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Abstract

This dissertation addresses the modeling and solution of mixed-integer linear multistage stochas-
tic programming problems involving both endogenous and exogenous uncertain parameters. We
propose a composite scenario tree that captures both types of uncertainty, and we exploit its
unique structure to derive new theoretical properties that can drastically reduce the number of
non-anticipativity constraints (NACs). Since the reduced model is often still intractable, we dis-
cuss two special solution approaches. The first is a sequential scenario decomposition heuristic in
which we sequentially solve endogenous MILP subproblems to determine the binary investment
decisions, fix these decisions to satisfy the first-period and exogenous NACs, and then solve the re-
sulting model to obtain a feasible solution. The second approach is Lagrangean decomposition. We
present numerical results for a process network planning problem and an oilfield development plan-
ning problem. The results clearly demonstrate the efficiency of the special solution methods over
solving the reduced model directly. To further generalize this work, we also propose a graph-theory
algorithm for non-anticipativity constraint reduction in problems with arbitrary scenario sets. Fi-
nally, in a break from the rest of the thesis, we present the basics of stochastic programming for
non-expert users.
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Chapter 1

Introduction

In the optimization of process systems, there is often some level of uncertainty in one or more of
the input parameters. A major challenge for the decision-maker, then, is to determine how to best
account for this uncertainty. Rather than optimizing for expected values, which can often lead
to suboptimal or even infeasible solutions, these problems can usually be effectively approached
with mathematical programming techniques such as stochastic programming (Birge and Louveaux,
2011), robust optimization (Ben-Tal et al., 2009), or chance-constrained optimization (Li et al.,
2008).

In stochastic programming, the topic of this thesis, a decision-maker must implement a set of
decisions at the beginning of the planning horizon without knowing exactly what the true values
of some of the input parameters will be. After the uncertainty in those parameters is resolved, the
decision-maker can take corrective action based on this new information. Since this approach does
not fix all of the decisions at the beginning of the planning horizon, it tends to be an appropriate
choice for long-term planning projects that may span several decades (Grossmann et al., 2016).

In robust optimization, on the other hand, the general goal is to guarantee feasibility over a
specified uncertainty set. This is typically more appropriate for short-term scheduling problems
where feasibility is a major concern and where there is little scope for corrective action (Grossmann
et al., 2016). Chance-constrained optimization also has a similar emphasis on constraint feasibility;
specifically, some of the constraints must be satisfied with at least a given level of probability for all
possible outcomes of the uncertain parameters present in those respective constraints (Calfa et al.,
2015). As our intended applications are long-term planning problems in which corrective action
is essential and probabilistic constraints are not required, we focus on a stochastic programming
framework to effectively hedge against parameter uncertainties. Extensions of robust optimization
and chance-constrained optimization that allow for some corrective action will not be considered
here; however, a discussion of these approaches can be found in Ben-Tal et al. (2004) (as well as
Lappas and Gounaris, 2016; Zhang et al., 2016) and Liu et al. (2016), respectively.

A second major concern for the decision-maker is the type of uncertainty. In general, there are
two types: exogenous, where the true parameter values are revealed independently of decisions, and
endogenous, where the parameter realizations are influenced by the decisions (Jonsbråten, 1998).
In the context of process systems engineering, exogenous uncertainties often correspond to market
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uncertainties, such as crude-oil prices. The corresponding realizations occur automatically in each
period of the planning horizon, independently of any decisions. For example, in an oilfield planning
problem, we may rely on a forecast to predict the price of oil in the upcoming year. At the time
the forecast is prepared, the true price is unknown. Once next year arrives, however, we will realize
the true price of oil, regardless of the decisions that have been made.

For endogenous uncertainties, we may be dealing with at least two distinct types which we will
refer to as Type 1 and Type 2 (Goel and Grossmann, 2006). In the case of Type 1 endogenous
uncertainties, decisions influence the parameter realizations by altering the underlying probability
distributions for the uncertain parameters. A simple example of this may be an oil company’s
decision to flood the market in order to force a competitor out of business. Here the uncertainty is
no longer strictly exogenous, as the decision will make lower oil-price realizations more probable.
This type has been considered in relatively few stochastic-programming publications; namely, as
far as we are aware: Ahmed (2000); Viswanath et al. (2004); Flach (2010); Peeta et al. (2010); Tong
et al. (2012) and Escudero et al. (2013a) (which consider both exogenous and Type 1 endogenous
uncertainties); Laumanns et al. (2014); Hellemo (2016); and Escudero et al. (2016a) (which also
considers both exogenous and Type 1 endogenous uncertainties).

In the case of Type 2 endogenous uncertainties, decisions influence the parameter realizations
by affecting the time at which we observe these realizations. This refers specifically to technical
parameters, such as oilfield size, for which the true values cannot be determined until a particular
investment decision is made (Goel and Grossmann, 2006). For instance, seismic studies may provide
a good indication of the size of an oilfield, but we will not know the exact recoverable oil volume
until we drill the field and begin producing from it (Goel and Grossmann, 2004). Note that Type 1
and Type 2 endogenous uncertainties are not mutually exclusive; for example, the choice of drilling
technology may make higher oil recoveries more likely (Type 1), but the true recovery will only be
revealed if we decide to develop that field (Type 2). This case is referred to as Type 3 endogenous
uncertainty in Hellemo (2016).

It is worth noting that Powell (2011) classifies problems with either Type 1 or Type 2 endogenous
uncertainty as “state-dependent information processes” and recommends the use of approximate
dynamic programming (ADP) to solve them. In fact, dynamic programming methods have been
successfully applied to optimization problems involving exogenous uncertainties (e.g., Powell, 2011),
Type 1 endogenous uncertainties (e.g., Webster et al., 2012), and Type 2 endogenous uncertainties
(e.g., Choi et al., 2004). Such methods are outside the scope of this thesis; however, we refer the
reader to these selected references for further details.

For the endogenous uncertainties considered here, we will focus exclusively on Type 2, where
decisions affect the timing of realizations. This is sometimes referred to as ‘exogenous uncertainty
with endogenous observation,’ in view of the fact that the technical uncertainty itself is exogenous
(as we cannot alter it), but the time at which this uncertainty is resolved is endogenous (since it
depends on our investment decisions) (Colvin and Maravelias, 2011; Mercier and Van Hentenryck,
2011). For the remainder of this thesis, we will drop the “Type 2” prefix and simply refer to these
uncertainties as endogenous.

The literature on stochastic programming (SP) has focused primarily on problems with exoge-
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nous uncertainties. Reviews of this area are given in Birge (1997), Schultz (2003), and Sahinidis
(2004). Endogenous uncertainty is a newer area and has received far less attention in the literature,
with the first publication introduced by Jonsbråten et al. (1998) less than 20 years ago.1

In the area of process systems engineering, Goel and Grossmann (2004) and Goel et al. (2006)
addressed a gas-field development problem in which the size and initial deliverability of reserves
are uncertain, and these endogenous uncertainties are resolved immediately after the drilling de-
cisions are made. Tarhan and Grossmann (2008) explored the synthesis of process networks with
endogenous uncertainty in the process yields and relaxed the common assumption of immediate
resolution of the uncertainty. Instead, the authors modeled the gradual resolution of uncertainty
over time, which is more in line with reality in some applications. Tarhan et al. (2009) applied this
approach to the oil/gas-field development problem and considered nonlinearities in the reservoir
model. Boland et al. (2008) studied the open pit mine production scheduling problem with endo-
genous uncertainty in the geological properties of the mined materials. The authors proposed a
lazy-constraints approach for handling the large number of non-anticipativity constraints, whereby
these constraints are only added to the problem as needed.

Colvin and Maravelias (2010) (an extension of Colvin and Maravelias, 2008, 2009 considered
endogenous uncertainty in the scheduling of pharmaceutical clinical trials, and proposed a branch-
and-cut method for this problem, as well as several theoretical reduction properties. Although many
of these reduction properties are specific to the pharmaceutical scheduling problem, one applies to
the general case considered here and will be discussed later in this thesis. Solak et al. (2010)
studied R&D project portfolio management under endogenous uncertainty, where the investment
requirement for each project resolves gradually as a function of the progress of the respective
project. The authors solved the resulting model with the sample average approximation method.
The sample problems in this method were solved through the use of Lagrangean relaxation and
a heuristic. In a related study, Colvin and Maravelias (2011) explored endogenous uncertainty
in R&D activities in an R&D pipeline management problem, and also explored risk management
strategies in this context.

Gupta and Grossmann (2011) discussed process networks with endogenous uncertainty in pro-
cess yields, and proposed a general theoretical property that can considerably reduce the dimen-
sionality of the model when there are uncertain parameters defined with three or more possible
realizations. Gupta and Grossmann (2014a) developed a scenario grouping Lagrangean decompo-
sition algorithm for solving large-scale problems of this class (which is similar in concept to the
scenario clustering approach of Escudero et al., 2013b, for two-stage exogenous problems). Gupta
and Grossmann (2014b) also made advances in the modeling of the oilfield development planning
problem under endogenous uncertainty. More recently, Christian and Cremaschi (2015) proposed
two heuristic solution methods for the R&D pipeline management problem: a shrinking-horizon,
multiple two-stage stochastic programming decomposition algorithm, and a knapsack decompo-
sition algorithm. The authors extended the knapsack decomposition algorithm in Christian and
Cremaschi (2017). Additionally, Boland et al. (2016) and Hooshmand Khaligh and MirHassani

1 Jonsbråten et al. (1998) is the first work to address the specific case considered here, where decisions must be
made in order to gain more accurate process information. Pflug (1990) is the first work (of which we are aware) to
consider the case of a decision-dependent stochastic process.
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(2016b) explored non-anticipativity constraint reduction for multistage stochastic programs with
arbitrary scenario sets, which will be of particular interest later in this thesis. Other publications on
stochastic programming under endogenous uncertainty which we will not discuss here, but may be
of interest to the reader, include: multistage stochastic network interdiction (Held and Woodruff,
2005); the decision-rule approach to multistage stochastic programming (Vayanos et al., 2011); the
optimal design of integrated chemical-production sites (Terrazas-Moreno et al., 2012); computati-
onal strategies for nonconvex, multistage mixed-integer nonlinear programs (Tarhan et al., 2013);
and the dynamic single-vehicle routing problem with uncertain demands (Hooshmand Khaligh and
MirHassani, 2016a).

Although many problems contain both endogenous and exogenous uncertainties (e.g., uncertain
field sizes and uncertain oil prices), optimization under both types has been largely unexplored
in the literature. To the best of our knowledge, Goel and Grossmann (2006) has been the only
previous work to comprehensively explore multistage stochastic programming (MSSP) problems
of this class.2 The authors introduced a hybrid mixed-integer linear disjunctive programming
model for these problems and proposed two efficient theoretical properties for eliminating redundant
constraints; however, their numerical studies considered only endogenous uncertainties in capacity
expansion and sizing problems. Dupačová (2006) briefly discussed optimization under both types
of uncertainty but did not provide a specific multistage formulation, new solution strategies, or
numerical results. More recently, Bruni et al. (2015) proposed a stochastic programming approach
for the operating theater scheduling problem, in which there is exogenous uncertainty in the arrival
of emergency patients and endogenous uncertainty in the duration of surgery. The authors offered
only brief details on the modeling of the endogenous uncertainty and employed a heuristic approach
to solve the problem. As our focus is on a general framework for multistage stochastic programming,
Goel and Grossmann (2006) will serve as the foundation for this thesis.

The primary goals of this work are to: (1) efficiently model multistage stochastic programming
problems that involve both endogenous and exogenous parameters; (2) develop effective solution
methods for these problems; and (3) apply the proposed methods to challenging applications.
Given the complexity of these problems and the fact that only little work has been reported on
them, we begin in the next section with a detailed review of the relevant background regarding
multistage stochastic programming under exogenous uncertainty, as well as multistage stochastic
programming under endogenous uncertainty. In Chapter 2, we then introduce the definitions and
notation necessary to model these types of uncertainties and propose a composite scenario tree that
captures all possible realizations of both endogenous and exogenous parameters. Next, in Chapter 3,
we present the multistage stochastic programming models for purely exogenous uncertainty, purely
endogenous uncertainty, and both endogenous and exogenous uncertainties. After this point, we
focus our attention on the latter case, and in Chapter 4, we discuss reduction properties that can
significantly reduce the dimensionality of these problems. In Chapter 5, we introduce a sequential
scenario decomposition heuristic and briefly review Lagrangean decomposition, and then apply
these algorithms to solve a process network example and an oilfield development planning problem.

2 It is worth noting that there is also a significant lack of literature on multistage stochastic programs with both
exogenous and Type 1 endogenous uncertainties. For a discussion of modeling and solution considerations for this
class of problems, see Escudero et al. (2013a).
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We propose a graph-theory algorithm for non-anticipativity constraint reduction in problems with
arbitrary scenario sets in Chapter 6 in order to further generalize this work. In Chapter 7, in a
break from the rest of the thesis, we present the basics of stochastic programming for non-expert
users. Finally, in Chapter 8, we critique the work presented in this thesis, summarize the primary
contributions, and propose possible directions for future research.

1.1 Background
1.1.1 Stochastic Programming under Exogenous Uncertainty
A common approach for optimization under exogenous uncertainty is two-stage stochastic program-
ming (Birge and Louveaux, 2011). In this approach, first-stage decisions are made ‘here and now’
at the beginning of the first time period, without knowing exactly how the uncertainty will un-
fold. The decision-maker then waits for the outcome. At some point following these decisions, the
uncertainty is resolved and the true values of the exogenous-uncertain parameters become known.
Second-stage, or recourse (‘wait-and-see’), decisions are then taken by the decision-maker as cor-
rective action. For example, in a problem spanning multiple time periods, the decision-maker’s
first-stage decisions may enforce an investment plan that is fixed for the entire horizon. Subsequent
recourse decisions allow operating conditions to be specified in response to this plan, based on the
realizations observed for the exogenous-uncertain parameters (see, for instance, Liu and Sahinidis,
1996).

In practice, however, it is often necessary for the decision-maker to have the additional freedom
to make new here-and-now decisions at the beginning of each time period. This leads to a multistage
stochastic programming formulation; decisions, realizations, and recourse actions occur sequentially,
allowing for a more accurate description of the decision-making process for long-term planning
projects. This is illustrated in Figure 1.1 for a three-stage problem with one exogenous-uncertain
parameter, ξt. We use yst and xst to denote the vectors of here-and-now decisions and recourse
decisions, respectively, in each time period t and scenario s. Note that t = 0 corresponds to
the beginning of the first time period (stage 1), t = 1 corresponds to the end of the first time
period/beginning of the second time period (stage 2), and t = 2 corresponds to the end of the
second time period (stage 3). As will be discussed, multistage stochastic programming also provides
a more suitable framework for endogenous uncertainties, as these realizations can occur at any point
in the time horizon.

Figure 1.1: Sequence of events in multistage stochastic programming under exogenous uncertainty.
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One fundamental assumption in stochastic programming, which we have already made here,
is that the time horizon is represented by a set of discrete time periods. A second very common
assumption is that the possible realizations (possible values) for each uncertain parameter are
available from a discretized probability distribution. With these two assumptions in place, the
stochastic process can be represented by a scenario tree, like that shown in Figure 1.2a. Note that
this is the scenario-tree representation of Figure 1.1, where the exogenous parameter ξt has two
possible realizations (low (L) or high (H )) in each time period. Each node in the tree represents
a different possible state of the system in time period t. Arcs indicate a possible transition from a
state in time period t to a new state in time period t+ 1, with a given probability of this transition
occurring. For example, the system shown in Figure 1.2a can transition from its initial state in time
period 1 to either of two different states in time period 2 depending upon the realized value of ξ1.
A complete path from the root node to a leaf node represents a scenario, which corresponds to one
possible combination of realizations for the uncertain parameters (e.g., (ξ̂L1 , ξ̂L2 )). Note that since
the uncertainty is purely exogenous in this case, and exogenous realizations occur automatically in
each time period, the structure of the scenario tree is known in advance.

Figure 1.2: An exogenous scenario tree and its alternative representation.

One complicating aspect of the standard form of the scenario tree (Figure 1.2a) is that the
corresponding stochastic programming problem contains variables that are shared among two or
more scenarios. For instance, in Figure 1.2a, all four scenarios share the variables of the root node
(shown in blue), scenarios 1 and 2 share the variables of the green node at t = 1, and scenarios 3 and
4 share the variables of the purple node at t = 1. This prevents the direct application of scenario-
decomposition approaches like Lagrangean decomposition which can be effective for solving large
stochastic programs.

Ruszczyński (1997) proposed an alternative form of the scenario tree in which shared nodes are
split such that each scenario is given its own unique set of nodes. This is shown in Figure 1.2b.
The alternative form is more amenable to scenario decomposition, as variables are no longer shared
and each scenario represents a different instance of the same deterministic problem with different
realizations for the uncertain parameters. Notice, however, that in moving from the standard form
of the tree to the alternative form, we have created several copies of the same states. For example,
the root node in Figure 1.2a has been split into four separate nodes in Figure 1.2b. These four
nodes all have identical information at that point in time. Accordingly, scenarios 1–4 are said to be
indistinguishable at the beginning of the first time period. It follows that because these scenarios are
indistinguishable at that time, we must treat them all in the same way, and we must make the same
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here-and-now decisions in all four scenarios at the beginning of the first time period. This equality
between the states is enforced by the red horizontal lines connecting the nodes in Figure 1.2b.
These red lines represent what are known as non-anticipativity constraints (Rockafellar and Wets,
1991; Ruszczyński, 1997). Without these constraints, it is clear that the tree would decompose
into independent scenarios in which we would be anticipating one particular outcome for each of
the uncertain parameters. Since we do not have this level of information, these constraints are
required. Using the notation from Figure 1.1, we express the non-anticipativity constraints (NACs)
as y1

1 = y2
1, y2

1 = y3
1, and y3

1 = y4
1. Similarly, as can be seen from the green nodes at t = 1 in

Figure 1.2b, we must make the same recourse decisions at the end of the first time period and the
same here-and-now decisions at the beginning of the second time period in scenarios 1 and 2. Thus,
the corresponding NACs are x1

1 = x2
1, and y1

2 = y2
2. A similar argument can be made regarding

the purple nodes at t = 1 and the corresponding decisions in scenarios 3 and 4. Notice that by
the end of the time horizon, all scenarios differ in the realizations of exogenous parameter ξt, and
the leaf nodes refer to independent states. Accordingly, the scenarios are said to be distinguishable
at that time, and non-anticipativity no longer applies (as noted by the absence of any red lines
connecting the scenarios). In other words, at the end of the second time period, we are free to
make independent recourse decisions in each of the four scenarios.

It is important to note that the alternative form of the scenario tree corresponds directly
to the non-anticipativity formulation of the deterministic equivalent for stochastic programming
problems (Birge and Louveaux, 2011). In this formulation, as the preceding discussion suggests,
each scenario represents a different instance of the deterministic problem with different realizations
for the uncertain parameters, and non-anticipativity constraints ensure that we make the same
decisions in indistinguishable scenarios in each time period. This is the modeling approach that will
be used in this thesis. We will rely heavily on the concept that two scenarios are indistinguishable
in time period t if they are identical in the realizations of all uncertain parameters that have been
resolved up until that time;3 and as soon as the scenarios differ in the realization of any uncertain
parameter, they are distinguishable for the remainder of the time horizon. As we will describe in
the next section, the alternative form of the scenario tree is also very useful in modeling endogenous
uncertainties.

1.1.2 Stochastic Programming under Endogenous Uncertainty
In the case of stochastic programming under endogenous uncertainty, a multistage framework is
generally the logical starting point. This can be seen when considering a problem such as the
capacity expansion of process networks (Goel and Grossmann, 2006), where small installations are
made in early time periods to determine the true yields of new process units. Capacity expansions
can then be made at a later point in time to capitalize on that knowledge. This type of decision
making is not possible with only two stages. Furthermore, in the two-stage case, if investments are
not made at the beginning of the first time period (as this may not be optimal), the uncertainty in
the endogenous parameters cannot be resolved during the time horizon.

The decision-making process in these types of multistage stochastic programming problems
3 The phrase “indistinguishable in time period t” will be used as a shorthand way of stating: “indistinguishable

at the end of time period t, after all realizations in that period have occurred.”
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proceeds in a manner similar to that of the exogenous case (Figure 1.1). The primary difference
here is that the timing of realizations depends on the decisions. Hence, uncertainty is not resolved
automatically in each time period, and the uncertainty in some parameters may not be resolved
at all. This is illustrated in Figure 1.3 for a three-stage problem with two endogenous-uncertain
parameters, θ1 and θ2, where set Ist indicates the parameters that are realized in each time period
t of scenario s. It is important to note that rather than being associated with a particular time
period, endogenous parameters represent intrinsic properties of a given source, such as the size of
an oilfield or the yield of a process unit (Goel and Grossmann, 2006). Accordingly, in the case of
Figure 1.3, we state that θ1 is an endogenous parameter associated with a given “Source 1,” and
θ2 is an endogenous parameter associated with a given “Source 2.”

Consider the case where we make an investment4 in both Source 1 and Source 2 at the beginning
of the first time period. Also, assume that the uncertainty is resolved immediately after we imple-
ment this decision. As indicated by the sequence of events in Figure 1.3, we will realize the values
of θ1 and θ2 in the first time period, and no realizations will occur in the second time period (i.e.,
Is1 = {1, 2}, and Is2 = ∅). Notice that unlike the exogenous case, we do not know which parameters
will be realized until we know which decisions we will make. This information is not known in
advance and must be determined by solving the corresponding stochastic programming problem.
We use dotted lines in Figure 1.3 to indicate that the timing of the realizations is conditional.

Figure 1.3: Sequence of events in multistage stochastic programming under endogenous uncertainty.

As this discussion suggests, the scenario-tree representation of these stochastic processes is also
not as straightforward as the exogenous case. This is for the simple reason that there are many
possible outcomes for the decisions, and accordingly, there will be many possible outcomes for the
structure of the scenario tree. This is illustrated in Figure 1.4 with just a few of the many possible
scenario-tree representations of Figure 1.3, where the endogenous parameters θ1 and θ2 each have
two possible realizations (low (L) or high (H )). (Note that above each scenario in the alternative
form of the tree, we indicate the possible realizations defined for that particular scenario.) We
again assume that the uncertainty in a parameter is resolved immediately after an investment is
made in its respective source. In the first case, Figure 1.4a, an investment is made in Source 1 at
the beginning of the first time period. As a result, the value of θ1 is immediately realized in all
scenarios. Notice that non-anticipativity constraints still apply for the beginning of the first time

4 An ‘investment in a source’ broadly refers to any here-and-now decision that allows us to realize the values of
the endogenous parameters associated with that source.
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period in the alternative form of the tree, just as they do in the exogenous case (i.e., we have the
same red lines at t = 0 as we do in Figure 1.2b). This is because at the beginning of the time
horizon (prior to the implementation of the decisions for the first time period), we have yet to make
any decisions, and no realizations have occurred. Thus, all scenarios must be indistinguishable at
that time, regardless of the type of uncertainty being considered.

