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Abstract

Model-based optimization methods suffer from the limited accuracy of the available
process models. Because of plant-model mismatch, model-based optimal inputs may
be suboptimal or, worse, unfeasible for the plant. Modifier adaptation (MA) overcomes
this obstacle by incorporating measurements in the optimization framework. However,
the standard MA formulation requires that (1) the model satisfies adequacy conditions
and (2) the model and the plant share the same degrees of freedom. In this article, three
extensions of MA to problems where (2) does not hold are proposed. In particular,
we consider the case of controlled plants for which the only a model of the open-loop
plant is available. These extensions are shown to preserve the ability of MA to converge
to the plant optimum despite disturbances and plant-model mismatch. The proposed
methods are illustrated in simulation for the optimization of a CSTR.

1. INTRODUCTION

Process optimization consists in determining the values of input variables that max-
imize a given performance criterion (such as economic profit or product quality), while
meeting all the safety, environmental and operational constraints. Although generally
bounded, the values of these manipulated variables are typically not fixed at the de-
sign stage. The problem can be formulated mathematically as the following nonlinear
program (NLP):

up = argrr{lin dp (u

subjectto g, (u) <0, (1.1)

where u is the n,-dimensional vector of inputs, ¢y, is the cost function, and g, is the
ng-dimensional vector of process constraints. Here, the subscript (), indicates a quan-
tity related to the plant, and this problem will be referred to as the plant optimization
problem.
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If a plant model is available, numerical optimization techniques can be used to
compute a local [1] or even the global [2] solution. The problem to be solved then
reads:

u*(6) := argmin ¢ (u, 0)
u
subjectto  g(u,0) <0, (1.2)

where ¢ is the modeled cost function, g is the ng-dimensional vector of modeled plant
constraints, and 6 is an ng-dimensional vector of model parameters. Clearly, if the
model matches the plant perfectly, solving Problem (1.2) provides a solution to Prob-
lem (1.1). Unfortunately, this is rarely the case, since the structure of the model func-
tions ¢ and g as well as the parameter values 6 are likely to be incorrect. This structural
and parametric mismatch implies that the model-based optimal inputs u*(6) will prob-
ably not correspond to uy.

When an accurate model is not available, one typically relies on plant measure-
ments to help the optimization process, which is the field of real-time optimization
(RTO). Various RTO techniques are available in the literature to solve Problem (1.1).
These techniques can be classified in two broad families depending on whether a pro-
cess model is used or not.

o If no model is available or if the model is too detailed to be used for numerical
optimization in real time, evolutionary techniques can be utilized. With these
techniques, the plant inputs are changed repeatedly based on observing the plant
response, similarly to the way an operator would do it. Although the early works
in this field date back to the 40’s and 50’s [3, 4, 5, 6, 7, 8], the resulting methods
(such as the simplex algorithm, the steepest descent, and evolutionary operation)
are still quite popular, mainly due to their simplicity. They basically follow the
same successive stages: (i) initialize the inputs, (ii) apply the inputs to the plant,
(i) measure or estimate the plant cost and constraints @, and g, (iv) compute
an educated modification of the inputs, and (v) go back to Step (ii) and repeat
until convergence.

e On the other hand, model-based RTO methods apply a numerical optimization
algorithm to a model of the plant to calculate a solution. The difference with
offline numerical optimization is the fact that real-time measurements are in-
corporated in the optimization framework to compensate the effect of modeling
errors and disturbances on both feasibility and performance. Hence, the model
functions ¢ (u,0) and g(u,0) are modified, and the model-based optimization
Problem (1.2) is solved iteratively. Model-based RTO can be seen as a combi-
nation of evolutionary operation and numerical optimization, as the advantage
of using process measurements (which are representative of the actual behavior
of the plant) is combined with numerical optimization and its ability to handle
large, nonlinear and constrained systems. Measurements can be incorporated
in the optimization framework in three distinct ways [9]: (i) adapt the process
parameters and use the updated model for optimization (e.g. the two-step or
two-stage approach [10]), (ii) add correction terms to the cost and constraint



functions and repeat the optimization, and (iii) directly adapt the manipulated
inputs through an appropriate feedback strategy. This paper focuses on modifier
adaptation (MA), a technique of Class (ii).

MA has received growing attention recently among the methods that do not adapt
the model parameters, but modify the cost and constraint functions using measurements
[11, 12, 13]. Typically, measurements are used to implement zeroth- and first-order
corrections to the cost and constraint functions, while the model parameters are kept
unchanged. The key feature of MA is to modify the necessary conditions of optimality
(NCO) predicted by the model via input-affine corrections to the cost and constraint
functions. As a result, the adequacy conditions [14] are much easier to meet than the
corresponding conditions for the two-step approach [15], especially in the case of struc-
tural plant-model mismatch. This is a very valuable property since structural mismatch
is almost invariably present in complex plants (i.e., there are always simplifying as-
sumptions made during the modeling stage). However, experimental gradients must be
estimated for the plant, an onerous task that has received much attention in the literature
in recent years [16, 17].

Although MA has been designed to deal with plant-model mismatch, the model
must still satisfy the following conditions:

e Condition 1: it is adequate for real-time optimization [15],

e Condition 2: it encompasses the same degrees of freedom as the plant that is
used to generate the measurements.

Condition 1 can be enforced by the use of a convex approximation to the available
model [18]. Note that the use of a model approximation is not a major limitation
since, by definition, the model is corrected at each iteration by zeroth- and first-order
modifier terms. In contrast, there are many reasons why Condition 2 may not hold,
the most obvious one being the case where an open-loop plant model is available and
a control system is implemented in the plant. In this case, the degrees of freedom are
different entities, namely, the manipulated inputs for the model and the setpoints of the
controlled system for the plant. More generally, it often happens that the model and the
plant do not share the same inputs as illustrated in [19, 20].

