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Abstract 11 

Optimization under uncertainty has attracted recently an increasing interest in the process systems 12 

engineering literature. The inclusion of uncertainties in an optimization problem inevitably leads to 13 

the need to manage the associated risk in order to control the variability of the objective function in 14 

the uncertain parameters space. So far, risk management methods have focused on optimizing a 15 

single risk metric along with the expected performance. In this work we propose an alternative 16 

approach that can handle several risk metrics simultaneously. First, a multi-objective stochastic 17 

model containing a set of risk metrics is formulated. This model is then solved efficiently using a 18 

tailored decomposition strategy inspired on the Sample Average Approximation. After a 19 

normalization step, the resulting solutions are assessed using Pareto filters, which identify solutions 20 

showing better performance in the uncertain parameters space. The capabilities and benefits of our 21 

approach are illustrated through a design and planning supply chain case study. 22 

Keywords: Financial risk metrics, Uncertainty, Multi-objective, and Pareto filters 23 

1. INTRODUCTION 24 

Market globalization is continuously producing changes in business behavior, thus making it 25 

difficult to predict future trends with certainty. When analyzing the decision-making processes 26 

around a typical supply chain (SC), uncertainties, like market demands, raw materials availability, 27 

inventory levels and flows, should be considered to capture their direct and local effects over the 28 

individual echelons as well as their indirect effects that propagate to other echelons through existing 29 

links between them. However, those effects and specially the indirect ones have often been 30 

overlooked by the traditional mathematical models used in industry, which are commonly built over 31 

the assumption that all the information is known with accuracy beforehand (Zamarripa et al., 2014).  32 

Optimization under uncertainty and, in particular, stochastic programming addresses this challenge 33 

by defining recourse actions that allow reacting against every possible realization of the uncertain 34 

parameters (Birge and Louveaux, 2011). In this context, a given design might obtain different 35 

results depending on the scenario in which it is evaluated, and it is very likely that the optimal 36 

design calculated for nominal conditions might render suboptimal (or even unfeasible) under other 37 

circumstances. Commonly, stochastic programs are solved over a number of stages, being the two-38 

stage stochastic models the most studied ones in Supply Chain Management (SCM) problems. In 39 
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those, stage-1 decisions involve the selection of the design variables for the first time period, 1 

whereas stage-2 decisions are modeled using variables that can be adjusted according to the 2 

realization of the scenarios (e.g. recycles in a flowsheet, production levels in a SCM 3 

problem)(Grossmann and Guillén-Gosálbez, 2010; Guillén-Gosálbez and Grossmann, 2009,2010; 4 

Ben-Tal et al., 2009; Janax et al., 2007). This allows stochastic programming models to react after a 5 

scenario materializes (corrective action). As acknowledged by different authors, the main weakness 6 

of the traditional stochastic approaches lies in the lack of control on how information regarding 7 

uncertain parameters affects optimal decisions. Ierapetritou et al., (1996) emphasized the need of an 8 

information index in order to evaluate the quality of the solution associated to the uncertain input 9 

data (named Value of perfect information (VPI)). Bernardo et al., (2000, 2001) and Ahmed and 10 

Sahinidis (1998) proposed a robustness index as a way to evaluate the confidence of the information 11 

used, and ultimately provide a robust and confident solution. The robustness index has been applied 12 

and evaluated recently in terms of computational effort and solution quality (Li and Floudas, 2014), 13 

yet, the quality of the predicted information used is out of the scope of the present work.      14 

Standard stochastic approaches tend to optimize the expected performance of the objective function 15 

distribution as unique criterion. This strategy provides no control on the variability of the objective 16 

function in the uncertain parameters space. One way to overcome such limitation consists of 17 

incorporating risk metrics into the model. For instance, Cheng et al. (2003) solved a design and 18 

planning uncertainty problem considering multiple objectives, in which one of those objectives was 19 

the Downside risk (DR) metric. Additionally, the choice of the appropriate risk metric for the 20 

problem at hand is another issue to be considered. Several types of risk metrics have been evaluated 21 

in the literature. Barbaro and Bagajewicz (2004) included financial risk management in the 22 

framework of two-stage stochastic programming for a planning problem using Financial risk 23 

(henceforth known as risk) and DR as risk metrics. On the other hand, Bonfill et al. (2004) and You 24 

et al. (2009) used risk, DR and Worst Case (WC) metrics as a way to handle risk management in 25 

scheduling and planning problems under uncertainty. More recently, Sabio et al. (2014) minimized 26 

separately the WC and DR metrics as a way to reduce the probability of not meeting some 27 

environmental targets in the multi-objective optimization (MOO) of industrial networks.  28 

According to Aseeri and Bagajewicz (2004), no single risk metric can be regarded as “complete” 29 

risk metric, since they all present at least one of the following disadvantages: lack of associated 30 

probability value, limited solution space exploration (i.e., they focus on down, middle or upper side) 31 

or lack of capability of assessing simultaneously the probability and potential level of winnings 32 

and/or losses. Indeed, in practice most metrics tend to concentrate on penalizing the worst scenarios 33 

rather than rewarding the best ones, thereby leading to “risk averse” solutions. 34 

To overcome these limitations, Aseeri and Bagajewicz (2004) proposed a Risk area Ratio (RAR) 35 

metric to compare the potential winnings against losses for the entire risk curve using a single 36 

value. This metric is useful because it considers the full risk spectrum, yet it does not achieve a 37 

simultaneous/complete financial risk analysis. In 2004 Barbaro and Bagajewicz (2004) found a 38 

close relation between DR and risk that was used to compute the latter without the need to define 39 

binary variables, thereby simplifying the associated calculations. Here it is important to notice that 40 

the minimum DR at a defined target profit (Ω) does not guarantee that risk is minimum at every 41 
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single value of profit (≤  Ω). Therefore, this relation is an indirect way of measuring financial risk, 1 

but not a simultaneous analysis of economic metrics  2 

In summary, there is no single risk metric capable of providing a full control of the objective 3 

function in the uncertain parameters space. Hence, ideally, several complementary risk metrics 4 

should be optimized along with the expected performance. To the best of our knowledge, however, 5 

the simultaneous optimization of several risk metrics has never been addressed in the literature, 6 

which constitutes an important gap already acknowledged by several authors (Cheng et al., 2003; 7 

Barbaro and Bagajewicz, 2004; Aseeri and Bagajewicz, 2004; Cardoso et al., 2016). One possible 8 

reason why this approach has never been applied is that the incorporation of several risk metrics in 9 

optimization under uncertainty leads to MOO problems containing a large number of objectives that 10 

are difficult to solve for different reasons. First, because generating Pareto solutions of stochastic 11 

models with a large number of objectives is computationally challenging. Second, because these 12 

stochastic multi-objective models tend to contain an infinite number of Pareto solutions, so even if a 13 

representative subset of them is generated, there is still the issue of interpreting and selecting the 14 

best solution.  15 

This work proposes a novel approach for optimization under uncertainty and risk management that 16 

considers several risk metrics simultaneously during the optimization step. First, a set of solutions 17 

behaving in different ways in the uncertain parameters space are generated using an algorithm based 18 

on the Sample Average Approximation (SAA) algorithm. Then, the “Pareto filter approach”, 19 

developed by Mattson et al.,( 2003, 2004) and later used by Pozo et al. (2012b) and Antipova et al. 20 

(2015) is applied to rank these solutions. In order to illustrate the capabilities of this approach, the 21 

strategic planning problem over a supply chain under uncertainty is used as benchmark. The 22 

problem is solved considering different financial risk metrics and identifying strategic decisions that 23 

are particularly appealing for decision-makers.  24 

2. Problem statement  25 

We address the design of a SC of multi-product batch processes as schematized in Fig. 1. The SC 26 

includes a set of raw material suppliers ݌ݏ ∈ ௦ܰ௣ from which supplier ݌ݏ can provide one or more 27 

types of raw materials ݎ ∈ ௥ܰ, that are delivered to the batch plants ݈ ∈ ௟ܰ. Each multiproduct batch 28 

plant has a set of batch stages	݆ ∈ ௝ܰ௟	, for producing a set of products ݅ ∈ ௜ܰ. In phase and out of 29 

phase unit duplication are considered for each multiproduct batch plant. The use and allocation of 30 

intermediate storage tanks is assumed as feasible at each of the ห ௝ܰ௟	ห െ 1  positions in plant ݈ , 31 

between two batch stages (j and j+1). Final products are transported from batch plants to different 32 

warehouses ݉ ∈ ܰ௠, according to their capacity limitation. Products are then delivered from the 33 

warehouses to different customer zones ݃ ∈ ௚ܰ, in order to satisfy a given product demand ܦ௜௚. 34 

Further details on this SC design can be found in (Corsano et al., 2011, 2014).  35 
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 1 

Fig. 1. Process scheme of the supply chain under analysis. 2 

Given are the following data: discrete size of each batch unit to be eventually installed; set of 3 

allowable tank sizes and data concerning raw material procurements, distribution cost from-to 4 

different sites and overall batch plant parameters. Product demands are modelled as uncertain 5 

parameters following known probability distribution patterns whose characteristic parameters are 6 

also given. The goal of the analysis is to identify the best planning and design decisions (e.g. 7 

number of plants to be installed, equipment units selected, etc.) in terms of maximum expected 8 

economic performance and minimum risk.  9 

3. Methodology 10 

The proposed approach comprises 4 main steps as shown in Fig. 2. A stochastic MOO model is 11 

developed in step 1. Step 2 solves the stochastic MOO problem using a customized strategy that 12 

provides as output a set of solutions that are then normalized in step 3. Finally, the  normalized 13 

solutions are  filtered in order to obtain a reduced subset of alternatives with better overall 14 

performance. A detailed description of each step is provided in the following subsections. 15 

     16 
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  1 

Fig. 2. Overview of the proposed methodology. 2 

3.1. Multi-scenario two-stage stochastic programming model 3 

The capabilities of our methodological framework are demonstrated by solving the MILP model 4 

presented by Corsano et al. (2014). Hence, the original deterministic single objective (SO) model 5 

was reformulated into a multi-scenario two-stage stochastic problem of the following form (see 6 

Eq.(1)), henceforth known as Model P: 7 

ሺܲሻ 																			max
௫	௬

݂ሺݔ, ,ݕ ሻߠ

.ݏ .ݐ 																																																																																																								ሺ1ሻ

														

݄ሺݔ, ,ݕ ሻߠ ൌ 0
݃ሺݔ, ,ݕ ሻߠ ൑ 0

ݔ ∈ X	, ݕ ∈ Y	, ߠ ∈ Θ

 

Here, ݔ and ݕ are the first and second-stage decision variables, respectively, whereas  ߠ denotes the 8 

uncertain parameters values that belong to the space Θ of uncertain parameters. First-stage decisions 9 

may contain integers due to allocation requirements. ݂ሺݔ, ,ݕ  ሻ represents the objective function; 10ߠ
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݄ሺݔ, ,ݕ ,ݔሻ and ݃ሺߠ ,ݕ  ሻ are vectors of equality and inequality constraints. Commonly, uncertain 1ߠ

parameters are described via scenarios, therefore, model P can be re-written as follows: 2 

ሺܲሻ 	max
௫,௬ೞ

௢݂௕	 ൌ ෍ܾ݋ݎ݌௦

ௌ

௦

݂ሺݔ, ,௦ݕ ௦ሻߠ

.ݏ .ݐ 																																																																										ሺ2ሻ

														

݄ሺݔ, ,௦ݕ ௦ሻߠ ൌ 0 	ݏ∀ ∈ 	S
݃ሺݔ, ,௦ݕ ௦ሻߠ ൑ 0 	ݏ∀ ∈ 	S

ݔ ∈ X	, ௦ݕ ∈ Y, ௦ߠ ∈ Θ 																	

 

Here, ௢݂௕ represents the expected value for the objective function of the problem P.  ߠ௦ is the vector 3 

of values taken by the uncertain parameters in the scenarios s  and ܾ݋ݎ݌௦  is the probability of 4 

occurrence of scenario s belonging to the set ܵ. Model P can be interpreted as follows: First stage 5 

decision variables ሺݔሻ must be taken before a realization of the random vector ሺߠ௦ሻ becomes known 6 