Continuing with the discussion of Figure 1.4a, we note that no other investments are made after
the first-stage decisions, so the value of θ2 is never realized. Non-anticipativity constraints (shown
in green) therefore restrict our decision-making such that, for the remainder of the time horizon,
we must make all of the same decisions in scenarios 1 and 2, as well as all of the same decisions
in scenarios 3 and 4. In the second case, Figure 1.4b, an investment is made in both Source 1 and
Source 2 at the beginning of the first time period (this is the case that was previously described in
relation to Figure 1.3). The values of θ1 and θ2 are immediately realized in all scenarios, and the
four scenarios are distinguishable for the remainder of the time horizon. In other words, by the end
of the first time period, we are free to make independent decisions in all scenarios. In Figure 1.4c
and Figure 1.4d, an asymmetric scenario tree results from making an investment in only two of the
four scenarios. By simply swapping the order of investments, the alternative tree in Figure 1.4d
looks very different from that of Figure 1.4c, in the sense that non-anticipativity constraints no
longer apply solely between adjacent scenarios. We again emphasize that many other outcomes for
the tree are possible, even with only four scenarios.

Due to the conditional structure of the endogenous scenario tree, it is clearly impractical to
model all possible outcomes with the standard form of the tree. To deal with this issue, we adopt
the alternative form and create a superstructure in which non-anticipativity constraints are applied
conditionally (as inspired by Gupta and Grossmann, 2014a). This is shown in Figure 1.5, where
the dotted green lines represent these conditional NACs. Notice that the superstructure form of
the tree accounts for all possible outcomes, and any of the alternative trees shown in Figure 1.4
can easily be recovered from Figure 1.5.

Because we are now dealing with conditional NACs, the modeling approach is significantly
different from the simple equality constraints for exogenous uncertainty. In the exogenous case, if
two scenarios differ in the realization of uncertain parameter ξt in time period t∗X , the scenarios
will be distinguishable by the end of that time period (since realizations occur automatically).
Therefore, we apply non-anticipativity constraints between these scenarios in all time periods up
to, but not including, the end of t∗X . In the endogenous case, however, it is not this simple. Scenarios
that differ in the possible realization of an uncertain parameter θi will remain indistinguishable until
the uncertainty in that parameter is resolved; up until that point, t∗N , the scenarios are identical.
Because we do not know the value of t∗N for these scenarios, we must conditionally apply NACs
for all decisions in all time periods (excluding the decisions made at the beginning of the first time
period and in other initial time periods, as well). The indistinguishability is determined at each
point in time as part of the stochastic programming problem, and the NACs are enforced if the
scenarios are indistinguishable and ignored if they are not. As opposed to a fixed scenario tree in
the exogenous case, the optimal structure of the endogenous scenario tree is determined by solving
this stochastic program. The modeling of NACs will be discussed in greater detail later in this
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Figure 1.4: Four possible structures for a scenario tree with two endogenous parameters.
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Figure 1.5: A superstructure representation for endogenous scenario trees.

thesis.
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Chapter 2

Definitions and Notation

2.1 Mathematical Description of Exogenous Uncertainty
Let the time horizon be divided into a set of discrete time periods T := {t : t = 1, 2, . . . , T}, and let
set J := {j : j = 1, 2, . . . , J} define the index of each exogenous-uncertain parameter. We define
ξj,t as exogenous parameter j ∈ J in time period t ∈ T . The exogenous parameter has a number
of possible realizations given by the ordered set Ξj,t := {ξ̂rj,t : r = 1, 2, . . . , Rj,t}, where r refers to
the index of one particular realization, and for convenience, we set ξ̂1

j,t < ξ̂2
j,t < · · · < ξ̂

Rj,t

j,t . As an
example of how we use this notation, if r = 2 is the index of the actual realization for parameter j in
time period t, we will have ξj,t = ξ̂2

j,t. The total number of possible realizations for this parameter is
given by |Ξj,t| = Rj,t. Note that because the uncertainty in parameter j is exogenous, it is resolved
automatically in each time period t, regardless of the decisions that have been made. In instances
where there is only one exogenous parameter, we will frequently drop the j subscript to simplify
the notation.

Each scenario in the model corresponds to one possible combination of realizations for the
uncertain parameters. We assume that these parameters are independent (see Appendix A.1) and
that the complete set of scenarios corresponds to all possible combinations of their realizations.
Accordingly, in the case where the uncertainty is purely exogenous, the complete set of scenarios
RX is represented by a Cartesian product over the sets of realizations for the exogenous parameters:

RX := ×t∈T (×j∈J Ξj,t) =
{(
ξ̂1

1,1, . . . , ξ̂
1
J,T

)
, . . . ,

(
ξ̂
R1,1
1,1 , . . . , ξ̂

RJ,T

J,T

)}
(2.1)

where we use the subscript X to indicate eXogenous. We enforce a lexicographical ordering on
the Cartesian product (and all other Cartesian products in this thesis) based on the index of each
realization.1 Set RX corresponds to a scenario tree constructed from all possible combinations of
realizations of the exogenous parameters; e.g., Figure 1.2. Note that in this figure there is only
one exogenous parameter, so we have dropped the j subscript to simplify the notation, and we
have RX = Ξ1 × Ξ2 =

{
ξ̂L1 , ξ̂

H
1
}
×
{
ξ̂L2 , ξ̂

H
2
}

=
{
(ξ̂L1 , ξ̂L2 ), (ξ̂L1 , ξ̂H2 ), (ξ̂H1 , ξ̂L2 ), (ξ̂H1 , ξ̂H2 )

}
. The L and

1 For example, tuple (ξ̂1
1,1, ξ̂

1
1,2) would be placed before (ξ̂1

1,1, ξ̂
2
1,2) based on a comparison of the realization indices

(i.e., superscripts) for each respective element: 1 = 1 for the first element of the tuples, so we proceed to the second
element and see that 1 ≤ 2. Tuple (ξ̂1

1,1, ξ̂
2
1,2) would be placed before (ξ̂2

1,1, ξ̂
1
1,2) since a comparison of the realization

indices for the first element gives 1 < 2 (and we do not consider the other elements in such a case).
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H superscripts here refer to the index of the low and high realizations for the uncertain parameter
(r = 1 and r = 2), respectively. The cardinality of RX , or the number of exogenous scenarios,
is simply equal to the product of the cardinality of all of the sets in the Cartesian product in
Equation (2.1). In other words, the number of exogenous scenarios is equal to the product of the
number of realizations for each exogenous parameter,

SX := |RX | =
∏
t∈T

∏
j∈J

Rj,t (2.2)

This allows us to index the exogenous scenarios by defining the ordered set of indices SX :=
{s : s = 1, 2, . . . , SX}. Applying this analysis to Figure 1.2, we have J = {1}, T = {1, 2},
and R1 = R2 = 2, which gives SX = R1 · R2 = 2 · 2 = 4. Accordingly, SX = {1, 2, 3, 4}.
Note that if all exogenous parameters have the same number of realizations in all time periods
(i.e., |Ξj,t| = R ∀ j ∈ J , t ∈ T ), as they do in Figure 1.2, Equation (2.2) can be simplified to
SX = RJ ·T .

Since it will be necessary to know the realization of the exogenous parameter ξj,t in each
scenario s ∈ SX , we introduce the scenario index to this parameter to define ξsj,t. Notice, however,
that in order to assign a realization value to ξsj,t for each scenario, we must first establish a link
between the scenario index (i.e., s ∈ SX) and the actual scenario that it represents (i.e., the
corresponding tuple in RX). To do so, we first restate Equation (2.1) with the new notation:
RX = {(ξs1,1, . . . , ξsJ,T ) : s ∈ SX}. We then equate the right-hand side of this expression with
the right-hand side of Equation (2.1) to give the value of ξsj,t for all j ∈ J , t ∈ T , and s ∈
SX . For instance, for scenario s = 1, we are considering the first tuple in RX . Thus, we have
(ξ1

1,1, . . . , ξ
1
J,T ) = (ξ̂1

1,1, . . . , ξ̂
1
J,T ), which implies ξ1

1,1 = ξ̂1
1,1, . . . , ξ

1
J,T = ξ̂1

J,T . Similarly, for scenario
s = SX , we are considering the final tuple in RX . Now we have (ξSX

1,1 , . . . , ξ
SX
J,T ) = (ξ̂R1,1

1,1 , . . . , ξ̂
RJ,T

J,T ),
which implies ξSX

1,1 = ξ̂
R1,1
1,1 , . . . , ξSX

J,T = ξ̂
RJ,T

J,T . The same reasoning applies for all other scenarios in
SX .

2.2 Mathematical Description of Endogenous Uncertainty
Let set I := {i : i = 1, 2, . . . , I} represent the sources of endogenous uncertainty, and let set
Hi := {h : h = 1, 2, . . . ,Hi} define the index of each endogenous-uncertain parameter associated
with source i ∈ I. We define θi,h as endogenous parameter h ∈ Hi for source i ∈ I. Recall that
we must consider the source of uncertainty for each endogenous parameter because the realization
for that parameter will only occur once a certain decision has been made for that source. For
instance, if source i = 1 is an oilfield that has not yet been drilled, the values of the associated
endogenous parameters (e.g., oilfield size and initial deliverability) will only be resolved once the
oilfield has been drilled. Parameter θi,h has a number of possible realizations given by the ordered
set Θi,h := {θ̂mi,h : m = 1, 2, . . . ,Mi,h}, where m refers to the index of one particular realization,
and for convenience, we set θ̂1

i,h < θ̂2
i,h < · · · < θ̂

Mi,h

i,h . Thus, if m = 2 is the index of the actual
realization for endogenous parameter h of source i, we will have θi,h = θ̂2

i,h. The total number
of possible realizations for this parameter is given by |Θi,h| = Mi,h. We emphasize that, unlike
exogenous uncertainty, the resolution of uncertainty in θi,h depends on the timing of decisions
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related to source i and is not an automatic occurrence in each time period. When there is only
one endogenous parameter associated with each source of uncertainty, we will often drop the h
subscript to simplify the notation.

In the case where the uncertainty is purely endogenous and the uncertain parameters are inde-
pendent, the complete set of scenarios RN is represented by a Cartesian product over the sets of
realizations for the endogenous parameters:

RN := ×i∈I (×h∈Hi
Θi,h) =

{(
θ̂1

1,1, . . . , θ̂
1
I,HI

)
, . . . ,

(
θ̂
M1,1
1,1 , . . . , θ̂

MI,HI
I,HI

)}
(2.3)

where we use the subscript N to indicate eNdogenous. Set RN corresponds to a scenario tree
constructed from all possible combinations of realizations of the endogenous parameters; e.g., Fi-
gure 1.5. Note that in this figure there is only one endogenous parameter associated with each
of the two sources, so we have dropped the h subscript for simplicity in the notation (as we
did for the j subscript in Figure 1.2), and we have RN = Θ1 × Θ2 =

{
θ̂L1 , θ̂

H
1
}
×
{
θ̂L2 , θ̂

H
2
}

={
(θ̂L1 , θ̂L2 ), (θ̂L1 , θ̂H2 ), (θ̂H1 , θ̂L2 ), (θ̂H1 , θ̂H2 )

}
. The cardinality of RN , or the number of endogenous sce-

narios, is simply equal to the product of the number of realizations for each endogenous parameter,

SN := |RN | =
∏
i∈I

∏
h∈Hi

Mi,h (2.4)

This allows us to index the endogenous scenarios by defining the ordered set of indices SN :=
{s : s = 1, 2, . . . , SN}. In the context of Figure 1.5, we have I = {1, 2}, H1 = H2 = {1}, and
M1 = M2 = 2. Thus, SN = M1 ·M2 = 2 ·2 = 4, and SN = {1, 2, 3, 4}. If all endogenous parameters
have the same number of realizations (i.e., |Θi,h| = M ∀ i ∈ I, h ∈ Hi), as is the case in Figure 1.5,
Equation (2.4) can be simplified to SN = M

∑
i∈I Hi .

As in the exogenous case, we also assign the index s to the endogenous parameter θi,h to indicate
the parameter’s realization in each scenario; i.e., θsi,h. Using this notation, we restate Equation (2.3)
as RN = {(θs1,1, . . . , θsI,HI

) : s ∈ SN}, and equate the right-hand side of this expression with the
right-hand side of Equation (2.3) to give the value of θsi,h for all i ∈ I, h ∈ Hi, and s ∈ SN .

2.3 Mathematical Description of Endogenous and Exogenous Un-
certainties

We now consider the case where we have both endogenous and exogenous uncertain parameters.
Because these parameters are entirely independent of one another, we must ensure that we can
observe any possible combination of realizations for the exogenous parameters, regardless of the
outcome for the endogenous parameters (and vice versa). Accordingly, we generate the complete
set of scenarios R by the Cartesian product of all possible combinations of realizations of the
endogenous parameters and all possible combinations of realizations of the exogenous parameters,
RN ×RX :
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R :=RN ×RX

=
{(
θ̂1

1,1, . . . , θ̂
1
I,HI

, ξ̂1
1,1, . . . , ξ̂

1
J,T

)
, . . . ,

(
θ̂1

1,1, . . . , θ̂
1
I,HI

, ξ̂
R1,1
1,1 , . . . , ξ̂

RJ,T

J,T

)
, . . . ,(

θ̂
M1,1
1,1 , . . . , θ̂

MI,HI
I,HI

, ξ̂1
1,1, . . . , ξ̂

1
J,T

)
, . . . ,

(
θ̂
M1,1
1,1 , . . . , θ̂

MI,HI
I,HI

, ξ̂
R1,1
1,1 , . . . , ξ̂

RJ,T

J,T

)} (2.5)

Set R corresponds to a “composite” scenario tree that includes all possible combinations of
realizations of the endogenous and exogenous parameters. Although there are other ways to ge-
nerate such a set (e.g., RX × RN ; see Appendix A.2), we focus our attention on this approach
since the resulting scenario tree has a structure that can be exploited to significantly reduce the
dimensionality of the model (as will be discussed in Chapter 4). For the remainder of this thesis,
excluding Chapter 6, we assume that the scenario tree has been generated in this manner. The total
number of scenarios (i.e., the cardinality of R) is equal to the product of the number of endogenous
scenarios and the number of exogenous scenarios,

S := |R| = SN · SX (2.6)

We index the set of scenarios by defining the ordered set of indices S := {s : s = 1, 2, . . . , S}.
We use this set to restate Equation (2.5) as R = {(θs1,1, . . . , θsI,HI

, ξs1,1, . . . , ξ
s
J,T ) : s ∈ S}, and we

equate the right-hand side of this expression with the right-hand side of Equation (2.5) to give the
values of θsi,h and ξsj,t for all i ∈ I, h ∈ Hi, j ∈ J , t ∈ T , and s ∈ S.

The generation of the composite scenario tree is shown in Figure 2.1. We consider the case
where we have one exogenous parameter with two realizations (low or high) in each time period,
two endogenous parameters each with two realizations (also low or high), and a time horizon
consisting of two time periods (i.e., 3 stages). In generating the full set of scenarios, it follows that
set RN corresponds to the endogenous scenario tree in Figure 1.5, and set RX corresponds to the
exogenous scenario tree in Figure 1.2. By Equation (2.5), the composite scenario tree resulting
from all possible combinations of realizations of these parameters will consist of the scenarios given
by R = RN × RX = {(θ̂L1 , θ̂L2 , ξ̂L1 , ξ̂L2 ), . . . , (θ̂H1 , θ̂H2 , ξ̂H1 , ξ̂H2 )}. The number of scenarios in this
composite tree is given by Equation (2.6), which yields S = 4 · 4 = 16. Thus, S = {1, 2, . . . , 16}.
Figure 2.1a clarifies the mathematical procedure for generating the composite scenario tree by
providing the graphical analogue: we simply copy the exogenous scenario tree (Figure 1.2) for
each possible combination of realizations of the endogenous parameters. This gives rise to multiple
“subtrees” (four in this case). Viewed another way, we have essentially replaced each scenario in
the endogenous scenario tree (Figure 1.5) with an exogenous subtree. Here we use the alternative
form of the exogenous tree, Figure 1.2b, so that we can easily apply scenario decomposition later in
this thesis. With the full set of scenarios in place, we then link these subtrees by adding first-period
and endogenous non-anticipativity constraints (shown by solid and dotted green lines, respectively)
which enforce equality between indistinguishable nodes. This process is partially illustrated in
Figure 2.1b for the links between subtrees 1 and 2 only. By adding the remaining links between the
subtrees, we end up with the complete composite scenario tree shown in Figure 2.1c. (We provide
the reasoning behind our choice of these particular non-anticipativity constraints in Chapter 4.) It is
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clear how quickly these problems can grow, as the composite tree is significantly more complex than
either Figure 1.2 or Figure 1.5 alone. Note that in the figures, as before, we are only considering
one exogenous parameter and one endogenous parameter for each of the two sources, so we have
dropped the j and h subscripts, respectively.

Figure 2.1: Procedure for generating a ‘composite’ scenario tree. This tree captures all possible
combinations of realizations for both the endogenous and exogenous uncertain parameters.

Notice that within each subtree, all scenarios have the same possible endogenous realizations,
and these endogenous realizations are the only distinguishing characteristic between each of the
subtrees. Thus, if the uncertainty in the endogenous parameters is not resolved by the end of the
time horizon, all of the subtrees will be exactly identical (since all of the conditional, dotted green
lines will have become solid lines, enforcing non-anticipativity between the corresponding nodes).

It is also interesting to note that if we assume expected values for each of the endogenous
parameters, thereby neglecting the endogenous uncertainty, we recover the original exogenous tree
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(Figure 1.2). If we instead assume expected values for each of the exogenous parameters, thereby
neglecting the exogenous uncertainty, we recover the original endogenous tree (Figure 1.5).

The concept of subtrees will be used extensively in the definitions of parameters and sets later
in this thesis, so we define parameter Sub(s) to return the subtree number of each scenario in the
composite tree. This number is calculated as the ceiling of the ratio of the scenario index s and
the number of scenarios in each subtree, SX :

Sub(s) :=
⌈
s

SX

⌉
∀ s ∈ S (2.7)

Note that SX , defined in Equation (2.2), is the number of scenarios in each subtree since each
subtree is simply an exogenous tree. For Figure 2.1c, scenarios 1–4 are in subtree 1, scenarios 5–8
are in subtree 2, scenarios 9–12 are in subtree 3, and scenarios 13–16 are in subtree 4. Accordingly,
Equation (2.7) returns Sub(2) = d2/4e = 1, Sub(6) = d6/4e = 2, Sub(10) = d10/4e = 3, and
Sub(14) = d14/4e = 4.

2.4 Realization Probabilities
Following directly from the theory presented in the previous sections, we now briefly discuss reali-
zation probabilities. For each realization r of exogenous parameter xij,t, there is a corresponding
probability υ̂rj,t of this value occurring. The realization values are defined in set Ξj,t := {ξ̂rj,t : r =
1, 2, . . . , Rj,t}, and we now define the set of probabilities Υj,t := {υ̂rj,t : r = 1, 2, . . . , Rj,t}. Note
that this set is indexed in the same order as the realization values. For instance, if we consider
the first realization, r = 1, the realization value is given by set Xij,t as ξ̂1

j,t, and the corresponding
probability is given by set Υj,t as υ̂1

j,t. Also, note that since these realizations represent all possible
outcomes for parameter ξj,t from a discretized probability distribution, the probabilities must sum
to 1; i.e.,

∑Rj,t

r=1 υ̂
r
j,t = 1 ∀ j ∈ J , t ∈ T .

Each realization m of endogenous parameter θi,h also has a corresponding probability ω̂mi,h that
it will occur. The realization values are defined in set Θi,h := {θ̂mi,h : m = 1, 2, . . . ,Mi,h}, and we
define the set of probabilities Ωi,h := {ω̂mi,h : m = 1, 2, . . . ,Mi,h}. As is the case for the exogenous
parameters, this set is indexed in the same order as the realization values. Thus, form = 1, we have
the realization value θ̂1

i,h from set Θi,h, and the corresponding probability ω̂1
i,h from set Ωi,h. Again,

these realizations represent all possible outcomes for parameter θi,h from a discretized probability
distribution, so the probabilities must sum to 1; i.e.,

∑Mi,h

m=1 ω̂
m
i,h = 1 ∀ i ∈ I, h ∈ Hi.

Recall that set RX (Equation (2.1)), set RN (Equation (2.3)), and set R (Equation (2.5)) give
the realization values for each scenario s ∈ SX , s ∈ SN , and s ∈ S, respectively. Since each of
these realizations has a corresponding probability, we can find the set of realization probabilities
for each scenario by simply substituting the realization values in each expression with their corre-
sponding probabilities. Specifically, for the case where the uncertainty is purely exogenous, the set
of realization probabilities for each scenario is defined by,
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PX :=×t∈T (×j∈J Υj,t)

=
{(
υ̂1

1,1, . . . , υ̂
1
J,T

)
, . . . ,

(
υ̂
R1,1
1,1 , . . . , υ̂

RJ,T

J,T

)}
=
{(
υs1,1, . . . , υ

s
J,T

)
: s ∈ SX

} (2.8)

where υsj,t refers to the realization probability of exogenous parameter ξj,t in scenario s. In the case
where the uncertainty is purely endogenous, the set of realization probabilities for each scenario is
defined by,

PN :=×i∈I (×h∈Hi
Ωi,h)

=
{(
ω̂1

1,1, . . . , ω̂
1
I,HI

)
, . . . ,

(
ω̂
M1,1
1,1 , . . . , ω̂

MI,HI
I,HI

)}
=
{(
ωs1,1, . . . , ω

s
I,HI

)
: s ∈ SN

} (2.9)

where ωsi,h refers to the realization probability of endogenous parameter θi,h in scenario s. And for
the case of primary interest, where there are both endogenous and exogenous uncertainties, the set
of realization probabilities for each scenario is defined by,

P :=PN × PX

=
{(
ω̂1

1,1, . . . , ω̂
1
I,HI

, υ̂1
1,1, . . . , υ̂

1
J,T

)
, . . . ,

(
ω̂
M1,1
1,1 , . . . , ω̂

MI,HI
I,HI

, υ̂
R1,1
1,1 , . . . , υ̂

RJ,T

J,T

)}
=
{(
ωs1,1, . . . , ω

s
I,HI

, υs1,1, . . . , υ
s
J,T

)
: s ∈ S

} (2.10)

The probability of each scenario is given by ps, and is equal to the product of all of the realization
probabilities in scenario s:

ps :=
(∏
i∈I

∏
h∈Hi

ωsi,h

)
·
( ∏
t∈T

∏
j∈J

υsj,t

)
∀ s ∈ S (2.11)

Since the elements sum to 1 in each set of realization probabilities (Υj,t and Ωi,h), and we are
simply taking the product of each possible combination of all of these elements, the sum over all of
these products must also be 1 (see Appendix A.3 for the simple proof). In other words, the total
probability over all scenarios must sum to 1:

∑
s∈S p

s = 1.