The main contribution of this paper is to propose several extensions to the standard
MA formulation, which can be applied when Condition 2 does not hold. Some of these
extensions have already been mentioned in two conference articles [19, 20], but they
are detailed and analyzed hereafter.

The paper is organized as follows. After a short review of the standard MA scheme,
a motivating example highlighting the implications of Condition 2 is discussed in Sec-
tion 2. Section 3 presents three extensions that can deal with the case where the plant
and the model have different sets of decision variables. These methods are tested in
simulation on a controlled continuous stirred-tank reactor in Section 4. It is shown
that all methods are capable of converging to the plant optimum despite parametric
uncertainty, plant-model mismatch and the use of an open-loop model. After brief con-
cluding remarks in Section 5, the way one can construct a convex model approximation
for the closed-loop system using the open-loop model is described in the Appendix.



2. Modifier Adaptation

2.1. Problem Formulation

Modifier adaptation (MA) collects plant information to correct for differences be-
tween the plant and model optimization problems. This is done by successively ap-
plying different values of u to the plant, each time waiting for the plant to settle to
steady state and observing its performance. The measured cost and constraint values
corresponding to the input uy applied at the k" iteration are:

ok = Op +ef 2.1)
Zojk = Gpiktels  J=1,...ng, 2.2)

where e,‘f and ei" are realizations of a zero-mean random variable for the cost and the j
constraint, respectively, with the corresponding variances 0'5 and Gg?j. These stochastic
components represent high-frequency measurement noises. The plant measurements
are used to iteratively modify the model-based Problem (1.2) in such a way that, upon
convergence, the NCO of the modified problem match those of the plant Problem (1.1).
This is made possible by using modifiers that, at each iteration, are computed as the
differences between the measured and predicted values of the constraints and the mea-
sured and predicted values of the cost and constraint gradients. This forces the cost
and constraints in the model-based optimization problem to locally match those of the
plant. In its simplest form, the algorithm proceeds as given next.

Algorithm 2.1: Modifier Adaptation [13]

Initialize the ng-dimensional vector of zeroth-order constraint modifiers 8% = 0 (if this
leads to infeasibility, introduce backoffs by choosing 8% > (), the n,-dimensional vec-

tor of first-order cost modifiers lg = 0, and the n,-dimensional vector of first-order

modifiers for the j* constraint lij =0." Select the filter matrices K¢ of dimension
(ng X ng), K? and K& of dimension (n, x n,) as, typically, diagonal matrices with
eigenvalues in the interval (0, 1]. Also, set arbitrarily wy = Uy, Where U, is the
nominal values of the inputs.

fork=1—c
1. Solve the modified model-based optimization problem
= arglrlnin Om k-1 ()
subjectto g, (u) <0, (2.3)
where the modified cost and constraints are given by

1 (1) == o (u) + (A]_ )T (u—we_y), 2.4)
gm,j,k71<u) ::gj(u)"i‘g/%il+(A§j,1>’r(u_uk71)v j:17---a”g- (2.5)

i Sg = 0, this initialization will lead to u; = u*(0), that is, to the solution of the unmodified problem.



The subscript (-)n, indicates a quantity that has been modified.
2. Apply the input uy to the plant to obtain gi;p,k and g, ;.

3. Estimate the plant cost gradient, Vy @ &, and the plant constraint gradients, Vygg ;
Jj=1,...,ng, at the current operating point uy. The gradients must be estimated
using measurements collected at at least n,, different operating points close to uy.

4. Update the modifier terms using the following first-order filter equations:?
gf = (L, —K®)ef_| +K* (g, —g(uy)), (2.6)
29 !
A = - KR KO (Vutei— Gl @)

. e , dg; T
AY = (L, —K&)AY | + K& <vugE,j,ka‘g;lf(uk)> , =10, (28)

end

2.2. Properties

If the scheme converges, then, under ideal circumstances, it will do so to a KKT
point of the plant as indicated in the following theorem.

Theorem 2.1 (KKT matching). Let the filter matrices K&, K? and K& be nonsingular,
and assume no measurement noise and perfect gradient estimates, that is, Vu@gx =

%(uk), VugE,jk = %(uk), j=1,...,n, If Algorithm 2.1 converges, with U :=

limy_,..u; being a KKT point of the modified Problem (2.3), then U is also a KKT
point for the plant optimization Problem (1.1).

Proof. See [13]. O

Note that, while the KKT-matching property is a very desirable property for an
RTO algorithm, it remains a theoretical result. In real applications, due to the pres-
ence of measurement noise, the algorithm will converge to a neighborhood of the plant
optimum.

The KKT matching theorem guarantees that, if the MA algorithm converges, the
resulting KKT point is also a KKT point for the plant. However, an important question
remains: Can the algorithm converge to a (local) plant optimum? Or, in other words,
what are the necessary conditions for such a convergence to be possible? In the field
of RTO, this is referred to as the ‘Model Adequacy’ question [21]. For MA, the plant
model {¢(u),g(u)} is called adequate if modifiers €5, A% and A%/ can be found such
that a fixed point of Algorithm 2.1 coincides with a plant optimum ug. This results in
the following requirement for model adequacy.

2There is also a MA-variant that filters the inputs rather than the modifier terms [14].



Theorem 2.2 (Model Adequacy). Let uy be a plant optimum, which is assumed to
be a regular point for the ng active constraints. Furthermore, let L*(u) := ¢(u) +
(v)T g (u) be the restricted Lagrangian function of Problem (1.2). The plant model is

adequate for use in MA if the reduced Hessian of L*(u) is positive definite at u;‘,, that
is,
Z" () V2L (u3) Z(u3) > 0, (2.9)

where the columns of Z € R M=n%) qre g set of basis vectors for the null space of
the Jacobian of the active constraints.

Proof. See [13]. O

In particular, it has been shown that the model-adequacy condition is satisfied if
the cost function is strictly convex and the active constraints are convex (for example
linear) [18].