(here and now decisions). However, such a decision needs to satisfy as well the second-stage set of 7 

constraints. Therefore, recourse actions need to be taken (second-stage decision variables for each 8 

one of the considered scenarios ݕ௦) with an associated impact over the objective function. Hence, 9 

given a first-stage decision	ݔ, each realization of ߠ௦ leads to recourse costs given by the value of the 10 

second-stage function (ݕ௦). Note that the parameters values in each scenario can be generated via 11 

sampling on the corresponding probability functions. 12 

To manage the risk associated with the decision-making problem under uncertainty, some risk 13 

metrics are included in the model as additional criteria to be optimized. A detailed description of 14 

these metrics is presented next. 15 

(i) Downside Risk (DR): DR represents the positive deviation from a defined target 16 

(generally denoted by Ω). DR can be expressed as shown in Eq. (3): 17 

 18 

Ωܴܦ																					 ൌ Ωୱሿߜሾܧ ൌ෍ܾ݋ݎ݌௦
௦

Ωୱߜ 																																																																	ሺ3ሻ

where 																																																																																												

Ωୱߜ ൌ ൜
Ω െ ௦ݐ݂݅݋ݎܲ	if								௦ݐ݂݅݋ݎܲ ൏ Ω
0																													otherwise

ൠ ݏ	∀																																										 ∈ 	S 				ሺ4ሻ

 

 19 

Here, ܲݐ݂݅݋ݎ௦	accounts for the profit in scenario	ݏ	 ∈ ܵ. 20 

(ii) Risk: This metric also requires the definition of a target, but it measures the probability 21 

of not achieving this target rather than the deviation from it. Risk is mathematically expressed as 22 

follows:	23 

										 Ω݇ݏܴ݅														 ൌ෍ܾ݋ݎ݌௦
௦

ܼఆ௦ 																																																																																																			ሺ5ሻ	 
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where, ܼΩୱ is a binary variable whose value is determined as follows: 1 

																			 																																																																																				
																																																																							

									ܼΩୱ ൌ ቄ1							if							ܲݐ݂݅݋ݎ௦ ൑ Ω
0																				otherwise

ቅ	 ݏ	∀																																																																						 ∈ 	S 			ሺ6ሻ
 

Notice that even if both, DR and Risk, provide a measure of the deviation of the solution from a 2 

given target, the calculation of the latter involves a bigger computational effort since it requires the 3 

definition of binary variables for each scenario.  4 

(iii) Value at Risk (VaR) and Opportunity Value (OV): These metrics assess the 5 

performance of a solution in a given region of the cumulative probability curve. More precisely, the 6 

VaR is the difference between the expected profit and the profit for a cumulative probability of 5%, 7 

while the OV is conceptually equal to VaR, but covers the upper side of the cumulative risk curve 8 

(typically a percentile of 95%). Hence, those values are usually used together in order to explore 9 

both sides of the cumulative risk plot.  10 

 (iiii) Worst Case (WC): The WC has been adopted as an alternative to control the 11 

probability of meeting unfavorable scenarios. It leads to a simple formulation that requires a low 12 

computational effort (see Eq.(7)). 13 

										 ܥܹ														 ൑ ௦ݐ݂݅݋ݎܲ 	ݏ∀																																																																																					 ∈ 	S													ሺ7ሻ	 

For more details about the above risk metrics and their implementation in supply chain models, the 14 

reader is referred to the works by Aseeri et al. (2004), Aseeri and Bagajewicz (2004), Bonfill et al. 15 

(2004), Barbaro and Bagajewicz (2004) and Applequist et al. (2000). Finally, the stochastic model 16 

that optimizes a set of risk metrics can be formally expressed as follows:   17 

ሺܲሻ 	max
௫	௬

൛ ଵ݂ሺݔ, ,௦ݕ ,ሻߠ … , ௢݂௕ሺݔ, ,௦ݕ ,ሻߠ … , |݂ை஻|ሺݔ, ,௦ݕ ሻൟߠ

.ݏ .ݐ 																																																	ሺ8ሻ

														

݄ሺݔ, ,௦ݕ ሻߠ ൌ 0 	ݏ∀ ∈ 	S
݃ሺݔ, ,௦ݕ ሻߠ ൑ 0 	ݏ∀ ∈ 	S

ݔ ∈ X	, ௦ݕ ∈ Y, ߠ ∈ Θ 																	

 

 18 

Where ௢݂௕  represents the different objective functions of the problem (e.g. ଵ݂ ൌ expected profit, 19 

ଶ݂ ൌ -DR, ଷ݂ ൌ -Risk, etc.). A detailed description of the expected profit calculation is presented in 20 

Appendix A. Note that our approach is general enough to accommodate other risk metrics as well. 21 

3.2.  Solution strategy (Sample Average Approximation algorithm). 22 

 23 

Solving P (step 2 in Fig. 2) is challenging due to the number of scenarios and objectives. To 24 

expedite its solution, we propose a strategy based on the Sample Average Approximation (SAA) 25 

algorithm. The SAA has its roots in the so called stochastic counterpart (Rubistein and Shapiro, 26 

1990) and the sample path optimization methods (Plambeck et al., 1996).   27 
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We make use of the following decomposition strategy to solve Model P (Shabbir and Shapiro, 1 

2002; Kostin et al., 2012). We first solve the model in its deterministic form considering only one 2 

scenario at a time and optimizing the profit as the unique objective. Then, we fix the values 3 

obtained for the first-stage variables (i.e., the design of the supply chain) and optimize again the 4 

expected profit in Model P, but this time considering all the |ܵ| scenarios. This process is repeated 5 

recursively by replacing the parameters values used in the deterministic model solved in step one 6 

(corresponding to one particular scenario) by those associated with another scenario in order to 7 

obtain the optimal supply chain design for each of the remaining 	|ܵ|-1 scenarios so that, at the end, 8 

|ܵ| different solutions are generated. Note that the standard SAA  approximates the solution of a 9 

single-objective stochastic problem by solving a series of stochastic subproblems, each of them with 10 

fewer scenarios than the original full space stochastic model (Verweij et al., 2002; Santoso et al., 11 

2005). These scenarios, sampled from the original set of scenarios, approximate the expected 12 

objective value of the original problem. After solving each subproblem, the first stage decisions are 13 

fixed in the original model, which is solved iteratively for all the solutions generated in the 14 

subproblems. The solution among the ones generated with the subproblems that performs best in the 15 

full space model is finally used to approximate the global optimum of the original stochastic model. 16 

Hence, in our case, the subproblems contain one single scenario (i.e., they are deterministic), as 17 

opposed to what happens in the standard SAA, which solves subproblems with more than one 18 

scenario.  19 

The overall algorithm is as follows. 20 

1. Define the set of scenarios ܵ and initialize the raw set of solutions RSS = Ø 21 

2. For e = 1:1:	|ܵ| 22 

2.1. Solve Model P considering only the scenario with index e (say scenario se). Let solution ̅23 ∗ݔ 

be the value of the first stage variables in this problem. 24 

2.2. Fix first stage variables as in ̅25 .∗ݔ 

2.3. Solve Model P including all the |ܵ| scenarios. Let ̅ݔ∗, ∗ത௦ݕ  be the values of the first and 26 

second stage variables in the full optimal solution to this problem (the solution with 27 

optimal second-stage variables for the first-stage values generated in step 2.1). 28 

2.4. Calculate risk metrics. 29 

2.5. Make RSS = RSS ∪  and free the first-stage variables,  30 ∗ݔ̅

3. End for. 31 

Note that even if Model P is a multi-criteria model, the only objective function considered during 32 

the algorithm is the profit maximization (i.e., risk metrics are calculated in parallel during the 33 

process, but they never act as objective functions). The reason for this is two-fold. First, it is not 34 

possible to optimize any risk metric in step 2.1, as the model solved in this step is essentially 35 

deterministic (i.e., it considers one scenario only). Second, the model considered in step 2.3 is 36 
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indeed stochastic and could therefore allocate any risk metric as objective function, yet this would 1 

entail no significant benefit since the risk can be mainly controlled through modifications in the 2 

design of the supply chain, which has already been fixed in a previous step (step 2.2).  3 

It is important to highlight that the problem with first and second-stage variables is not rigorously 4 

solved and, consequently, the proposed methodology cannot guarantee global optimality for the 5 

solutions obtained. However, the proposed approach is indeed an approximation method (i.e., 6 

heuristic) to solve the full space multi-objective stochastic model. Recall that for every set of first 7 

stage designs calculated in step 2.2, we determine the corresponding second-stage variables in step 8 

2.3 following the general scheme of the SAA and considering the entire uncertain parameters space. 9 

This part of the algorithm (step 2.3) assesses whether the designs are feasible in all the scenarios.  10 

Consequently, even if the solutions obtained with the proposed method may be dominated by others 11 

which are overlooked, they are proved to be feasible and therefore eligible to be ranked by the 12 

Pareto filters as long as they successfully pass step 2.3 of the algorithm. Otherwise (i.e., if they 13 

render unfeasible), they are discarded.  14 

 15 

3.3. Normalization of solutions. 16 

The SAA method provides as outcome a raw set of solutions (RSS) to problem P. A normalization 17 

step is applied to facilitate the post-optimal analysis of these solutions. Different normalization 18 

algorithms can be applied at this point (see Bolstad et al. (2003)). In this work, we use the basic 19 

interpolation method, which is formulated as follows: 20 

										 														 መ݂ ൌ መ݂
௟௢ ൅ ൫ መ݂௨௣ െ መ݂

௟௢൯
݂ െ ௟݂௢

௨݂௣ െ ௟݂௢
																																																																																				ሺ9ሻ	 

Here, መ݂  represents the normalized value (which varies between bounds መ݂௟௢ ൌ 0  and መ݂௨௣ ൌ 1 ) 21 

associated to the real value ݂, while ௟݂௢ and ௨݂௣ represent respectively the minimum and maximum 22 

values taken by this objective among the raw set of solutions RSS. At the end of this step, a 23 

normalized set of solutions NSS is obtained.   24 

3.4. Application of Pareto filters. 25 

Model P potentially contain an infinite number of solutions from which decision-makers should 26 

identify the ones that better reflect their preferences. To facilitate this task, two Pareto filters are 27 

applied to narrow down the number of Pareto solutions and retain for further inspection solutions 28 

showing better overall performance (discarding in turn the rest). Two filters are applied. The first 29 

one (Smart filter) eliminates repeated and suboptimal (dominated) solutions from the set as 30 

described in Mattson et al. (2004). The second filter (Order of efficiency filter) ranks the Pareto 31 

points according to the concept of efficiency of order k, as described in Das et al. (1999). To this 32 

end, the order of efficiency filter is applied recursively for descending orders of efficiency until no 33 

solutions are found. Further details about these Pareto filters can be found elsewhere (Antipova et 34 

al., 2015; Pozo et al., 2012a). The Pareto filter algorithm is described next and illustrated in Fig. 3. 35 



10 

 

We first define the objectives to be analyzed  ܾ݋ ∈  and set a tolerance value for the Smart Filter 1 ܤܱ

(Δt). Let NOO be the number of objectives considered. 2 

1. Apply Smart filter to solutions NSS considering objectives ob | ܾ݋ ∈  using tolerance Δt. 3 ܤܱ

Let M’ be the set of solutions retained after the application of the filter. 4 

2. If  M’= ∅, stop, further reduction is not possible. Else: 5 

2.1. For k = NOO:1:1 6 

2.1.1. Apply Order of efficiency filter to solutions M’ for k. Let Vk be the set of solutions 7 

which are efficient of order k. 8 

2.1.2. Make M’ = Vk. 9 

2.2. End for 10 

3. End if. 11 

As seen, the algorithm starts by applying the smart filter for a given tolerance. Then, the order of 12 

efficiency filter is applied until further reductions in the Pareto set cannot be attained.  13 

   14 

Fig. 3. Detailed description of the Pareto filter procedure used to reduce the set of optimal solutions.  15 

A detailed description of each step in the above algorithm follows. 16 
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 1 