18



Chapter 3

Models

A simple MILP formulation for a deterministic multi-period planning problem is given in model
(MPD). Variable vectors yt represent investment and operation decisions that are made at the
beginning of each time period t (e.g., whether or not to drill a particular oilfield, the processing
capacity of a new offshore oil facility, etc.), and variable vectors xt represent operation decisions that
typically follow these investment decisions (e.g., the oil flow rate from a field to a newly-installed
facility). Variable vectors wt are commonly referred to as state variables and represent calculated
quantities associated with each time period, such as intermediate flow rates and economic values
like total operating cost. Vectors yt, xt, and wt may each have integer and continuous components.

(MPD)

min
y,x

φD =
∑
t∈T

(yctyt + xctxt + wctwt) (3.1)

s.t.
t∑

τ=1
(yAτ,tyτ + xAτ,txτ + wAτ,twτ ) ≤ at ∀ t ∈ T (3.2)

yt ∈ Yt, xt ∈ Xt, wt ∈ Wt ∀ t ∈ T (3.3)

The objective function, Equation (3.1), minimizes the total cost associated with decisions yt and
xt, and state variables wt. For convenience, we adopt the notation of Goel and Grossmann (2006)
and specify the corresponding cost coefficients through row vectors yct, xct, and wct, respectively.
Equation (3.2) represents constraints that govern the decisions in each time period t ∈ T , as well as
constraints that link decisions across time periods. This equation also includes equality constraints
such as those that assign values to wt. The constraint coefficients for variables yt, xt, and wt are
given by matrices yAτ,t, xAτ,t, and wAτ,t, respectively, and the right-hand side is given by column
vectors at. Bounds and integrality restrictions on the variables are specified by mixed-integer sets
Yt, Xt, and Wt in Equation (3.3).

In the following sections, we will show how this model is transformed into a multistage stochastic
programming problem in the case of: (1) exogenous uncertainty, (2) endogenous uncertainty, and
(3) both endogenous and exogenous uncertainties. These stochastic programming models (largely
inspired by the work of Goel and Grossmann (2006) will be presented in deterministic-equivalent
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form using the non-anticipativity approach. For additional background, we refer the reader to
Rockafellar and Wets (1991), Ruszczyński (1997), and Birge and Louveaux (2011).

3.1 MSSP Formulation for Exogenous Uncertainty
The multistage stochastic programming formulation of model (MPD) in the case of exogenous
uncertainties is given in model (MSSPX). Notice that variables yt, xt, and wt have been indexed
for each scenario s ∈ SX to indicate the respective decisions and calculated quantities in each
scenario. As we are now modeling under a multistage stochastic programming framework, the
decision-making process is structured as shown in Figure 1.1. Specifically, variables yst refer to
here-and-now decisions, and variables xst refer to recourse decisions. Recall that decisions yst are
implemented at the beginning of each time period t of scenario s. At some point after these decisions
are made, but during t, the uncertainty in exogenous parameter ξj,t is resolved. Recourse decisions
xst are then made as corrective action at the end of the period in response to this new information.
Based on the values of yst and xst , state variables wst are calculated.

(MSSPX)

min
y,x

φX =
∑
s∈SX

ps
∑
t∈T

(ycstyst + xcstx
s
t + wcstw

s
t ) (3.4)

s.t.
t∑

τ=1

(
yAsτ,ty

s
τ + xAsτ,tx

s
τ + wAsτ,tw

s
τ

)
≤ ast ∀ t ∈ T , s ∈ SX (3.5)

ys1 = ys
′

1 ∀ (s, s′) ∈ SPF (3.6)
xst = xs

′
t ∀ (t, s, s′) ∈ SPX (3.7)

yst+1 = ys
′
t+1 ∀ (t, s, s′) ∈ SPX (3.8)

yst ∈ Yst , xst ∈ X st , wst ∈ Ws
t ∀ t ∈ T , s ∈ SX (3.9)

Notice that only fairly simple changes are required to convert the deterministic model (MPD)
to the multistage stochastic programming model (MSSPX). In particular, the objective function,
Equation (3.4), now minimizes the total expected cost by taking the weighted sum of the costs in each
scenario based on the probability of each scenario, ps. The cost coefficients have been indexed for
all s ∈ SX to allow for the possibility of different cost realizations in each scenario. Additionally,
the constraints governing the decisions in each time period, represented by Equation (3.5), are
simply applied for each s ∈ SX . Note that like the cost coefficients, the constraint coefficients and
right-hand side have also been indexed for s to allow for different realizations in each scenario. In
other words, exogenous parameters ξj,t may enter the model through the objective function and/or
the constraints (via the constraint coefficients and/or the right-hand side).

The most significant difference between the models is the introduction of non-anticipativity
constraints, given by Equations (3.6)–(3.8). Each scenario in model (MSSPX) represents a different
instance of the deterministic planning problem with different realizations for the uncertain parame-
ters, and the non-anticipativity constraints link these scenarios together, as shown in Figure 1.2b.

Equation (3.6) enforces non-anticipativity between all scenarios at the beginning of the first
time period. As previously stated, this is due to the fact that all scenarios are indistinguishable at
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this time, and we must make the same here-and-now decisions (first-stage decisions) in all scenarios.
For the remainder of this thesis, we will simply refer to these constraints as first-period NACs. Note
that when discussing indistinguishability, we refer specifically to the indistinguishability between
two scenarios s and s′. Accordingly, we will consider pairs of indistinguishable scenarios (s, s′) in
each time period t for which we must enforce non-anticipativity. We will also define sets of these
tuples in order to simplify the notation in our models. For the first-period NACs, the corresponding
first-period scenario pairs are elements of set SPF , given by:

SPF := A (3.10)

where A is the set of scenario pairs for which s and s′ are adjacent. This will be discussed in greater
detail in Section 4.1 (see Equation (4.2)).

Equations (3.7) and (3.8) represent non-anticipativity constraints for all remaining stages. In
particular, if scenarios s and s′ are indistinguishable in time period t in terms of the resolution of
exogenous uncertainty, we must make the same recourse decisions at the end of this period (enforced
by Equation (3.7)), as well as the same here-and-now decisions at the beginning of the next time
period, t + 1 (enforced by Equation (3.8)). We will refer to these constraints as exogenous NACs.
The corresponding set of exogenous scenario pairs is given by set SPX and is defined as:

SPX :=
{

(t, s, s′) : t ∈ T \ {T}, (s, s′) ∈ A, Sub(s) = Sub(s′), Qs,s
′

t = True
}

(3.11)

where Sub(s) = Sub(s′) ensures that s and s′ are in the same subtree, and Qs,s
′

t is a Boolean
parameter that indicates whether or not these scenarios are indistinguishable in time period t.
This will be discussed in Section 4.2 (see Equations (4.3) and (4.4)).

Notice that at the beginning of the final time period, the NACs for the here-and-now decisions
correspond to Equation (3.8) with t = T − 1. Also, specifically in the exogenous case, NACs never
apply for the recourse decisions at the end of the final time period (final-stage decisions); this is
because the leaf nodes must refer to independent states or else we would have duplicate scenarios
in the tree (see Figure 1.2). It follows, then, that we can entirely exclude time period t = T from
the definition of set SPX , as indicated in Equation (3.11).

We also note that we never express NACs for state variables wst , in any time period, since
these variables are calculated based on the values of decision variables yst and xst . In other words,
non-anticipativity for wst is implicitly enforced by Equations (3.6)–(3.8).

Similar to the deterministic formulation, bounds and integrality restrictions on the variables
are specified by the mixed-integer sets in Equation (3.9).

3.2 MSSP Formulation for Endogenous Uncertainty
The multistage stochastic programming formulation of model (MPD) in the case of endogenous
uncertainties is given in model (MSSPN). This model has been adapted from Goel and Grossmann
(2006) and is presented in hybrid mixed-integer linear disjunctive form.

Previously, we used vector yst to represent all here-and-now decisions in each time period t of
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scenario s. In the case of endogenous uncertainties, however, this approach does not provide us
with particularly detailed information. As can be seen in Figure 1.3, it is not immediately obvious
which decisions are associated with a source i ∈ I. This is a very important modeling consideration,
since such decisions uniquely determine whether or not the uncertainty in parameter θi,h can be
resolved in scenario s. Accordingly, we define vector bsi,t to identify those binary decisions that
are strictly associated with a particular source i (e.g., to drill an oilfield of uncertain size and
initial deliverability). To keep the notation simple, we will continue to use yst to represent all other
here-and-now decisions.

It is often the case that the uncertainty in some (or all) endogenous parameters cannot be
resolved within the first few time periods of the planning horizon. For instance, in an oilfield
development planning problem, we may assume that any oilfield must be in production for a
certain number of years before the size of the field can be established. Before that amount of
time has passed, the sizes of all fields are uncertain, and any scenarios that differ only in the
possible realizations of field sizes must be indistinguishable. Thus, for these initial time periods,
the corresponding conditional NACs can be expressed as equality constraints (Tarhan et al., 2009;
Colvin and Maravelias, 2010; Gupta and Grossmann, 2014a). To model this, we denote the number
of initial ‘equality’ periods as T i′E , and partition the set of time periods T into the set of these
initial periods T i′E := {t : t = 1, . . . , T i′E} and the set of remaining ‘conditional’ time periods
T i′C := {t : t = T i

′
E + 1, . . . , T}, where T i′E < T , for all i′ ∈ I. We use index i′ in these definitions so

as not to conflict with index i of bsi,t. Note that if T i
′
E = 0, the corresponding sets reduce to T i′E := ∅

and T i′C := T . Further note that these parameters and subsets are defined for each i′ ∈ I since the
number of initial periods may not be the same for all sources of endogenous uncertainty.

(MSSPN)

min
b,y,x

φN =
∑
s∈SN

ps
∑
t∈T

(
ycsty

s
t + xcstx

s
t + wcstw

s
t +

∑
i∈I

bcsi,tb
s
i,t

)
(3.12)

s.t.
t∑

τ=1

(
yAsτ,ty

s
τ + xAsτ,tx

s
τ + wAsτ,tw

s
τ +

∑
i∈I

bAsi,τ,tb
s
i,τ

)
≤ ast ∀ t ∈ T , s ∈ SN (3.13)

bsi,1 = bs
′
i,1 ∀ (s, s′) ∈ SPF , i ∈ I (3.14)

ys1 = ys
′

1 ∀ (s, s′) ∈ SPF (3.6)
xst = xs

′
t ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , {i′} = D̂s,s′ (3.15)

bsi,t+1 = bs
′
i,t+1 ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , {i′} = D̂s,s′ , i ∈ I (3.16)

yst+1 = ys
′
t+1 ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , {i′} = D̂s,s′ (3.17)

Zs,s
′

t

xst = xs
′
t

bsi,t+1 = bs
′
i,t+1 ∀ i ∈ I, t < T

yst+1 = ys
′
t+1 t < T

 ∨
[
¬Zs,s

′

t

]
∀ (t, s, s′) ∈ SPN , t ∈ T i

′
C , {i′} = D̂s,s′

(3.18)

Zs,s
′

t ⇔ F (bsi′,1, bsi′,2, . . . , bsi′,t) ∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , {i′} = D̂s,s′ (3.19)

22



bsi,t ∈ {0, 1}, yst ∈ Yst , xst ∈ X st , wst ∈ Ws
t ∀ i ∈ I, t ∈ T , s ∈ SN (3.20)

Zs,s
′

t ∈ {True, False} ∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , {i′} = D̂s,s′ (3.21)

The objective function, Equation (3.12), is very similar to that of model (MSSPX). Notice
that the only differences from Equation (3.4) are the following: we have now introduced decision
variables bsi,t and the corresponding row vector of cost coefficients, bcsi,t (which requires a summation
over all sources i ∈ I), and the set of scenarios is now given by SN . Likewise, Equation (3.13)
only differs from Equation (3.5) by the same changes, except the corresponding coefficient matrix is
bAsi,τ,t. Endogenous parameters θi,h may enter the model through the objective function and/or the
constraints, as was the case for exogenous parameters ξj,t in model (MSSPX). First-period NACs
still apply, and accordingly, we express them for our here-and-now decisions in Equation (3.14) and
(from model (MSSPX)) Equation (3.6).

Each scenario pair of time period t ∈ T i′E in set SPN represents two scenarios s and s′ that
are indistinguishable at that time in terms of the resolution of endogenous uncertainty. This set of
endogenous scenario pairs, SPN , is given by:

SP i
′,h,l
N :=

{
(t, s, s′) : t ∈ T , s, s′ ∈

(
NGli′,h ∩ U

i′,h
t

)
,

s′ = min
ŝ′

(
ŝ′ ∈

(
NGli′,h ∩ U

i′,h
t

)
, ŝ′ > s

)
,

s < max
ŝ

(
ŝ ∈

(
NGli′,h ∩ U

i′,h
t

))
,

{(i′, h)} = Ds,s′
}
∀ l ∈ Li′,h, i′ ∈ I, h ∈ Hi′

(3.22)

SPN :=
⋃
i′∈I

 ⋃
h∈Hi′

 ⋃
l∈Li′,h

SP i
′,h,l
N

 (3.23)

where, in Equation (3.22), we first determine the set of scenario pairs in each time period t corre-
sponding to endogenous parameter θi′,h for all i′ ∈ I and h ∈ Hi′ . We then take the union of all of
these sets in Equation (3.23).

Given the complexity of Equation (3.22), before continuing, we briefly describe the primary
aspects of this expression. Sets NGli′,h, indexed by l ∈ Li′,h, represent endogenous scenario groups
corresponding to θi′,h. For each endogenous parameter θi′,h, set U i

′,h
t provides a sufficient subset of

scenarios that are available for pairing from that parameter’s respective groups in time period t.
These sets, U i

′,h
t , are defined in a sequential manner in which we successively eliminate scenarios

based on the pairs that have already been formed. We then obtain a sufficient subset of each group
specific to time period t via sets NGli′,h ∩ U

i′,h
t , which we refer to as reduced endogenous scenario

groups. We pair off consecutive scenarios in each of these reduced groups, where set Ds,s′ indicates
the specific parameter θi′,h for which s and s′ differ in possible realizations. This will be discussed
in detail in Section 4.3.

Accordingly, for each of the scenario pairs of time period t ∈ T i′E in set SPN , we enforce
non-anticipativity between the respective scenarios s and s′ as shown in Equations (3.15)–(3.17),
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exactly as we would in the exogenous case (see Equations (3.7) and (3.8) for comparison). Notice
that the only differences here are that we are considering different scenario pairs, and the set of
time periods is source dependent. The particular source i′ of set T i′E is determined by set D̂s,s′ ;
specifically, this set indicates the source in which scenarios s and s′ differ in the possible realization
of some endogenous parameter (see Equation (4.21) in Section 4.3). Note that we will refer to these
equality constraints as fixed endogenous NACs.

Each scenario pair of time period t ∈ T i′C in set SPN represents two scenarios s and s′ that
may be indistinguishable at that time (where the particular source i′ of set T i′C is determined by
set D̂s,s′). Recall that in the exogenous case, we know in advance whether two scenarios will differ
in parameter realizations in time period t. For endogenous parameters, however, the timing of
realizations depends on decisions bsi,t, so we can no longer use simple equality constraints to apply
non-anticipativity. Instead, we conditionally enforce non-anticipativity between these scenarios
(see Figure 1.5), as shown by the disjunctive constraints in Equation (3.18). Boolean variable
Zs,s

′

t indicates whether s and s′ are indistinguishable by the end of time period t, and if so, the
value is True and the NACs are enforced. If they are distinguishable, the value is False and the
constraints are ignored. We will refer to these conditional constraints as conditional endogenous
NACs. Note that since we make here-and-now decisions for the next time period (t+ 1) based on
indistinguishability information revealed up until the current time t, NACs for decisions bsi,t+1 and
yst+1 must be restricted to t < T ; this is, of course, because we cannot make new here-and-now
decisions at the end of the time horizon. This restriction is implicit in the exogenous model because
non-anticipativity does not apply at the end of the final time period.

Using a big-M reformulation (Trespalacios and Grossmann, 2014), we can rewrite the disjunctive
constraints (3.18) as inequality constraints (3.24)–(3.26), where UB denotes the upper bound of
the respective variable.1

−xUBt (1− zs,s
′

t ) ≤ xst − xs
′
t ≤ xUBt (1− zs,s

′

t )
∀ (t, s, s′) ∈ SPN , t ∈ T i

′
C , {i′} = D̂s,s′

(3.24)

−(1− zs,s
′

t ) ≤ bsi,t+1 − bs
′
i,t+1 ≤ (1− zs,s

′

t )
∀ (t, s, s′) ∈ SPN , t ∈ T i

′
C , t < T, {i′} = D̂s,s′ , i ∈ I

(3.25)

−yUBt+1(1− zs,s
′

t ) ≤ yst+1 − ys
′
t+1 ≤ yUBt+1(1− zs,s

′

t )
∀ (t, s, s′) ∈ SPN , t ∈ T i

′
C , t < T, {i′} = D̂s,s′

(3.26)

zs,s
′

t ∈ {0, 1} ∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , {i′} = D̂s,s′ (3.27)

Note that zs,s
′

t , defined in Equation (3.27), is the binary equivalent of Boolean variable Zs,s
′

t ;
i.e., (zs,s

′

t = 1) ⇔ (Zs,s
′

t = True) and (zs,s
′

t = 0) ⇔ (Zs,s
′

t = False). The fixed endogenous NACs
can be viewed as a special case of these constraints with zs,s

′

t = 1. Specifically, in the initial time
periods, each double-sided inequality collapses into a single equality constraint, thereby providing

1 We substitute variable upper bounds for big-M parameters; however, for a specific problem instance, tighter
bounds can often be established.
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us with a smaller, tighter formulation (Colvin and Maravelias, 2010).
The value of Zs,s

′

t is determined by an uncertainty-resolution rule, as stated in general form in
Equation (3.19) (Tarhan et al., 2013; Gupta and Grossmann, 2014a). This rule uses the values of
all decisions bsi′,τ up to and including the current time period to determine whether uncertainty has
been resolved in a given source i′ ∈ I.

Zs,s
′

t ⇔
[

t∧
τ=1

(¬bsi′,τ )
]

∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , {i′} = D̂s,s′ (3.28)

Prior to this time t, Zs,s′τ = True and the scenarios s and s′ that differ in the possible realization
of θi′,h are indistinguishable. After the investment at time t, Zs,s

′

t = False and the scenarios are
distinguishable; thus, non-anticipativity constraints no longer apply between s and s′. Note that
we previously used this concept in the discussion of Figure 1.4. Logic constraints (3.28) can be
rewritten as linear integer inequality constraints (3.29) and (3.30) by applying the reformulations
described in Williams (2013) and Raman and Grossmann (1991).

1−
t∑

τ=1
bsi′,τ ≤ z

s,s′

t ∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , {i′} = D̂s,s′ (3.29)

zs,s
′

t ≤ 1− bsi′,τ ∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , τ ∈ T , τ ≤ t, {i′} = D̂s,s′ (3.30)

Making this replacement and substituting disjunctive constraints (3.18) with constraints (3.24)–
(3.27) transforms model (MSSPN) into an MILP. Bounds and integrality restrictions on the variables
are given in Equations (3.20), (3.21) and (3.27).

3.3 MSSP Formulation for Endogenous and Exogenous Uncer-
tainties

In the case of both endogenous and exogenous uncertainties, the multistage stochastic programming
formulation of model (MPD) is given by model (MSSP). This model is also adapted from the work
of Goel and Grossmann (2006) and will be our primary focus for the remainder of this thesis. Just as
the scenario tree for this class of problems is represented by a composite scenario tree (Figure 2.1c),
the corresponding model can also be seen as a composite of the exogenous model (MSSPX) and
the endogenous model (MSSPN). In particular, all of their respective NACs and logic constraints
appear together in (MSSP).

(MSSP)

min
b,y,x

φ =
∑
s∈S

ps
∑
t∈T

(
ycsty

s
t + xcstx

s
t + wcstw

s
t +

∑
i∈I

bcsi,tb
s
i,t

)
(3.31)

s.t.
t∑

τ=1

(
yAsτ,ty

s
τ + xAsτ,tx

s
τ + wAsτ,tw

s
τ +

∑
i∈I

bAsi,τ,tb
s
i,τ

)
≤ ast ∀ t ∈ T , s ∈ S (3.32)

bsi,1 = bs
′
i,1 ∀ (s, s′) ∈ SPF , i ∈ I (3.14)
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ys1 = ys
′

1 ∀ (s, s′) ∈ SPF (3.6)
xst = xs

′
t ∀ (t, s, s′) ∈ SPX (3.7)

bsi,t+1 = bs
′
i,t+1 ∀ (t, s, s′) ∈ SPX , i ∈ I (3.33)

yst+1 = ys
′
t+1 ∀ (t, s, s′) ∈ SPX (3.8)

xst = xs
′
t ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , {i′} = D̂s,s′ (3.15)

bsi,t+1 = bs
′
i,t+1 ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , {i′} = D̂s,s′ , i ∈ I (3.16)

yst+1 = ys
′
t+1 ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , {i′} = D̂s,s′ (3.17)

Zs,s
′

t

xst = xs
′
t

bsi,t+1 = bs
′
i,t+1 ∀ i ∈ I, t < T

yst+1 = ys
′
t+1 t < T

 ∨
[
¬Zs,s

′

t

]
∀ (t, s, s′) ∈ SPN , t ∈ T i

′
C , {i′} = D̂s,s′

(3.18)

Zs,s
′

t ⇔ F (bsi′,1, bsi′,2, . . . , bsi′,t) ∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , {i′} = D̂s,s′ (3.19)
bsi,t ∈ {0, 1}, yst ∈ Yst , xst ∈ X st , wst ∈ Ws

t ∀ i ∈ I, t ∈ T , s ∈ S (3.34)

Zs,s
′

t ∈ {True, False} ∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , {i′} = D̂s,s′ (3.21)

Like model (MSSPN), this formulation represents a hybrid mixed-integer linear disjunctive pro-
gramming problem due to the presence of the conditional endogenous constraints (3.18) and logic
constraints (3.19). The disjunctive constraints can be replaced by constraints (3.24)–(3.27), and if
immediate resolution of uncertainty is assumed, the logic constraints can be replaced by inequalities
(3.29) and (3.30). These steps transform model (MSSP) into standard mixed-integer linear form.