We have seen so far that (i) if MA converges, it will converge to a plant KKT point
(provided a regularity condition is met), and (ii) it can converge to a plant optimum if
the model-adequacy condition is met. But will the MA scheme converge at all? This
is a difficult question to answer. Both necessary conditions and sufficient conditions
have been proposed for the convergence of MA schemes [13, 22, 23]. Unfortunately,
these conditions are not very satisfactory from a practical point of view, as they are
generally impossible to verify/enforce in practice. The filter matrices K&, K? and K&/
are the tuning parameters that affect convergence. These matrices are chosen with
real, positive eigenvalues in the interval (0, 1]. Larger eigenvalues favor more rapid
convergence, but may also cause oscillating behavior, or failure to converge at all.
Smaller eigenvalues result in more cautious steps, making convergence more likely,
but slower. Currently, the only viable option is to tune these filter matrices through
simulation or experimental trials.

Finally, note that an innovative method named “Nested MA” has recently been pro-
posed [24], which completely avoids the gradient estimation step. Instead, the gradient
modifiers /1,? and lfj are determined at each iteration by unconstrained gradient-free
optimization, such as the simplex method. This optimization adjusts the gradient mod-
ifiers at each RTO iteration in order to optimize the observed plant performance. While
this conveniently avoids gradient estimation, the drawback is that the gradient-free op-
timization algorithm must optimize the plant using n,(ng + 1) decision variables. Due
to this large number of decision variables, convergence to the plant optimum might be
slow.

2.3. MA in the Context of Controlled Plants

We consider the case of controlled plants for which the degrees of freedom for
optimization are the setpoints (or references) r. The optimal setpoints ry; are solution
to the following NLP:

* . :
r, 1= argmin D, (r

)
subjectto  Gp(r) <0, (2.10)



where ®;, is the cost function, and Gy, is the ng-dimensional vector of constraints for
the controlled plant.

If only the open-loop model is available, Condition 2 will not be satisfied, since the
degrees of freedom are (i) the setpoints r for the plant, and (ii) the manipulated inputs
u for the model, as shown in Figure 1. For simplicity, we assume throughout that there
are as many setpoints as there are outputs, thus n, = n,. One could compute the optimal
inputs w* on the basis of the open-loop model. However, since the plant is operated in
closed loop, there is no direct way of implementing u* to enforce optimality; this must
be done via the setpoints r. The open-loop model can be used to predict the optimal
values of the controlled variables y(u*). However, choosing r* = y(u*) as the setpoints
for the closed-loop plant will not result in optimal plant operation because neither u*
nor r* would be optimal for the plant in the presence of plant-model mismatch and
disturbances.

Controlled Plant at Steady State

|
| |
. 0,(u) g,u) I @)
|
— s Controller % _,] Open-loop : G,
: Plant yp(up) |
|
| .
| |
| |
| |
__________________________ 1
o(u), g(u) o (r):= o(h(r))
u Open-loop r Closed-loop
¢ ™ Static Model ° ™ Static Model
y(u) G(r):= g(h(r))

Figure 1: Controlled plant to be optimized and the static open-loop model that is available. The static
closed-loop model is assumed to be unavailable.

In standard MA for open-loop systems, the inputs u are perturbed to estimate the
gradients of the plant cost and constraints. This eventually leads to the optimal inputs
u*. In contrast, for closed-loop systems, we are interested in determining the optimal
setpoints r*. Furthermore, in closed-loop systems, one can typically estimate experi-
mental gradients with respect to the setpoints r (which are independent variables) and
not the manipulated inputs u,.

If the static closed-loop model u = h(r) was available, then one could compute the
resulting closed-loop cost and constraints

®(r) := ¢ (h(r)) and  G(r):=g(h(r)), (2.11)



which are shown in Figure 1.

In practice, however, there are situations where only the open-loop model is avail-
able, as discussed below. The MA extensions presented in Section 3 can guarantee that
the optimal setpoints r* be reached upon convergence using an open-loop model.

2.4. MA when the Plant and the Model do not Share the Same Degrees of Freedom
As seen in the previous subsection, the degrees of freedom are different for the
model and the plant optimization problems when the plant operates in closed-loop and
only an open-loop model is available. Such a situation occurs relatively frequently in
real-life applications.
In this paper, for the sake of conciseness, we write ¢ and g as explicit functions of
u. In practice, however, the open-loop model is of the implicit form:

F(x,u)=0 (2.12)
y=H(x), (2.13)

with x the n,-dimensional state vector, y the n,-dimensional output vector, and the cost
and constraint functions given as ¢ (u,y) and g(u, y). Hence, we can solve (2.12) for
x and substitute it in (2.13) to obtain ¢ (u) := ¢ (u, y(u)) and g(u) := g(u, y(u)).

In principle, the same open-loop model can be used to construct a model of the
closed-loop process, that is, to build the functions ®(r) and G(r). To rewrite this model
in terms of r, or equivalently in terms of y assuming that the closed-loop outputs follow
their setpoints, one needs to solve the system (2.12)-(2.13) for the variables x and u in
terms of y. This implies using n, + n, equations to compute n, +n, variables, thus
requiring n, < ny, which leads to:

d(y):=9(u(y),y) and  G(y):=g(u(y),y). (2.14)

If the model inputs can be swapped this way to match the degrees of freedom of the
plant, then there is no need for the MA extensions presented in this paper (see e.g. the
application of MA to a controlled flotation column in [25]). Although very convenient,
there are many situations where such a reformulation is not possible or is difficult
to implement. In practice, swapping the degrees of freedom of the model to have
them correspond to those of the plant may require rewriting the model and potentially
changing the solution method. In some cases, the model is constructed so as to simplify
the sequence of steps for performing process simulation, as for instance when artificial
degrees of freedom are introduced during the modeling stage in order to reduce the
number of algebraic equations to be solved simultaneously. A good example is when
the plant includes recycles. In this case, it is often advantageous to treat the recycle
streams as degrees of freedom and to iterate until convergence has been reached, that
is, when steady-state equations and conservation equations at the recycling nodes are
satisfied. This is a well-established approach, and methods exist for determining the
minimal number of additional degrees of freedom, such as Motard’s method [26]. This
justifies the development of the three methods discussed in the subsequent section,
whereby the model is kept unchanged, and only simple modifications in the formulation
of the model-based optimization problem are required. A method for rewriting the
model-based problem in terms of r is also proposed, which only requires offline model
simulations and no model inversion.