3.4.1. Smart Pareto filter. 2 

This filter uses a defined tolerance value (Δt) to discard solutions that are potentially repeated or 3 

redundant. The method selects one solution and scans the tolerance area in order to find and discard 4 

points falling within it, thereby removing dominated solutions considering such a tolerance. The 5 

tolerance value is defined by the user and has a strong impact on the outcome of the algorithm. If it 6 

is too large, the final set of alternatives will be very small, but appealing solutions may be lost, 7 

whereas if it is too small the opposite situation will occur.  8 

Fig.4 illustrates the idea behind the Smart Pareto filter. Given the set of solutions Sols, Sol1 is taken 9 

as core solution and compared with the rest. The dominated solutions and those inside the tolerance 10 

area (shaded region) are removed from the pool. Afterwards, the nearest Pareto solution will be 11 

selected as core and the operation will be performed again until no Pareto solutions remain 12 

unexplored. In this example, solutions Sol7, Sol8 and Sol9 are dominated solutions and are removed 13 

from the pool of solutions when solutions Sol2 and Sol3 are evaluated, respectively. Additionally, 14 

even if solution Sol10 is Pareto optimal, it lies in the tolerance area of solution Sol3, so it is 15 

considered indistinguishable from it and thus eliminated.  16 

 17 
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Fig 4. Representation of the Smart Pareto filter algorithm. A solution is considered indistinguishable from 1 
other one if the first (red point) falls into the tolerance area (shaded gray zone) of the solution under analysis 2 

(green points). Dominated solutions (orange points) are also identified and eliminated. 3 

A more formal mathematical description of the algorithm is presented next. Let SSc be one solution 4 

of the normalized set of solutions (NSS) obtained through steps 2 to 4 of the proposed methodology 5 

approach, and ob one of the objectives considered. The filter comprises the following steps. 6 

1. Initialize a set of rejected solutions (RS = ∅), a set of candidate solutions (M’ = ∅) and 2 7 

counters (c' and cc') which are initially set to zero. Additionally define a tolerance value (Δt). 8 

2. While c' < |NSS| 9 

2.1. c' = c'+1 10 

2.2. If ∄ܵܵ௖ᇱ│ܵܵ௖ᇱ 		 ∈ ܰܵܵ, return to 2.1. Else: 11 

2.3. While cc'  < |NSS| 12 

2.3.1.   cc'= cc' + 1 13 

2.3.2.  If ∄ܵ௖௖ᇱ│ܵ௖௖ᇱ 		 ∈ ܰܵܵ, return to 2.3.1. Else: 14 

2.3.3.  If c'=cc', return to 2.3.1. Else, if Sܵ௖ᇱ,௢௕ െ	ܵܵ௖௖ᇱ,௢௕  < Δt ∀ܾ݋, let ܴܵ ൌ ܴܵ	 ∪ ܵܵ௖௖ᇱ 15 

and ܰܵܵ ൌ ܰܵܵ ∖ ܵܵ௖௖ᇱ.          16 

2.4. End while 17 

2.5. Restart counter cc'=0 18 

3. End while 19 

4. Make M’ = ܰܵܵ 20 

 21 

3.4.2. Order of efficiency filter. 22 

This filter makes use of the concept of order of efficiency, which assesses the “level of optimality” 23 

of a solution. The order of efficiency was originally introduced by Das (1999), and has been 24 

recently applied to metabolic engineering (Pozo et al., 2012b) and desalination plants (Antipova et 25 

al., 2015). 26 

A solution is said to be efficient of order k if it is not dominated by any other solution in any of the 27 

possible ݇ -elements subsets of objectives. In the above definition, ݇  represents the size of the 28 

subsets, that is, the number of objectives which form the subset (i.e. 1 ≤ ݇ ≤ NO, being NO the 29 

number of objectives). Using the same nomenclature, statements and variable definitions from the 30 

previous section, a mathematical representation of the order of efficiency concept is presented next. 31 

A solution ߳∗ݔݔ	ܯ′ is efficient of order k, if it is not dominated by any other solution ߳∗∗ݔݔ	ܯ’ in 32 

any of the possible subsets of k objectives. In other words, given any of the sets of k objectives, it 33 

does not exist any feasible solution ݔݔ∗∗  such that ௢݂௕ሺݔݔ∗∗ሻ ൑ 	 ௢݂௕ሺݔݔ∗ሻ   for all ܾ݋ ∈34 

ሺܾ݋ଵ, ଶܾ݋ … ௞ሻܾ݋  and at the same time ௢݂௕ሺݔݔ∗∗ሻ ൏ 	 ௢݂௕ሺݔݔ∗ሻ   for at least one 35 

ܾ݋ ∈ ሺܾ݋ଵ, ଶܾ݋  is efficient of order k, it is also 36	∗ݔݔ ௞ሻ. From this definition, it follows that ifܾ݋…

efficient of any order greater than k. Note that lower orders of efficiency reflect a better balance 37 

among objectives in the solution and, in some way, the more appealing for decision-makers. 38 
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The concept of Pareto efficiency of order k is illustrated in Fig. 5, which shows the parallel 1 

coordinates plot where each line represents one of the 4 solutions retained in the previous example 2 

(i.e., Sol1, Sol2, Sol3 and Sol4). As can be seen, solutions Sol1, Sol2 and Sol4 are Pareto optimal, that 3 

is, they are at least efficient of order 3 (recall that due to the normalization step, values equal to 0 is 4 

the best  objectives performance and vice versa ). On the contrary, Sol3 is an inefficient solution 5 

because it is dominated by Sol1. The next step is to check whether solutions Sol1, Sol2 and Sol4 are 6 

also efficient of lower order, for which all the possible subsets of k<3 objectives must be 7 

considered. For instance, solutions Sol2, and Sol4 are dominated by Sol1 in subset ሼܾ݋ଶ,  ଷሽ, so they 8ܾ݋

are no longer candidates to be efficient of order 2. Conversely, Sol1 is not dominated neither in 9 

subset ሼܾ݋ଵ, ,ଵܾ݋ଷሽ nor in ሼܾ݋  ଶሽ and is therefore efficient of order 2. An inspection of subsets of 10ܾ݋

one objective reveals that Sol1 is dominated by both Sol2 and Sol4 in {ob1}, and thus it is not 11 

efficient of order 1. As a result, the minimum order of efficiency for Sol1, Sol2 and Sol4 is 2, 3, 3, 12 

while Sol3 is inefficient. This approach allows ranking the Pareto solutions according to their 13 

efficiency order. Hence, solution S1 would be the most appealing, since it shows better average 14 

performance when considering all of the objectives simultaneously. 15 

 16 
Fig. 5. Illustration of the order of efficiency filter. There are 4 solutions that have to be minimized for all the 3 17 

objectives considered. Sol1 is efficient of order 2 whereas Sol2 and Sol4 are efficient of order 3, and Sol3 is 18 
inefficient (i.e., not Pareto optimal). 19 

Note that Pareto filters imply stronger conditions than the conventional Pareto optimality criterion. 20 

This concept avoids the use of any arbitrary ‘‘criterion of merit’’ or visualization technique, thereby 21 

making the approach suitable for high-dimensionality problems (Pozo et al., 2012b; Das, 1999). 22 
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4. Case study: Multi-criteria Design and Planning of SC under uncertainty 1 

The proposed approach is now illustrated through its application to the design and planning problem 2 

of a supply chain with embedded batch facilities. The system considers 3 raw material sources, 3 

which can feed 5 potential batch plants with up to 3 phases. Different discrete sizes are considered 4 

for each batch unit (0.3 m3, 0.5 m3, 0.75 m3, 1 m3 and 1.2 m3) and intermediate storage tank (3m3, 5 5 

m3, 10 m3). Final products can be stored in 3 warehouses before being sent to 3 customer zones. The 6 

resulting multi-scenario MILP problem is described in detail in Appendix A, while the remaining 7 

system parameters are provided in Appendix B. The model optimizes the design of the required 8 

supply chain network (i.e. allocation decisions, production and capacity levels and flows between 9 

the SC nodes) considering the effects of the potential planning decisions. The model also 10 

determines the optimal design of the embedded batch plants (i.e. structure of the plants) considering 11 

parallel unit duplication, allocation of storage tanks, and unit size. Binary variables are used in the 12 

mathematical model in order to represent the allocation decisions of a particular site/unit.   13 

Product demand was considered as the only uncertain parameter and modeled through a normal 14 

distribution. 100 scenarios were generated via Monte Carlo sampling in order to discretize the 15 

normal distributions, assuming the mean values in Table B.2 (See Appendix B) and a variance of 16 

15%. It is important to highlight that Monte Carlo sampling is less efficient than other sampling 17 

techniques, such as Sobol sampling, polynomial-based methods (cubature formula) (Bernardo et al., 18 

1999) and methods based on low-discrepancy samples (also known as quasi-Monte Carlo 19 

methods)(Diwekar and Kalagnanam, 1997). However, here it is used as a crude method to illustrate 20 

the generation of scenarios in the proposed methodology. The minimum number of scenarios was 21 

determined by two methods. First, by solving the SAA for an increasing number of scenarios and 22 

then stopping when the difference between the expected profit of the best two consecutive solutions 23 

provided by the SAA (i.e., the difference between the best expected profit solution provided by the 24 

SAA for a given number of scenarios, and the best expected profit solution for the same number of 25 

scenarios plus one) was less than 5%. Second, we applied the methodology proposed by Law and 26 

Kelton (2000), which was recently applied to stochastic problems (Sabio et al., 2014). This 27 

approach was solved considering a relative error of 0.1 and a confidence level of 1% (see .  28 

Appendix C). For these settings, the minimum number of scenarios was 73.  29 

The deterministic model contains 3,222 equations, 2,086 continuous variables and 223 binary 30 

variables, while the stochastic one with 100 scenarios has 178,552 equations, 153,061 continuous 31 

variables and the same number of binary variables (223). All the runs were implemented in GAMS 32 

23.9 and solved using CPLEX on a Windows XP computer with Intel®CoreTMi7 CPU(920) 33 

2.67GHz processor with 4.00 GB of RAM. It takes approximately 27.3 seconds to generate each 34 

solution of the deterministic model. It is important to mention that the stochastic model that 35 

includes all the scenarios and maximizes the expected profit as unique criterion cannot be solved in 36 

86,400 seconds (24 hours) (i.e., after this CPU time, CPLEX is unable to close the optimality gap 37 

below 5% even when optimizing only the expected profit; so much larger CPU times are expected 38 

when dealing with several risk metrics simultaneously).   39 

As shown in Table 1, two cases differing in the risk metrics are investigated. The targets required in 40 

the calculations of the risk metrics were defined as follows. We first applied the SAA and plotted 41 
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the cumulative curve (Fig. 6) for each deterministic design generated for each scenario. We then 1 

defined the target values by identifying the lower, middle and upper parts of these cumulative 2 

distributions. Each curve in Fig. 6 represents a specific SC configuration with associated planning 3 

decisions. Expected profit values range from $530,000 to $1,334,000. In the figure, we have 4 

highlighted the solution with maximum expected profit (maxEProfit) as well as two curves that may 5 

be appealing for risk-averse and risk-taker decision makers. A Risk-Averse solution corresponds to 6 

that in which lower probabilities of small/high profits are found. On the contrary, a solution with 7 

larger probabilities of high profits (at the expense of increasing as well the probability of low 8 

benefits) is appealing for a Risk-Averse behavior. 9 

Solutions behave differently in the uncertain parameters space, as can be noticed by the 10 

performance of the three highlighted solutions. For instance, maxEProfit has a probability of 19% 11 

of not exceeding a target value of Ω= $1.00M, while this probability increases gradually to 25% and 12 

55% in the Risk-Averse and Risk-Taker solutions, respectively. Here, the maxEProfit solution 13 

represents a very conservative choice that behaves better than the remaining solutions for a wide 14 

range of target values (Ω <$1.15M), however for higher target values this solution shows poor 15 

performance. Notice that the better performance attained in the Risk-Averse and Risk-Taker 16 

solutions in the upper part of the probability curve is obtained at the expense of a drop in their 17 

expected profit. For instance, the Risk-Taker and Risk-Averse solutions show expected profits of 18 

$971,179 and $1,057,684, respectively, whereas the maximum expected profit is $1,100,211. 19 

Between the Risk-Taker and Risk-Averse solutions, there are many intermediate solutions behaving 20 

in different ways. 21 

 22 
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Fig. 6. Resulting cumulative risk curves for the 100 scenarios. 1 

All the solutions show essentially the same overall supply chain configuration (see Fig. 7), but 2 

differ in the detailed design of the plants, which are explained later in the article. More precisely, 3 

they all select plant L4 regardless of the uncertain parameters values, mainly because the required 4 

investment and production costs are the lowest. Raw material site S2 supplies all the materials 5 

required for producing the four products, because the distribution costs between S2 and L4 are 6 

cheaper. The products are delivered to two warehouses, M1 and M3.  7 
 8 

 9 

Fig.7 optimal SC design for the 100 demand scenarios. 10 

 11 

Table 1. List of objectives and target values considered in this work for both cases. Target values Ω are 12 
expressed in €·103.  13 