Notice that the objective function (3.31) and constraints (3.32) have only been updated from
their respective counterparts in model (MSSPN) to reflect the fact that the set of scenarios is
now given by S. This is also true for the bounds and integrality restrictions specified in Equa-
tion (3.34). The only new addition to the model is Equation (3.33), which gives the exogenous
non-anticipativity constraints for bsi,t, as these variables were not originally defined in the exogenous
model (MSSPX). Exogenous parameters ξj,t and endogenous parameters θi,h may enter the model
through the objective function and/or the constraints.

It is interesting to note that if we assume expected values for the endogenous parameters, then we
have SPN = ∅, S = SX , and model (MSSP) reduces to the exogenous model (MSSPX). Similarly,
if we assume expected values for the exogenous parameters, then we have SPX = ∅, S = SN , and
model (MSSP) reduces to the endogenous model (MSSPN).

The multistage stochastic programming problem (MSSP) may appear to be simply a larger ver-
sion of the purely-exogenous and purely-endogenous formulations previously discussed; however,
there is a great deal of complexity contained in scenario-pair sets SPF , SPX , and SPN . Specifi-
cally, we must carefully account for the presence of both types of uncertainty when defining these
sets. Notice that in the exogenous formulation (MSSPX), NACs are applied in time period t for all
pairs of scenarios that are indistinguishable in terms of the resolution of exogenous uncertainty. In
the endogenous formulation (MSSPN), NACs are applied in time period t for all pairs of scenarios
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that must be indistinguishable, and conditionally applied for those that may be indistinguishable,
in terms of the resolution of endogenous uncertainty. As can be seen in the composite scenario tree
(Figure 2.1c), this is not the case when endogenous and exogenous uncertainties are both present.
First-period NACs link all scenarios at the beginning of the first time period, as always, but exoge-
nous NACs now link scenarios in time period t that are indistinguishable in terms of the resolution
of exogenous uncertainty and are identical in all possible realizations of the endogenous parameters.
In other words, exogenous NACs are applied between scenarios within each subtree. Endogenous
NACs now link scenarios in time period t that differ in the possible realization of one endogenous
parameter and are identical in all realizations of the exogenous parameters. Thus, endogenous
NACs are applied between scenarios in different subtrees. This is an interesting modeling challenge
and will be discussed in detail in the next chapter.

27



Chapter 4

Scenario Pairs and Reduction
Properties

In defining each of the scenario-pair sets SPF , SPX , and SPN , we begin with a naïve approach in
which we specify only s, s′ ∈ S and s 6= s′, along with the additional indistinguishability conditions
specific to either first-period NACs, exogenous NACs, or endogenous NACs; i.e.,

{
(s, s′) : s, s′ ∈ S, s 6= s′, conditions for indistinguishability

}
(4.1)

As stated in the following property, however, the condition s 6= s′ is not particularly restrictive
and leaves us with many redundant scenario pairs.

Property 1. Scenario pairs (s, s′) and (s′, s) refer to the same pair. Thus, it is sufficient to enforce
non-anticipativity constraints for only pairs (s, s′) where s < s′ (Goel and Grossmann, 2006).

Proof. See Appendix B.1. A brief, qualitative proof can also be found in Goel and Grossmann
(2006).

This simple symmetry argument eliminates half of the scenario pairs generated by Equa-
tion (4.1). We place special emphasis on reduction properties such as Property 1 since NACs are
expressed for each pair of scenarios, and the number of pairs can be extremely large in instances
with a large number of scenarios. In the following sections, we will define additional reduction pro-
perties to exclude all redundant pairs from each of our set definitions. We begin with scenario-pair
set SPF for first-period NACs.

4.1 First-period Scenario Pairs
As was the case for purely-exogenous and purely-endogenous uncertainties, at the beginning of the
first time period, no decisions have been implemented and no uncertainties have been resolved.
Hence, all scenarios are indistinguishable at that time and we must make the same here-and-now
decisions in all scenarios. To define the set of scenario pairs required for these non-anticipativity
constraints, we rely on the following property.
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Property 2. For first-period NACs, it is sufficient to consider only scenario pairs (s, s′) for which
s and s′ are adjacent.

Proof. See Appendix B.2.

Accordingly, we define the set of all pairs of adjacent scenarios, A:

A :=
{
(s, s′) : s, s′ ∈ S, s′ = s+ 1, s < S

}
(4.2)

Note that the condition s < s′ is implicit in this definition since we are only considering consecutive
scenarios in the ‘forward’ direction. The set of all scenario pairs for first-period NACs is then simply
equal to set A, as we define in Equation (3.10).

SPF := A (3.10)

This is the minimum number of scenario pairs, as stated in the following proposition.

Proposition 1. First-period scenario-pair set SPF contains the minimum number of scenario
pairs.

Proof. See Appendix B.3.

Note that the respective scenario pairs in set SPF are non-unique. In other words, different
formulations with the same cardinality are possible; e.g., we may instead choose to link the first
scenario to every other scenario. Such alternative pairing approaches have been shown to perform
better in Lagrangean decomposition (Oliveira et al., 2013); however, for convenience, we limit our
current discussion to the consecutive-pairing approach.

4.2 Exogenous Scenario Pairs
Excluding the beginning of the first time period, scenarios s and s′ are indistinguishable in time
period t if they are identical in the realizations of all exogenous parameters up to this point and
they have all of the same possible realizations for the endogenous parameters. These scenario pairs
are required for exogenous non-anticipativity constraints.

Rather than explicitly checking that each pair of scenarios has the same possible endogenous
realizations, it is clear from Figure 2.1 that due to the manner in which we generate the scenario
set, this condition is implicitly satisfied for any s and s′ in the same subtree. Recall that this is
because each subtree represents an exogenous scenario tree, and by definition, all scenarios in this
tree must have the same endogenous realizations (see Section 2.3). Furthermore, different subtrees
have different possible endogenous realizations, so s and s′ can only be in the same subtree. This
argument also allows us to invoke the following reduction property.

Property 2b. For exogenous NACs, it is sufficient to consider only scenario pairs (s, s′) for which
s and s′ are adjacent.

Proof. See Appendix B.4.
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Hence, we state that adjacent scenarios s and s′ will be indistinguishable in the first time period
if they have the same realizations for all exogenous parameters in this period and they are in the
same subtree. Let Boolean parameter Qs,s

′

t represent the indistinguishability of adjacent scenarios s
and s′ in time period t, where Qs,s

′

t = True if the scenarios are indistinguishable, and Qs,s
′

t = False

otherwise. Then,

Qs,s
′

1 :=

True, if ξsj,1 = ξs
′
j,1 ∀ j ∈ J

False, otherwise
∀ (s, s′) ∈ A, Sub(s) = Sub(s′) (4.3)

where the subtree condition Sub(s) = Sub(s′) relies on the definition provided by Equation (2.7).
For all subsequent time periods, the scenarios are indistinguishable if they were indistinguishable

in the previous time period, they have the same exogenous realizations in the current time period,
and they are in the same subtree:

Qs,s
′

t :=

True, if Qs,s
′

t−1 = True and ξsj,t = ξs
′
j,t ∀ j ∈ J

False, otherwise

t = 2, 3, . . . , T, ∀ (s, s′) ∈ A, Sub(s) = Sub(s′)

(4.4)

As an example, scenarios 1 and 2 in Figure 2.1c have the same realizations for the exogenous
parameter in the first time period; i.e., ξ1

1 = ξ2
1 . Thus, these scenarios are indistinguishable at the

end of this period and Q1,2
1 = True. They have different realizations in the second time period

(i.e., ξ1
2 6= ξ2

2), so the scenarios are distinguishable at that time and Q1,2
2 = False. Since the leaf

nodes in each subtree refer to independent states, it is in fact the case that all adjacent scenarios
in the same subtree will be distinguishable by the end of the final time period; i.e., Qs,s

′

T = False.
Thus, it is unnecessary to evaluate Equation (4.4) for t = T . We also note that because Qs,s

′

t is
the same for all subtrees, it is most efficient to calculate Qs,s

′

t only for the first subtree and then to
duplicate the results for all others.

The set of all scenario pairs (s, s′) in each time period t, such that s and s′ are indistinguishable
in terms of the resolution of exogenous uncertainty and are identical in all possible realizations of
the endogenous parameters, can then be defined as:

SPX :=
{
(t, s, s′) : t ∈ T \ {T}, (s, s′) ∈ A, Sub(s) = Sub(s′), Qs,s

′

t = True
}

(3.11)

Equation (3.11) is also applicable in purely-exogenous problems since, in that case, Sub(s) = 1 for
all s ∈ S. This is the reasoning behind the use of set SPX in model (MSSPX).

We now define exogenous scenario ‘groups’ in each time period t ∈ T \ {T}, where each group
is a set of indistinguishable scenarios that refer to the same state.1 Specifically, each group is the

1We will frequently refer to exogenous scenario groups in time period t. This will be understood to mean the end
of time period t, after all realizations in that period have occurred.
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direct result of splitting a single node into indistinguishable copies for each scenario, as discussed in
the proof of Property 2b. For example, at the end of the first time period in Figure 2.1c, scenarios
1 and 2 refer to the same unique state and can be grouped together. Scenarios 3 and 4 refer to
another unique state and can be placed into a second group. Continuing this process, we end
up with 8 different groups of two scenarios each, as shown in Figure 4.1. Blue groups consist of
scenarios with a low realization for exogenous parameter ξ1, and green groups consist of scenarios
with a high realization for that parameter. We typically do not define scenario groups for the final
time period, since (as previously mentioned) adjacent leaf nodes in the same subtree are unique;
in other words, there would be S groups of one scenario each in time period T (e.g., 16 groups of
one scenario each in Figure 4.1).

Figure 4.1: Exogenous scenario groups.

To generalize this grouping process, we first define parameter GX(t, s) to return the group
number of each scenario s ∈ S in time period t ∈ T \ {T}. Next, we assign the first scenario in
each of these time periods to group 1 by specifying GX(t, 1) := 1 ∀ t ∈ T \ {T}. We then use
Equation (4.5) to assign group numbers to all other scenarios:

GX(t, s) := GX(t, s− 1) +
∑

(t,s−1,s)6∈SPX

[1] ∀ t ∈ T \ {T}, s = 2, 3, . . . , S (4.5)

The general idea behind this equation is that the group number of scenario s will be equal to the
group number of the previous scenario s− 1, given by GX(t, s− 1), as long as these two adjacent
scenarios are indistinguishable based on the definition of set SPX . If they are not indistinguishable
in this sense (i.e., (t, s− 1, s) 6∈ SPX), then the scenarios have different realizations for some of the
uncertain parameters and scenario s belongs in a new group; thus, the group number is incremented
by 1. For instance, at t = 1 in Figure 4.1, scenario 1 is first assigned a group number of 1. Scenario
2 is indistinguishable from scenario 1, so must also be assigned to group 1. Scenario 3, however, is
distinguishable from scenario 2 since ξ2

1 6= ξ3
1 , and (1, 2, 3) 6∈ SPX . Thus, we increment the group

number and assign scenario 3 to group 2. We repeat this process for all remaining scenarios in this
time period.

We index these groups by defining the set of indices Kt,

Kt :=
{
k : k = 1, 2, . . . , GX(t, S)

}
∀ t ∈ T \ {T} (4.6)

where GX(t, S) gives the total number of groups in time period t (since it is the group number for
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the final scenario in time period t). In Figure 4.1, this corresponds to GX(1, 16) = 8; therefore,
K1 := {1, 2, . . . , 8}.

We then use the group numbers to define the set of scenarios for each group:

XGkt :=
{
s : s ∈ S, GX(t, s) = k

}
∀ k ∈ Kt, t ∈ T \ {T} (4.7)

For example, at t = 1 in Figure 4.1, scenario 1 has a group number of 1 (i.e., GX(1, 1) = 1) and
scenario 2 has a group number of 1 (i.e., GX(1, 2) = 1). Accordingly, exogenous scenario group
1 in the first time period is given by XGl1 = {1, 2}. We similarly define XG2

1 = {3, 4}, XG3
1 =

{5, 6}, . . . ,XG8
1 = {15, 16}.

The exogenous scenario-group definitions allow us to state the following proposition.

Proposition 2. Exogenous scenario-pair set SPX contains the minimum number of scenario pairs.

Proof. See Appendix B.5.

Like set SPF , the respective scenario pairs in set SPX are non-unique. The concept of exogenous
scenario groups will be used again in the next section to derive endogenous scenario-pair set SPN .
As will be shown, the definition of this set is quite complex.

4.3 Endogenous Scenario Pairs
Excluding the beginning of the first time period, scenarios s and s′ are indistinguishable in the
initial time periods t ∈ T i′E if they differ in the possible realizations of one or more endogenous
parameters and they are identical in the realizations of all exogenous parameters that have been
realized up until that time. Recall that these scenarios must be indistinguishable here because the
endogenous uncertainty cannot yet be resolved. These scenario pairs are used to generate fixed
endogenous NACs.

For the remaining time periods t ∈ T i′C , the uncertainty can be resolved at some point, but we
do not know when this will occur (or if it will at all). Scenarios s and s′ will be indistinguishable
until this unknown point in time. Thus, we state that under the same conditions given for t ∈ T i′E ,
scenarios s and s′ in t ∈ T i′C may be indistinguishable. These scenario pairs are used to generate
conditional endogenous NACs. Notice that due to the conditional nature of these constraints, set
SPN may contain several scenario pairs that we do not need. This is in sharp contrast to the
exogenous scenario-pair set SPX , where every scenario pair is required because all of the NACs are
fixed.

Before we derive the endogenous scenario-pair set SPN , it is possible to significantly strengthen
the indistinguishability requirements. We begin with the following reduction property.

Property 3. For endogenous NACs, it is sufficient to consider only scenario pairs (s, s′) for which
s and s′ differ in the possible realization of a single endogenous parameter and are identical in the
realizations of all exogenous parameters in all time periods.

Proof. See Goel and Grossmann (2006).
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Example. Due to the complexity of Property 3, and its importance to this work, we provide
an illustrative example of the proof. Consider Figure 4.2, where we have isolated scenarios 1, 5,
and 13 from Figure 2.1c for an arbitrary time period t = τ . Scenario 1 differs from scenario 5
in the possible realization of endogenous parameter θ2. Scenario 5 differs from scenario 13 in the
possible realization of endogenous parameter θ1. Scenario 1 differs from scenario 13, however, in the
possible realizations of both θ1 and θ2. The three scenarios have identical realizations for exogenous
parameter ξt in all time periods.

Disregarding the possibility of initial ‘equality’ periods, we will have three conditional links
between the scenarios, as shown at the top of Figure 4.2: (1, 5) and (5, 13), as shown in green,
and (1, 13), as shown in orange. There are four possible outcomes depending upon the way the
uncertainty is resolved. In Case 1, both endogenous parameters have been realized by the end of
this time period. Accordingly, the scenarios are distinguishable and non-anticipativity does not
apply. In Case 2, only the value of θ1 has been realized and NACs are enforced between scenarios
1 and 5. If we consider only variables ysτ , the corresponding NAC is y1

τ = y5
τ . Similarly, in Case

3, only the value of θ2 has been realized and NACs are enforced between scenarios 5 and 13; e.g.,
y5
τ = y13

τ . When neither of the parameters has been realized in Case 4, all three conditional links
are enforced: y1

τ = y5
τ , y5

τ = y13
τ , and y1

τ = y13
τ .

Figure 4.2: Illustration of Property 3.

Notice that Case 4 is the only case in which we apply non-anticipativity for scenario pair (1, 13),
and it applies only at the same time as the non-anticipativity for pairs (1, 5) and (5, 13). Thus, by
a simple transitivity argument, it is clear that constraint y1

τ = y13
τ is implied by constraints y1

τ = y5
τ
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and y5
τ = y13

τ . Accordingly, scenario pair (1, 13) can be excluded entirely. This leaves us with two
pairs that differ only in the possible realization of a single endogenous parameter.

Recall that scenarios 1, 5, and 13 have identical realizations for the exogenous parameter in all
time periods. We now extend this example to include scenario 2, which has a different exogenous
realization in the second period. Here, we illustrate the second part of Property 3; specifically,
that the corresponding scenario pairs (s, s′) consist of scenarios s and s′ that are identical in
the realizations of all exogenous parameters in all time periods, rather than just identical in the
exogenous realizations that have been revealed up until the current time period. This is shown in
Figure 4.3.

Figure 4.3: Property 3 as applied to endogenous and exogenous uncertainties.

Figure 4.3 includes additional scenario pairs (2, 5) and (2, 13), as shown in orange. Notice,
however, that scenario 2 is identical to scenario 1 aside from the different exogenous realization in
the second time period (i.e., ξ1

2 6= ξ2
2). This means that in the first period, non-anticipativity for

pairs (2, 5) and (1, 5) will apply at the same time, non-anticipativity for pairs (2, 13) and (1, 13) will
apply at the same time,2 and we have the exogenous non-anticipativity constraint y1

τ = y2
τ between

scenarios 1 and 2 (shown in red).
Thus, by transitivity, pair (2, 5) can be eliminated since constraints y1

τ = y2
τ and y1

τ = y5
τ imply

y2
τ = y5

τ . Likewise, pair (2, 13) can also be eliminated since constraints y1
τ = y2

τ , y1
τ = y5

τ , and
y5
τ = y13

τ imply y2
τ = y13

τ . Notice that we have eliminated any endogenous scenario pairs (s, s′) for
which s and s′ are not identical in the realizations of all exogenous parameters in all time periods.

As proved rigorously in Goel and Grossmann (2006), Property 3 always holds, provided that
the set of scenarios consists of all possible combinations of realizations of the endogenous para-
meters. The authors also showed that this property extends to the general case where there are
multiple parameters associated with each source of endogenous uncertainty (as we have considered
throughout this thesis with the use of parameter θi,h).

By Property 3, we may now state that scenarios s and s′ are indistinguishable in time period t
if they differ in the possible realization of exactly one endogenous parameter and they are identical
in the realizations of all exogenous parameters in all time periods. We first address the latter part
of this statement.

Recall from the previous section that scenarios in the same subtree must have the same endo-
genous realizations. Thus, for s and s′ to differ in any endogenous realizations, they must belong

2 Recall from the discussion surrounding Figure 4.2 that scenario pair (1, 13) is implied by pairs (1, 5) and (5, 13).
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to different subtrees. Furthermore, for these scenarios to have exactly the same exogenous realiza-
tions, they must have the same position in both subtrees; for example, the first scenario in both, as
in scenarios 1 and 5. This is because we generate the composite tree by starting with a single exo-
genous tree that has no duplicate scenarios. It follows that when we duplicate the exogenous tree
for each possible combination of realizations of the endogenous parameters, scenarios in the same
position in different subtrees have originated from the same scenario. Therefore, they must have
all of the same exogenous realizations. Because there were no duplicates in the original exogenous
tree, these are the only scenarios for which this holds.

We define parameter Pos(s) to return the position of scenario s from the viewpoint of its
respective subtree; in other words, the index that scenario s would have if it were in subtree 1:

Pos(s) := s− SX(Sub(s)− 1) ∀ s ∈ S (4.8)

Equation (4.8) calculates this normalized scenario index for s by subtracting off the appropriate
number of scenarios according to the subtree that s belongs to. Recall that SX is just the number
of scenarios in each subtree. As a simple example, consider scenarios 1, 5, 9, and 13 in Figure 2.1c.
Since these scenarios refer to the first scenario in each subtree, respectively, Equation (4.8) gives
Pos(1) = 1 − 4(1 − 1) = 1, Pos(5) = 5 − 4(2 − 1) = 1, Pos(9) = 9 − 4(3 − 1) = 1, and
Pos(13) = 13− 4(4− 1) = 1.

Thus, to indicate that s and s′ are identical in all exogenous realizations, but differ in at least
one possible endogenous realization, it is sufficient to state Pos(s) = Pos(s′), with s < s′. Note
that this implies that the two scenarios are in different subtrees, so it is unnecessary to specify
Sub(s) 6= Sub(s′).

We now address the first part of Property 3; namely, that scenarios s and s′ differ in the possible
realization of exactly one endogenous parameter. To do so, we define sets Ds,s′ , composed of pairs
of indices (i′, h), to indicate the endogenous parameters θi′,h for which scenarios s and s′ differ in
possible realizations:3

Ds,s′ :=
{

(i′, h) : i′ ∈ I, h ∈ Hi′ , θsi′,h 6= θs
′
i′,h

}
∀ s, s′ ∈ S, s < s′, Pos(s) = Pos(s′) (4.9)

Property 3 then requires that |Ds,s′ | = 1 for all endogenous scenario pairs. In other words, the
corresponding set of pairs for all time periods is given by:

SPN3 :=
{

(t, s, s′) : t ∈ T , s, s′ ∈ S, s < s′, Pos(s) = Pos(s′), |Ds,s′ | = 1
}

(4.10)

Note that the same pairs are present in each period.
As pointed out by Gupta and Grossmann (2011), however, when we consider 3 or more possible

realizations for any of the endogenous parameters, there are additional redundant scenario pairs
that are not removed by this property. This is illustrated in Figure 4.4. Here we consider a group

3 Recall that we index the sources with i′ so as not to conflict with index i of bs
i,t in models (MSSPN) and (MSSP).
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of three scenarios (ŝ, ŝ′, and ŝ′′), in an arbitrary time period t = τ , that all differ in the possible
realization of a single endogenous parameter θı̂,ĥ. These scenarios will be distinguishable in time
period τ if parameter θı̂,ĥ has been realized (Case 1), or indistinguishable if the parameter has not
yet been realized (Case 2).

Using Property 3, we generate three scenario pairs: (ŝ, ŝ′) and (ŝ′, ŝ′′), as shown in green, and
(ŝ, ŝ′′), as shown in orange. Since the corresponding NACs all apply at the same time or are all
ignored at the same time, it is clear that scenario pair (ŝ, ŝ′′) is redundant and can be eliminated.
This follows directly from the simple transitivity arguments previously used in the example of
Property 3. Because |Dŝ,ŝ′′ | = 1 and yet (ŝ, ŝ′′) is redundant, it is also clear that we must rely on
an alternative approach to exclude such scenario pairs.

Figure 4.4: Property 3 fails to eliminate all redundant scenario pairs when there are 3 or more
possible realizations for any of the endogenous parameters.