3. Modifier-Adaptation Extensions

We show next how the standard MA scheme can be altered to optimize a closed-
loop plant that does not have the same degrees of freedom (the setpoints r) as the
available open-loop model (the inputs u).

Three algorithms will be presented. With all three, the actual degrees of freedom
for RTO are the setpoints r, with the estimated experimental gradients being V,®g,
and V,Gg j, j=1,...,ng. The algorithms will differ in (i) the choice of the decision
variables (either u or r), and (ii) the way the modifier terms are written (in terms of
either u or r). The algorithms will therefore be labeled Methods UR, UU and RR. In
Method UR, for example, the optimization problem is solved for u and the modifier
terms are written in terms of r.

Methods UR and UU do not attempt to reconstruct ®(r) and G(r) from ¢ (u),
g(u) and y(u). Instead, they work directly with ¢(u), g(u) and y(u) and solve the
optimization problem for u. Method UR computes the modifiers in the space of the
setpoints r, while Method UU computes them in the space of the manipulated inputs

u. Note that the model gradients %—‘f and %—(r; are not computed from ®(r) and G(r),

which are unkown, but rather by inverting the relationship a—lyl It will be shown that, if
Method UR converges, it will do so at a KKT point of the plant. Method UR requires
the nonlinear term y(u) to be inserted into the optimization problem that is solved in
real-time. Method UU addresses this issue by linearizing the problematic nonlinear
term. It is demonstrated that, also for Method UU, a KKT point of the plant is reached
upon convergence.

In contrast, Method RR constructs the model approximations ®(r) and G(r) for
the closed-loop plant. These model approximations are obtained without knowledge of
the controller.

3.1. Method UR

The basic idea of this method is to express the model gradients with respect to the
setpoints r by inverting the model y(u). The gradient %i: of the unkown function ®(r)

+
is computed as g—ﬂ (gTyl) . This assumes that the controlled variables y follows their

setpoints r with n,, > n,.

Algorithm 3.1: Method UR

Initialize the ng-dimensional vector of zeroth-order constraint modifiers 6% = 0 (if this
leads to infeasibility, introduce backoffs by choosing 8% > 0), the ny-dimensional vec-
tor of first-order cost modifiers lg " =0, and the ny-dimensional vector of first-order

modifiers for the j constraint 15" = 0.3 Select the filter matrices K¢ of dimension
(ng x ng), K® and K& of dimension (n, x ny) as, typically, diagonal matrices with
eigenvalues in the interval (0, 1]. Also, set arbitrarily ug = tpep.

fork=1—

3 Again, if €] = 0, this initialization will lead to u; = u*(9).



1. Solve the modified model-based optimization problem:
w =argmin @), (u),
u :
subjectto g, (u) <0, 3.1
where the modified cost and constraints are given by

O i1 (W) = @ (u) + (AT (y(u) —rey), 32)
i1 (W) =g+ [+ AT (yu) =), j=1,...,n,. (33)

2. Apply the setpoints ry := y(u;) and measure CiDp,k and (N}pJ( at steady state.

3. Estimate the plant cost gradient, V,®g;, and the plant constraint gradients,
V:Gg,jr J=1,...,ng, at the current operating point ry. Note that these gra-
dients are with respect to the setpoints r.

4. Calculate the modifiers for the next iteration (for all j € [1,...,n,]):
e} = (L, —K®)ef_| +K* (Gpr—g(w)), (3.4)
T
r r J J i
A= (L, — KA, K (vrcbﬁ,k -G (S o) ) .69

T
i . ir . 3g 3y +
lff = (Iny — ng)lfil + K& <VrGE,j,k — 7;<uk) (au(llk)) . (3.6

with (-)* indicating the Moore-Penrose pseudo inverse.

end

Remark 1. The function ®(r) is unknown, but we assume ®(r) = ®(y(u)) = ¢(u),

from which we can write g—ﬁ = %—‘f % It follows that, in order to be able to compute

%—‘f from 3% , one needs to “invert” %, which requires n, > ny. Note that this condition

has to hold for the model only.

Remark 2. Since the setpoints r are typically bounded, it might happen that, due to
plant-model mismatch, the computed setpoints r; = y(wy) cannot be applied exactly.
Hence, in order to converge to a KKT point, the bounds on r should be included as
inequality constraints on y(u), and these constraints need to be included in the con-
straints g(u) in (3.3).

Remark 3. The analytical expressions of the mapping y(u) and of the inverse mapping
u(y) are not needed as Problem 3.1 is solved numerically. It is sufficient to be able to

+
compute y(u) at each u given by the numerical optimizer. Similarly, (%) is only

10



+
needed at each iteration k. Indeed, ( (uk)) is typically computed numerically by

e.g. taking the pseudo-inverse of Su at each uy, while % can be computed by finite
differences at each wy. Hence, the model y(u) does not need to be in explicit form.

A fixed point of this iterative procedure is a KKT point of the controlled plant, as stated
by the following theorem.

Theorem 3.1 (Plant optimality for Method UR). Consider Method UR with no mea-

surement noise and perfect estimates of the gradients a;b and aG" If Algorithm 3.1
converges, with U, := limy_,..U; being a regular point for the cunstraints, then Yo, =
¥(uw) is a KKT point for the closed-loop plant optimization Problem (2.10).