First Case Second Case 

Objective/metric Target value Objective/metric Target value 

Eprofit N/A Eprofit N/A 

Worst Case (WC) N/A 

Risk 

Ω=530 

 Downside Risk (DR) 

Ω=800 Ω=584 

Ω=950 Ω=637 

Ω=1,050 Ω=691 

Value at Risk (VaR)* 5% Ω=745 

Opportunity Value (OV)* 95% Ω=798 

Ω=852 

Ω=906 

Ω=959 

Ω=1,013 

Ω=1,066 

Ω=1,120 

Ω=1,174 

Ω=1,227 
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Ω=1,281 

Ω=1,335 

*The percentage target value for VaR and OV are the probability value in the cumulative plot.   1 

4.1 First case: Expected profit, worst case, downside risk, value at risk and opportunity value 2 

Here, we consider WC, DR, VaR and OV as performance criteria (objectives) in addition to Eprofit. 3 

For the DR calculation, 3 target values were used corresponding to the lower, middle and upper 4 

parts of the cumulative distribution curve. For the VaR and OV, the standard 5% and 95% 5 

percentiles were set (See Table 1).  6 

After the application of our proposed algorithm, 100 solutions were obtained, each one with specific 7 

values of the decision variables, expected cost and financial risk metrics. From here, we produced a 8 

100 x 7 matrix (henceforth known as matrix N) using the values of each performance criteria in 9 

each scenario. Matrix N is normalized according to the procedure described in section 3.3. Note that 10 

some of the deterministic solutions may be suboptimal (in the space of the objectives considered in 11 

the analysis), or repeated (i.e. the model yields the same first-stage decision values when solved for 12 

two different scenarios). The Pareto filters were applied next using this matrix. 13 

The Smart filter (first step of Pareto filters, section 3.4) was executed with a tolerance value of 14 

Δt=0.01%. As a result, the number of solutions was reduced in 80% (i.e. from 100 to 20). Fig. 8 is a 15 

parallel coordinates plot that represents in the horizontal axis the normalized objectives and in the 16 

vertical one the performance attained by every solution in each such objective. The objectives are 17 

normalized as described previously (0 is the best value and 1 is the worst). As seen, the dominated 18 

solutions are identified and removed by the filter, so finally 20 solutions remain in Fig.8 (depicted 19 

by polylines), which intersect each other in at least one point.  20 
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 1 

Fig.8. Parallel coordinate plot showing the interactions and relations among solutions for each objective for 2 
the first case (matrix N). 3 

Remarkably, some objectives behave similarly, that is, when one increases so do the others and vice 4 

versa. This is confirmed by the p-values shown in Table 2, which are calculated for the filtered 5 

solutions. Two metrics are assumed to be statistically correlated when the p-value is below 0.05 6 

(typical significance value). According to this, metric DR(Ω=1050) is uncorrelated with WC, VaR 7 

and OV (see highlighted values in Table 2).  8 

Table 2. P-value for each pair of objectives considered in this work for filtered solutions in case 1.  9 

P-Value 

Eprofit WC DR (Ω=800) DR (Ω=950) DR (Ω=1,050) VaR OV 

Eprofit 

WC 0.00 

DR (Ω=800) 0.00 0.00 

DR (Ω=950) 0.00 0.00 0.00 

DR (Ω=1,050) 0.01 0.43 0.01 0.00 

VaR 0.00 0.00 0.00 0.01 0.76 

OV 0.00 0.00 0.00 0.00 0.74 0.00 

The order of efficiency step was next applied (second step of Pareto Filters, section 3.4) in order to 10 

identify non-dominated solutions in all the subsets of objectives of cardinality	݇. Starting from	݇ ൌ11 

7, we reduced gradually the value of k until no solution satisfied the corresponding optimality level 12 

(no solution was optimal for all the subsets of ݇-objectives). For each value of k < 7, a reduced 13 
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subset of solutions was obtained. Table 3 displays the size of the subsets for each order of 1 

efficiency, in which a reduction of 80, 90 and 95% (from 20 to 4, 2 and 1, respectively) in the 2 

number of solutions were obtained using k=6, k=5 and k=4, respectively.  3 

 4 

Table 3. Number of solution retained in matrix N for each order of efficiency. 5 

Matrix N 

Order of efficiency k=7 k=6 k=5 k=4 k=3 

Number of solutions 20 4 2 1 0 

 6 

To guarantee the quality of the solutions kept in each subset, we analyzed how they perform in each 7 

objective. Fig.9(a) shows the lower bound for the solutions (best performance) retained in each 8 

subset of ݇-objectives for the group of objectives in matrix N. Note that the lower bound for k=7 is 9 

0 for all of the objectives, since this represents the original solution space (and consequently 10 

includes the best solutions identified by the SAA). The solutions efficient of order ݇ ൌ 6 show 11 

similar bounds as those solutions in the original set (݇ ൌ 7), with just a small deviation in the value 12 

of Eprofit (the best Eprofit in the original set is $1,100,211, and in the set k=6 is $1,047,408) 13 

Moreover, solutions retained for lower orders of efficiency (k < 6), present worse bounds in 14 

multiple objectives. On the other hand, Fig.9 (b) shows the upper bound for the solutions retained in 15 

each subset of ݇-objectives. Here, the value of all the objectives in subset k=7 is 1, since it includes 16 

the worst performance solution in the original solution space. In this case, a bigger deviation from 17 

the original subset k=7 would be preferred, as this would imply that bad solutions would have been 18 

discarded. By analyzing simultaneously Fig. 9 (a) and (b), it can be seen that solutions in the subset 19 

k=6 show good performance compared with the original set (݇ ൌ 7). Hence, the filter is stopped at 20 

k=6, when 4 solutions are kept. This represents an overall reduction of 96% in the size of the 21 

original set of solutions (from 100 to 4). 22 
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 1 

Fig. 9. Normalized bounds for solutions with efficiency of order k for the first case. (a) Lower 2 
bound. (b) Upper Bound. 3 

Fig. 10 shows the risk curves associated to each solution for the reduced set of k=6, while Fig. 11 4 

and Table 4 show their configurations.  5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

Table 4. Batch plant design for the reduced set of solutions in case 1.	13 

First case (k=7) 

Configuration 
Order of 

efficiency
Eprofit (M$) 

**Demand 
Satisfaction (%)

Batch stage capacities (m3)  *Storage tanks (m3)

J1 J2 J3  J1 J2 J3 
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1 k=4 1.047 71 1 0.75 0.5  0 3 10 

2 k=5 1.007 82 1.2 0.75 0.5  0 5 10 

3 k=6 0.971 100 1.2 1 0.5  0 0 0 

4 k=6 1.010 82 1.2 0.75 0.5  0 5 0 

*Storage tanks represent the capacity of the tank installed at the exit of each unit J. 1 
** Demand satisfaction level corresponds to the worst case scenario. 2 

	3 

Fig.10. Cumulative risk curves for the solution in the reduced set of case 1.  4 

 5 

To get insight into how the model manages the risk associated with the investment, we next study 6 

solutions 1 and 4 (configurations 1 and 4, respectively), which are two of the alternatives kept after 7 

applying the Pareto filters. Solution 1 reflects a conservative attitude towards risk, with low 8 

probabilities of profits below $0.95M (9%), but a probability of large profits (say above $1.15M) of 9 

0%. On the other hand, solution 4 reflects a riskier attitude, with a probability of 28% for profits 10 

below $0.95M, but a larger probability of high profits (10% for a target of $1.15M). As seen in Fig. 11 

11, the risk-averse solution (configuration 1) implements a design with small capacities for the 12 

equipment units and storage tanks. This first case study aims to identify a solution reflecting a 13 

conservative attitude towards risk, as most of the objectives focus on improving the performance in 14 
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the lower part of the profit distribution. Hence, configuration 1 is therefore kept as it represents a 1 

conservative arrangement (smaller equipment sizes and consequently lower potential loses that lead 2 

to a higher expected profit).  3 

It is worth to mention that in configuration 1 (see Table 4) demand satisfaction can be compromised 4 

and in fact drops to 71% in the worst case scenario, because the capacity of the supply chain is 5 

reduced with the aim of avoiding risk. On the contrary, the risk-taker solution (configuration 4) 6 

installs equipment units with higher capacity (and only one storage tank) that can ensure a demand 7 

satisfaction of 82% in the worst case. Finally Solution 3 is the riskiest design, since no single 8 

storage is considered and the highest capacities are installed. This leads to higher operation and 9 

installation costs as well as less profit on average, but on the other hand allows fully satisfying the 10 

demand in all the scenarios. Hence, this design attains higher maximum profits in scenarios with 11 

large demands, but this is accomplished at the expense of worse performance in scenarios with low 12 

demand. 13 

 14 
  15 

Fig.11. Batch plant configuration scheme for the reduced set of solutions found in the first case 16 
study. 17 

 18 

 19 

4.2 Second case: Expected profit and risk at different target values 20 

For this case, we consider Risk as the only additional objective to the expected profit. 16 target 21 

values were evenly distributed in the complete solution space for this calculation (see Table 1).  22 
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The first step (Smart filter) was applied considering a tolerance of Δt=0.01%, thereby reducing 1 

drastically the number of solutions from 100 to 10 (i.e. a reduction of 90%) by removing dominated 2 

and repeated solutions. The relationships between objectives are shown in Fig. 12. 3 

 4 

Fig.12. Cumulative probability for the solution in the reduced set of case 1.  5 

 6 

Notice that most of the 17 objectives behave similarly. By calculating the p-values shown in Table 7 

5, we can see how for 3 objectives (i.e., Risk(Ω=530), Risk(Ω=1120) and Risk(Ω=1335)) a complete 8 

lack of statistical correlation is found (p-values higher than 0.05). The highlighted values in Table 5 9 

represent the lack of correlation among metrics. The rest of the objectives correlates each other and 10 

prove the correlation among risk metrics.  11 

The second part of Pareto filter was next applied (order of efficiency filter) providing a deeper 12 

reduction in the pool of available solutions. Starting with the solutions obtained from the Smart 13 

filter (݇ ൌ 17), we found non-dominated solutions in all the subsets of objectives of cardinality	݇, 14 

reducing gradually the value of k until no solution satisfied the corresponding optimality level. 15 

 16 

Table 5. P-values for each pair of objectives in matrix P. 17 

P-Value 
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Eprofit 
Ω= 
530 

Ω= 
584 

Ω= 
637 

Ω= 
691 

Ω= 
745 

Ω= 
798 

Ω= 
852 

Ω= 
906 

Ω= 
959 

Ω= 
1013

Ω= 
1066

Ω= 
1120

Ω= 
1174 

Ω= 
1227 

Ω= 
1281

Ω= 
1335

Eprofit 

Ω=530 0.51 

Ω=584 0.07 0.83 

Ω=637 0.00 0.52 0.03 

Ω=691 0.00 0.37 0.09 0.00 

Ω=745 0.01 0.45 0.02 0.00 0.00 

Ω=798 0.00 0.22 0.03 0.00 0.00 0.00

Ω=852 0.00 0.35 0.05 0.00 0.00 0.00 0.00

Ω=906 0.00 0.43 0.02 0.00 0.00 0.00 0.00 0.00

Ω=959 0.00 0.35 0.10 0.00 0.00 0.00 0.00 0.00 0.00

Ω=1013 0.00 0.31 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ω=1066 0.00 0.45 0.08 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Ω=1120 0.23 0.90 0.60 0.70 0.83 0.82 0.73 0.96 0.77 0.79 0.54 0.22 

Ω=1174 0.05 0.09 0.83 0.04 0.01 0.02 0.02 0.01 0.03 0.01 0.01 0.05 0.78 

Ω=1227 0.08 0.16 0.77 0.04 0.00 0.02 0.03 0.02 0.03 0.01 0.02 0.09 0.88 0.00 

Ω=1281 0.01 0.25 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.85 0.02 0.01 

Ω=1335 0.66 0.00 0.76 0.67 0.49 0.55 0.30 0.48 0.56 0.52 0.50 0.71 0.91 0.16 0.22 0.32 

 1 

Table 6 shows the results of this filter in which reductions of 40, 60 and 90% (from 10 to 6, 4 and 1, 2 

respectively) were obtained for subsets k=16, k=15 and k=14 (and k=13), respectively. For further 3 

analysis k=13 will be omitted, since subsets for k=14 and k=13 are equal (i.e., they contain the same 4 

solution). 5 

 6 

 7 

 8 

Table 6. Number of solution retained in matrix N for each order of efficiency. 9 
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Matrix P 

