement, simplifications and thereby prone to structural errors
(Chachuat et al., 2009). Drawback (iii) is likely to be significant when the
models have many decision variables, many uncertain parameters, and are
involved. Simplifications, such as linearizing the model with respect to θ

(Zhang et al., 2002), may be used to avoid this, but ultimately come with the
loss of rigor that one would expect from an approximation. Finally, (iv) can be
extremely problematic when the parametric uncertainty set is large – as may
often occur in practice (Li et al., 2008; Quelhas et al., 2013) – since this may
limit the perturbation options, with only a small collection of u being deemed
“safe”.

The methodology proposed in the present work avoids these difficulties while
maintaining the rigor. Taking a model-free, back-off approach, we simplify and
generalize the results of Bunin et al. (2014a) to derive positive values, bj , that,
for a given u∗, allow us to state the guarantee

gj(u
∗) ≤ −bj ⇒ gj(u) ≤ 0, ∀u ∈ Be, (1)

where

Be = {u : ‖u− u∗‖2 ≤ δe}.
Verbally, this means that given a decision-variable set u∗ known to satisfy the
constraints with some slack, one is able to provide a guarantee that the entire
ball of radius δe surrounding u∗ will satisfy the constraints as well, thereby
allowing the user to perturb anywhere within this ball without fear of constraint
violation. Despite being local, such a result is nevertheless very useful as it
allows a high degree of freedom – a ball permitting perturbation sets of any
geometry. As will be shown, the value bj will depend on the local sensitivities
of gj around u∗, but can nevertheless be computed without requiring much
effort from the user. Conversely, δe is the sole tuning parameter set by the
user and represents, in some sense, the magnitude of perturbation considered
as “sufficiently exciting” for identification given the particular problem.

To date, this result has already been integrated into the SCFO experimental
optimization solver (Bunin, 2015), where it is used to ensure accurate linear and
quadratic regression, but it is expected that the generality of the result make
it applicable to many algorithms and contexts. In this paper, its usefulness
is illustrated for a much simpler optimization algorithm – the evolutionary
operation (EVOP) method of Box (Box, 1957; Box & Draper, 1969). As the
original method searches to maximize an experimental function by perturbing

3



in a hypercube around the best known u, it is made coherent with the result
here by ensuring that the cube lie inside Be, with u∗ then defined as the best
known reference point. By forcing u∗ to always satisfy (1), it thus follows that
all exploration by the modified EVOP version satisfy the constraints.

The remainder of this paper is organized as follows. The required
mathematical concepts and the derivation of the appropriate constraint back-offs
are presented in Section 2. Section 3 then provides a robust extension of (1)
that accounts for noise/error in the function values, together with a general
discussion of potential implementation issues. The constrained EVOP algorithm
is presented in Section 4, and its effectiveness is illustrated for three case-study
problems. Section 5 concludes the paper.

2. Derivation of Sufficient Back-Offs

So as to keep the forthcoming analysis relatively simple, the following
assumption on the continuity and differentiability of gj is made.

Assumption 1. The functions gj are continuously differentiable (C1) on an
open set containing Be.

This then allows for the definition of bounds on the sensitivities of gj.

Definition 1. The local Lipschitz constants of gj are defined as any constants
κji satisfying

− κji ≤
∂gj
∂ui

∣

∣

∣

u

≤ κji, ∀u ∈ Be. (2)

The existence of these constants follows from Assumption 1 and the
boundedness of Be. They may be used to bound the violation of a given gj
via the local Lipschitz upper bound.

Lemma 1. Let ua,ub ∈ Be. It follows that

gj(ub) ≤ gj(ua) +

nu
∑

i=1

κji|ub,i − ua,i|. (3)

Proof. See Bunin et al. (2014b). �

Finally, the Lipschitz bound may be exploited by substituting ua → u∗ and
ub → u in (3) to generate a Lipschitz polytope around the point u∗.

Definition 2. Let Lj denote the Lipschitz polytope of the constraint gj around
u∗, defined as the set

Lj =

{

u : gj(u
∗) +

nu
∑

i=1

κji|ui − u∗
i | ≤ 0

}

. (4)
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The Lipschitz polytope has two important properties that should be
apparent by inspection:

(i) u ∈ Lj ∩ Be ⇒ gj(u) ≤ 0,

(ii) gj(u
∗) ≤ 0 ⇒ Lj 6= ∅.