Proof: Consider the iterative scheme upon convergence, i.e. limg_,o Uy = Uc.
We will first derive relationships between ¢; , and g/ , and the controlled plant cost
and constraints @, and Gy. 4 Upon convergrence, due to the assumption of perfect
gradient estimates, V®Pg o, = &(;D and thus:

a0, 90
o\ _Z7p 7Y
(A7) = &r Ju (8u> ' 37

The gradient of the cost function ¢/, ., in Problem (3.1) is

aq)r’;l,oo _ (9(]) d,r Tay
Ju  ou +(2<7) u’

(3.8)

which, using (3.7), gives:

00w 0 0P, *\ o
%,:ﬁ+44_j, . (3.9)
du du ar Bu du

Multiplying both sides of this equation by ( ) 3y and using the identity

d d d d .
G@ g;(@g £>ymm

o () W) S () B
Ju du/ Ju dr du\du/) Jdu OJr Ju
The same argument can be used to show that (for all j € [1,...,n,])
de’ . :
thor ((2)2) - 2022 o
The modified constraints in (3.3) become
8o (M) = 8 (U) + e+ (AT (y(ue) — 1), (3.12)

4The function arguments will be dropped in the following derivation as all functions are evaluated at the
stationary point corresponding t0 Ue, and re, = y(Us ).
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which, with y(Uw) = I, the definition of € in (3.4) and the assumption 8 = Gp(r),
gives:

8, joo (Uee) = &(Uec) + G (o) — 8 () = Gip j(¥n).- (3.13)

The KKT conditions being necessary conditions under the regularity assumption, it
follows that u., is a KKT point of Problem (3.1). Thus, 3 v > 0 such that

OPneo 708
Jdu tv Jdu

=0. (3.14)

Assuming rank (g—ﬂ) = ny, it follows from (3.10) and (3.11) that

9% 196Gy _
dar dr
Hence, the dual feasibility KKT conditions are satisfied for the controlled plant. The

KKT conditions for Problem (3.1) also state that g, ., < 0 and vl g, = 0. It follows
from g}, .. (0e) = Gp(r=) that,

0. (3.15)

Gp(r..) <0 (3.16)
vIGp(re) =0. (3.17)

Hence, both the primal feasibility and the complementary slackness KKT conditions
are satisfied for the controlled plant. As all four KKT conditions are satisfied, r. is a
KKT point of the controlled plant optimization Problem (2.10). [ ]

Remark 4. The model-adequacy condition for Method UR is affected by the way the
modified optimization problem is formulated. With standard modifier adaptation, the
modification only includes affine-in-input terms. This way, the reduced Hessian of
(2.9) is the same for the modified and the original problems. The situation is different
for Method UR, since the modification of the cost and constraints in (3.2) and (3.3)
is no longer affine in u. Hence, the resulting adequacy condition is affected by the
second-order derivatives of y(u).

3.2. Method UU

This method expresses the model gradients with respect to the manipulated inputs
u. In contrast to Method UR, the modifier terms are affine in the inputs u. Like Method

+
UR, the gradient aa—cf is computed as g—g (g%) , which assumes y = r and n,, > n, under
offset-free control and perfect output model.

Algorithm 3.2: Method UU

Initialize the ng-dimensional vector of zeroth-order constraint modifiers £§ = 0 (if this
leads to infeasibility, introduce backoffs by choosing 8% > (), the n,-dimensional vec-

tor of first-order cost modifiers lg’" = 0, and the n,-dimensional vector of first-order
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modifiers for the j constraint A5 = 0.5 Select the filter matrices K¢ of dimension
(ng X ng), K? and K& of dimension (n, x n,) as, typically, diagonal matrices with
eigenvalues in the interval (0, 1]. Also, set arbitrarily ug = .
fork=1— o
1. Solve the modified model-based optimization problem:
Uy 1= argrr}lin ‘P&,kq(“)v
subjectto gy, (u) <0, (3.18)
where the modified cost and constraints are given by
Gini1 (W) 1= 9(u) + (AT (0 —wy), (3.19)
gh s =g+ + AN (w—wy), j=1,...,n,.  (3.20)

2. Apply the setpoints ry := y(uy) to the plant to obtain @, 4 and Gy .

3. Estimate the plant cost gradient, V,®g 4, and constraint gradients, V;Gg ., at
the current operating point ry.

4. Calculate the modifiers for the next iteration (for all j € [1,...,n,]):
e = (I, —K®)ef | +K* (Gpr—g(uy)), (3.21)

T
u u a a 8 +a
AP = (L, KA +K? (V@E,kalyl(uk)—ﬁ(uk) (a—lyl(uk)) aZ(uk)) (3.22)

T
e Ay Iy dgj dy "oy
/li = (In) — ng)},i‘il + K& <VFGE’j’kau(uk) — Tuj(llk) (%(uk) afu(llk) (3.23)

end

Remark 5. One interpretation of Method UU is that the gradients of the model cost

and constraints are “corrected” only in those directions that locally influence % [27].
+

To this end, the post multiplication by (% (uk)) % (uy) removes any components of

g—ﬁ(uk) and %(uk) in the null space of%(uk).

Remark 6. The gradient-modifier terms used in Method UU are affine approximations

to those used in Method UR. This can be seen by performing a Taylor-series expansion
of the gradient-modifier term of the cost used in Method UR:

AT (yu) =) = 0T (gi(wﬂ) (u—we1)+ O(lu—wei[J?). (324

5 Again, if &§ = 0, this initialization will lead to uj = u*(9).
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Noting that the gradient modifier for Method UU is given by:
anNT_ (q0m 1 (9OF
(a5 = ()" (Shwen). 325)
it follows from (3.24) that:

(l,‘ffl)r (Y(u) —ry) = (lfﬁ’l)T(u —w 1)+ 0 (lu—wei[?) (3.26)

The same development can be carried out for the gradient-modifier terms of the
constraints. Note that the elimination of the nonlinear terms y(u) in the modified cost
and constraints functions may facilitate the numerical solution and help avoid local
minima.