Order of efficiency k=17 k=16 k=15 k=14 k=13 k=12 

Number of 

 Solutions 
10 6 4 1 1 0 

 1 

Fig. 13(a, b) is analogous to Fig. 9.  2 
 3 

 4 

Fig. 13. Normalized bounds for solutions with efficiency of order k for the second case-(a) Lower 5 
bound. (b) Upper Bound.  6 

 7 

In Fig. 13(a) we can see that the first subset (i.e., k=16) provides an important reduction in the 8 

number of available solutions, showing similar performance than the original subset (k=17). For 9 

k=16 only objective Risk(=1227) shows a slight deviation from the best performance. This means 10 

that those solutions in subset k=16 has 30% less probability of achieving a profit of $1,227,000 than 11 

the best solution in the set k=17. Solutions with lower orders of efficiency (k<16) show a significant 12 

deterioration in their performance, specifically in the last 4 objectives (i.e., Ω ≥ 1174). Analyzing 13 

both figures we can see how the subset k=16 performs similarly to the subset k=17, but additionally 14 
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eliminates solutions with poor performances (see objectives (Ω≤1066) in Fig. 13(b)). In view of the 1 

above, we can say that the last sets of solutions (i.e., those efficient of order k=15, k=14) perform 2 

better on average, but discard points with significantly better performance in some criteria. 3 

Therefore, in this case the filter is stopped at k=16 with a reduced subset of 6 solutions, which 4 

represent a total reduction of 94% in the original number of solutions (from 100 to 6).   5 

Table 7 displays information on the batch plant designs associated to each solution in the reduced 6 

subset, while Fig. 14 shows the cumulative distribution curves for those solutions.		7 

	8 

Table 7. Batch plant design for the reduced set of solutions in case 2. 9 

Second case (k=17) 

Configuration 
Order of 

efficiency 
Eprofit 
(M$) 

**Demand 
Satisfaction 

(%) 

Batch stage capacities (m3) *Storage tanks (m3) 

J1 J2 J3 J1 J2 J3 

5 k=14 1.073 76 1 0.75 0.5 0 5 10 

6 k=16 1.024 93 1.2 0.75 0.5 0 0 5 

7 k=16 1.047 71 1 0.75 0.5 0 3 10 

8 k=15 1.028 92 1.2 1 0.5 0 5 5 

9 k=15 1.027 89 1.2 1 0.5 0 5 0 

10 k=15 1.024 85 1.2 1 0.5 0 5 0 

*Storage tanks represent the capacity of the tank installed at the exit of each unit J. 10 
** Demand satisfaction level corresponds to the worst case scenario. 11 

 12 



27 

 

	1 

Fig.14. Cumulative probability curves for the solution in the reduced set of k=16 for case 2.  2 

	3 

This second case study reflects a more balanced attitude towards risk. To get insight into how the 4 

model manages risk, let us study solutions 5 and 6. At the lower part of the profit distribution, there 5 

is a clear advantage of solution 5 over 6, since their probabilities of profits below $0.95M are 9% 6 

and 32%, respectively. However, for large profits (say above $1.15M) those solutions behave 7 

differently achieving probabilities of 95% and 75% in configurations 5 and 6, respectively. Notice 8 

how for lower profits solution 5 is more conservative, while for bigger profits solution 6 leads to 9 

bigger benefits.  10 

According to Fig. 15, configuration 5 represents a very conservative solution. The most 11 

conservative solution corresponds to configuration 7, as it provides the smallest equipment capacity 12 

at the expense of small profits (compared with solution 5). Analyzing the worst demand satisfaction 13 

level attained, configuration 6 is the best choice since its satisfaction rate is the highest one (93% in 14 

their worst scenario), while configuration 5 is the least reliable, whit a satisfaction of 76% (See 15 

Table 7).  16 
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 1 

Fig. 15. Batch plant configuration scheme for the reduced set of solutions found in the second case 2 
study. 3 

5. Conclusions  4 

In this work we have proposed a systematic methodology to support risk management in 5 

optimization under uncertainty that incorporates several stochastic metrics that assess the 6 

performance of a solution considering the whole space of uncertain parameters. The proposed 7 

strategy combines optimization under uncertainty considering multiple risk metrics with a 8 

systematic approach for the selection of the most promising alternatives. The capabilities of this 9 

approach have been successfully proved using as test-bed a multi-scenario multi-objective design 10 

and planning supply chain model. Numerical results show that the proposed approach accelerates 11 

the search for supply chain design alternatives behaving in different manners in the uncertain 12 

parameters space. Furthermore, Pareto filters narrow down the number of each such alternatives, 13 

ensuring that the final design selected performs well for a wide range of economic targets.  14 

Our tool assists decision-making by incorporating several risk metrics in the modeling framework 15 

and by avoiding subjectivity when selecting the final solution. This approach can be used in a wide 16 

variety of engineering problems in which multiple conflicting objectives and/or different 17 

performance criteria must be simultaneously considered.  18 
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Nomenclature 

Abbreviations 

MOO Multi-objective optimization 

SC Supply chain 

SCM Supply Chain Management 

MILP Mixed integer linear programming 

PSE Process system engineering 

SAA Sample average approximation 

RAR Risk Area Ratio 

SO Simple Objective 

VPI Value of Perfect Information 

Indexes 

Sp Suppliers 

R Raw material 

L Plants 

J Batch stages 

I Products 

M Warehouses 

G Customer zones 

S Scenarios 

Sol Solutions 

D Parallel unit in phase 

W Tanks sizes 

P Batch unit discrete sizes 

Parameters 

Ω Target value for risk metrics 

 ௜௚ Demand product i for each customer zone gܦ

 ௦ Probability of occurrence for scenario eܾ݋ݎ݌

መ݂
௟௢ Lower bound in normalized scale 
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መ݂
௨௣ Upper bound in normalized scale 

௟݂௢ Lower bound in objective value 

௨݂௣ Upper bound in objective value 

Δݐ Tolerance value for Smart Pareto filter 

݂݈௥,௜,௝ Conversion factor of raw material r to produce product I in batch stage j 

Ф Maximum ratio allowed between batches of consecutive stages. 

 ௜ Selling price of product i݁ܿ݅ݎܲ

ܳ௜,௟
௎௉  Upper bound for production of product i in plant l. 

ܳ௜,௟
௅ை  Lower bound for production of product i in plant l. 

ܳ௠௠௔௫   Upper bound of storage capacity of warehouse m 

 ௜,௠݀ܥ Storage cost of product i at storage m 

 ௜,௟݀݋ݎ݌ܥ Production cost of product i at plant l 

 ௦௣,௥ݓܽݎܥ Raw material acquisition cost from supplier sp and raw material r 

 ௜,௟,௠݌ݐܥ Distribution cost of product i among production plant l and storage site m 

 ௜,௠,௚݀ݐܥ Distribution cost of product i among storage site m and customer zone g 

ܵ ௜ܶ,௝,௟  Size factor for each storage tank for contain product I at batch stage j in plant l  

 ௝,௟,௪ܨܸܶ Discrete size w for storage tanks in stage j of plant l 

Sets/subsets 

௦ܰ Set of supplier sites 

௥ܰ Set of raw materials 

௟ܰ Set of batch plants 

௝ܰ Set of batch stages 

௜ܰ Set of products 

ܰ௠ Set of warehouses 

௚ܰ Set of customer zones 

ܵ  Set of different scenarios 

ܵܵ Set of different solutions belonging to NSS 
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 ݈݋ܵ Set of different solutions form model P 

RSS  Raw set of solutions 

∗ݔ̅  Optimal set of solutions for scenario e 

∗തݕ  Second stage variables in the full optimal solution 

 Optimal solution for order of efficiency algorithm ∗ݔݔ

∗ݏ   Optimal set of solutions for the entire set of scenarios e 

NSS Normalized set of solutions 

Ob Objectives under analysis 

NOO Number of objectives under analysis 

௞ܸ Set of solution efficient of order k 

RS Set of rejected solutions 

P Solution retained after Smart Pareto filter 

M’ Set of candidate solutions 

c’ Counter set 

cc’ Counter set 

K Order of efficiency  

Θ  Space of uncertain parameters 

Variables 

 Vector of first-stage decision variables ݔ

 Random vector associated to an uncertainty behaviour ߣ

 ݕ Vector of second-stage decision variables 

 ஐ௦ Positive deviation of the profit value from the target Ω in scenario eߜ

 ௦ Profit obtained for scenario eݐ݂݅݋ݎܲ

መ݂ Normalized value 

݂ Real objective value 

Eprofit Objective (Expected profit) 

ܳ௦௣,௥,௜,௟,௦ 
Material amount of raw material r send from supplier site sp to plant l in order to produce product i at 
scenario s 
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 ௜,௝,௟,௦ Batch size of product i at stage j in plant l for scenario sܤ

ܰ ௝ܲ,௟ Number of in phase units for stage j in plant l 

ܰ ௜ܾ,௝,௟,௦ Number of batches of product i in stage j of plant l. 

 ௝,௟,௣ Discrete size p for batch units in stage j of plant lܨܸ

݁݁௜,௝,௟,௣,ௗ,௦ Non-negative continuous variable 

ܸ ௜ܶ,௝,௦ Tank size installed for contain product i from batch stage j at scenario s  

ܵܵ௖ Normalized solution c  

 ௜௝௟ Size required for batch stage j to produce 1kg of final product i in plant l݁ݖ݅ܵ

DR Downside risk 

WC Worst case 

VaR Value at risk 

OV Opportunity value 

Risk Financial risk 

ܸ ௝ܼ,௜,௦ Batch unit size of stage j of plant l at scenario s 

݂ ௜݂,௝,௟,௪ Continuous variable that is equal to ܳ௜௟ if batch stage j is installed with tank size w 

 ௜,௝,௟,௣,௡,ௗ Auxiliary variable to skip nonlinearitiesߩ

 ௟ Installation cost of plant l݈݌ܥ

 ௠ Installation cost of storage m݌݁݀ܥ

 Total allocation cost ܥܮ

 Total investment cost ܥܫ

 Equipment acquisition cost ܥܧ

 ௔௡ Capital charge factorܥ

 ௦ Total operating cost at scenario sܥܱ

 ௦ Total distribution cost of scenario sܥܶ

 ௦௣,௥,௜,௟ݓܽݎݐܥ
Distribution cost of raw material r among supplier site sp to production plant l in order to produce 
product i 

 ௦ Total cost including operating and investment costݐݏ݋ܥܶ

 .௦ Total revenue obtained by selling product iݏ݈݁ܽܵ
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Binary Variables 

ܼஐ௦ 1 if Profit for scenario e is lower than the target Profit Ω 

 ௟ Takes value 1 if plant l is allocatedݔ݁

 ௜,௟ݖݖ Is equal to 1 if product i is produced in plant l 

 ௠,௦ Takes value 1 if warehouse m is allocated for scenario sݕݕ

 ௝,௟,ௗ Takes value 1 if stage j of plant l has d parallel units in phaseݖݔ

 ௝,௟ Determines if a tank is allocated after batch stage jݑݏ

 ௝,௟,௪ Takes value 1 if a tank of size w is allocated in batch stage j and plant lݐݒ

 ௝,௜,௣ Takes value 1 if a batch stage j is allocated to produce product I and with size  pߥ

 1 

Acknowledgements 2 

The authors would like to thank the financial support received from the Spanish Ministry of 3 

Economy and Competitiveness and the European Regional Development Fund, both funding the 4 

Project ECOCIS (DPI2013-48243-C2-1-R), the Spanish "Ministerio de Ciencia y Competitividad", 5 

through the project CTQ2016-77968-C3-1-P, the Generalitat de Catalunya (project 2014-SGR-6 

1092-CEPEiMA), the Mexican “Consejo Nacional de Ciencia y Tecnología (CONACYT)”, and the 7 

Pump-Priming Research Program of The University of Manchester. 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 



34 

 

References 1 

Ahmed S., Sahinidis N.V. 1998. “Robust Process Planning under Uncertainty”. Industrial 2 

& Engineering Chemistry Research 37, 1883-1892. 3 

Antipova E., Pozo C., Guillén-Gosálbez G., Boer D., Cabeza L.F., and Jiménez L. 2015. 4 