The “double membership” of u ∈ Lj and u ∈ Be in (i) is required to ensure
both that u satisfies the upper bound of (3) and that the bound itself is valid
to begin with, respectively. Property (ii) should be evident if one just considers
u := u∗ when gj(u

∗) ≤ 0.
Furthermore, it is clear that the content (hypervolume) of Lj increases

monotonically as gj(u
∗) decreases – i.e., Lj admits more and more

implementable points because of the terms |ui − u∗
i | being allowed to grow

larger while satisfying the inequality.
It is this observation that inspires the foundations of the present work,

illustrated geometrically in Figure 1. If gj(u
∗) can be forced to remain

sufficiently low – i.e., if gj(u
∗) can be made to satisfy the constraint with a

certain back-off – then one can always guarantee the existence of a non-empty
Lipschitz polytope centered at u∗. Additionally, because the ball Be is also
centered at u∗, it may be inscribed inside the polytope, with Property (i) above
then sufficient to guarantee that all points in this ball satisfy the constraint
gj(u) ≤ 0.

The required size of this back-off is easily derived by exploiting the
Cauchy-Schwarz inequality.

Theorem 1. Let κj denote the vector (κj1, ..., κjnu
) corresponding to a given

δe and u∗. If bj ≥ δe‖κj‖2, then the implication (1) holds.

Proof. Defining the quantity ∆ui = |ui − u∗
i | and the vector ∆u =

(∆u1, . . . ,∆unu
), let us restate the definition of the Lipschitz polytope as

Lj =
{

u : gj(u
∗) + κT

j ∆u ≤ 0
}

.

From the Cauchy-Schwarz inequality, it follows that

κT
j ∆u ≤ ‖κj‖2‖∆u‖2 = ‖κj‖2‖u− u∗‖2, (5)

which then allows us to consider a (ball) subset of Lj :

L̂j = {u : gj(u
∗) + ‖κj‖2‖u− u∗‖2 ≤ 0} ,

where L̂j ⊆ Lj is evident since any u satisfying

gj(u
∗) + ‖κj‖2‖u− u∗‖2 ≤ 0

must also satisfy

gj(u
∗) + κT

j ∆u ≤ 0
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( ) 0jg =u

*u

eδ

( )j jg b= −u

( ) 0jg ≥u

Figure 1: Geometric illustration of the concept behind using back-offs to enforce the existence
of an excitation ball Be. The back-off is chosen large enough so that a ball of radius δe may
be inscribed inside the Lipschitz polytope corresponding to the back-off.

by virtue of (5).
It is then sufficient to show that Be ⊆ L̂j for the back-off specified. Because

every u ∈ Be satisfies ‖u−u∗‖2 ≤ δe, it follows that any point in Be will belong
to L̂j if the inequality gj(u

∗) + δe‖κj‖2 ≤ 0 holds, which is precisely what is

ensured by the back-off. Thus, Be ⊆ L̂j ⊆ Lj , with Property (i) of the Lipschitz
polytope then leading to the desired result. �

It is natural to ask what one should do if, given δe, u
∗, and (consequently)

κji, the condition gj(u
∗) ≤ −δe‖κj‖2 does not hold. One solution consists in

choosing a different, safer u∗ from the available measurements, maintaining
the same δe, and hoping that the back-off is satisfied for this new choice.
Alternatively, one may keep u∗ the same and reduce δe. Assuming that
gj(u

∗) < 0, it is not hard to show that for δe sufficiently small the back-off
will be met. Consider, for example, the reduction sequence

{

δe
2n

}

, n ∈ N = {0, 1, 2, . . .} ,

together with the corresponding Be:

{

u : ‖u− u∗‖2 ≤ δe
2n

}

.
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Clearly, each reduced Be will be a strict subset of the previous, from which
we may deduce that the κji valid for n := 0 will remain valid for all n, thus
allowing us to upper bound the ‖κj‖2 portion of the back-off and to conclude
that δe‖κj‖2 may be made arbitrarily close to 0 by choosing n sufficiently large
(δe sufficiently small), thereby resulting in a back-off that is satisfied by gj(u

∗).