Remark 7. In standard MA, the computed input vy, is applied to the plant at the k™
iteration. However, in Methods UR and UU, the computed wy, is not applied to the
plant, since, in closed-loop operation, ry, is applied to the plant. In fact, the computed
wy does not agree with the inputs W, i reached by the controlled plant at steady state, not
even upon convergence. In the case of Method UR, this does not pose any conceptual
difficulty because the gradients are evaluated at ry, which are the current setpoints
applied to the plant. However, in the case of Method UU, the gradients are evaluated
at uy, which typically differs from the plant inputs u, .

Remark 8. Remarks 2 and 3 concerning the bounds on the setpoints and the absence
of necessity of the availability of an explicit mapping y(u) also hold for Method UU.

The following theorem shows that Method UU also benefits from the attractive
property of converging to a plant KKT point.

Theorem 3.2 (Plant optimality for Method UU). Consider Method UU with no mea-
surement noise and perfect estimates of the gradients % and aa% If Algorithm 3.2
converges, with We. := limy_,..W; being a regular point for the constraints, then re =

¥(uw) is a KKT point for the closed-loop plant optimization Problem (2.10).

Proof: Tt follows from (3.8) and (3.25) that, upon convergence,

P ¢ dy d¢ I,
el NG/ Y NAVIRE AN S [l A VAN £ 3.27
Ju 8u+(°°)&u &u+(°°) Ju ’ (3.27)
and, by the same logic, a%’i‘l‘“ = 3%‘&‘;”. Hence, the gradients of the modified cost and

constraints are identical for Methods UR and UU, which indicates that the optimality
proof for Method UR, from Equation (3.9) onwards, also applies to Method UU. ®

Remark 9. The model-adequacy condition is not affected by the way the modified op-
timization problem is formulated in Algorithm 3.2, since the modification only includes
affine-in-input terms.
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3.3. Method RR

Method RR constructs the model approximations ®(r) and G(r) from the open-
loop models ¢ (u), g(u) and y(u). In fact, the model approximations are obtained for
the functions ®(y) and G(y), assuming y = r. The open-loop model equations are
simulated for several different values of the model inputs, w;, i = 1,---,N, and the
corresponding values of the cost ¢ (u;), constraints g(u;) and outputs y(u;) are stored.
Using these data, two approaches can be considered for constructing ®(y) and G(y):

Approach RR1. Using the data {u;, ¢ (u;),g(w;),y(u;)}, construct the approximate
models ®(y) and G(y) using for example polynomial functions.

Approach RR2. Using the data {u;,y(u;)}, construct the model u = h(y). This model
approximates the inverse of y(u). Using this inverse model, the models ®(y) and G(y)
become ®(y) := ¢ (h(y)) and G(y) := g(h(y)). This approach requires n, > n, for
model inversion.

Once the model approximations ®(y) and G(y) are obtained, the variable y is re-
placed by r, and these functions are used in the standard MA scheme to compute the
optimal setpoints r;. Note that, if the assumption y = r is not verified exactly, the dif-
ference will constitute another source of model mismatch, which can be handled by the
MA approach. Then, with the constructed functions ®(r) and G(r), one can apply the
following standard MA algorithm.

Algorithm 3.3: Method RR

Initialize the n,-dimensional vector of zeroth-order constraint modifiers EOG = 0 (if this
leads to infeasibility, introduce backoffs by choosing SOG > 0), the ny-dimensional vec-

tor of first-order cost modifiers /13’ = 0, and the ny-dimensional vector of first-order

modifiers for the j constraint l(?j = 0. Select the filter matrices K¢ of dimension
(ng X ng), K® and K% of dimension (n, x n,) as, typically, diagonal matrices with
eigenvalues in the interval (0, 1]. Also, set arbitrarily ro = ryom, Where Iy is the nom-
inal values of the setpoints.

fork=1—o
1. Solve the modified model-based optimization problem
re:=argmin Py, (r)
subject t(: G i—1(r) <0, (3.28)
where the modified cost and constraints are given by
P i1 (r) = B(r) + (AL ) (=1 ), (329)
Gkt (1) = G(0) + &7 + AV ) (r=ry), j=1,....ne.  (3.30)
2. Apply the input ry, to the plant to obtain <i>p7k and Gp.k-

3. Estimate the plant cost gradient, V,®g;, and the plant constraint gradients,
ViGg,jk, j=1,...,ng, at the current operating point ry.
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4. Calculate the modifiers for the next iteration:

ef = (I, —K%)ef | + K (Gpi — G(ry)), (3.31)
AL = (1, —KP)AY | +K® (V,Ppy — V,D(rp)) (3.32)

A= (L, —KONA + K% (VeGe s — VeG(r)) ) j=1,....n,. (333)

end

Remark 10. Since Method RR implies constructing the models ®(r) and G(r), it is
recommended to aim for convex approximations (see Appendix). This way, Method RR
would simultaneously meet Conditions I and 2.

Remark 11. In Methods UR and UU, the plant and the model have different degrees
of freedom. In Method RR, thanks to the remodeling, the plant and the model have the
same degrees of freedom r.

Remark 12. In Method RR, the lower and upper bounds on the setpoints r pose no
difficulty, as they can be included as lower and upper bounds on the decision variables
of the optimization problem. In this case, the difficulty comes from the lower and upper
bounds on the manipulated variables . If the bounds are reached, the controller will
saturate, which might complicate gradient estimation. In order to converge to a KKT
point, the lower and upper bounds on u should be included as inequality constraints in

g(u).