“On the Use of Filters to Facilitate the Post-Optimal Analysis of the Pareto Solutions 5 

in Multi-Objective Optimization.” Computers & Chemical Engineering.74, 48-58.  6 

Applequist G. E., Pekny J. F., and Reklaitis G. V. 2000. “Risk and Uncertainty in 7 

Managing Chemical Manufacturing Supply Chains.” Computers and Chemical 8 

Engineering. 24, 2211–2222.  9 

Aseeri A., Gorman P., and Bagajewicz M. J. 2004. “Financial Risk Management in 10 

Offshore Oil Infrastructure Planning and Scheduling.” Industrial & Engineering 11 

Chemistry Research. 43, 3063–3072.  12 

Aseeri A., and Bagajewicz M. J. 2004. “New Measures and Procedures to Manage 13 

Financial Risk with Applications to the Planning of Gas Commercialization in Asia.” 14 

Computers and Chemical Engineering. 28, 2791–2821.  15 

Barbaro A., and Bagajewicz M. J.. 2004. “Managing Financial Risk in Planning under 16 

Uncertainty.” AIChE Journal. 50 (5), 963–89.  17 

Ben-Tal A., El-Ghaoui L., Nemirovski A. 2009. "Robust Optimization". 18 

Bernardo F.P., Pistikopoulos E.N., Saraiva P.M. 1999. “Integration and Computational 19 

Issues  in Stochastic Design and Planning Optimization Problems”. Industrial & 20 

Engineering Chemistry Research. 38, 3056-3068 21 

Bernardo F.P., Saraiva P.M., Pistikopoulos E.N. 2000. “Inclusion of Information Costs in 22 

Process Design Optimization under Uncertainty”. Computers and Chemical 23 

Engineering 24, 1695-1701. 24 

Bernardo F.P., Pistikopoulos E.N., Saraiva P.M. 2001. “Quality Costs and Robustness 25 

Criteria in Chemical Process Design Optimization”. Computers and Chemical 26 

Engineering 25, 27-40. 27 

Birge J.R., and Louveaux F. 2011. Introduction to Stochastic Programming.  28 

Bolstad, B.M., Irizarry R. A., Åstrand M., and Speed T.P. 2003. “A Comparison of 29 

Normalization Metholds for High Density Oligonucleotide Array Data Based on 30 

Variance and Bias.” Bioinformatics 19 (2), 185–93. 31 

Bonfill A., Bagajewicz M.J., Espuña A., and Puigjaner L. 2004. “Risk Management in the 32 

Scheduling of Batch Plants under Uncertain Market Demand.” Industrial & 33 

Engineering Chemistry Research 43, 741–50. 34 

Cardoso S.R., Barbosa-Póvoa A.P., and Relvas S. 2016. “Integrating Financial Risk 35 

Measures into the Design and Planning of Closed-Loop Supply Chains.” Computers & 36 

Chemical Engineering 85, 105–23.  37 

Cheng, L., Subrahmanian E., and Westerberg A.W.. 2003. “Design and Planning under 38 

Uncertainty: Issues on Problem Formulation and Solution.” Computers & Chemical 39 

Engineering 27 (6), 781–801.  40 



35 

 

Corsano G., Guillén-Gosálbez G., and Montagna J.M.. 2014. “Computational Methods for 1 

the Simultaneous Strategic Planning of Supply Chains and Batch Chemical 2 

Manufacturing Sites.” Computers and Chemical Engineering 60, 154–171.  3 

Corsano G., and Montagna J.M. 2011. “Mathematical Modeling for Simultaneous Design 4 

of Plants and Supply Chain in the Batch Process Industry.” Computers and Chemical 5 

Engineering 35 (1), 149–64.  6 

Das I. 1999. “A Preference Ordering among Various Pareto Optimal Alternatives.” 7 

Structural Optimization 18 (1), 30–35. 8 

Diwekar U.M., Kalagnanam J.R. 1997. “Efficient Sampling Technique for Optimization 9 

under Uncertainty”. AIChE Journal, 43 (2), 440-447. 10 

Guillén-Gosálbez G., Grossmann I.E. 2009. "Optimal Design and Planning of Sustainable 11 

Chemical Supply Chains Under Uncertainty". AIChE Journal 55,  99–121. 12 

 Guillén-Gosálbez G., Grossmann I.E. 2010. "A global optimization strategy for the 13 

environmentally conscious design of chemical supply chains under uncertainty in the 14 

damage assessment model". Computers and Chemical Engineering. 34, 42–58. 15 

Grossmann I.E., and Guillén-Gosálbez G. 2010. “Scope for the Application of 16 

Mathematical Programming Techniques in the Synthesis and Planning of Sustainable 17 

Processes.” Computers and Chemical Engineering 34 (9), 1365–1376.  18 

Ierapetritou M.G., Pistikopoulos E.N., Floudas C.A. 1996. “Operational Planning under 19 

Uncertainty”. Computers and Chemical Engineering 20, 1499-1516. 20 

Janak S.L., Lin X., Floudas C.A. 2007. "A new robust optimization approach for 21 

scheduling under uncertainty. II. Uncertainty with known probability distribution". 22 

Computers and Chemical Engineering 31, 171–195. 23 

Kostin A. M., Guillén-Gosálbez G., Mele F. D., Bagajewicz M. J., and Jiménez L.. 2012. 24 

“Design and Planning of Infrastructures for Bioethanol and Sugar Production under 25 

Demand Uncertainty.” Chemical Engineering Research and Design 90 (3), 359–76.  26 

Law A.M., Kelton W.D. 2000. Simulation Modeling and Analysis, 3rd ed. New York: 27 

McGraw Hill. 28 

Li Z., Floudas C.A. 2014. “A Comparative Theoretical and Computational Study on Robust 29 

Counterpart Optimization: III. Improving the Quality of Robust Solutions.” Industrial 30 

& Engineering Chemistry Research 53, 13112–13124.  31 

Mattson C.A., and Messac A. 2003. “Concept Selection Using S-Pareto Frontiers.” AIAA 32 

Journal 41 (6): 1190–98.  33 

Mattson C.A., Mullur A.A., and Messac A.. 2004. “Smart Pareto Filter: Obtaining a 34 

Minimal Representation of Multiobjective Design Space.” Engineering Optimization 35 

36 (6), 721–40.  36 

Plambeck E.L., Fu B.R., Robinson S.M., and Suri R.. 1996. Sample-Path Optimization of 37 

Convex Stochastic Performance Functions. Mathematical Programming 75,137-176 38 

Pozo C., Ruíz-Femenia R., Caballero J., Guillén-Gosálbez G., and Jiménez L.. 2012a. “On 39 

the Use of Principal Component Analysis for Reducing the Number of Environmental 40 



36 

 

Objectives in Multi-Objective Optimization: Application to the Design of Chemical 1 

Supply Chains.” Chemical Engineering Science 69 (1), 146–58.  2 

Pozo C., Guillén-Gosálbez G., Sorribas A., and Jiménez L. 2012b. “Identifying the 3 

Preferred Subset of Enzymatic Profiles in Nonlinear Kinetic Metabolic Models via 4 

Multiobjective Global Optimization and Pareto Filters.” PloS One 7 (9), e43487.  5 

Rubinstein R.Y., and Shapiro A. 1990. “Optimization of Statistic Simulation Models by the 6 

Score Function Method.” Mathematics and Computers in Simulation 32, 373–392. 7 

Sabio N., Pozo C., Guillén-Gosálbez G., Jiménez L., Karuppiah R., Vasudevan V., Sawaya 8 

N., and Farrell J.. 2014. “Multiobjective Optimization Under Uncertainty of the 9 

Economic and Life-Cycle Environmental Performance of Industrial Processes.” 10 

AIChE Journal 60, 2098–2121. 11 

Santoso T., Ahmed S., Goetschalckx M., Shapiro A. 2005. “A stochastic programming 12 

approach for supply chain network design under uncertainty”. European Journal of 13 

Operational Research 167, 96-115.  14 

Shabbir A., and Shapiro A.. 2002. “The Sample Average Approximation Method for 15 

Stochastic Programs with Integer Recourse.” SIAM Journal on Optimization, 24 16 

Verweij B., Ahmed S., Kleywegt A.J., Nemhauser G., Shapiro A. 2003. “The Sample 17 

Average Approximation Method Applied to Stochastic Routing Problems: A 18 

Computational Study”. Computational Optimization and Application 24, 289-333. 19 

You, F., Wassick J. M., and Grossmann I.E.. 2009. “Risk Management for a Global Supply 20 

Chain Planning Under Uncertainty Models and Algorithms.” AIChE Journal 55 (4): 21 

931–946.  22 

Zamarripa, M., Hjaila K.,  Silvente J., and Espuña A. 2014. “Tactical Management for 23 

Coordinated Supply Chains.” Computers and Chemical Engineering 66: 110–23.  24 

 25 

 26 

  27 



37 

 

Appendix A 1 

The MILP optimizes the SC and batch plant design to maximize the expected profit considering the 2 

coordination among plants. The mathematical model is next described. 3 

4.1. SC network constraints. 4 

These constraints are related to material balances among the different nodes in the SC.  5 

4.1.1. Mass balances between raw material sites and production plants 6 

Let zzi,l be a binary variable whose value is equal to 1 if product i is produced in plant l, and zero 7 

otherwise, and Q the amounts of product. Upper and lower bounds for production capacities are 8 

controlled as Eq.(A.1) shows. Additionally, Eq. (A.1) forces the total amount of product i in plant l 9 

for scenario s to be zero if the product is not produced in l. 10 

										 ௜,௟ܳ௜,௟ݖݖ														
௅ை 	൑ 	ܳ௜,௟,௦ 	൑ ௜,௟ܳ௜,௟ݖݖ

௎௉																							∀݅, ݈, ݏ 																																							ሺܣ. 1ሻ	 

In the same way, the use of each raw material r by the plants and scenario s is limited according to 11 

resource availability in each raw material site sp, as shown in Eq.(A.2).  12 

										 														෍ܳ௦௣,௥,௜,௟,௦
௜,௟

	൑ 	ܳ௦௣,௥௎௉ ,݌ݏ∀																															 ݎ 																																					ሺܣ. 2ሻ 

Also, taking into account the product allocation to a plant, each flow can be restricted according to 13 

Eq.(A.3):  14 

										 														ܳ௦௣,௥,௜,௟,௦ 	൑ 	 ௜,௟ܳ௦௣,௥௎௉ݖݖ ,݌ݏ∀																														 ,ݎ ݅, ݈ 																																ሺܣ. 3ሻ	 

Let ݂݈௥,௜,௟ be the raw material conversion factor. Eq.(A.4) defines the requirement of resource r in 15 

plant l to produce i. 16 

										 													෍ ܳ௦௣,௥,௜,௟,௦

ே௦

௦௣ୀଵ

ൌ 	݂݈௥,௜,௟ܳ௜,௟,௦																									∀ݎ, ݅, ݈, ݏ 																																			ሺܣ. 4ሻ 

In order to avoid infeasibilities, Eq.(A.5) is included forcing the production of ݅ in plant ݈ to be zero 17 

if the plant does not exist. Therefore ݁ݔ௟	 is a binary variable that takes a value of 1 if plant ݈ is 18 

allocated, and zero otherwise. 19 

										 ௜,௟ݖݖ													 	൑ 	 ,݅∀																																	௟ݔ݁ ݈ 																																																ሺܣ. 5ሻ 

4.1.2. Mass balances between production plants and warehouses  20 

The distribution links from production plants (l) to warehouses m in scenario s is constrained by 21 

Eq.(A.6): 22 
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										 													෍ ܳ௜,௟,௠,௦

ே௠

௠ୀଵ

ൌ 	ܳ௜,௟,௦																												∀݅, ݈, ݏ 																																										ሺܣ. 6ሻ 

A binary variable is required to control the existence of warehouses. If  ݕݕ௠,௦ is 1, warehouse ݉ 1 

exists, and if it is zero it does not.  2 

										 													෍ܳ௜,௟,௠,௦
௜,௟

൑ ܳ௠௠௔௫	ݕݕ௠,௦																						∀݉, ݏ 																																											ሺܣ. 7ሻ 

Eq. (A.7) represents the constraint of received products in a warehouse m according with its upper 3 

capacity (ܳ௠௠௔௫). 4 

4.1.3. Mass balances between warehouses and customer zones  5 

Assuming a steady-state operation (i.e., there is no stock accumulation), the total amount of product 6 

i stored in warehouse m has to be delivered to some customer zones g, as expressed in Eq.(A.8): 7 