3. Implementation Issues

On the surface, the derived result seems easy to implement as it simply
states that if, given u∗, one wants to perturb anywhere in Be without fear of
constraint violation, one only needs to confirm that gj(u

∗) ≤ −δe‖κj‖2, ∀j. If
this condition does not hold, one can then choose a different u∗ from the set of
applied u or decrease δe. However, there remain a number of implementation
aspects that merit discussion.

3.1. Setting of Lipschitz Constants

Theorem 1 provides a robust guarantee only if it is assumed that the
Lipschitz constants provided satisfy (2). While one can argue that picking
very large, conservative values is sufficient, this has the obvious performance
drawback of increasing δe‖κj‖2 and thus bj , which could make satisfying
gj(u

∗) ≤ −bj impossible. As such, one would prefer setting these constants
in more intelligent ways.

Apart from some scarce and limited results in the global optimization
literature (Hansen et al., 1992; Strongin, 1973; Wood & Zhang, 1996), the
problem of estimating Lipschitz constants effectively is still very open. Some
techniques have been proposed in the recently submitted manuscript of
Bunin & François (2016), and suggest mixing a priori knowledge about the
functions gj, which may provide good initial guesses of the constants, together
with data-driven refinements, making explicit use of the fact that for a
sufficiently local or approximately linear region the Lipschitz constants differ
little from the local function derivatives. In the case that parametric models
gm,j(u, θ) are available, one could bolster the a priori knowledge with the robust
model-based estimates

κji := max
u ∈ Be

θ ∈ Θ

∣

∣

∣

∣

∣

∂gm,j

∂ui

∣

∣

∣

u,θ

∣

∣

∣

∣

∣

as the Lipschitz-constant estimates. This mix of techniques has been employed
in the SCFO solver (Bunin, 2015) and has generally led to relatively robust
performance in test problems, although constraint violations may still occur
from time to time (Bunin, 2016).

It is worth noting that the EVOP method proposed in Section 4 appears to
handle this issue very well, using iterative local linear regression to estimate the
Lipschitz constants in a manner that requires no input from the user and yet
avoids constraint violation completely.
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3.2. Accounting for Noise/Error

Enforcing gj(u
∗) ≤ −bj also relies on having accurate knowledge of gj(u

∗).
While it is reasonable to expect that in most applications one will be able to
either measure or estimate the values of these functions at u∗, for experimental
functions it is generally the case that a perfect measurement or estimation will
be impossible, and that there will only be access to the corrupted values, ĝ∗j . A
typical assumption (Hotelling, 1941; Marchetti et al., 2010; Moré & Wild, 2011;
Myers et al., 2009) is that this corruption is additive – i.e., that

ĝ∗j = gj(u
∗) + w,

with w a stochastic element for which the estimates of at least the mean
and variance are available. In this case, it becomes possible to compute a
high-probability bounding value, gj(u

∗) ≤ g∗j , using, in the most general case,
Chebyshev’s inequality (Moré & Wild, 2011), or something less conservative if
better assumptions on the nature of the noise are available. More involved
techniques for computing g∗j are outlined in Section 4 of Bunin et al. (2014a)
and in the recent work of Bunin & François (2016).

One may then work with the robust condition g∗j ≤ −bj instead, since
satisfaction of this condition implies the satisfaction of gj(u

∗) ≤ −bj with a
high probability.

3.3. Accomodating Numerical Constraints

So far, gj has been treated from a very general perspective, and has been
assumed only to be a C1 function over Be. However, there are plenty of
constraints for which much more knowledge is available. In particular, when
the constraint gj is a numerical function that can be evaluated by hand or by
computer for any desired u ∈ Be, the guarantee of perturbing in Be without
incurring violation of the given constraint is fairly easy. Namely, it suffices to
ensure that

max
u∈Be

gj(u) ≤ 0,

since this trivially guarantees that all perturbations in Be are feasible for
that constraint, without requiring Lipschitz constants or robust upper bounds.
For some cases, it may be that gj is an involved nonconcave function,
potentially making its maximization over a ball a numerically challenging (global
optimization) task. When this occurs, one could attempt to take a concave
upper bound or, if worse comes to worst, estimate its Lipschitz constants – a
significantly easier task for a numerical function – and then employ the general
(albeit conservative) result of Theorem 1.