4. Simulated Example: Controlled Williams-Otto Reactor

Methods UR, UU and RR are illustrated on the Williams-Otto reactor [28]. We
will use the model from [29], which has become a standard test problem for real-time
optimization techniques [16]. Although the original problem is an open-loop reactor,
the aim is here to optimize the reactor in closed-loop operation. The open-loop plant is
an ideal continuous stirred-tank reactor with the following reactions:

A+BSC, k= ke BRI, @.1)
C+BBPYE, k= kyge B2/ Ty, 4.2)
c+rlg, ks = kage B3/ (RTp) (4.3)

The manipulated inputs are w, = [Fy , Fg , Tp)7, that is, the feed rates of A and B, and
the reactor temperature. However, the degrees of freedom of the controlled plant are
the controller setpoints r = [XA7S,FB7S]T for the mass fraction of A in the reactor and the
feed rate of B. The desired products are P and E, and the reactor mass holdup is 2105
kg.

A rather poor controller adjusts the plant inputs Fp , and 7}, in the following man-
ner:
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e Ip, = Fp+2, thatis, there is an offset between Fp , and Fp .

e T, is manipulated to regulate X4 ,; however, there is a large steady-state offset,
Xap=0.75Xy5.

. . . Fi,
There is also an unknown (and unmodeled) ratio controller, which enforces % =24,
P

that is, Fj j is proportional to Fp p.
The block diagram of the controlled CSTR is shown in Figure 2.

Controlled CSTR

I
I
| 9,(Up), gy(u) 1 D (N)
r=[X,,F,J7 ! u,=[F,..F.. .17 | Open-loop : G.(r)
; : y ] P

® ; Controller CSTR |

| I

| I

! Y, =X, Fo,l 7 |

I

I o o e o e e M m i __

d(u), g(u)
u=I[F, F,T]T Open-loop
CSTR Model
y(u)=[X,, FlT

Figure 2: The controlled CSTR and the open-loop model.

Plant-model mismatch is simulated by choosing a reactor model that includes the
following two-reaction approximation to the reaction system:

k* *
A4+2B5P+E, ki =kipe BI/RD) (4.4)
k* *
A+B+P 3G, ks =kjye B/RT), (4.5)

with the parameters kj,, k5), E] and E5. Furthermore, two different models will be
used by considering different values for the parameters E} and E7 (the parameters k7,
and k3, are fixed). Both the model and the plant consider that online measurements of
X4 and Fp are available, that is y = [X,, F] and Yp = [X4,p, Fp,p), respectively.

From the implementation point of view, the controller is considered to be unknown.
In particular, no knowledge is available regarding the manner in which F4 is manipu-
lated. The profit function to maximize is

Profit = 1143.38Xp(Fy + Fp) +25.92Xg (Fs + Fg) — 76.23F; — 114.34F5,  (4.6)
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where Xp and Xg are the mass fractions of the products P and E. There are two opera-
tional constraints:

X, <0.09 and Xg <O0.6. A7)

The plant cost @, and the model cost function ¢ (u) are constructed by expressing the
profit function using the plant and model equations, respectively. Similarly, the plant
constraint values Gy and the modeled constraints g(u) are constructed by expressing
the above constraints using the plant and model equations, respectively. Finally, the
modeled outputs are constructed from the model equations. In addition, the plant cost
and constraint gradients V,®g and V,Gg are computed from ®, and G, respectively.
Table 1 gives the numerical values of the plant parameters and of the fixed model
parameters k7, and k3.

Table 1: Values of the plant parameters and the two fixed model parameters. The other model parameters are
chosen differently for the two investigation cases, as shown in Table 2.

Parameter Value Unit
kio 1.66 x 10° s T
koo 7.21 x 108 g1
k30 2.67 x 1012 s7!
E; 5.543 x 10* | kImol ™!
E» 6.928 x 10* | kI mol™!
E3 9.238 x 10* | kI mol™!
ko 6.716 x 10* st
k3o 1.034 x 10 s7!

Figures 3-5 show the performance of Methods UR, UU and RR for the two models
given in Table 2. Each RTO scheme is initialized at the corresponding model optimum.
Implementation specificities are given next:

e For Methods UR and UU, diagonal filter matrices with eigenvalues of 0.2 are
used.

e For Model RR, convex model approximations are constructed using 11 x 11 x
11 simulations performed offline for equally spaced values of the model inputs
u = [Fa,Fp,T]", respecting the input bounds 2 < F4 < 10, 8.5 < Fz < 22 and
78 < T < 92. Algorithm 5.1 in the Appendix is applied with the lower bounds on
the eigenvalues 0¢ and 0, being all set to 0.05. For MA, Algorithm 3.3 is used
with the controller setpoints r = [XA_S,FB,S]T as degrees of freedom. To avoid
having to modify too strongly the optimization problem at the first iteration,
the zeroth-order modifier terms are initialized at half the distance between the
predicted and measured constraints. This is justified by the observation that a
large initial modification of the constraints can lead to unfeasible inputs, which
would then imply convergence to the plant optimum from the unfeasible side of
the plant constraints. The filter matrices K¢, K¢ and K% in Equations (2.6)-(2.8)
are chosen as diagonal matrices with all elements equal to 0.85.
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FB,s (kg.s™)

130

X, X100 ()

Figure 3: Evolution of the setpoints r during the first 30 iterations of three generalized MA schemes for
Cases I (blue) and II (green). Solid = Method UR, Dashed = Method UU, Dash-Dotted = Method RR. The
starting point corresponds to the model optimum and is marked by a roman numeral. The contour lines
represent the plant profit. The shaded region is infeasible for the plant due to the constraint on X4. The black
dot represents the plant optimum.

The two trajectories labeled I and II correspond to the use of the models for Cases I
and Il in Table 2. All algorithms converge rapidly to the plant optimum, where the con-
straint on Xy is active (X4 = 0.09, which calls for X, ; = 0.12). The main observation is
that Methods UR and UU behave very similarly. Hence, although both algorithms can
be used, Method UU is computationally advantageous. Method RR also works very
well, with the convergence rate not being penalized by the use of a very crude convex
model.