									 												෍ܳ௜,௟,௠,௦

ே௟

௟ୀଵ

ൌ 	෍ܳ௜,௟,௚,௦

ே௚

௚ୀଵ

																			∀݅,݉, ݏ 																																						ሺܣ. 8ሻ 

The amount of product delivered from m has to be zero if the warehouse does not exist; otherwise 8 

the amount of products to be stored is limited, as shown in Eq. (A.9). 9 

										 												෍ܳ௜,௠,௚,௦

௜,௚

൑ ܳ௠௠௔௫	ݕݕ௠,௦																										∀݉, ݏ 																																					ሺܣ. 9ሻ 

Disregarding the installation or not of warehouses the demands have to be fulfilled, as shown in Eq. 10 

(A.10). 11 

										 ௜,௚ܦ												 ൌ ෍ ෍ܳ௜,௟,௠,௦

௟

ே௠

௠ୀଵ

																		∀݅, ݏ 																																					ሺܣ. 10ሻ 

 12 

A.2. Production plant design equations 13 

A.2.1. Batch units  14 

Considering the common assumptions for multiproduct batch plant design and the general batch 15 

process literature, the batch unit size of stage j of plant l, ܸ ௝ܼ,௟,௦, is computed through a sizing 16 

equation (Eq.(A.11)) which is applied for each product i as follows: 17 

										 												ܸ ௝ܼ,௟,௦ ൒
௜,௝,௟,௦ܤ௜,௝,௟݁ݖ݅ܵ

ܰ ௝ܲ,௟
							∀݅, ݆, ݈, ݏ 																																																																		ሺܣ. 11ሻ 
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where ܵ݅݁ݖ௜,௝,௟ is the size factor (the size required at stage j to produce 1kg of final product i), ܤ௜,௝,௟,௦ 1 

is the batch size of product i at stage j in plant l at any scenario s, and ܰ ௝ܲ,௟ is the number of in 2 

phase units for stage j in plant l. Let ܾܰ௜,௝,௟,௦ be the number of batches of product i in stage j of plant 3 

l and scenario s. The amount of product i produced in plant l is defined by Eq.(A.12)  4 

										 												ܳ௜,௟,௦ ൌ ܾܰ௜,௝,௟,௦ܤ௜,௝,௟,௦							∀݅, ݆, ݈, ݏ 																																																															ሺܣ. 12ሻ 

By combining Eq. (A.11) and Eq. (A.12), the following constraint is obtained 5 

										 												ܾܰ௜,௝,௟,௦ ൒
௜,௝,௟ܳ௜,௟,௦݁ݖ݅ܵ
ܸ ௝ܼ,௟,௦ܰ ௝ܲ,௟

							∀݅, ݆, ݈, ݏ 																																																																				ሺܣ. 13ሻ 

In order to formulate the problem as an MILP, non-linear constraints are avoided by rewriting the 6 

previous design equation (Eq.(A.13)) in the following manner (Eq.(A.14)). Let ݖݔ௝,௟,ௗ be the binary 7 

variable that takes a value of 1 if stage j of plant l has d parallel units in phase, and zero otherwise, 8 

then we have: 9 

										 										ܰ ௝ܲ,௟ ൌ ෍ ݀

ே௉ೕ,೗
ೆು

ௗୀଵ

,݆∀																										௝,௟,ௗݖݔ ݈ 																																						ሺܣ. 14ሻ 

										 										 ෍ ௝,௟,ௗݖݔ

ே௉ೕ೗
ೆು

ௗୀଵ

ൌ 	 ,݆∀																							௟ݔ݁ ݈	 																																									ሺܣ. 15ሻ 

where ܰ ௜ܲ,௝
௎௉

 represents the total available units in phase for stage j in plant l. Eq. (A.15) states that 10 

at least one unit per stage must exist if plant l is allocated.  11 

The size for unit j of plant l, ܸ ௝ܼ,௟,௦, considering a set of available discrete sizes p, is given by Eq. 12 

(A.16) while Eq.(A.17) defines if a plant will be allocated (or not) as well as the discrete size of the 13 

plant: 14 

										 										ܸ ௝ܼ,௟,௦ ൌ ෍ܸ ௝ܼ,௟,௣,௦ܸܨ௝,௟,௣

௉ೕ,೗

௣ୀଵ

																				∀݆, ݈, 	ݏ 																																ሺܣ. 16ሻ 

										 										 ෍ ܸ ௝ܼ,௟,௣,௦

௣∈ௌ௏ೕ೗

ൌ ,݆∀																							௟ݔ݁ ݈, ݏ 																																	ሺܣ. 17ሻ 

Substituting Eq. (A.17) for Eq. (A.13) under NPj,l definition  15 

										 										ܾܰ௜,௝,௟,௦ ൒ ෍
௜,௝,௟ܳ௜,௟,௦݁ݖ݅ܵ
௝,௟,௣݀ܨܸ

௝,௟,ௗݖݔ௝,௟,௣ݒ
௣,ௗ

																							∀݅, ݆, ݈, ݏ 																																ሺܣ. 18ሻ 
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A new nonnegative continuous variable, ݁݁௜,௝,௟,௣,ௗ,௦, is defined, since constraint Eq. (A.18) is non-1 

linear because of the product  between ܳ௜,௟,௦, ݒ௝,௟,௣ and ݖݔ௝,௟,ௗ. 2 

																			 																																																																																				
																																																																							

									݁݁௜,௝,௟,௣,ௗ,௦ ൌ ൜ ௜ܳ,௟,௦							if							ݒ௝,௟,௣	and	ݖݔ௝,௟,ௗ 	ൌ 	1
0																				otherwise

ൠ	 									∀݅, ݆, ݈, ,݌ ݀, 					ݏ 	ሺܣ. 19ሻ
 

 3 

Therefore, the following linear constraints (Eqs.(A.20-A.23)) are used to represent Eq. (A.18):  4 

										 										ܾܰ௜,௝,௟,௦ ൒ ෍
௜,௝,௟݁ݖ݅ܵ
௝,௟,௣݀௣,ௗܨܸ

݁݁௜,௝,௟,௣,ௗ,௦															∀݅, ݆, ݈, ݏ 																														ሺܣ. 20ሻ 

										 										෍݁݁௜,௝,௟,௣,ௗ,௦
ௗ

൑ ܳ௜,௟
௎௉ݒ௝,௟,௣																							∀݅, ݆, ݈, ,݌ ݏ 																												ሺܣ. 21ሻ 

										 										෍݁݁௜,௝,௟,௣,ௗ,௦
௣

൑ ܳ௜,௟
௎௉ݖݔ௝,௟,௣																	∀݅, ݆, ݈, ݀, ݏ 																															ሺܣ. 22ሻ 

										 ܳ௜,௟,௦ ൌ ෍݁݁௜,௝,௟,௣,ௗ,௦
௣,ௗ

																						∀݅, ݆, ݈, 	ݏ 																																	ሺܣ. 23ሻ 

A.2.2. Intermediate storage  5 

For Njl batch stages there exist, at most, Njl−1 possible positions for storage tanks to be allocated 6 

between two consecutive batch stages. Therefore, an upper bound for the storage vessels can be 7 

defined by Eqs.(A.24-A.25) 8 

										 ܸ ௝ܶ,௜,௦ ൒ 2ܵ ௜ܶ,௝,௟ܤ௜,௝,௟,௦ݑݏ௝,௟																		∀݅, ݈, ,ݏ ݆ ൌ 1, 2,… , ௝ܰ,௟ିଵ	 																										ሺܣ. 24ሻ 

										 ܸ ௝ܶ,௜,௦ ൒ 2ܵ ௜ܶ,௝,௟ܤ௜,௝ାଵ,௟,௦ݑݏ௝,௟																		∀݅, ݈, ,ݏ ݆ ൌ 1, 2, … , ௝ܰ,௟ିଵ	 																					ሺܣ. 25ሻ 

where ܸ ௝ܶ,௜,௦ represents the tank size, ܵ ௜ܶ,௝,௟  is the size factor for each storage tank and ݑݏ௝,௟  is a 9 

binary variable that determines if a tank is allocated after batch stage j with the value of 1, and zero 10 

otherwise. 11 

Using Eq.(A.11) in Eq.(A.13) and Eq.(A.25), the storage constraints are rewritten as Eq.(A.26-A.27): 12 

										 ܾܰ௜,௝,௟,௦ ൒ 2
ܵ ௜ܶ,௝,௟ܳ௜,௟,௦
ܸ ௝ܶ,௟,௦

,݅∀																				௝,௟ݑݏ ݈, ,ݏ ݆ ൌ 1, 2, … , ௝ܰ௟ିଵ	 																							ሺܣ. 26ሻ 

										 ܾܰ௜,௝ାଵ,௟,௦ ൒ 2
ܵܶ௜,௝,௟ܳ௜,௟,௦
ܸ ௝ܶ,௟,௦

,݅∀																			௝,௟ݑݏ ݈, ,ݏ ݆ ൌ 1, 2, … , ௝ܰ௟ିଵ	 																		ሺܣ. 27ሻ 
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Again, in order to avoid nonlinearities, a set of available discrete sizes for the tank allocated after 1 

stage j, STFj,l ={ܸܶܨ௝,௟,ଵ, ܸܶܨ௝,௟,ଶ, ..., ܸܶܨ௝,௟,௪}, is selected. Let ݐݒ௝,௟,௪ be the binary variable that 2 

takes a value 1 if a tank of size w is allocated in position j and zero otherwise. The first tank size of 3 

the set, ܸܶܨ௝௟ଵ, is equal to zero to represent “no tank allocation”. Then, Eq. (A.26) and Eq. (A.27) 4 

are rewritten as Eq.(A.28-A.30): 5 

										 ܾܰ௜,௝,௟,௦ ൒ 2 ෍
ܵ ௜ܶ,௝,௟ܳ௜,௟,௦
௝,௟,௪ܨܸܶ

௝௟௪ݐݒ
௪ஷଵ

																			∀݅, ݈, ,ݏ ݆ ൌ 1, 2, … , ௝ܰ௟ିଵ	 																ሺܣ. 28ሻ 

										 ܾܰ௜,௝ାଵ,௟௦ ൒ 2 ෍
ܵ ௜ܶ,௝,௟ܳ௜,௟,௦
௝,௟,௪ܨܸܶ

௝,௟,௪ݐݒ
௪ஷଵ

																	∀݅, ݈, ,ݏ ݆ ൌ 1, 2,… , ௝ܰ௟ିଵ	 							ሺܣ. 29ሻ 

෍ݐݒ௝,௟,௪
௪

ൌ 	 ,݈∀																																							௟ݔ݁ ݆ ൌ 1, 2,… , ௝ܰ௟ିଵ	 									ሺܣ. 30ሻ 

Eq. (A.30) states that if plant l exists, then only one discrete size for a tank after stage j has to be 6 

selected. Using the continuous variable ݂ ௜݂,௝,௟,௪ =	ܳ௜,௟ ݐݒ௝,௟,௪, Eq.(A.28) and Eq.(A.29) become linear 7 

and give rise to Eq.(A.31-A.32) using the constraints represented in Eq.(A.33-A.34). 8 

										 ܾܰ௜,௝,௟,௦ ൒ 2 ෍
ܵ ௜ܶ,௝,௟

௝,௟,௪ܨܸܶ
݂ ௜݂,௝,௟,௪

௪ஷଵ

																								∀݅, ݈, ,ݏ ݆ ൌ 1, 2,… , ௝ܰ,௟ିଵ	 										ሺܣ. 31ሻ 

										 ܾܰ௜,௝ାଵ,௟௦ ൒ 2 ෍
ܵ ௜ܶ,௝,௟

௝,௟,௪ܨܸܶ
݂ ௜݂,௝,௟,௪

௪ஷଵ

																∀݅, ݈, ,ݏ ݆ ൌ 1, 2, … , ௝ܰ,௟ିଵ	 											ሺܣ. 32ሻ 

										 ݂ ௜݂,௝,௟,௪ ൑ ܳ௜,௟
௎௉ݐݒ௝,௟,௪																																∀݅, ݈, ݆ ൌ 1, 2, … , ௝ܰ,௟ିଵ, 	ݓ 											ሺܣ. 33ሻ 