A special subclass of numerical constraints that is even easier to work with is
that of the bound constraints, uL

i ≤ ui ≤ uU
i , which are extremely relevant since

they tend to occur in virtually any well-defined experimental investigation. By
simple intuition and quick inspection, one should be able to see that employing
a back-off of δe is sufficient for these bounds. Not surprisingly, it is possible to
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arrive at this same result by Theorem 1, as the κj vector for these constraints
may simply be taken as the vector of nu − 1 zeros with unity in the ith spot,
thus leading to δe‖κj‖2 = δe.

One could, however, choose not to back off from the bound constraints since,
given their orthogonal nature, one is always guaranteed to retain a full orthant
in which one can perturb. Given with the feasibility of Be, this means that one
could ignore these back-offs and still retain 1/2nu of Be for safe perturbation.
For most cases, this fraction of Be still offers enough room for the user to
accomplish what they aim to, such as estimating a derivative or locally exploring
the function’s behavior.

3.4. Scaling and the Tuning of the Excitation Radius

It is evident that the results provided are not scale-invariant, and that a
ball of radius δe could offer very poor perturbation in directions that vary over
a much greater domain than others – geometrically, this may be seen as the
problem of the efficiency of inscribing a ball inside a Lipschitz polytope. One
solution could be to generalize the notion of the ball to an ellipse, and to rederive
the result for this more versatile case. However, a simple approach found to work
well has been to simply scale the independent variables so that each ui varies
between 0 and 1, in which case perturbing in a ball is reasonable.

This aside, one may still have to make a nontrivial decision about what δe
to set. Ultimately, this choice should depend on the particular problem that
the user is trying to solve, with all available a priori knowledge exploited to
yield an appropriate choice. For example, if the goal is to explore as much
of the experimental space as possible and to build a model that encompasses
a large, perhaps even global, domain, it may be of interest to set δe to be as
large as possible. If the goal is to perturb just enough to estimate a derivative
while avoiding significant corruption due to noise, one may want to choose δe
as a function of the expected signal-to-noise ratio (Bunin, 2015, §3.14). When
information about the function’s curvature is available, it may be possible to
choose δe so as to strike a balance between the corruption due to noise and
the corruption due to nonlinearity (Marchetti et al., 2010). Finally, the ad hoc,
post-scaling choices of δe := 0.01, 0.05, 0.10 have also often worked well, in the
author’s experience.

4. Feasible-Side Evolutionary Operation

An evolutionary operation (EVOP) algorithm is constructed for the
feasible-side solution of experimental optimization problems having the form

minimize
u

φ(u)

subject to gj(u) ≤ 0, j = 1, ..., ng

uL
i ≤ ui ≤ uU

i , i = 1, ..., nu,

(6)

where both φ and gj will, in general, represent experimental functions. As
in many experimental optimization problems of this type, there is a constant
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trade-off between adapting the decision variables u so as to minimize φ and
perturbing them so as to learn more about the local or general natures of φ and
gj. Both tasks are necessary – one cannot optimize without perturbation, but
one cannot optimize if one spends all of the experimental resources perturbing
the system for knowledge, either.

Two main reasons motivate this choice of application. First, the derived
result of Theorem 1 is innately coherent with the direct-search algorithmic
nature of EVOP, which iteratively perturbs in a local region and then shifts this
region so that it is centered around the best found point. It is thus quite natural
to let EVOP perturb in Be and then shift u∗ accordingly, which immediately
provides the traditional EVOP with constraint satisfaction guarantees. The
second reason has to do with the practical usefulness of the constructed scheme.
Ever since its inception in 1957 (Box, 1957), EVOP has enjoyed great popularity
in industry, largely because of its extreme simplicity. In addition to being simple,
it would later be shown to be theoretically well founded as well, with the slight
addition of a step-size rule allowing it to enjoy the global convergence properties
of Torczon’s generalized pattern search algorithms (Torczon, 1997). However,
both its industrial and theoretical success has, for the most part, been limited to
simple problems with bound constraints, and while one could use the standard
(i.e., penalty-function) methods (Conn et al., 2000, Ch. 14) (Fletcher, 1987, Ch.
12) to convert problems with gj constraints into the bound-constrained form for
which EVOP is readily applicable (Rutten et al., 2015), these approaches are
ultimately not safe and can at most only offer the guarantee that the constraints
are satisfied upon convergence.