A simple remedy for this, as proposed by Gupta and Grossmann (2011), is to first generate all
‘groups’ of scenarios like that shown in Figure 4.4, and then link consecutive scenarios in each of
these groups.4 Each group is the set of all scenarios that differ only in the possible realization of a
single endogenous parameter h of source i′ (i.e., θi′,h). As previously noted, these scenarios will be
indistinguishable as long as this parameter is unrealized.

Thus, for each i′ ∈ I and h ∈ Hi′ , we define parameter GN (i′, h, s) to identify the index of
the group that scenario s ∈ S belongs to. We refer to this as the group number, represented
here by index l, and propose the following algorithm to assign group numbers to all scenarios.
Notice that unlike the exogenous case, an algorithm is required here because the groups consist of
nonconsecutively-indexed scenarios.

Endogenous Scenario-Group Algorithm
Step 1 Initialize the group numbers to zero for all scenarios; i.e., GN (i′, h, s) := 0 ∀ i′ ∈ I, h ∈

4 The scope of Gupta and Grossmann (2011) is limited to purely-endogenous MSSP problems with no initial
‘equality’ time periods and only one parameter associated with each source of uncertainty.
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Hi′ , s ∈ S. Also, define a group counter, GroupCount, to keep track of the current group
number in each iteration.

Step 2 For each endogenous parameter, define all groups of scenarios that differ in the possible
realization of only this parameter. This is done as follows.

For each i′ ∈ I and h ∈ Hi′ :
Step 2a Reset the group counter (i.e., GroupCount := 0).
Step 2b Fix s to the next available scenario in S (i.e., s has not already been assigned to

a group, so GN (i′, h, s) = 0), and then search for all other scenarios from which s

differs in the possible realization of only θi′,h. Such scenarios must be in the same
group as s.

Specifically, for s = 1, 2, . . . , S, where GN (i′, h, s) = 0:
(i) Increment the group counter (i.e., GroupCount := GroupCount + 1).
(ii) Set the group number of scenario s to the current group number:

GN (i′, h, s) := GroupCount (4.11)

(iii) Search for scenarios s′ ∈ S that differ from s in the possible realization of the same
endogenous parameter; i.e., Ds,s′ = {(i′, h)}. For each s′ that satisfies this condition,
set the group number of that scenario to the same group number as scenario s; i.e.,

GN (i′, h, s′) := GN (i′, h, s) ∀ s′ ∈ S, s′ > s, Pos(s′) = Pos(s), Ds,s′ = {(i′, h)}
(4.12)

For instance, in Figure 4.4, assume that scenario ŝ is in group l̂ corresponding to
endogenous parameter θı̂,ĥ. Also, assume that s = ŝ. In this step of the algorithm,
we would first identify ŝ′ as belonging to the same group as ŝ, and then the same for
ŝ′′, since Dŝ,ŝ′ = Dŝ,ŝ′′ = {(̂ı, ĥ)}. Thus, we would have GN (̂ı, ĥ, ŝ) = GN (̂ı, ĥ, ŝ′) =
GN (̂ı, ĥ, ŝ′′) = l̂.

Notice that, aside from the fact that the s index is fixed, the restrictions on the
scenarios in Equation (4.12) are the same as those for Property 3 (see the definition
of set SPN3 in Equation (4.10)), with the condition Ds,s′ = {(i′, h)} in place of
|Ds,s′ | = 1. This condition is inspired by Gupta and Grossmann (2011) and implies
that |Ds,s′ | = 1.

Step 2c Use the final group number to define the set of indices for all groups corresponding
to θi′,h:

Li′,h := {l : l = 1, 2, . . . ,GroupCount} (4.13)

We index the endogenous scenario groups as l ∈ Li′,h.
For each endogenous parameter θi′,h, the group-number parameter gives the particular index l̂

for each s ∈ S (i.e., GN (i′, h, s) = l̂). We can use this information to define the set of scenarios for
each group:
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NGli′,h :=
{
s : s ∈ S, GN (i′, h, s) = l

}
∀ l ∈ Li′,h, i′ ∈ I, h ∈ Hi′ (4.14)

Note that it is unnecessary to define these groups for every time period, since endogenous realiza-
tions are not explicitly associated with any particular time t.

We now define the corresponding set of endogenous scenario pairs, which is at least as restrictive
as SPN3 (we will prove this momentarily), by first linking consecutive scenarios in each group. This
is handled separately for each group, as shown in Equation (4.15).

SP i
′,h,l
N4 :=

{
(t, s, s′) : t ∈ T , s, s′ ∈ NGli′,h,

s′ = min
ŝ′

(
ŝ′ ∈ NGli′,h, ŝ′ > s

)
,

s < max
ŝ

(
ŝ ∈ NGli′,h

)
,

{(i′, h)} = Ds,s′
}
∀ l ∈ Li′,h, i′ ∈ I, h ∈ Hi′

(4.15)

Although seemingly complex, the expression s′ = minŝ′
(
ŝ′ ∈ NGli′,h, ŝ′ > s

)
simply ensures that

scenario s′ is the next-highest-indexed scenario immediately following scenario s. The expression
s < maxŝ

(
ŝ ∈ NGli′,h

)
simply excludes the highest-indexed scenario from the group, since there

is no scenario following it with which to form a pair. This is the same concept used to define
the set of adjacent scenarios, A, previously defined in Equation (4.2) and used in our consecutive
pairing approach for first-period and exogenous scenario pairs. The endogenous case is merely a
more general formulation that allows us to pair off consecutive scenarios that are nonconsecutively
indexed. To prove that this is the case, consider the following: if we replace NGli′,h with S in the
two expressions under discussion, we arrive at s′ = s+ 1 from the first and s < S from the second.
These are the same two conditions that appear in the definition of set A.

Returning to Equation (4.15), for a given scenario pair (s, s′), the indices i′ and h are given by
{(i′, h)} = Ds,s′ and correspond to the specific endogenous parameter θi′,h for which scenarios s and
s′ differ in possible realizations. Also, notice that the pairs for each group are explicitly generated
for every time period, even though they are the same in each period (the reasoning here will become
apparent later in this section). Finally, to offer a brief insight into the use of this equation, consider
an arbitrary group l̂ in the context of Figure 4.4: NG l̂

ı̂,ĥ
= {ŝ, ŝ′, ŝ′′}.5 By Equation (4.15), we

generate scenario pairs (ŝ, ŝ′) and (ŝ′, ŝ′′) for each time period; the third, redundant pair (ŝ, ŝ′′) is
implicitly eliminated. (More specifically, for an arbitrary time period t = τ , we will have tuples
(τ, ŝ, ŝ′), (τ, ŝ′, ŝ′′) ∈ SP ı̂,ĥ,l̂N4 , and (τ, ŝ, ŝ′′) 6∈ SP ı̂,ĥ,l̂N4 .)

After evaluating Equation (4.15), there will be one set of pairs for each endogenous scenario
group. The union of all of these sets gives the complete set of endogenous scenario pairs, as shown
in Equation (4.16).

5 Note that we cannot provide an example in the context of Figure 2.1c, since there are only 2 possible realizations
for each endogenous parameter in that case.
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SPN4 :=
⋃
i′∈I

 ⋃
h∈Hi′

 ⋃
l∈Li′,h

SP i
′,h,l
N4

 (4.16)

Since this set is at least as restrictive as SPN3 , as previously noted, we claim that SPN4 ⊆ SPN3 .
We now formally state Property 4, by which we prove this claim.

Property 4. For endogenous NACs, it is sufficient to consider only scenario pairs (s, s′) for which
s and s′ are consecutive scenarios in an endogenous scenario group.

Proof. See Appendix B.6.

The following proposition states that, under special circumstances, the proposed approach leads
to the minimum number of endogenous scenario pairs.

Proposition 3. In the case of purely endogenous uncertainty, with no initial ‘equality’ periods
and only one parameter associated with each source, the approach described in Property 4 gives the
minimum number of endogenous scenario pairs.

Proof. See Appendix B.7.

In the general case considered here, however, it is clear that Proposition 3 does not apply.
For instance, with both endogenous and exogenous parameters present in the model, some of the
endogenous NACs can be implied through the use of exogenous NACs. A simple example of this
can be seen with scenario pairs (1, 5) and (2, 6) at the end of the first time period/beginning of
the second time period in Figure 2.1c. We isolate the corresponding scenarios (1, 2, 5, and 6)
in Figure 4.5 to clearly illustrate the issue. Notice that if we consider only variables ysτ , we have
the exogenous NACs y1

2 = y2
2 and y5

2 = y6
2 for the beginning of the second period (shown in red).

We also have the conditional endogenous NACs y1
2 = y5

2 (shown in green) and y2
2 = y6

2 (shown
in orange), which are enforced together as long as endogenous parameter θ2 is unrealized. Recall
that the exogenous NACs always hold. We can thus use the two exogenous constraints to rewrite
the first endogenous constraint as y2

2 = y6
2. This, of course, is the second endogenous constraint.

Accordingly, we can eliminate the endogenous scenario pair (2, 6) since it is already implied by
existing pairs.

Because all scenarios in an exogenous scenario group refer to the same state at that point in
time, it is only necessary to consider a single endogenous scenario pair between any two exogenous
scenario groups. This transitivity argument is formally stated in the following reduction property.

Property 5. For any two exogenous scenario groups in time period t = τ (say, XGk̂τ and XGk̃τ ), it
is sufficient to consider only one endogenous scenario pair (s, s′) such that s is in one group and
s′ is in the other (i.e., s ∈ XGk̂τ and s′ ∈ XGk̃τ , or vice versa).

Proof. See Appendix B.8.

Since we require only one endogenous scenario pair between each exogenous scenario group, it is
sufficient to consider only a subset of scenarios when generating these endogenous pairs. Specifically,
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Figure 4.5: Illustration of Property 5.

for each time period t ∈ T \ {T}, rather than considering all scenarios in S, we select a single
‘representative’ scenario from each exogenous scenario group. This gives us a set of unique scenarios,
Ũt, in each period. We use the term ‘unique’ because all of the scenarios in set Ũt have different
realizations for the exogenous parameters up until that point in time and/or different possible
realizations for the endogenous parameters.

In selecting these ‘representative’ scenarios, we must ensure that the corresponding scenario
pairs can satisfy Property 3; i.e., Pos(s) = Pos(s′), where s < s′, and |Ds,s′ | = 1. We do this by
selecting one scenario from each exogenous scenario group in the first subtree, and then selecting
only scenarios with the same position in every other subtree. This procedure is repeated for all
t ∈ T \ {T}.

For example, consider t = 1 in Figure 4.1. If we select scenario 1 from the first group in subtree 1,
we must also select scenario 5 from subtree 2, scenario 9 from subtree 3, and scenario 13 from subtree
4. The resulting pairs can satisfy Property 3 since Pos(1) = Pos(5) = Pos(9) = Pos(13) = 1.
Similarly, if we select scenario 4 from the second group in subtree 1, we must also select scenario
8 from subtree 2, scenario 12 from subtree 3, and scenario 16 from subtree 4. The corresponding
pairs can satisfy Property 3 since Pos(4) = Pos(8) = Pos(12) = Pos(16) = 4. The set of unique
scenarios in this case is then given by Ũ1 = {1, 4, 5, 8, 9, 12, 13, 16}.

For convenience, we simply select the lowest-indexed scenario from each exogenous scenario
group (i.e., the first scenario in each group), as shown in Equation (4.17). Specifically, Ũt is
expressed as the union of all of these single-scenario sets:

Ũt :=
⋃
k∈Kt

{
s : s = min

ŝ

(
ŝ ∈ XGkt

)}
∀ t ∈ T \ {T} (4.17)

We let ŨT := S, since there are no exogenous scenario groups defined for t = T . Notice that the
time index, which was not strictly required in Equation (4.15), will now play a significant role in
the definition of the set of endogenous scenario pairs.

In order to define the set of pairs for each endogenous scenario group, SP i
′,h,l
N5 , corresponding to

the addition of Property 5, we first restate our earlier definition corresponding to Property 4 (see
Equation (4.15)). Our only change is to replace set NGli′,h with set NGli′,h ∩ S, as follows:
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SP i
′,h,l
N4 :=

{
(t, s, s′) : t ∈ T , s, s′ ∈

(
NGli′,h ∩ S

)
,

s′ = min
ŝ′

(
ŝ′ ∈

(
NGli′,h ∩ S

)
, ŝ′ > s

)
,

s < max
ŝ

(
ŝ ∈

(
NGli′,h ∩ S

))
,

{(i′, h)} = Ds,s′
}
∀ l ∈ Li′,h, i′ ∈ I, h ∈ Hi′

(4.18)

Because S refers to the complete set of scenarios, the intersection of NGli′,h and S is redundant;
there are no scenarios removed from each group, and accordingly, Equation (4.18) is equivalent
to Equation (4.15). For Property 5, however, we simply replace set S in this intersection with
a subset of unique scenarios, Ũt. The resulting set, NGli′,h ∩ Ũt, further restricts SP i

′,h,l
N4 such

that the endogenous scenario pairs can only be formed among unique scenarios in each of the
endogenous scenario groups in each time period. This further-restricted set is defined as SP i

′,h,l
N5 in

Equation (4.19).

SP i
′,h,l
N5 :=

{
(t, s, s′) : t ∈ T , s, s′ ∈

(
NGli′,h ∩ Ũt

)
,

s′ = min
ŝ′

(
ŝ′ ∈

(
NGli′,h ∩ Ũt

)
, ŝ′ > s

)
,

s < max
ŝ

(
ŝ ∈

(
NGli′,h ∩ Ũt

))
,

{(i′, h)} = Ds,s′
}
∀ l ∈ Li′,h, i′ ∈ I, h ∈ Hi′

(4.19)

Note that we will refer to sets NGli′,h ∩ Ũt as reduced endogenous scenario groups, since for each
l ∈ Li′,h, i′ ∈ I, and h ∈ Hi′ , this intersection produces a subset of group NGli′,h specific to time
period t ∈ T . (For the case of t = T , it is also worth noting that NGli′,h ∩ ŨT = NGli′,h since
ŨT := S.)

We then take the union of all of the sets of pairs from Equation (4.19) in order to produce the
complete set of endogenous scenario pairs, SPN5 , as shown in Equation (4.20). Note that this is
the same approach previously used in Equation (4.16) in the context of Property 4.

SPN5 :=
⋃
i′∈I

 ⋃
h∈Hi′

 ⋃
l∈Li′,h

SP i
′,h,l
N5

 (4.20)

We state that SPN5 ⊆ SPN4 based on the proof of Property 5 (see Appendix B.8); in other
words, Property 5 may eliminate additional pairs that cannot be removed by Property 4. This
conclusion can also be reached by comparing Equation (4.19) to Equation (4.18).

For illustrative purposes, we apply Property 5 to Figure 2.1c in order to remove endoge-
nous scenario pair (2, 6) and all other similar pairs at the end of the first time period/beginning
of the second time period. Here, we have endogenous scenario groups NGl1 = {1, 9}, NG2

1 =
{2, 10}, NG3

1 = {3, 11}, . . . ,NG8
1 = {8, 16} corresponding to θ1, and NGl2 = {1, 5}, NG2

2 =
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{2, 6}, NG3
2 = {3, 7}, . . . ,NG8

2 = {12, 16} corresponding to θ2. The set of unique scenarios
from Property 5 is given by Ũ1 = {1, 3, 5, 7, 9, 11, 13, 15}. The intersection NGli′,h ∩ Ũ1 then yields
the following: NGl1 ∩ Ũ1 = {1, 9}, NG2

1 ∩ Ũ1 = ∅, NG3
1 ∩ Ũ1 = {3, 11}, . . . ,NG8

1 ∩ Ũ1 = ∅, and
NGl2∩ Ũ1 = {1, 5}, NG2

2 ∩ Ũ1 = ∅, NG3
2 ∩ Ũ1 = {3, 7}, . . . ,NG8

2 ∩ Ũ1 = ∅, respectively. For the groups
listed, this corresponds to scenario pairs (1, 5), (1, 9), (3, 7), and (3, 11) (or, more specifically, tu-
ples (1, 1, 5), (1, 1, 9), (1, 3, 7), (1, 3, 11) ∈ SPN5). The respective pairs are illustrated in Figure 4.6,
along with all remaining (non-listed) pairs for the end of the first time period and the end of the
second time period. Notice that at t = 1, all conditional endogenous NACs involving non-unique
scenarios have been removed. Also, note that this reduction does not apply in the final time period;
at that time, there are no exogenous scenarios groups that we can exploit (see Figure 4.1), and all
pairs in SPN4 are present in SPN5 for t = T . This can easily be seen by comparing Equation (4.18)
to Equation (4.19) with ŨT := S.

Figure 4.6: Property 5 as applied to Figure 2.1c.

In certain cases (such as Figure 2.1c), the addition of Property 5 leads to the minimum number
of endogenous scenario pairs. This is formally stated in the following proposition.

Proposition 4. In the case of both endogenous and exogenous uncertainties, with no initial ‘equa-
lity’ periods and only one parameter associated with each source, the approach described in Pro-
perty 4 and supplemented by Property 5 gives the minimum number of endogenous scenario pairs.

Proof. See Appendix B.9.

As was the case with Proposition 3, this proposition does not apply in the general case considered
here. This is because we may have: (1) endogenous parameters that cannot be realized in some of
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the initial time periods; and/or (2) multiple endogenous parameters associated with some of the
sources of uncertainty. Both of these possibilities have a similar effect on the model.

For the first case, we have fixed endogenous NACs, as previously introduced in Section 3.2 (see
Equations (3.15)–(3.17)). An example of this is shown in Figure 4.7. Here we consider scenarios 1,
5, 9, and 13 from Figure 2.1c and assume that endogenous parameter θ2 cannot be realized in the
first time period. The four scenarios have identical realizations for the exogenous parameter, and
we have four endogenous scenario pairs: (1, 5) and (9, 13), as indicated by solid green lines; (1, 9),
as indicated by a dotted green line; and (5, 13), as indicated by a dotted orange line. Notice that
scenarios 1 and 5 differ in the possible realization of θ2 but must be indistinguishable in the first
time period because θ2 cannot be realized at that time. The same is true of scenarios 9 and 13.

If we consider only variables ysτ , we have the fixed endogenous NACs y1
2 = y5

2 and y9
2 = y13

2
for the beginning of the second period. We also have the conditional endogenous NACs y1

2 = y9
2

and y5
2 = y13

2 , which must be enforced together as long as endogenous parameter θ1 is unrealized.
It follows that we can use the two fixed endogenous constraints to rewrite the first conditional
endogenous constraint as y5

2 = y13
2 . Notice that this is the second conditional endogenous constraint.

Accordingly, we can eliminate the endogenous scenario pair (5, 13) since it is already implied by
existing pairs. Recall that this result is very similar to what we previously observed in Figure 4.5
with Property 5.

Figure 4.7: Illustration of Property 6 for endogenous parameters that cannot be realized in some
of the initial time periods.

For the second case, we have multiple endogenous parameters associated with some of the
sources of uncertainty. We use Figure 4.8 to illustrate this and consider 4 scenarios (ŝ, ŝ′, ŝ′′, and
ŝ′′′) in an arbitrary time period t = τ . There are 2 endogenous parameters (h = 1 and h = 2)
associated with a single source ı̂. It is assumed that the scenarios have identical realizations for all
exogenous parameters.

By our existing reduction properties, we generate four scenario pairs: (ŝ, ŝ′), (ŝ, ŝ′′), and
(ŝ′′, ŝ′′′), as shown in green, and (ŝ′, ŝ′′′), as shown in orange. Each of these pairs consists of
scenarios s and s′ that differ in the possible realization of an endogenous parameter of the same
source ı̂. This means that if the uncertainty in source ı̂ has been resolved by the end of time period
τ , then all of the scenarios will be distinguishable, and the corresponding NACs will be jointly
ignored (Case 1). If the uncertainty has not yet been resolved, then all of the scenarios will be
indistinguishable, and the NACs will be jointly enforced (Case 2). Notice that from a modeling
perspective, it is only necessary for us to consider Case 2, where the NACs can be viewed as equa-
lity constraints. From this viewpoint, it is clear that scenario pair (ŝ′, ŝ′′′) is redundant and can be
eliminated. Recall that this discussion is very similar to what we previously observed in Figure 4.4
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in relation to Property 4.

Figure 4.8: Illustration of Property 6 for multiple parameters associated with a single source of
endogenous uncertainty.

What we see in these two cases is that some of the remaining endogenous NACs can in fact be
implied by other endogenous NACs. To eliminate the corresponding redundant scenario pairs, we
extend our definition of unique scenarios.

First, recall that set Ũt from Property 5 provides a sufficient subset of scenarios (in place of the
complete set of scenarios, S) that can be considered when generating endogenous scenario pairs.
This is based on the presence of exogenous scenario pairs. In a similar manner, provided that the
endogenous scenario pairs are generated in sequential order, we may use the existing endogenous
pairs to eliminate additional scenarios from set Ũt at each step. For example, in the context of
Figure 4.7, after generating scenario pairs (1, 5) and (9, 13) from the endogenous scenario groups
corresponding to θ2, it is clear that there is no further need to consider scenarios 5 and 13; thus,
we may remove these scenarios from the groups for θ1.

We use this concept to define set U i
′,h
t for each endogenous parameter θi′,h and time period t ∈ T .

Each set indicates the unique scenarios available for forming pairs from the groups corresponding to
θi′,h, taking into account all endogenous pairs formed before this point. The specific definitions for
these sets, as well as the order in which to define them, are given by the unique scenarios algorithm,
which we present in Appendix B.10. Note that there is no need to index sets U i

′,h
t for l ∈ Li′,h,

since the groups corresponding to θi′,h each contain different scenarios, and any reductions would
thus have no effect until we begin forming pairs from the groups of the next endogenous parameter.

Next, we formally state the final reduction property, by which we justify the use of the unique
scenarios algorithm.

Property 6. For endogenous NACs, it is sufficient to consider only scenario pairs (s, s′) for which
s and s′ are unique, as defined by the unique scenarios algorithm.

Proof. See Appendix B.11.

This leads to the following proposition.
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Proposition 5. In the general case considered throughout this thesis, the approach described in
Property 4 and supplemented by Property 5 and Property 6 gives the minimum number of endoge-
nous scenario pairs.

Proof. See Appendix B.12.