										 ܳ௜,௟,௦ ൌ෍݂ ௜݂,௝,௟,௪

௪

																																		∀݅, ݈, ,ݏ ݆ ൌ 1, 2,… , ௝ܰ,௟ିଵ	 							ሺܣ. 34ሻ 

If the storage tank does not exist between two consecutive batch stages, then the number of batches 9 

must be equal for both of them. Else, the bounds for the ratio between the numbers of batches of 10 

consecutive stages can be stated by Corsano et al., 2011  and calculated as in Eq.(A.35): 11 

 12 

ܾܰ௜,௝,௟,௦ ൅ ൬
1
߶
െ 1൰ ෍ ௝,௟,௪ݐݒ

௪ஷଵ

	൑
ܾܰ௜,௝ାଵ,௟,௦
ܾܰ௜௝௟௦

൑ 1 ൅ ሺ߶ െ 1ሻ ൈ ෍ ௝,௟,௪ݐݒ
௪ஷଵ

						∀݅, ݈, ,ݏ ݆ ൌ 1, 2, … , ௝ܰ,௟ିଵ	 											ሺܣ. 35ሻ 

where ߶ is a constant value corresponding to the maximum ratio allowed between the number of 13 

batches of consecutive stages.  14 

A.3. Objective Function  15 
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The investment cost considers the batch units and storage tanks cost. In this work, they are selected 1 

from a set of available discrete sizes. Then, equipment cost (EC) is given by Eq. (A.36) 2 

ܥܧ ൌ෍෍෍෍෍ߙ௝,௟ܸܨ௝,௟,௣
൫ఉೕ,೗൯

ௗ௡௣௝௟

௝,௟,ௗݖݔ௝,௟,௡݀ݔ௝,௟,௣݊ݒ

൅෍෍෍ߙത௝,௟ܸܶܨ௝,௟,௪
ఉഥೕ,೗ ௝௟௪ݐݒ

௪௝௟

						∀݆, ݈									 ሺܣ. 36ሻ 

The first term corresponds to the batch units cost while the second one is the storage tanks cost. In 3 

order to avoid nonlinearities, the continuous variable ߩ௜,௝,௟,௣,௡,ௗ is defined equal to 1 if stage ݆ of 4 

plant ݈ has n out of phase units and ݀ in phase units of size 0 ,݌ otherwise. Its value is given by 5 

Eq.(A.37-38). 6 

௜,௝,௟,௣,௡,ௗߩ ൒ ௝,௟,௣ݒ	 ൅ ௝,௟,௡ݔ ൅	ݔݔ௝,௟,ௗ െ 2 													∀݅, ݆, ݈, ,݌ ݊, ݀								 ሺܣ. 37ሻ 

0	 ൑ ௜,௝,௟,௣,௡,ௗߩ 	൑ 1 																														∀݅, ݆, ,݌݈ ݊, ݀ 									ሺܣ. 38ሻ 

Then the equipment cost can be rewritten as in Eq.(A.39). 7 

ܥܧ ൌ෍෍෍෍෍ߙ௝,௟ܸ݊݀ܨ௝,௟,௣
൫ఉೕ,೗൯

ௗ௡௣௝௟

௜,௝,௟,௣,௡,ௗߩ

൅෍෍෍ߙത௝,௟ܸܶܨ௝,௟,௪
ఉഥೕ೗

௪௝௟

௝,௟,௪ݐݒ
						∀݆, ݈									 ሺܣ. 39ሻ 

A fixed investment cost is considered if production plants and warehouses are installed. Then, the 8 

allocation cost (LC) is given by Eq.(A.40), in which ݈݌ܥ௟  and ݌݁݀ܥ௠  are the installation cost 9 

coefficients. 10 

ܥܮ ൌ෍݈݌ܥ௟݁ݔ௟ ൅෍݌݁݀ܥ௠
௠௟

௠ݕ 																												 ሺܣ. 40ሻ 

Therefore, the total investment cost is described in Eq.(A.41). 11 

ܥܫ ൌ ܥܧ௔௡ሺܥ ൅ ሻܥܮ 																																																							 ሺܣ. 41ሻ 

The operating cost, including raw material acquisition, storage, and production cost are considered 12 

through the following expression (Eq.(A.42)). 13 

௦ܥܱ ൌ෍෍෍෍ݓܽݎܥ௦௣,௥ܳ௦௣,௥,௜,௟,௦
௟௜௥௦௣

൅෍෍෍݀ܥ௜,௠ܳ௜,௟,௠,௦

௠௟௜

൅෍෍݀݋ݎ݌ܥ௜,௟ܳ௜,௟,௦
௟௜

ݏ∀			 ሺܣ. 42ሻ 

 ௜,௜ are the associated costs for raw material acquisition, storage, and 14݀݋ݎ݌ܥ ௜,௠, and݀ܥ ,௦௣,௥ݓܽݎܥ

production cost, respectively. The ܳ amounts are expressed in kg per time horizon, therefore the 15 

cost parameters are given in $/kg.  16 
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The distribution costs at the entire supply chain are also considered in this model. Those costs are 1 

represented through the Eq. (A.43). 2 

௦ܥܶ ൌ෍෍෍෍ݓܽݎݐܥ௦௣,௥,௟ܳ௦௣,௥,௜,௟,௦
௟௜௥

൅෍෍෍݌ݐܥ௜,௟,௠ܳ௜,௟,௠,௦
௟௜௠௦௣

൅෍෍෍݀ݐܥ௜,௠,௞ܳ௜,௠,௞,௦
௞௠௜

ݏ∀ ሺܣ. 43ሻ 

In Eq.(A.43), ݓܽݎݐܥ௦௣,௥,௟, ݌ݐܥ௜,௟,௠, and ݀ݐܥ௜,௠,௞ are cost coefficients that depend on the product 3 

transported and the covered distance. Eq.(A.44) summarize the total cost for each scenario. 4 

௦ݐݏ݋ܥܶ ൌ ௦ܥܶ ൅ ௦ܥܱ 																		ݏ∀																																									 ሺܣ. 44ሻ 

Eq.(A.45) describes the economic revenue of selling the final product at each scenario. Where  5 

௜݁ܿ݅ݎܲ  is the selling price of product i in $/kg.  The profit at each scenario is obtained through the 6 

difference among economic revenue and associated costs at each scenario realization as represented 7 

in Eq.(A.46). 8 

௦ݏ݈݁ܽܵ ൌ෍෍෍ܳ௜,௠,௞,௦ܲ݁ܿ݅ݎ௜
௞௠௜

ݏ∀																													 																ሺܣ. 45ሻ 

ܫܨܱܴܲ ௦ܶ ൌ ௦ݏ݈݁ܽܵ െ ௦ݐݏ݋ܥܶ 															ݏ∀																												 ሺܣ. 46ሻ 

In Eq.(A.47) the total expected profit is described, in which the associated probability of each 9 

scenario is taken into account. Additionally, costs which don’t depend on the scenario realization 10 

are considered in this equation, denoted as IC. 11 

ݐ݂݅݋ݎܲܧ ൌ ൭෍ܴܱܲܫܨ ௦ܶ
௦

௦൱ܾ݋ݎܲ െ ܥܫ 																																						 ሺܣ. 47ሻ 

The objective function to be maximized is as follows. 12 

max 				ሼݐ݂݅݋ݎܲܧሽ 																																																															  

For more details on the model, authors invite the readers to check Corsano et al., 2011 13 
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Appendix B 1 

Table B.1. Raw material costs. 2 

 

Distribution Cost ($ kg-1) Procurement cost ($ kg-1) 

l1 l2 l3 l4 l5 r1 r2 r3 

s1 0.02 0.1 0.08 0.06 0.08 0.02 0.02 0.01 

s2 0.14 0.12 0.14 0.02 0.06 0.02 0.01 0.02 

 3 

  4 

Table B.2.Product demand (Ton). 5 

i1 i2 i3 i4 

g1 150 130 150 100 

g2 100 120 150 100 

g3 115 130 150 120 

 6 

Table B.3. Product distribution cost form plant to warehouse. 7 

Distribution Cost ($ kg-1) 

m1 m2 m3 

i1 i2 i3 i4 i1 i2 i3 i4 i1 i2 i3 i4 

l1 0.1 0.17 0.05 0.05 0.2 0.1 0.15 0.15 0.23 0.16 0.11 0.11 

l2 0.2 0.19 0.25 0.25 0.19 0.18 0.35 0.35 0.18 0.19 0.15 0.15 

l3 0.2 0.18 0.25 0.25 0.18 0.15 0.25 0.25 0.15 0.08 0.15 0.18 

l4 0.05 0.1 0.2 0.15 0.15 0.11 0.2 0.2 0.1 0.15 0.15 0.05 

l5 0.2 0.18 0.25 0.25 0.2 0.15 0.25 0.25 0.15 0.15 0.08 0.08 

 8 

  9 
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Table B.4. Product distribution cost ($ kg-1) from warehouse to customer. 1 

m1 m2 m3 

g1 0.08 0.09 0.09 

g2 0.07 0.09 0.08 

g3 0.06 0.07 0.05 

 2 

Table B.5. Batch parameters. 3 

Batch parameters 

Size factors Operating time (h)
Raw material factor 
conversion 

Production Cost ($ kg-1) 

j1 j2 j3 j1 j2 j3 r1 r2 r3 l1 l2 l3 l4 l5 

i1 0.9 0.6 0.4 14 5 7 0.8 0.5 0.7 0.12 0.18 0.12 0.06 0.12 

i2 0.6 0.5 0.4 12 6 4 0.6 0.8 0.8 0.08 0.16 0.06 0.12 0.10 

i3 0.7 0.5 0.4 16 8 5 0.4 0.5 0.5 0.12 0.14 0.14 0.08 0.14 

i4 0.8 0.6 0.4 10 4 5 0.5 0.5 0.5 0.14 0.08 0.14 0.04 0.12 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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 Table B.6. Batch costs. 1 

Batch investment cost 

Unit cost coefficient ߙ௝௜	(annualized)
Raw material factor 

conversion 
Production Cost ($ kg-1) 

l1 l2 l3 l4 l5 r1 r2 r3 l1 l2 l3 l4 l5 

j1 1620 2430 1350 1350 1890 0.8 0.5 0.7 0.12 0.18 0.12 0.06 0.12 

j2 2160 1620 2160 1620 1890 0.6 0.8 0.8 0.08 0.16 0.06 0.12 0.1 

j3 1890 2700 1890 1890 2430 0.4 0.5 0.5 0.12 0.14 0.14 0.08 0.14 

Tanks 500 500 500 500 500 0.5 0.5 0.5 0.14 0.08 0.14 0.04 0.12 

 2 

  3 
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Appendix C 1 

The number of scenarios (i.e., sample size) required to ensure a good estimation of the “real” values 2 

in the domain of uncertain parameters is a critical issue in any multiscenario problem. In this regard, 3 

the method proposed by Law and Kelton (2000), represents a promising alternative and it is 4 

completely applicable to any stochastic programming model. This approach relies on solving the 5 

stochastic model iteratively for an increasing number of scenarios until a given relative error ߛ is 6 

satisfied for a confidence level of 100(1-  αα)%. In the context of our problem, this method 7 

comprises the following steps: 8 

1. Define an initial number of scenarios ns0, (as |S|=s=ns0) where s will be updated 9 

dynamically during the execution of the algorithm. 10 

2. Solve the specific stochastic model with |S|=s scenarios 11 

3. Compute the confidence interval half-length ߴሺݏ, ܽܽሻ for the mean value of the values in 12 

each scenario using Eq.B1. 13 

,ݏሺߴ ሻߙܽ ൌ ݐ
௡ିଵ,

ଵି௔ఈ
ଶ
ඨ
ሻݏଶሺݎܸܽ

ݏ
																																																	 ሺܤ. 1ሻ 

Where ܸܽݎଶሺݏሻ  is the sample variance, and ݐ௡ିଵ,భషೌഀ
మ

 is the critical point of the t-14 

distribution. 15 

4. If 
ఋሺ௦,ఈሻ

|ா௩௔௟௨௘|
൑

ఊ

ଵିఊ
, then stop (i.e., the expected value of the discrete distribution is a valid 16 

estimator of the mean of the universe for the relative error and confidence interval 17 

defined beforehand). Otherwise, make ݏ ൌ ݏ ൅ 1 and go to Step 2. 18 

More details about this procedure can be found in the original work by Law and Kelton (2000). 19 