From this point of view, the algorithm proposed in this section is believed
to carry great potential as a stand-alone contribution that, in addition to being
effective for the problems tested, is also extremely easy to apply and requires
minimal input from the user.

4.1. Description of the Algorithm

Prior to stating the algorithm, let us first make some knowledge assumptions
so as to ensure its basic functionality.

First, it is assumed that, for a given tested u, one measures both φ and gj
with additive white Gaussian noise:

φ̂ = φ(u) + wφ, wφ ∼ N (0, σ2
φ)

ĝj = gj(u) + wj , wj ∼ N (0, σ2
j ).

For simplicity, it will be assumed that σφ and σ = (σ1, ..., σng
) are known.

It will also be assumed that a sufficiently “safe” initial u∗ is available, so
that the 2nu test points generated by perturbing the individual elements of u∗

by ±δe,

(u∗
1 ± δe, ..., u

∗
nu

),

(u∗
1, u

∗
2 ± δe, ..., u

∗
nu

),
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...

(u∗
1, u

∗
2, ..., u

∗
nu

± δe),

are, together with u∗, safe and satisfy the constraints.
Scaled variables will be denoted with (̃·) and defined as

ũi =
ui − uL

i

uU
i − uL

i

, i = 1, ..., nu.

This scaling step will be implicit in the algorithm statement that follows – i.e.,
we will switch between the scaled and unscaled variables as needed without
explicitly including the affine operation above in the algorithm steps.

Algorithm 1 (Feasible-Side EVOP)

1. (Initialization) The initial reference point u∗, the standard deviations
σφ and σ, and the decision-variable bounds uL, uU are provided. The
excitation radius 0.5 ≥ δe > 0 is set by the user.

2. (Evaluation at Reference Point) Apply u∗ to the experimental system to

obtain φ̂∗ and ĝ∗j . Define Ũ := (ũ∗)T , φ := φ̂∗, G := [ĝ∗1 · · · ĝ∗ng
].

3. (Perturbation) For i = 1, ..., nu:

(a) (Perturbing by ±δe) Obtain ũ+ and ũ− by perturbing the ith element
of ũ∗ by δe and −δe, respectively.

(b) (Upper Bound Constraint Check) If u+,i ≤ uU
i , apply u+ to the

experimental system to obtain the corresponding measurements φ̂
and ĝj , denoted by φ̂+ and ĝ+j , and augment Ũ, φ, and G:

Ũ :=

[

Ũ
ũT
+

]

, φ :=

[

φ

φ̂+

]

,

G :=

[

G
ĝ+1 · · · ĝ+ng

]

.

(c) (Lower Bound Constraint Check) If u−,i ≥ uL
i , apply u− to the

experimental system to obtain the corresponding measurements φ̂
and ĝj , denoted by φ̂− and ĝ−j , and augment Ũ, φ, and G:

Ũ :=

[

Ũ
ũT
−

]

, φ :=

[

φ

φ̂−

]

,

G :=

[

G
ĝ−1 · · · ĝ−ng

]

.
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(d) (Set Number of Points Tested) If

0 ≤ ũ∗
i ± δe ≤ 1,

set si := 2. Otherwise, set si := 1.

4. (Local Linear Regression) Fit a linear model,

β0 +

nu
∑

i=1

βiũi,

to the observed cost function values, with the β1, ..., βnu
coefficients

recovered as the first nu elements of the least-squares solution [Ũ 1]†φ.

Set ∇φ̂∗ = (β1, ..., βnu
) as the estimate of the gradient of φ at ũ∗. Repeat

the same procedure with the columns ofG to obtain the gradient estimates
∇ĝ∗j for j = 1, ..., ng.

5. (Lipschitz Constants) For each i = 1, ..., nu and j = 1, ..., ng, set

κji :=

∣

∣

∣

∣

∣

∂ĝ∗j
∂ũi

∣

∣

∣

∣

∣

+ 6
σj

√
2

siδe
,

where ∂ĝ∗j /∂ũi denotes the ith element of ∇ĝ∗j .