We now define the set of all scenario pairs (s, s′) in each time period t, such that s and s′

differ in the possible realization of one endogenous parameter and are identical in all exogenous
realizations, with additional redundant pairs eliminated by Properties 4–6. We apply the same
general approach as described in Equations (4.15) and (4.19). Specifically, for each endogenous
parameter θi′,h, we first link consecutive scenarios in each of the associated endogenous scenario
groups l ∈ Li′,h. We define a separate set for each of these groups in Equation (3.22). Note that
in keeping with the notation of the previous sets in this section (e.g., SP i

′,h,l
N4 and SP i

′,h,l
N5 ), this

set should be named SP i
′,h,l
N6 ; however, since we will make no further modifications to the following

definition, we will simply refer to this set as SP i
′,h,l
N .

SP i
′,h,l
N :=

{
(t, s, s′) : t ∈ T , s, s′ ∈

(
NGli′,h ∩ U

i′,h
t

)
,

s′ = min
ŝ′

(
ŝ′ ∈

(
NGli′,h ∩ U

i′,h
t

)
, ŝ′ > s

)
,

s < max
ŝ

(
ŝ ∈

(
NGli′,h ∩ U

i′,h
t

))
,

{(i′, h)} = Ds,s′
}
∀ l ∈ Li′,h, i′ ∈ I, h ∈ Hi′

(3.22)

Notice that the only change from Equation (4.19) is that we have replaced the reduced endo-
genous scenario groups NGli′,h ∩ Ũt with a further reduced set, NGli′,h ∩ U

i′,h
t , based on Property 6.

A brief example of the use of Equation (3.22) is provided at the end of Appendix B.10.
Finally, we take the union of all of the individual scenario-pair sets in Equation (3.23) to obtain

set SPN , the complete set of endogenous scenario pairs. (Again, note that since we will make
no further modifications to the following definition, we will refer to this set as SPN rather than
SPN6 .) This is simply an updated form of Equation (4.20) in which we have replaced set SP i

′,h,l
N5

with SP i
′,h,l
N .

SPN :=
⋃
i′∈I

 ⋃
h∈Hi′

 ⋃
l∈Li′,h

SP i
′,h,l
N

 (3.23)

Since Property 6 may eliminate additional scenario pairs that cannot be removed by Property 5,
we state that SPN ⊆ SPN5 by the proof of Property 6 (see Appendix B.11). This can also be seen
by comparing Equation (3.22) to Equation (4.19). It follows that SPN ⊆ SPN5 ⊆ SPN4 ⊆ SPN3 .
Like sets SPF and SPX , the respective scenario pairs in set SPN are also non-unique.

In the case of purely endogenous uncertainty, it is worth noting that Ũt = S for all t ∈ T
(since, in each time period, scenario 1 will be assigned to exogenous scenario group 1, and every
other scenario will be assigned to a separate group by Equation (4.5) (due to SPX = ∅)). Thus,
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Equations (3.22) and (3.23) are also applicable for purely-endogenous problems, as previously
suggested with the use of SPN in model (MSSPN).

We now formulate one final set in this section. Recall that in model (MSSP) (and accordingly,
model (MSSPN)), there are many cases where we require the source i′ of the endogenous parameter
for which scenarios s and s′ differ in possible realizations. The reason, of course, is that there is
some information that is specific to the source itself.

For example, we may make an investment in a source to reveal uncertain parameter values,
and there may be a certain number of initial time periods (i.e., a lead time) before we can observe
these values. The investment decision bsi′,t and hence the indistinguishability of scenarios are both
specific to the source i′. We require this index to evaluate our uncertainty-resolution rule (see
Equation (3.19)). The set of initial ‘equality’ time periods T i′E and thus the remaining ‘conditional’
periods T i′C are also both specific to the source. Accordingly, the index i′ is required in all endogenous
non-anticipativity constraints. To further emphasize our point, notice that bsi′,t, T i

′
E , and T i′C are

not indexed for any particular parameter h.
The previously-defined set Ds,s′ indicates the specific parameter θi′,h for which s and s′ differ

in possible realizations. We now define set D̂s,s′ to indicate only the associated source, i′:

D̂s,s′ :=
{
i′ : i′ ∈ I,

(
∃ h ∈ Hi′ : (i′, h) ∈ Ds,s′

)}
∀ s, s′ ∈ S, s < s′, Pos(s) = Pos(s′)

(4.21)
where we specify that there exists at least one endogenous parameter h associated with source i′

for which scenarios s and s′ differ in possible realizations. (Due to Property 3, there will be exactly
one endogenous parameter h in each case.)

4.4 Conclusions
In the previous three sections, we have presented 6 theoretical reduction properties that eliminate
all redundant scenario pairs. This, in turn, eliminates all redundant non-anticipativity constraints,
which can significantly reduce the dimensionality of our multistage stochastic programming model,
(MSSP), as compared to the case where no reduction properties are applied.

Note that in the reduced form of the model, first-period scenario-pair set SPF is defined in
Equations (3.10) and (4.2), exogenous scenario-pair set SPX is defined in Equation (3.11), and
endogenous scenario-pair set SPN is defined in Equations (3.22) and (3.23). The NACs in model
(MSSP) are expressed in terms of these sets. In other words, with the stated definitions, this model
is in reduced form, and no further reduction is possible.6

6 The same can be said of models (MSSPX) and (MSSPN), which are simply special cases of model (MSSP).
Also, note that this statement applies to the general formulations considered in this thesis; further reduction may be
possible in specific problem instances.
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Chapter 5

Solution Methods and Numerical
Results

Even after eliminating redundant scenario pairs with Properties 1–6, model (MSSP) is often still
too large to solve directly with commercial MILP solvers. We thus rely on alternative solution met-
hods. Specifically, we consider a novel sequential scenario decomposition heuristic and Lagrangean
decomposition.

5.1 Sequential Scenario Decomposition Heuristic
The first alternative solution method that we will discuss is a heuristic that we refer to as sequential
scenario decomposition (SSD). The basic idea behind this algorithm is that we sequentially solve
endogenous MILP subproblems to determine the binary investment decisions, fix these decisions to
satisfy the corresponding first-period and exogenous NACs, and then solve the resulting model to
obtain a feasible solution to the original problem.

More specifically, we start at t = 1 in model (MSSP) and select one scenario from each exogenous
scenario group. This subset of scenarios will be connected by only first-period and endogenous
NACs, since we have effectively removed all of the exogenous constraints by disregarding many
of the scenarios. We then solve this endogenous MILP subproblem (a modified form of model
(MSSPN)) and extract the binary investment decisions from the solution. Returning to the original
problem, we fix the respective binary first-stage decisions in all scenarios, and for all other time
periods, we fix the binary here-and-now decisions in all scenarios that belong to the same exogenous
scenario groups as the subproblem scenarios. We then proceed to the next time period and repeat
this process (excluding the consideration of binary first-stage decisions, as these have already been
fixed), selecting only scenarios that have not been considered in any previous subproblem. We
continue until we reach t = T − 1; this is the last subproblem, as we are solving for binary here-
and-now decisions for the next time period, and there are no such decisions for t = T . After this
process is complete, all binary investment decisions will be fixed in model (MSSP). This means that
the scenario tree is fixed and we no longer have conditional constraints. The solution of this model
gives a feasible solution to the original problem. In Figure 5.1, we demonstrate the first iteration
of the algorithm.
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The primary motivation for this procedure is that the subproblems should be considerably easier
to solve than the original model. Furthermore, as shown in Figure 5.1, the first “easy” subproblem
includes all of the unique scenarios in the first time period; thus, at the beginning of the planning
horizon, we have the same level of information as the original model. The quality of information
gradually deteriorates as we proceed forward in time since (by design) some required scenarios
are not considered until later subproblems. For instance, in Figure 5.1, scenarios 3, 7, 11, and 15
are excluded from the first subproblem and thus the model is unaware of the possibility of a high
demand in the second time period. This demand is accounted for in the next subproblem, after
investment decisions have already been fixed in all scenarios at the beginning of the first and second
time periods and in half of the scenarios at the beginning of the third time period, based on partial
information (see Figure 5.1c). To our benefit, however, this is typically not a significant concern. In
problems with endogenous uncertainty, investment decisions are often made early in the planning
horizon, at which point we still have “mostly complete” information. Hence, the subproblem data
may not be extensive enough to determine optimal values for the continuous variables, but should
be sufficient to approximate the optimal “yes” or “no” investment decisions.

We assume that fixing binary decisions for time period t does not render any later-period
subproblems infeasible. Note that when we refer to “binary decisions,” we are referring to all
binary here-and-now decisions bsi,t, as well as any binary components of variable vector yst . For
convenience of notation, however, we will represent all such binary decisions as bsi,t in this section.
We next present the algorithm.

Sequential Scenario Decomposition Algorithm
Step 1 Generate all parameters and sets required for model (MSSP).
Step 2 Determine the set of scenarios S t̂SSD for each subproblem t̂ ∈ T \ {T}. This is done as

follows: for each subproblem t̂, select one scenario from each exogenous scenario group
in this time period (i.e., s ∈ Ũt̂), excluding all scenarios in previous subproblems (i.e.,
s 6∈

⋃
τ̂∈T , τ̂<t̂ S τ̂SSD). We exclude the final time period because there are no exogenous

scenario groups defined for t = T , and we cannot make new here-and-now decisions at the
end of the time horizon. Set S t̂SSD is then given by:

S t̂SSD :=

s : s ∈ Ũt̂ \
⋃

τ̂∈T , τ̂<t̂

S τ̂SSD

 ∀ t̂ ∈ T , t̂ < T (5.1)

In Figure 5.1, the set of scenarios for the first subproblem is given by S1
SSD := {s : s ∈

{1, 5, 9, 13} \ ∅} = {1, 5, 9, 13}. For the second subproblem (not shown), S2
SSD := {s : s ∈

{1, 3, 5, 7, 9, 11, 13, 15} \ {1, 5, 9, 13}} = {3, 7, 11, 15}.
Step 3 For t̂ = 1, 2, . . . , T − 1:

Step 3a Redefine set A (Equation (4.2)), and thus set SPF (Equation (3.10)), using the set
of scenarios for subproblem t̂ (i.e., S := S t̂SSD and S := |S t̂SSD|).

Step 3b Generate subproblem t̂, as shown in Figure 5.1b. This is a modified form of model
(MSSPN), where SN := S t̂SSD and the non-anticipativity constraints for bsi,t depend
on the subproblem number, t̂. Accordingly, replace first-period NACs (3.14), fixed
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Figure 5.1: Sequential scenario decomposition heuristic (first subproblem).
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endogenous NACs (3.16), and conditional endogenous NACs (3.25) (assuming a big-
M reformulation is used) with constraints (5.2)–(5.4), respectively. The idea behind
these modifications is that first-period NACs for bsi,t are no longer needed after the
corresponding decisions are fixed in the first subproblem. Thus, Equation (5.2) en-
forces them for only the first subproblem, t̂ = 1. Similarly for the endogenous con-
straints, at time t, decisions bsi,t will have been fixed in all earlier time periods t < t̂

by previous subproblems; hence, we consider these constraints for only t̂ ≤ t < T in
Equations (5.3) and (5.4).

bsi,1 = bs
′
i,1 t̂ = 1, ∀ (s, s′) ∈ SPF , i ∈ I (5.2)

bsi,t+1 = bs
′
i,t+1 ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , t ≥ t̂, {i′} = D̂s,s′ , i ∈ I (5.3)

−(1− zs,s
′

t ) ≤ bsi,t+1 − bs
′
i,t+1 ≤ (1− zs,s

′

t )
∀ (t, s, s′) ∈ SPN , t ∈ T i

′
C , t̂ ≤ t < T, {i′} = D̂s,s′ , i ∈ I

(5.4)

Next, solve subproblem t̂. Note that we preserve all endogenous NACs in each time
period, so there is no need to update set SPN .

In some cases, the heuristic subproblem may be too difficult to solve directly. One
viable option here is Lagrangean decomposition; specifically, we may apply the en-
dogenous scenario grouping approach described in Gupta and Grossmann (2014a),
since these are purely-endogenous problems.

Step 3c If t̂ = 1, this is the first subproblem. Use the binary first-stage decisions from this
subproblem (i.e., bŝi,1 ∀ i ∈ I, ŝ ∈ S t̂SSD) to fix the binary first-stage decisions in all
scenarios (i.e., bsi,1 ∀ i ∈ I, s ∈ S). This is shown in Figure 5.1c, where the nodes at
the beginning of the first time period (originally white in Figure 5.1a) have now been
shaded in blue. Because the first-stage decisions must be identical in all scenarios, we
arbitrarily use only the decisions from the first scenario, ŝ = 1, instead of considering
all ŝ ∈ S t̂SSD. Decisions are fixed as shown in Equation (5.5). Note that this step
allows us to satisfy the first-period NACs in the original problem, (MSSP).

bsi,1 := bŝi,1 ŝ = 1, ∀ i ∈ I, s ∈ S (5.5)

Step 3d Fix binary here-and-now decisions in all other time periods. This is done as follows:
for each subproblem scenario ŝ ∈ S t̂SSD, start at t = t̂ and fix decisions bŝ

i,t̂+1 in all
scenarios in the same exogenous scenario group as ŝ. We use the condition GX(t, s) =
GX(t, ŝ) to check that scenario s ∈ S is in the same group as ŝ.1 For each remaining
time period t < T , we repeat this process of fixing decisions bŝi,t+1 in the respective
scenario groups. In Figure 5.1c, for instance, scenario ŝ = 1 is considered in the first
subproblem. Since scenarios s = 1, 2, 3, and 4 are all in the same group as ŝ in

1 Rather than the conditions s ∈ S, GX(t, s) = GX(t, ŝ) in Equation (5.6), we could state s ∈ XGk̂
t , where k̂ is the

group number corresponding to ŝ, given by k̂ = GX(t, ŝ).
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time period 1, we fix their binary decisions in that period based on those of ŝ. In
time period 2, scenarios s = 1 and 2 are in the same group as ŝ, and we fix their
binary decisions in an identical manner. This is represented by a change in color of
the nodes as compared to Figure 5.1a. Note that we solve each subproblem for the
full time horizon t ∈ T , but we only fix decisions for t̂ ≤ t < T since the decisions for
all previous time periods have already been fixed in the previous subproblems. This
step allows us to satisfy the exogenous NACs in the original problem, (MSSP).

bsi,t+1 := bŝi,t+1 ∀ i ∈ I, t ∈ T , t̂ ≤ t < T,

s ∈ S, ŝ ∈ S t̂SSD, GX(t, s) = GX(t, ŝ)
(5.6)

Step 4 At this point, the binary here-and-now decisions bsi,t have been fixed for all i ∈ I, t ∈ T , and
s ∈ S. (In Figure 5.1, this would occur after one more iteration.) Thus, in model (MSSP),
drop all NACs related to these decisions. This includes the first-period NACs given by
Equation (3.14), the exogenous NACs given by Equation (3.33), the fixed endogenous
NACs given by Equation (3.16), and the conditional endogenous NACs given by either
Equation (3.25) or the third line of Equation (3.18). Note that the scenario tree is fixed at
this point, since indistinguishability can be determined by directly calculating Zs,s

′

t (and
thus zs,s

′

t ) from the known values of bsi,t.

Next, redefine set A and set SPF using the complete set of scenarios (i.e., S := |R| by
Equation (2.6) and S := {s : s = 1, 2, . . . , S}). Then, solve the resulting form of model
(MSSP). This provides a feasible, but not necessarily optimal, solution to (MSSP).

Note that since the scenario tree is fixed in the final form of model (MSSP), the timing
of all realizations is known in advance; thus, all uncertainties can be viewed as exogenous.
This model, however, is not in the form of a purely-exogenous stochastic program (i.e.,
(MSSPX)). For large instances where a direct-solution approach is impractical, we have
two basic options: (1) preserve the structure and apply Lagrangean decomposition, as dis-
cussed in the next section; or (2) reformulate the problem into the form of model (MSSPX),
as shown graphically in Section 5.3.1. In the latter case, we can take advantage of effective
solution methods for purely-exogenous MSSP problems, such as the branch-and-fix coordi-
nation scheme by Escudero et al. (2009).

This heuristic can be used to obtain an initial upper bound in a Lagrangean decomposition
algorithm, as discussed in the next section.

5.2 Lagrangean Decomposition
From Figure 2.1c, it is clear that if we remove all non-anticipativity constraints, then the scenario
tree decomposes into independent scenarios. This is shown in Figure 5.2. The appealing aspect of
this structure is that independent scenario subproblems should be considerably easier to solve than
the full model. Such reasoning is the primary motivation behind Lagrangean decomposition, in
which ‘complicating’ (i.e., ‘linking’) constraints are dualized in order to achieve a similar relaxation
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of the original model (Carøe and Schultz, 1999; Goel and Grossmann, 2006; Gupta and Grossmann,
2011; Escudero et al., 2016b). In this context, the complicating constraints are the NACs.

Figure 5.2: A scenario tree decomposes into independent scenarios when all NACs are removed.

As described in Gupta and Grossmann (2014a), in the case of standard Lagrangean decomposi-
tion for MSSP problems with endogenous uncertainties, the first step is to relax all of the conditional
endogenous NACs. We then form the Lagrangean relaxation (Guignard, 2003) by dualizing the
first-period and fixed endogenous NACs. This entails moving these constraints to the objective
function as penalty terms multiplied by Lagrange multipliers. In our case, we must also dualize
the exogenous NACs (Goel and Grossmann, 2006). We use a simplified form of model (MSSP) to
illustrate this, (MSSPS), where for simplicity we keep only decision variables yst . We also assume
that the set of initial ‘equality’ periods is identical for all sources of endogenous uncertainty; i.e.,
T i′E = TE , and thus T i′C = TC , for all i′ ∈ I.

(MSSPS)

min
y
φ =

∑
s∈S

ps
∑
t∈T

ycsty
s
t (5.7)

s.t.
t∑

τ=1

yAsτ,ty
s
τ ≤ ast ∀ t ∈ T , s ∈ S (5.8)

ys1 = ys
′

1 ∀ (s, s′) ∈ SPF (3.6)
yst+1 = ys

′
t+1 ∀ (t, s, s′) ∈ SPX (3.8)

yst+1 = ys
′
t+1 ∀ (t, s, s′) ∈ SPN , t ∈ TE (3.17)

−yUBt+1(1− zs,s
′

t ) ≤ yst+1 − ys
′
t+1 ≤ yUBt+1(1− zs,s

′

t ) ∀ (t, s, s′) ∈ SPN , t ∈ TC , t < T (3.26)

Zs,s
′

t ⇔ F (ys1, ys2, . . . , yst ) ∀ (t, s, s′) ∈ SPN , t ∈ TC (5.9)
yst ∈ Yst ∀ t ∈ T , s ∈ S (5.10)

Zs,s
′

t ∈ {True, False} ∀ (t, s, s′) ∈ SPN , t ∈ TC (3.21)

zs,s
′

t ∈ {0, 1} ∀ (t, s, s′) ∈ SPN , t ∈ TC (3.27)

In the simplified Lagrangean relaxation problem, (MSSPS-LR), we remove endogenous con-
straints (3.26), (5.9), (3.21), and (3.27), and dualize constraints (3.6), (3.8), and (3.17).
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(MSSPS-LR)

min
y
φLR(λ) =

∑
s∈S

ps
∑
t∈T

ycsty
s
t +

∑
(s,s′)∈SPF

Fλs,s
′

1 (ys1 − ys
′

1 )

+
∑

(t,s,s′)∈SPX

Xλs,s
′

t (yst+1 − ys
′
t+1) +

∑
(t,s,s′)∈SPN

t∈TE

Nλs,s
′

t (yst+1 − ys
′
t+1) (5.11)

s.t.
t∑

τ=1

yAsτ,ty
s
τ ≤ ast ∀ t ∈ T , s ∈ S (5.8)

yst ∈ Yst ∀ t ∈ T , s ∈ S (5.10)

Notice that all complicating constraints have now been either removed or dualized, and Equati-
ons (5.8) and (5.10) apply only to individual scenarios. Further notice, however, that the objective
function, Equation (5.11), still contains variables yst and ys′t , so we cannot yet decompose the pro-
blem by scenario. We expand this expression, swap indices s and s′ in certain summations, and
then simplify in order to rewrite the objective function as Equation (5.12) (see Appendix C.1 for
further details).

min
y
φLR(λ) =

∑
s∈S

(
ps
∑
t∈T

ycsty
s
t + ys1

( ∑
(s,s′)∈SPF

Fλs,s
′

1 −
∑

(s′,s)∈SPF

Fλs
′,s

1

)

+
∑

t∈T \{T}
yst+1

( ∑
(t,s,s′)∈SPX

Xλs,s
′

t −
∑

(t,s′,s)∈SPX

Xλs
′,s
t

)

+
∑
t∈TE

yst+1

( ∑
(t,s,s′)∈SPN

Nλs,s
′

t −
∑

(t,s′,s)∈SPN

Nλs
′,s
t

))
(5.12)

The variables in the objective function now involve only scenario s, and all other terms are
constants. Accordingly, the problem can be decomposed into independent scenario subproblems
that can be solved in parallel. This is done in an iterative fashion, as shown in Figure 5.3 (adapted
from Gupta and Grossmann, 2011. In each iteration, we first solve the subproblems with fixed
multipliers to obtain a lower bound to the original problem (MSSPS). The lower bound is simply
equal to the sum of the subproblem objective function values, and an upper bound is determined by
a simple heuristic. In this heuristic, we selectively fix decisions from the subproblems in the original
problem to obtain a feasible solution (see Appendix C.2 for complete details). The solution from
the sequential scenario decomposition heuristic may be used as an initial upper bound; however,
this is not required. We then apply the subgradient method (Fisher, 1985) to update the multipliers
for the Lagrangean problem,2 and repeat this process until the difference between the upper bound
and lower bound lies within a pre-specified tolerance or until a maximum iteration limit is reached.
Note that if we are unable to sufficiently close the gap, it may be necessary to implement a branch-
and-bound algorithm such as the one proposed by Goel and Grossmann (2006) and Goel et al.

2 There are many alternative multiplier-update procedures. See Escudero et al. (2013b), as well as Oliveira et al.
(2013) and the references therein.
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(2006).

Figure 5.3: Algorithm for Lagrangean decomposition.

5.3 Numerical Results
5.3.1 Motivating Example
Consider the simple process network shown in Figure 5.4, as adapted from Goel and Grossmann
(2006). In this example, a product A is produced in Process III which has an existing capacity of
3 tons/hr and a known yield of 70%. This process requires a feed of chemical B that is currently
purchased. The demand of product A is uncertain but must be satisfied for each time period in
the planning horizon. If the demand cannot be met by production, product A is purchased from a
competitor.

Figure 5.4: Process network for the motivating example.

Due to the high price of B, it is proposed that some (or all) of this chemical be manufactured
from raw material C in a new process, Process I, or from raw material D in a second new process,
Process II. These processes are not exclusive, and neither, one, or both may be installed.
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Table 5.1: Model statistics for the motivating example.