Note that, for this noise-free simulation study, the finite-difference method is used
to estimate the plant gradients. At the k" iteration, three different values of r are
therefore applied to the plant, ry, ry + [AX4 5,07 and rx + [0,AFp )7, where AX4 s and
AFg ¢ are small perturbations. The gradient estimate is then computed as:

Ty_ r T\_&. (r
VD = [%uwmxz.;ﬂ )=pr) By "Ho’ﬁf )= Pp( w}_ 4.8)
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Figure 4: The profit as a function of the RTO iteration number k. Blue/green = Cases I/II. Solid = Method
UR, Dashed = Method UU, Dash-Dotted = Method RR.

Table 2: Values of the activation energies for Cases I and II.

Case || Ef (kIimol™!) | E5 (kImol™")
I 8050 12500
I 8100 12300

5. Conclusions

Modifier adaptation is a very appealing RTO method, whose principal strength lies
in its capacity to converge to the plant optimum despite disturbances and plant-model
mismatch. Although incorporating measurements in the optimization framework, MA
still relies on a plant model, and it is typically assumed that the plant and the model
have the same degrees of freedom. However, this assumption may not hold in practice,
in particular in the context of controlled processes. Obtaining a closed-loop model
with the same degrees of freedom as the controlled plant may not be feasible when the
model is complex or difficult to reformulate.

Three extensions of MA have been presented. On the one hand, Methods UR and
UU avoid remodeling the system, and this at no additional computational cost. On
the other hand, Method RR constructs closed-loop model approximations using the
available open-loop model, which can be achieved through simulation of the open-
loop model and constrained least-squares fitting. Note that, in order to enforce the
model-adequacy condition, Methods UR and RR can benefit from the availability of
convex models for ¢(u) and g(u) and for ®(r) and G(r), respectively. In particular,
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Figure 5: The constraints on X4 and X as a function of the RTO iteration number k. Blue/green = Cases
I/11. Solid = Method UR, Dashed = Method UU, Dash-Dotted = Method RR. The black dotted lines indicate
the plant constraints.
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since Method RR proposes to construct model approximations for ®(r) and G(r), it is
possible to ensure that these models are convex, as shown in the Appendix.

The simulation results indicate that all three methods perform rather well. Method
UU should therefore be preferred over Method UR, as it is computationally simpler.
However, when model simulations are not too costly, Method RR with convex model
approximations might well be the preferred approach, since it automatically enforces
model adequacy. The choice will finally be case dependent, with the nice feature that
all three methods preserve the valuable KKT matching property, that is, if convergence
occurs, it will do so at a KKT point of the plant.

Appendix

Construction of Convex Model Approximations ®.(r) and G.(r)

This appendix describes a way of constructing the convex approximations ®,(r)
and G(r) from the open-loop models ¢ (u), g(u) and y(u) without knowledge of the
controller. Note that a similar approach is also possible for construction the convex
model u = h.(y). The algorithm for constructing the convex model approximations is
given next.

Algorithm 5.1: Construction of Convex Model Approximations ®.(r) and G.(r)

Initialize

1. Solve the model-based optimization Problem (1.2) and store the optimal values
of the inputs u* := u*(0), the cost ¢* := ¢ (u*, 0), the constraints g* := g(u*, )
and the outputs y* := y(u*).

2. Simulate the open-loop model equations for several different values of the model
inputs, u;, i = 1,--- N, and store the corresponding values of the cost ¢ (u;,0),
the constraints g(u;, 6) and the outputs y; := y(u;).

3. Construct the convex model approximations ®.(y) and G.(y) using the data
collected at the previous stage. The trick here is to use the values y;, which
correspond to r;, rather than the values of u;. Many different methods can be used
at this stage [30, 31, 18], and we propose here to modify the simple method of
[18], Section IV, page 11622. For this purpose, the following n, + 1 constrained
least-squares regression problems are solved:

(0. Q3] 1= arg min (__ilrbc(yi)—mui)n)

A,

subject to: - @e(y;) = 9"+ o (v; —¥) + 5 (¥ —¥") Qo (v, —¥")
cig(Qq) > 0o > 0, 5.1)

and, Vj € [1,...,n,],
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ag.,Qq.
G; 7QG_/

[aéj, QEJ :=arg min (Zn‘{ HGc,i(Yi) _gf(ui)H>

1
5 0=y Qg (5 ¥")

eig (QGj) > o, >0, (5.2)

subjectto: G j(y;) = gj + g, (y, —y") +

where de, Qg, 0c; and Qg; are as follows: (i) they are the parameters of the
quadratic model for the cost and the j constraint, (ii) they are of dimensions
1 x ny, ny X ny, 1 x n, and ny X n,, respectively, and (iii) the superscript * denotes
their optimal values. ¢¢ and Og; are lower bounds on the eigenvalues of the
matrices Qg and QG]., respectively.

end

Remark 13. The assumption of perfect control at steady-state, that is y =r, is just an-
other source of model-mismatch in case it is not true. Since MA is capable of handling
plant-model mismatch provided Condition 1 holds, this additional modeling error will
be handled just like any other error. It is therefore sufficient to consider the quadratic
models:

1
CI>c(r):q)*—f—ai},(r—y*)—i-i(r—y*)TQZ},(r—y*) (5.3)
1
Gej(r) =g+ 0, (r—y") +5 (r=y)' QG (r=y"), Vi (54

Remark 14. 7o enforce Condition 1, it is sufficient to have strict convexity of . and
convexity of all G j [18]. Hence, QEI is not compulsory, and the constraints can be
approximated by linear functions:

1
‘Pc(r)=¢*+Oti‘1>(r—y*)+§(r—y*)TQZ‘p(r—y*) (5.5)
Gej(x) =g} +ag, (r—y), V. (5.6)
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