6. (Nearly Active Constraints) Define the index set

jA :=

{

j : ĝj + 3σj ≥ −δe‖κj‖2
for at least one measurement ĝj in the jth column of G

}

as the index set of nearly active constraints.

7. (Approximation of Lagrangian) Defining the gradient of the Lagrangian
at ũ∗ as

∇L(λ) = ∇φ̂∗ +

ng
∑

j=1

λj∇ĝ∗j ,

approximate the corresponding Lagrange multipliers, λ∗, by the solution
to the constrained least-squares problem

λ∗ := argminimize
λ

∇L(λ)T∇L(λ)

subject to λj ≥ 0, ∀j
λj = 0, ∀j /∈ jA.
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8. (Choose New Reference) Set as ũ∗ the point in Ũ that

(i) has the smallest ∇L(λ∗)T ũ value,

(ii) has the corresponding upper bounds g∗j := ĝ∗j + 3σj that satisfy
g∗j ≤ −δe‖κj‖2, ∀j.

If no such ũ∗ exists, maintain the same reference point as before. Define
Ũ := (ũ∗)T , φ := φ̂∗, G := [ĝ∗1 · · · ĝ∗ng

] and return to Step 3.

A number of remarks are in order:

• As the scaling reduces the variable space to a unit hypercube, there is no
need for δe to be set above 0.5, as this would preclude the existence of a
feasible Be.

• The perturbation scheme used here differs from that of the traditional
EVOP methods, which use a 2nu factorial scheme to define the test points
(Box, 1957; Box & Draper, 1969), and is in this sense more similar to a
coordinate search (Conn et al., 2009, Ch. 7). The rationale for doing
this is that requiring 2nu perturbations leads to better efficiency as nu

increases (linear as opposed to geometrical), requires fewer perturbations
for nu > 2, and appears to be sufficient for the given tasks.

• As suggested in Section 3.3, no back-offs are used for the bound
constraints, ensuring instead that they are never violated during the
perturbation phase.

• It is not difficult to show that the derivative estimates obtained by linear
regression of the local data set are, as a result of the orthogonality and
symmetry of the perturbations, identical to the difference quotients

∂ĝ∗j
∂ũi

=
ĝ+j − ĝ−j

2δe

when si := 2, or to either

ĝ+j − ĝ∗j
δe

or
ĝ∗j − ĝ−j

δe

when si := 1. It is well known (see, e.g., Daniel & Heerema (1950)) that
the standard deviation for such estimates is equal to σj

√
2/(siδe). In

adding six times this quantity to the absolute value of the derivative
estimates, we use half of that amount (“three sigma”) to account for
potential errors in the estimates due to noise, and the other half to
compensate for the fact that the Lipschitz constants only match the
derivatives very locally, and may actually be larger for the Be at the future
cycle (i.e., the Lipschitz-constants estimation is always one cycle behind).
This is important since the new reference is always chosen subject to the
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restriction that the corresponding g∗j ≤ −δe‖κj‖2, ∀j, where the back-off
is defined using the Lipschitz constants at the current cycle. This then
encourages the guarantee of safe excitation around the new reference.

• Adding 3σj to the constraint measurements in Steps 6 and 8 robustifies
the scheme against measurement noise, resulting in the upper bounding
values gj := ĝj + 3σj that bound the true function values with a high
probability of about 99.85%.

• Because the problem addressed is constrained and uses Lipschitz bounds to
guarantee robust constraint satisfaction, it follows that the scheme could
converge suboptimally if allowed to get too close to a constraint. This
issue was first observed by Bunin et al. (2011) and dealt with rigorously
by Bunin et al. (2014c), and represents a main drawback of using Lipschitz
constants for constraint satisfaction. So as to avoid this issue here,
it has been proposed to minimize an approximation of the Lagrangian
instead of simply minimizing φ. Note that when u∗ is far from any
constraints, the scheme simply sets λ∗ := 0 and the two objectives are
equal. However, when some gj start to get close to activity, the scheme
defines the objective as a trade-off between minimizing φ and lowering
the nearly active constraint values, which tends to allow the algorithm
to “slide off” the nearly active constraints in application. The theoretical
rigor of this scheme is not entirely clear, but it may be seen to be consistent
upon convergence, in that finding λ∗ such that ∇L(λ∗) ≈ 0 implies that
u∗ is a constrained stationary point, provided that the gradient estimates
are not too erroneous.