Problem Type Scenarios Constraints Continuous Variables Binary Variables

Fullspace 16 5,985 913 240
Reduced Model 16 1,472 913 120
SSD (Sub 1) 8 784 457 64
SSD (Final) 16 1,355 913 24

LD 4 286 229 24

The yield of Process I is uncertain, with possible realizations {0.69, 0.81}, both with an equal
probability of 0.5. The yield of Process II is also uncertain, with possible realizations {0.62, 0.85},
both with equal probabilities. The objective is to determine the optimal investment and operation
decisions over a 2-year planning horizon in order to maximize the total expected profit from the
sales of A. Over this time horizon, the demand of product A has possible realizations {1.10, 3.10}
tons/hr in time period 1 and {2.25, 4.25} tons/hr in time period 2, each with probability 0.5. We
do not provide the remaining problem data here; however, this data is available upon request.

Regarding the types of uncertainty, the yields of Process I and Process II represent endogenous
parameters (θ1 and θ2, respectively), since they are uncertain until the units are installed and
operated. For simplicity, we assume that the units are operated immediately after they are installed.
The demand of product A is an exogenous parameter (ξt), as it is a market value that will be
realized automatically in each time period. There are 4 possible combinations of realizations for the
endogenous parameters and 4 possible combinations of realizations for the exogenous parameters.
This gives rise to a 3-stage, 16-scenario stochastic programming problem. Note that this corresponds
to the composite scenario tree previously introduced in Figure 2.1c. We first use a direct-solution
approach to solve the fullspace model (i.e., model (MSSP) with no reduction properties applied) and
the reduced model (i.e., model (MSSP) in its current form, with all reduction properties applied). We
then apply the sequential scenario decomposition (SSD) heuristic and Lagrangean decomposition
(LD). The corresponding model statistics are provided in Table 5.1.

First, we observe that by applying Properties 1–6 through the set definitions proposed in Chap-
ter 4, we are able to reduce the total number of constraints from 5,985 to 1,472; a 75% reduction,
based solely on the removal of redundant NACs. We are also able to eliminate half of the binary
variables (specifically, the indistinguishability variables zs,s

′

t associated with redundant conditional
endogenous NACs). This effect can be even more pronounced in larger problem instances, as will
be shown in the next section.

Furthermore, the SSD heuristic requires only one subproblem to fix all of the binary here-and-
now decisions. This subproblem consists of scenarios 1, 3, 5, 7, 9, 11, 13, and 15 (see Figure 2.1c).
Recall that we fix the respective binary decisions in these scenarios, and all remaining scenarios, in
order to satisfy the corresponding first-period and exogenous non-anticipativity constraints.

Table 5.1 also indicates that there are still binary variables in the final SSD problem, SSD
(Final). This is due to the indistinguishability variables zs,s

′

t , which are simply calculated quantities
given the fixed values of bsi,t. We may choose to either fix these variables prior to generating
the model, or allow the solver to perform these calculations. For convenience, we choose the
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Table 5.2: Numerical results for the motivating example.

Problem Type
Total Expected Profit ($MM)

Optimality Gap Solution Time (s)
Lower Bound Upper Bound

Fullspace 5.069 5.069 0% 0.08
Reduced Model 5.069 5.069 0% 0.06

SSD 5.069 – – 0.11
LD 5.069 5.069 0.006% 11.70

latter option in this case. Note that when there are no other integer variables in the problem,
and indistinguishability is determined by Equations (3.29) and (3.30), we may obtain the optimal
solution of the final SSD problem by solving its LP relaxation. This is because, by these inequalities,
zs,s

′

t must be 0 or 1 if bsi,t is also binary.
The problem size reported for Lagrangean decomposition corresponds to the size of each La-

grangean subproblem. For this example, we decompose the problem such that each subproblem
corresponds to one subtree (i.e., 4 scenarios with all non-anticipativity constraints intact), rather
than one individual scenario. Thus, we must dualize only 3 sets of first-period NACs, which gives
4 independent subproblems of 4 scenarios each.

Note that this Lagrangean-decomposition strategy is inspired by the scenario clustering ap-
proach of Escudero et al. (2016b); we will use a similar strategy for our LD implementations in
the following two sections as well. While, in principle, we may also merge indistinguishable nodes
within each subtree such that all non-dualized first-period and exogenous NACs are implicitly en-
forced (i.e., for each subtree, we may adopt the standard form shown in Figure 1.2a), this would
require significantly more complex notation which we wish to avoid.

We solve the motivating example in GAMS 24.3.3, with CPLEX 12.6.0.1, on a machine with a
2.50 GHz Intel Core i5 CPU and 4 GB of RAM. The optimal solution is to install Process I at the
beginning of the first time period with a capacity of 3.704 tons/hr and perform no expansions. The
total expected profit is $5.069 MM. The computational results are given in Table 5.2. Note that
each reported solution time reflects only the solver time and does not include the model generation
time. Given the complexity of the parameters and sets defined in Chapter 4, it is also worth noting
that the generation time for the reduced model is less than one minute for all example problems in
this chapter.

We observe that the SSD heuristic obtains the optimal solution as a lower bound, and after 14
iterations, the Lagrangean decomposition algorithm converges to the optimal solution. Figure 5.5
shows the best bounds obtained by LD at each iteration of the algorithm. Since this is a very
simple example, it is faster in this case to directly solve the reduced model than it is to solve
subproblems in the alternative solution methods. For larger instances, these alternative methods
yield considerable savings in computational time, as will be seen in the next section.

The optimal structure of the composite scenario tree is shown in Figure 5.6. Notice that,
starting from the superstructure form in Figure 2.1c, the dotted green lines have transitioned into
solid green lines for active NACs and have disappeared entirely for inactive NACs. We also show
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Figure 5.5: Best bounds on the optimal solution of the motivating example, as obtained by La-
grangean decomposition.

that by taking advantage of the active NACs and the known timing of the endogenous realizations,
we are able to recover the standard form of the scenario tree. This form is significantly easier to
interpret, as can be seen in Figure 5.6.

Note that unlike the two-stage case, the value of the stochastic solution (VSS) is not a trivial
calculation for multistage problems. We do not perform this calculation here; however, we refer the
reader to Escudero et al. (2007) and Maggioni et al. (2014) for further information on this topic.

5.3.2 Example 1: Capacity Expansion of a Process Network
We now consider a larger instance of the motivating example. Specifically, we extend the time
horizon to 8 years and consider 2 possible realizations for the demand of product A in each period,
as well as 3 possible realizations for the yield of Process I and Process II. This gives 9 possible
combinations of realizations for the endogenous parameters, and 256 possible combinations of reali-
zations for the exogenous parameters. The result is a 9-stage stochastic programming problem with
2,304 scenarios. The corresponding model statistics for the fullspace model, the reduced model,
and the SSD and LD problems are provided in Table 5.3. Notice in particular that the fullspace
model for this instance has more than 176 million constraints and approximately 4.8 million bi-
nary variables. Such a model is clearly intractable in its current state. With the application of
the reduction properties, we are able to reduce the number of constraints to about 838,000 — a
99.5% reduction. The number of binary variables is also reduced to about 61,000, which is a 98.7%
reduction.

Because of the longer time horizon, there are now more subproblems required for the sequential
scenario decomposition heuristic. Each of these problems is significantly larger than the one in
the motivating example; however, the model growth is slightly non-intuitive. Specifically, note the
decrease in the problem size in the second subproblem, SSD (Sub 2). The reason for this is as
follows.

At t̂ = 1, there are 9 subtrees, each containing 2 exogenous scenario groups. We select one
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Figure 5.6: Optimal structure of the composite scenario tree for the motivating example, and the
procedure for converting this tree into its equivalent standard form.
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Table 5.3: Model statistics for Example 1.

Problem Type Scenarios Constraints Continuous Variables Binary Variables

Fullspace 2,304 176,203,009 518,401 4,755,456
Reduced Model 2,304 838,318 518,401 61,416
SSD (Sub 1) 18 9,196 4,051 624
SSD (Sub 2) 18 8,569 4,051 492
SSD (Sub 3) 36 15,943 8,101 828
SSD (Sub 4) 72 29,395 16,201 1,344
SSD (Sub 5) 144 53,611 32,401 2,064
SSD (Sub 6) 288 96,475 64,801 2,880
SSD (Sub 7) 576 170,683 129,601 3,264
SSD (Final) 2,304 771,595 518,401 6,120

LD 256 78,862 57,601 6,144

scenario from each of these groups. In other words, we consider 18 scenarios in the first subproblem,
and at this point, no binary here-and-now decisions have been fixed. In the second subproblem,
t̂ = 2, we first consider 36 scenarios (i.e., 9 subtrees, each containing 4 exogenous scenario groups).
The binary decisions have already been fixed in 18 of these scenarios. Accordingly, we neglect these
18 scenarios and consider only the remaining 18. Notice that this is the same number of scenarios
as the first subproblem (see Appendix C.3 for further details); however, the binary here-and-now
decisions for the previous time periods have already been fixed. This means that there will be fewer
constraints and binary variables, as can be seen in Table 5.3.

In the third subproblem, t̂ = 3, we first consider 72 scenarios. The binary decisions have
already been fixed in 36 of them, so we consider only the remaining 36. Notice that at this point,
the number of scenarios in each subproblem begins to double (see Appendix C.3). The problem
size, however, does not double. This can be seen in the corresponding number of binary variables
reported in Table 5.3. Since in each subproblem the binary decisions in all previous time periods
have already been fixed, we are able to effectively slow the problem growth.

We emphasize that the SSD subproblems are significantly smaller than the reduced model. At
most, we consider 576 scenarios in subproblem 7. This is only 25% of the total number of scenarios.
Moreover, this particular subproblem contains only 20% of the constraints of the reduced model
and 5% of the binary variables.

In the Lagrangean decomposition algorithm, we again decompose the problem by subtrees
(rather than by individual scenarios). This gives 9 subproblems of 256 scenarios each. Like for the
SSD heuristic, these subproblems are considerably larger than those in the motivating example.

We solve this problem instance in GAMS 24.3.3, with CPLEX 12.6.0.1, on a machine with a
2.50 GHz Intel Core i5 CPU and 4 GB of RAM. The results are summarized in Table 5.4.

As would be expected, the fullspace model cannot be loaded into memory. After applying the
reduction properties, however, we are in fact able to solve this instance to a 0.99% optimality gap
in about 1 hour. The best feasible solution obtained from the reduced model is $142.411 MM.

As shown in Table 5.4, the SSD heuristic provides the same feasible solution as the reduced
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Table 5.4: Numerical results for Example 1.

Problem Type
Total Expected Profit ($MM)

Optimality Gap Solution Time (s)
Lower Bound Upper Bound

Fullspace – – – –
Reduced Model 142.411 143.828 0.99% 3,670

SSD 142.411 – – 61
LD 142.411 144.424 1.41% 913

model in just 61 seconds. We use this value as the initial lower bound for the Lagrangean decom-
position algorithm. After 20 iterations, the lower bound does not improve, and we obtain an upper
bound of $144.424 MM. This then provides us with bounds on the optimal solution; specifically,
within a 1.41% optimality gap. The total time for lower- and upper-bound generation for the
alternative solution methods is 974 seconds — a 73% reduction from solving the reduced model
directly.

5.3.3 Example 2: Oilfield Development Planning
We consider a modified form of the MILP described in Gupta and Grossmann (2014a) (see Case (i))
for maximizing the total expected NPV in the development planning of an offshore oilfield. There
are 3 oilfields; 3 potential Floating Production, Storage, and Offloading vessels (FPSOs); and 9
possible field-FPSO connections. A total of 30 wells can be drilled over a 5-year planning horizon:
7 for field I, 11 for field II, and 12 for field III. There is also a 3-year lead time for FPSO construction
and a 1-year lead time for FPSO expansion. Fields II and III have a known recoverable oil volume
(size); however, the size of field I is uncertain. Specifically, there are 2 possible realizations for
the size of field I, both with equal probabilities. The oil and gas prices are also uncertain, with 2
possible realizations with equal probabilities in each time period. These prices are assumed to be
correlated. The network superstructure for this problem instance is shown in Figure 5.7.

Figure 5.7: Network superstructure for the oilfield development planning problem. (FPSO images
from www.rigzone.com.)

Notice that the size of field I is an endogenous parameter, since this information cannot be
realized until we drill the field and begin producing from it. The oil and gas prices are exogenous
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Table 5.5: Model statistics for Example 2.

Problem Type Scenarios Constraints Continuous Variables Binary Variables

Fullspace 64 303,553 67,393 9,024
Reduced Model 64 122,849 67,393 8,912
SSD (Sub 1) 4 7,531 4,213 558
SSD (Sub 2) 4 7,357 4,213 474
SSD (Sub 3) 8 14,539 8,425 900
SSD (Sub 4) 16 28,687 16,849 1,704
SSD (Final) 64 116,603 67,393 6,416

LD 2 3,725 2,107 278

Table 5.6: Numerical results for Example 2.

Problem Type
Total Expected NPV ($109)

Optimality Gap Solution Time (s)
Lower Bound Upper Bound

Reduced Model 6.997 10.569 51.06% 40,818
SSD 7.166 – – 41
LD 7.166 7.180 0.20% 14

parameters, as they are market values that will be realized automatically in each time period.
We have 2 possible combinations of realizations for the endogenous parameters and 32 possible
combinations of realizations for the exogenous parameters. Using the scenario-generation procedure
described in Chapter 2, this gives rise to a 6-stage, 64-scenario stochastic programming problem.
The corresponding model statistics are shown in Table 5.5. In particular, notice that the fullspace
model consists of 303,553 constraints and 9,024 binary variables. After applying the theoretical
reduction properties, there are 122,849 constraints and 8,912 binary variables. This is a 60%
reduction in the number of constraints. The number of binary variables is reduced by approximately
1%.

Model statistics for the heuristic and Lagrangean decomposition are also provided in Table 5.5.
Note that for the Lagrangean decomposition algorithm, we again choose not to decompose the
problem by individual scenarios. However, rather than decomposing by subtrees, as this leads to
very difficult subproblems, we instead consider 32 subproblems of 2 adjacent scenarios each.

The problem was modeled in GAMS 24.3.3 and solved with CPLEX 12.6.0.1 on a machine with
a 2.93 GHz Intel Core i7 CPU and 12 GB of RAM. Table 5.6 summarizes the results for the different
solution approaches. In the case of solving the reduced model directly, the optimality gap cannot
be improved past 51% after more than 11 hours. In contrast, the sequential scenario decomposition
heuristic finds a high-quality feasible solution ($7.166 billion) in only 41 seconds. We initialize the
lower bound of the Lagrangean decomposition algorithm to this objective value. After only 14
seconds, the LD algorithm finds a high-quality upper bound ($7.180 billion); the lower bound does
not improve. This implies that the SSD solution is within 0.20% of the optimum. Notice that we
obtain this information in less than one minute of CPU time.
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The network structure corresponding to the best feasible solution ($7.166 billion, as obtained
by the SSD heuristic) is shown in Figure 5.8. This solution indicates that we begin installing the
necessary infrastructure in the first year. This includes FPSO I and FPSO II, as well as 3 of the
9 possible field-FPSO connections: field I to FPSO I, field II to FPSO I, and field III to FPSO II.
Notice that due to the inherent risk in the size of field I, FPSO I is shared among fields I and II
rather than devoting a separate FPSO solely to field I.

Figure 5.8: Network structure for the best feasible solution of Example 2. (FPSO images from
www.rigzone.com.)

The corresponding drilling schedule is shown in Figure 5.9. Since it takes 3 years for the FPSOs
to be fully operational, drilling cannot begin until the fourth year. For Field II, we drill 10 wells in
year 4 and 1 well in year 5. Similarly for Field III, we drill 10 wells in year 4 and 2 wells in year 5.
For Field I, however, we wait until year 5 and then drill 7 wells. The strategy here is to drill fields
of known size first (as this carries less risk), and then drill the field with an uncertain size. Notice
that by the end of the planning horizon, we have drilled the maximum number of wells in all fields.

Figure 5.9: Drilling schedule for the best feasible solution of Example 2.
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5.4 Conclusions
In this chapter, we have proposed two solution methods for multistage stochastic programs with
endogenous and exogenous uncertainties: a novel sequential scenario decomposition heuristic and
Lagrangean decomposition. We have evaluated the performance of these approaches, as well as
the impact of our theoretical reduction properties from Chapter 4, on a process network planning
problem and an oilfield development planning problem. Overall, we have demonstrated orders-of-
magnitude reduction in problem size and solution times as a direct result of this work.
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Chapter 6

A Graph-Theory Approach for NAC
Reduction

6.1 Introduction
In multistage stochastic programming, a well-known modeling challenge is that the number of non-
anticipativity constraints (NACs) increases rapidly as one increases the number of stages or the
number of scenarios (Birge and Louveaux, 2011). In fact, as we have shown in Chapter 5, it is
not uncommon for NACs to represent the majority of constraints in large problem instances. It
should not be surprising, then, that some authors have invested a considerable amount of effort
into developing new formulations that eliminate redundant NACs. In the case that the uncertainty
is purely exogenous, this process is fairly straightforward since the scenario tree is fixed. One
common strategy for such problems is the NAC aggregation approach proposed by Birge and
Louveaux (2011).

For the case of (Type 2) endogenous uncertainties, however, the scenario tree is decision de-
pendent; hence, NAC elimination is considerably more involved. Previous works in the literature,
namely Goel and Grossmann (2006), Gupta and Grossmann (2011), and Chapter 4 of this the-
sis, have proposed effective theoretical reduction properties for this class of problems. Colvin and
Maravelias (2008, 2009, 2010) have also proposed a number of reduction properties for the phar-
maceutical clinical-trial scheduling problem. One primary assumption in these existing properties,
though, is that the set of scenarios corresponds to all possible combinations of realizations of the
uncertain parameters (i.e., a Cartesian product over all sets of realizations). In large, real-world
problems with many uncertain parameters, the Cartesian-product approach can easily lead to in-
stances with several thousands of scenarios or more. These problems are generally intractable.
Furthermore, if some of the uncertain parameters are correlated, many of the scenarios in these
large problems may in fact refer to infeasible outcomes. For example, based on geological condi-
tions, it may be extremely unlikely for two nearby oilfields to have vastly different oil recoveries.
A scenario with a low realization for one field and a high realization for the other would therefore
represent a physically infeasible outcome that should not be included in the model.

In this chapter, we consider mixed-integer linear multistage stochastic programming problems
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involving endogenous and exogenous uncertainties, where the scenario sets are pre-specified and do
not necessarily correspond to Cartesian products. Since the previous reduction properties in the
literature do not apply here, efficient generation of the non-anticipativity constraints becomes a
challenge. Boland et al. (2008) was the first work (of which we are aware) to raise these concerns.
The concepts in that paper were further developed in Boland et al. (2016), which introduced the
idea of a non-anticipativity graph and proposed a greedy, polynomial-time algorithm for generating
minimum-cardinality NAC sets. Similar work was published by Hooshmand Khaligh and MirHas-
sani (2016b) around the same time. It is also worth noting the more recent strategy by Christian
and Cremaschi (2016), referred to as the Sample Non-Anticipativity Constraint algorithm, that
claims to generate the minimum number of NACs by mapping the set of scenarios to an integer
lattice and progressively adding edges (i.e., NACs) until the lattice forms a minimum spanning
tree. This particular work was inspired by Apap and Grossmann (2015), and it is unclear how it
differs from existing publications in the area.

In the current chapter, we extend the work of Boland et al. (2016) and Hooshmand Khaligh
and MirHassani (2016b) to problems with both endogenous and exogenous uncertainties. We begin
in Section 6.2 with a more general multistage stochastic programming model, and in Section 6.3,
we discuss how our existing reduction properties change in the absence of Cartesian products. We
introduce the concept of the non-anticipativity graph in Section 6.4. Finally, in Section 6.5, we
present the graph algorithm for scenario-pair generation.

6.2 A More General Multistage Stochastic Programming Model
In the absence of Cartesian products, we can no longer guarantee that we will have a predictably-
structured scenario tree like Figure 2.1. Our tree may, instead, look like Figure 6.1. To handle such
cases, we propose a more general form of our multistage stochastic programming model (MSSP),
which we will refer to as (MSSPG).

Figure 6.1: A composite scenario tree generated from an arbitrary scenario set.
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bsi,1 = bs
′
i,1 ∀ (s, s′) ∈ SPF , i ∈ I (6.3)

ys1 = ys
′

1 ∀ (s, s′) ∈ SPF (6.4)
xst = xs

′
t ∀ (t, s, s′) ∈ SPX (6.5)

bsi,t+1 = bs
′
i,t+1 ∀ (t, s, s′) ∈ SPX , i ∈ I (6.6)

yst+1 = ys
′
t+1 ∀ (t, s, s′) ∈ SPX (6.7)

xst = xs
′
t ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , {i′} = D̂s,s

′

min (6.8)

bsi,t+1 = bs
′
i,t+1 ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , {i′} = D̂s,s

′

min, i ∈ I (6.9)

yst+1 = ys
′
t+1 ∀ (t, s, s′) ∈ SPN , t ∈ T i

′
E , {i′} = D̂s,s

′

min (6.10)
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′

t

xst = xs
′
t

bsi,t+1 = bs
′
i,t+1 ∀ i ∈ I, t < T
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t+1 t < T
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¬Zs,s

′

t

]
∀ (t, s, s′) ∈ SPN , t ∈ T i

′
C , {i′} = D̂s,s

′

min

(6.11)

Zs,s
′

t ⇔ F (bsi′′,1, bsi′′,2, . . . , bsi′′,t) ∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , {i′} = D̂s,s
′

min, i
′′ ∈ D̂s,s′

(6.12)

bsi,t ∈ {0, 1}, yst ∈ Yst , xst ∈ X st , wst ∈ Ws
t ∀ i ∈ I, t ∈ T , s ∈ S (6.13)

Zs,s
′

t ∈ {True, False} ∀ (t, s, s′) ∈ SPN , t ∈ T i
′

C , {i′} = D̂s,s
′

min (6.14)

Notice that only fairly simple changes are required to obtain this model. First and most simply,
in the indistinguishability rule, Equation (6.12), we must now consider binary investment decisions
for all i′′ ∈ D̂s,s′ . This is because, in general, the scenario pairs under consideration may differ
in many endogenous parameters corresponding to several different sources. We note that in the
original form of this equation, Equation (3.19), this appears as {i′} = D̂s,s′ , which shares the same
index i′ as T i′C .