4.2. Application to Case-Study Examples

Three problems are chosen from the ExpOpt database of test problems
(Bunin, 2016, Problems P2, P3, P6) so as to illustrate the performance of the
algorithm when applied to realistic case-study scenarios. The first problem
consists in varying the feed rate and temperature of a Williams-Otto plant
so as to maximize its steady-state profit while honoring an upper limit on a
noxious product, and is originally taken from the paper of Marchetti (2013).
The second, adapted from the works of Gentric et al. (1999) and François et al.
(2005), deals with minimizing the operating time of a polysterene batch reactor
while honoring a minimal molecular weight specification. Here, two “switching
times” that help define the temperature profile of the batch are taken as the
decision variables. Finally, the third problem comes from François & Bonvin
(2013) and seeks to maximize the steady-state production of a continuous
reactor by varying two feed rates subject to two experimental constraints.
Two-dimensional problems have intentionally been chosen as they allow for
easy visualization and interpretation of the results. The different problem
specifications are provided in Table 1.

Inputting the specifications into Algorithm 1, the algorithm’s performance
is tested for the ad hoc choice of δe := 0.05. The results are given in Figure 2
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Table 1: Problem specifications for the case-study examples.

# Initial u∗ σφ σ uL uU

P2 (3.5, 72) 0.5 5 · 10−4 (3, 70) (6, 100)
P3 (242, 945) 60 104 (50, 600) (450, 1000)
P6 (14.5, 14.9) 0.1 (0.03, 0.03) (1, 1) (50, 50)

and show that the algorithm succeeds in exploring the decision-variable space
while satisfying the constraints – not a single violation is observed. By contrast,
suppose that one tried to apply the same algorithm to Problem P2 but without
the application of the safety back-off derived in Theorem 1. This is done by
substituting −δe‖κj‖2 → 0 in Steps 6 and 8 of Algorithm 1. The result is
given in Figure 3. Again, it is seen that the use of the Lagrangian leads to the
algorithm successfully converging to a neighborhood of the optimum. However,
constraint violations occur repeatedly along the convergence trajectory.

The convergence properties of the algorithm are of interest – in particular,
one notices that the algorithm converges to a region that is relatively suboptimal
in Problem P6. This is due to the geometry of the problem, the conservatism
of the back-offs, and the size of the noise in the constraint measurements. In
other words, the algorithm cannot make further progress while robustly (to 3σj)
satisfying the specified back-offs. While proving convergence to an optimum
in a mathematically rigorous manner is outside the scope of this paper, for C1

functions one should expect the algorithm to converge properly if both the noise
and back-offs go to 0 asymptotically, as δe ↓ 0 would lead to the linear regression
converging to the true function gradient in the absence of noise (Conn et al.,
2009, §2.4), with the removal of noise also removing the conservatism introduced
by using the upper bounds ĝj + 3σj . To test this hypothesis empirically, let us
use a modified implementation of Algorithm 1 where

δe(k) := δe/
√
k,

σφ(k) := σφ/
√
k,

σ(k) := σ/
√
k,

with k starting at 1 and being incremented by 1 after each cycle of the
algorithm. The results are presented in Figure 4 and largely confirm one’s
expectations, with feasible-side convergence very close to the optimum achieved
for all problems. Although the neighborhood of convergence appears to be far
from the optimum in Problem P3, this is due to the geometry of the problem –
because both the cost and constraint functions are close to linear in the region
of the optimum, there is a wide range of points that achieve a low cost and are
close to stationarity all along the constraint.
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Figure 2: Plots of the decision variables and cost function values for Problems P2 (top),
P3 (middle), and P6 (bottom). Green points in the decision-variable plots denote the true
optimum, red points denote the individual experiments, and blue points denote the reference
(best) point at the final tested EVOP cycle. Red regions denote the infeasible (not safe)
portions of the operating space as defined by the constraints. In plotting the cost function
values, the blue lines denote the true (noiseless) values, while the constant black line denotes
the value at the optimum.
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Figure 3: Illustration of EVOP performance for Problem P2 when the back-off is not employed.

5. Closing Remarks

This paper has contributed to the problem of obtaining information about
an experimental function in the presence of general C1 constraints, and we
have derived a rigorous constraint back-off that, when satisfied at some u∗,
guarantees that the user may perturb anywhere in the ball of radius δe around
u∗ without incurring constraint violations. This result is believed to constitute a
useful contribution to scientific problems dealing with constrained experimental
spaces, as it offers a straightforward way to guarantee safety while exploring the
experimental space.

While the results simplify greatly for numerical constraints, in the case
of general (likely experimental) constraints one is forced to obtain local
sensitivity bounds – Lipschitz constants – for the constraint function in order
to compute the appropriate back-off. To do this well may be challenging,
but relevant methods do exist and may work quite well in certain contexts
(Bunin & François, 2016).

The feasible-side EVOP optimization algorithm has provided an interesting
application of the derived back-off result, and has been shown to work very
well with respect to constraint satisfaction and convergence for three different
case studies. While more involved than the traditional EVOP procedure, the
algorithm nevertheless retains its ease of implementation, requiring the user
to only set δe prior to applying it to a problem. It goes without saying that
numerous performance improvements are possible but have not been the focus
of this paper. One could, for example, use all of the measurements obtained
since initialization to filter out the noise, an idea routinely employed in the
SCFO solver (Bunin, 2015, §3) and recently proposed by Gao et al. (2016) in
the context of multilayer real-time optimization. One could also attempt to
choose search directions in a more intelligent manner, such as what is done in
some derivative-free methods (Conn et al., 2009; Lewis et al., 2000). Clearly,
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Figure 4: Plots of the decision variables and cost function values for Problems P2 (top), P3
(middle), and P6 (bottom) when δe, σφ, and σ are gradually reduced over the course of
operation.
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one could generalize the method to handle noise that is not white Gaussian, as
well, although the computational effort may increase due to a lack of closed-form
expressions.
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Moré, J. J., & Wild, S. M. (2011). Estimating computational noise. SIAM J.
Sci. Comput., 33 , 1292–1314.

Myers, R., Montgomery, D., & Anderson-Cook, C. (2009). Response Surface
Methodology. John Wiley & Sons.

Pfaff, G. F., Forbes, J. F., & McLellan, P. J. (2006). Generating information
for real-time optimization. Asia-Pac. J. Chem. Eng., 1 , 32–43.

Quelhas, A., Castro, N., & Pinto, J. (2013). Common vulnerabilities of RTO
implementations in real chemical processes. Can. J. Chem. Eng., 91 , 652–668.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. Ann.
Math. Statist., 22 , 400–407.

Rutten, K., De Baerdemaeker, J., Stoev, J., Witters, M., & De Ketelaere, B.
(2015). Constrained online optimization using evolutionary operation: a case
study about energy-optimal robot control. Qual. Reliab. Engng. Int., 31 ,
1079–1088.

Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and
opportunities. Comput. Chem. Eng., 28 , 971–983.

Strongin, R. G. (1973). On the convergence of an algorithm for finding a global
extremum. Engin. Cybern., 11 , 549–555.

Torczon, V. (1997). On the convergence of pattern search algorithms. SIAM J.
Optim., 7 , 1–25.

Wood, G., & Zhang, B. (1996). Estimation of the Lipschitz constant of a
function. J. Global Optim., 8 , 91–103.

Zhang, Y., Monder, D., & Forbes, J. F. (2002). Real-time optimization under
parametric uncertainty: A probability constrained approach. J. Process
Control , 12 , 373–389.

21


	1 Introduction
	2 Derivation of Sufficient Back-Offs
	3 Implementation Issues
	3.1 Setting of Lipschitz Constants
	3.2 Accounting for Noise/Error
	3.3 Accomodating Numerical Constraints
	3.4 Scaling and the Tuning of the Excitation Radius

	4 Feasible-Side Evolutionary Operation
	4.1 Description of the Algorithm
	4.2 Application to Case-Study Examples

	5 Closing Remarks