This then brings us to the discussion of the second set of changes. In the previous chapters
in this thesis, we consider the case where scenarios s and s′ differ only in the possible realization
of one endogenous parameter. There, for the particular source i′ of sets T i′E and T i′C , we simply
have {i′} = D̂s,s′ . In the more general case considered here, however, it is not as straightforward
to identify the source i′. If two scenarios differ in the possible realizations of multiple endogenous
parameters associated with the same source, we will still have {i′} = D̂s,s′ . But if the scenarios differ
in the possible realizations of multiple endogenous parameters associated with different sources, we
can only guarantee that the scenarios will be indistinguishable for the minimum number of initial
‘equality’ time periods T i′E among those respective sources. For convenience, we will refer to T i′E as
the lead time for source i′ ∈ I.

For example, if s and s′ differ in two sources, one with a lead time of 3 years and another with
a lead time of 5 years, we can only be certain that the scenarios will be indistinguishable for the
first 3 years. We will refer to this minimum lead time as T s,s

′

Emin
. To define this parameter for each

pair (s, s′), we construct a sequence of the lead times corresponding to the sources associated with
scenarios s and s′, and then determine the minimum value in that sequence:
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T s,s
′

Emin
:= min (T i′E )i′∈D̂s,s′ ∀ s, s′ ∈ S, s < s′ (6.15)

We use this information to define set D̂s,s
′

min, which indicates the particular source i′ that has
the minimum lead time; i.e., the i′ ∈ D̂s,s′ for which T i′E = T s,s

′

Emin
. Since more than one source may

satisfy this condition, we simply select the lowest-indexed source that has the minimum lead time:

D̂s,s
′

min :=
{
i′ : i′ = min

ı̂′

(
ı̂′ ∈ D̂s,s′ , T ı̂′E = T s,s

′

Emin

)}
∀ s, s′ ∈ S, s < s′ (6.16)

This then allows us to refer to sets T i′E and T i′C with {i′} = D̂s,s
′

min (rather than {i′} = D̂s,s′).
Note that this statement applies regardless of whether the two scenarios differ in the possible
realizations of endogenous parameters associated with the same source or different sources. We
make this replacement in Equations (3.15)–(3.19) and (3.21) to produce Equations (6.8)–(6.12)
and (6.14), respectively. All other changes to model (MSSP) are concealed in scenario-pair sets
SPX and SPN , which we will discuss in the next section.

One final note here is that we must redefine sets Ds,s′ to indicate the endogenous parameters
θi′,h for which scenarios s and s′ differ in possible realizations:

Ds,s′ :=
{

(i′, h) : i′ ∈ I, h ∈ Hi′ , θsi′,h 6= θs
′
i′,h

}
∀ s, s′ ∈ S, s < s′ (6.17)

as well as sets D̂s,s′ to indicate the associated sources, i′:

D̂s,s′ :=
{
i′ : i′ ∈ I,

(
∃ h ∈ Hi′ : (i′, h) ∈ Ds,s′

)}
∀ s, s′ ∈ S, s < s′ (6.18)

Note that the “position” condition Pos(s) = Pos(s′) present in the original definitions (Equati-
ons (4.9) and (4.21), respectively) has been removed in Equations (6.17) and (6.18) because, in
general, the structure of each subtree may not be the same. We maintain the condition s < s′,
however, to avoid needlessly doubling the size of these sets. We emphasize that these updated
definitions are required for model (MSSPG), as well as for the definitions of T s,s

′

Emin
and D̂s,s

′

min.

6.3 Scenario Pairs and Reduction Properties in the Absence of
Cartesian Products

When the scenario set is generated by methods other than a Cartesian product, the definitions for
the corresponding set of scenarios (i.e., RX , RN , and R), the number of scenarios in these sets
(i.e., SX , SN , and S), and the associated probabilities (i.e., PX , PN , and P) no longer apply. These
definitions can easily be substituted for those given by the particular scenario generation method
being used. New definitions for our scenario-pair sets are not quite as trivial, however.

First, we note that Property 1, Property 2a, and Property 2b from Chapter 4 apply regardless
of the structure of the scenario set. For the case of Property 2b, one caveat is that scenarios must
first be sorted with lexicographical ordering (as described in Chapter 2) and then renumbered if
they are not already indexed in sequential order. Property 5 also still applies, and the proof for
this property (originally presented for the Cartesian product case in Appendix B.8) can easily be
extended to the general case considered here.

67



It follows from this discussion that set SPF for first-period scenario pairs is valid in its original
form (Equation (3.10)). For exogenous scenario-pair set SPX , however, some modifications are
required. First, we redefine Boolean parameter Qs,s

′

t as follows:

Qs,s
′

1 :=

True, if ξsj,1 = ξs
′
j,1 ∀ j ∈ J

False, otherwise
∀ s, s′ ∈ S, s < s′ (6.19)

Qs,s
′

t :=

True, if Qs,s
′

t−1 = True and ξsj,t = ξs
′
j,t ∀ j ∈ J

False, otherwise

t = 2, 3, . . . , T − 1, ∀ s, s′ ∈ S, s < s′

(6.20)

Note that we have replaced the conditions (s, s′) ∈ A, Sub(s) = Sub(s′) with s, s′ ∈ S, s < s′.
There are two reasons for this. First, the subtree condition Sub(s) = Sub(s′) no longer applies
because the original definition, Equation (2.7), is based on the assumption that there are SX
scenarios in every subtree. In the general case, each subtree may in fact contain a different number
of scenarios. Second, when dealing with endogenous scenario pairs, we had previously used the
condition Pos(s) = Pos(s′) to ensure that s and s′ were identical in the realizations of all exogenous
parameters. However, because each subtree may have a different structure, this is no longer valid
and we must instead explicitly verify exogenous indistinguishability. This would not be possible if
we allow only adjacent scenarios (i.e., (s, s′) ∈ A), so we must also relax this condition, ultimately
leaving us with s, s′ ∈ S, s < s′.

In a similar manner, we restate the definition of set SPX as:

SPX :=
{

(t, s, s′) : t ∈ T \ {T}, (s, s′) ∈ A, |Ds,s′ | = 0, Qs,s
′

t = True
}

(6.21)

where we have replaced the Sub(s) = Sub(s′) condition in Equation (3.11) with |Ds,s′ | = 0. This
simply ensures that the scenarios have the same possible realizations for all endogenous parameters,
which implies that they are in the same subtree.

Unlike the definition of set SPX , we cannot simply modify conditions in the original definition
of set SPN to obtain a set that is valid in the general case. The fundamental problem here is
described in the following proposition.

Proposition 6. Property 3 (Goel and Grossmann, 2006) states that for endogenous NACs, it is
sufficient to consider only scenario pairs (s, s′) for which s and s′ differ in the possible realization of
a single endogenous parameter and are identical in the realizations of all exogenous parameters in all
time periods. However, this property cannot be applied in the case where set RN does not correspond
to a scenario tree constructed from all possible combinations of realizations of the endogenous
parameters.

Proof. This can be shown by a simple counter example. First, assume that Property 3 applies and
consider scenarios ŝ and ŝ′ in an arbitrary time period t = τ in Figure 6.2. These scenarios differ
in the possible realizations of two endogenous parameters, θ1 and θ2. Since the realization of either
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parameter will distinguish the scenarios, non-anticipativity applies only in the case where neither
parameter is realized (Case 2).

Figure 6.2: Required non-anticipativity constraints between 2 scenarios that differ in the possible
realizations of 2 endogenous parameters.

Further assume that these are the only two scenarios in the corresponding problem instance.
It is then clear that non-anticipativity must be explicitly enforced between scenarios ŝ and ŝ′

in Case 2, since there are no other constraints that can be used to imply these NACs. Recall,
however, that the scenarios differ in the possible realizations of two endogenous parameters (i.e.,
|Dŝ,ŝ′ | = 2), which violates Property 3. Scenario pair (ŝ, ŝ′) would thus be removed, rendering Case
2 unenforceable. It follows that Property 3 must be invalid in the current context. Note that the
same argument can be made for the endogenous and exogenous case, as can be seen in Figure 6.1
with a composite scenario tree for which none of the conditional constraints can be enforced if
Property 3 is applied.

This limitation has a direct influence on some of our other reduction properties, as stated in
Proposition 7.

Proposition 7. Properties 4 and 6, which were introduced in Chapter 41 and can remove additional
redundant scenario pairs by exploiting endogenous scenario groups, also do not apply in the current
case.

Proof. Property 3 is a necessary condition for Properties 4 and 6 (see Chapter 4). Thus, it follows
directly from Proposition 6 that these properties do not apply here.

Due to Propositions 6 and 7, it is clear that special considerations are required to eliminate
redundant endogenous scenario pairs in the absence of these reduction properties. As the first step
to this end, we consider a graph representation for these scenario pairs.

1 The basis for Property 4 was originally proposed in Gupta and Grossmann (2011).

69



6.4 Non-anticipativity Graph for Endogenous Scenario Pairs
To represent the endogenous NACs, we adopt the use of a non-anticipativity graph, as shown in
Figure 6.3. This is an undirected graph G := (V, E) with vertex set V and edge set E . Here, the
vertices are the scenarios s and the edges are the scenario pairs (s, s′). Although this idea has
recently been proposed by both Boland et al. (2016) and Hooshmand Khaligh and MirHassani
(2016b), for convenience, we will continue this discussion in terms that more closely resemble the
latter publication.

Figure 6.3: A simple non-anticipativity graph.

To fully define the non-anticipativity graph, we must ensure that, in each time period, there is
at least one valid path between all vertices s and s′ that differ in the possible realizations of one or
more endogenous parameters and are identical in the realizations of all exogenous parameters that
have been realized up until the end of that period. The reason for this is that if two scenarios are
indistinguishable at the end of time period t, we must have a connection between the two in order
to enforce the same recourse decisions in both scenarios at the end of this period and the same
here-and-now decisions at the beginning of the following period. The goal is to limit the number
of these connections to the minimum number required. Note that if we were to instead naively
insert a new edge into the graph between every pair of vertices, we would likely end up with a
considerable amount of redundancy, which we wish to avoid.

Let P s,s′ denote a path between vertices s and s′, where s 6= s′. Specifically, we define P s,s′ as
a sequence of vertices, such as P 2,3 = (2, 1, 3) in the case of Figure 6.3. Note that in this particular
walk, the edges (i.e., arcs) are (2, 1) and (1, 3).

Since some of the edges in an endogenous non-anticipativity graph are conditional, we must
ensure that all edges in P s,s

′ exist in cases where non-anticipativity applies between s and s′.
Thus, in order to be a valid path, P s,s′ must consist only of:

1. fixed edges (s′′, s′′′), for which the uncertainty in s′′ and s′′′ cannot be resolved in the current
time period; i.e., t ∈ T i′E , where {i′} = D̂s

′′,s′′′

min ; and/or

2. conditional edges (s′′, s′′′), for which the uncertainty in s′′ and s′′′ may be resolved in the
current time period and s′′ and s′′′ differ exclusively in possible realizations of endogenous
parameters associated with the same sources as s and s′; i.e., t ∈ T i′C , where {i′} = D̂s

′′,s′′′

min ,
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and D̂s′′,s′′′ ⊆ D̂s,s′ .2

In both cases, s′′ and s′′′ must be identical in the realizations of all exogenous parameters that
have been realized up until the end of the current time period; i.e., Qs

′′,s′′′

t = True. Note that
the subset condition D̂s′′,s′′′ ⊆ D̂s,s′ has been adopted from Hooshmand Khaligh and MirHassani
(2016b).

It is also worth noting that it is unnecessary to explicitly check the time period (i.e., t ∈
T i′C , {i′} = D̂s

′′,s′′′

min ) for conditional edges, since if t 6∈ T i′C , we have t ∈ T i′E , in which case all
edges are permissible. Thus, in summary, each edge (s′′, s′′′) in a valid path P s,s′must satisfy the
condition Qs

′′,s′′′

t = True, as well as (t ∈ T i′E , {i′} = D̂s
′′,s′′′

min ) or (D̂s′′,s′′′ ⊆ D̂s,s′).
To further clarify some of these complex requirements, consider Figure 6.4. Here, we have the 3

scenarios from Figure 6.3 in an arbitrary time period t = τ . There are 3 endogenous parameters (θ1,
θ2, and θ3, each associated with a different source), and 2 possible realizations for each parameter
(low (L) or high (H )). All edges are conditional. In forming a path between vertices 2 and 3, we must
first consider that these scenarios differ in the possible realizations of θ1 and θ3; i.e., D̂2,3 = {1, 3}.
This means that any edge in a path between vertices 2 and 3 can only consist of scenarios (s′′, s′′′)
for which s′′ and s′′′ differ in the possible realization of θ1, θ3, or both. The reasoning here is that
the path exists only in the case that both of these parameters are unrealized, so edges exclusively
associated with either of these parameters will be sufficient. (Note that if there happened to be
an edge associated with θ2, and we attempted to use it in our path, it would disappear upon the
realization of θ2, thereby leaving us with an incomplete path.) Accordingly, notice that edge (1, 2)
satisfies this requirement since D̂1,2 = {3} and {3} ⊆ {1, 3}. The same is true for edge (1, 3), since
D̂1,3 = {1} and {1} ⊆ {1, 3}. The discussion is slightly more complex if there is also exogenous
uncertainty in the example; however, the basic ideas remain the same.

Figure 6.4: Characteristics of a valid path between vertices 2 and 3 from Figure 6.3.

Note that because we do not consider endogenous scenario groups in this chapter (unlike Chap-
ter 4), for convenience, we will primarily consider differences between scenarios at the source level
rather than at the parameter level. In other words, we will rely much more heavily on sets D̂s,s′

2 Note that the suitability of each edge in a path is verified in the context of an undirected form of the edge.
Specifically, we store each edge as (s′′, s′′′), where s′′ < s′′′, with the understanding that it can be traversed from s′′

to s′′′ or s′′′ to s′′. For example, in Figure 6.3, we may travel from vertex 2 to vertex 1 (i.e., directed edge (2, 1)),
but we store this edge as (1, 2). This practice prevents the duplication of information and ensures that we only have
to check that D̂s′′,s′′′

⊆ D̂s,s′
, rather than also checking whether D̂s′′′,s′′

⊆ D̂s,s′
.
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than Ds,s′ . This allows us to naturally account for multiple endogenous parameters associated
with each source of uncertainty, since any parameters associated with the same source can only
be realized at the same time, and therefore any edges (s′′, s′′′) for which s′′ and s′′′ differ in the
possible realizations of these parameters can potentially be used together in the same path.

6.5 Graph Algorithm for Scenario-pair Generation
6.5.1 General Algorithm
We now propose a general algorithm for scenario-pair generation in multistage stochastic programs
with both endogenous and exogenous uncertainties. This is an extension of the polynomial-time
algorithm for purely-endogenous uncertainty recently proposed by Hooshmand Khaligh and Mir-
Hassani (2016b).

Graph Algorithm for Scenario-Pair Generation
Step 1 Generate first-period and exogenous scenario-pair sets SPF and SPX , respectively, by

Equations (3.10) and (6.21).
Step 2 Initialize the set of vertices Vt to the set of ‘unique’ scenarios obtained from Property 5 (i.e.,

Vt := Ũt), initialize the set of edges Et to the empty set (i.e., Et := ∅), and then consider
the empty graph Gt := (Vt, Et) for all t ∈ T . For convenience, we will consider a separate
non-anticipativity graph for each time period.

Step 3 Define the sets of all potential edges (s, s′), where s and s′ differ in the possible realizations
of endogenous parameters from η different sources (i.e., |D̂s,s′ | = η) and are identical in
the realizations of all exogenous parameters that have been realized up until the end of
the current time period (i.e., Qs,s

′

t = True). We will define two separate versions of these
sets, EEηt and CEηt , for edges corresponding to fixed endogenous NACs and conditional
endogenous NACs, respectively:

EEηt :=
{

(s, s′) : s, s′ ∈ S, s < s′, |D̂s,s′ | = η, t ∈ T i′E , {i′} = D̂s,s
′

min,

Qs,s
′

t = True
}

∀ η ∈ I, t ∈ T
(6.22)

CEηt :=
{

(s, s′) : s, s′ ∈ S, s < s′, |D̂s,s′ | = η, t ∈ T i′C , {i′} = D̂s,s
′

min,

Qs,s
′

t = True
}

∀ η ∈ I, t ∈ T
(6.23)

For example, EE2
1 would indicate the set of potential fixed edges (s, s′) in the first time

period that are associated with 2 different sources. (More precisely, this refers to vertices
s and s′ in the first time period that are identical in the realizations of all exogenous
parameters in this period and differ in the possible realizations of endogenous parameters
from 2 different sources for which the uncertainty cannot yet be resolved.) Set CE2

1 would
indicate a similar case for potential conditional edges. Notice that the only difference
between the two definitions is the presence of either t ∈ T i′E or t ∈ T i′C .

Step 4 For each time period t ∈ T :
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Step 4a For η = 1, 2, . . . , I, consider each potential edge (s, s′) ∈ EEηt :
(i) Check whether there exists a valid path between vertices s and s′ in Gt. Specifically:

(1) Generate a new, temporary graph G̃t := (Ṽt, Ẽt), where set Ẽt contains all edges
in Et that could be used in a valid path between s and s′:

Ẽt :=
{

(s′′, s′′′) : (s′′, s′′′) ∈ Et,
(
t ∈ T i′E , {i′} = D̂s

′′,s′′′

min
)

or
(
D̂s′′,s′′′ ⊆ D̂s,s′

)}
(6.24)

Recall from Section 6.4 that a valid path includes all fixed edges (s′′, s′′′) (i.e.,
t ∈ T i′E , where {i′} = D̂s

′′,s′′′

min ) and any conditional edges (s′′, s′′′) for which s′′ and
s′′′ differ exclusively in possible realizations of endogenous parameters associated
with the same sources as s and s′ (i.e., D̂s′′,s′′′ ⊆ D̂s,s′). The condition Qs

′′,s′′′

t =
True, which is also generally required, is implicit in Equation (6.22) due to its
presence in the definition of EEηt .

Additionally, set Ṽt consists of only the vertices needed to construct the edges in
set Ẽt:

Ṽt := {s} ∪ {s′} ∪
{
s′′ : s′′ ∈ S,

(
∃ s′′′ ∈ S : (s′′, s′′′) ∈ Ẽt or (s′′′, s′′) ∈ Ẽt

)}
(6.25)

Notice that Equation (6.25) implies that Ṽt ⊆ Vt.3

(2) Use a breadth-first search to determine whether there is a path from s to s′ in
graph G̃t. If the algorithm returns True, a valid path already exists; if it returns
False, no such path exists.

(ii) If no such path exists, add edge (s, s′) to Gt:

Et := Et ∪ {(s, s′)} (6.26)

Step 4b Repeat Step 3a, and all sub-steps, with EEηt replaced by CEηt .
Step 5 Use the final set of edges for each time period, Et, to construct the complete set of endoge-

nous scenario pairs, SPN :

SPN := {(t, s, s′) : t ∈ T , (s, s′) ∈ Et} (6.27)

Notice that Step 4 of the algorithm is easily parallelizable since each time period is considered
separately. Also, note that because we are simply interested in connectivity when adding new edges
to the graph, we deviate from the approach of Hooshmand Khaligh and MirHassani (2016b) and
use a breadth-first search instead of Dijkstra’s algorithm. This has the advantage of a simpler
implementation and a time complexity of only O(|Ṽt|+ |Ẽt|) for each t ∈ T , as opposed to O(|Ṽt|

2 +
|Ẽt|) for the classical form of Dijkstra’s algorithm.

3 In practice, it may be simpler to let Ṽt := Vt, since any vertices s ∈ Vt \ Ṽt will not be connected to any other
vertices in G̃t and will automatically be ignored by the algorithm in the next step.
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We further note that the endogenous scenario pairs are generated in an “upward” fashion since
we start from an empty graph and progressively add new edges. Boland et al. (2016) states that it
is also possible to take a “downward” approach, in which one would start from a complete graph
and progressively remove unnecessary edges.

6.5.2 Order of Steps
It is important to emphasize that fixed edges must be added to the graph before conditional edges.
This is due to the fact that fixed edges can be used in any path and can thus decrease the number
of conditional edges that must be added to the graph.

It is also crucial that we consider steps 4a and 4b of the algorithm in order of increasing η (i.e.,
increasing cardinality of |D̂s,s′ |). This is formally stated in the following proposition.

Proposition 8. In the proposed graph algorithm for scenario-pair generation, steps 4a and 4b must
be executed in order of increasing η to avoid adding unnecessary edges to the graph.

Proof. This can be shown in part by a simple counter example. First, consider the 3 vertices shown
in the empty graph in Figure 6.5a, and assume that we can execute the steps in order of decreasing
η. Because scenarios 2 and 3 differ in the possible realizations of both θ1 and θ3 (i.e., η = 2), we
start with this potential edge in Figure 6.5b. No valid path exists between these vertices; thus, we
add edge (2, 3) to the graph.

Figure 6.5: If we consider η = 2 before η = 1, the algorithm adds 3 edges to the graph.

We next consider scenarios 1 and 3 in Figure 6.5c, which differ only in the possible realization
of θ1 (i.e., η = 1). There is no valid path between these vertices either, so we add edge (1, 3) to the
graph.
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Finally, in Figure 6.5d, we consider scenarios 1 and 2, which differ only in the possible realization
of θ3 (i.e., η = 1). It may appear that we have an existing path (2, 3, 1); however, notice that
D̂2,3 6⊆ D̂1,2 and D̂1,3 6⊆ D̂1,2. In other words, edges (2, 3) and (1, 3) will both disappear if θ1 is
realized, leaving no path between scenarios 1 and 2. It follows that we must add edge (1, 2) to the
graph. Overall, this procedure provides us with 3 edges.

Now consider Figure 6.6. Here, we instead start with edges (1, 3) and (1, 2), for which η = 1,
and we find that edge (2, 3) is not required. This leaves us with only 2 edges. Therefore, in this
case, it is clear that we cannot evaluate the algorithm in order of decreasing η without adding
unnecessary edges to the graph.

Figure 6.6: If we instead consider η = 1 before η = 2, the algorithm adds only 2 edges to the graph.

This is true in general. Recall that to have a valid path between scenarios s and s′, each edge
(s′′, s′′′) in the path must satisfy D̂s′′,s′′′ ⊆ D̂s,s′ . But if we start with η = I and work backward
to η = 1, we will have |D̂s′′,s′′′ | ≥ |D̂s,s′ |, which satisfies this condition only in the case that the
cardinalities are equal. This means that once we exhaust all edges (s, s′) for which η = I and
proceed to those for η = I − 1, none of the existing edges (s′′, s′′′) in the graph can be used in a
valid path. The same is true when proceeding from η = I − 1 to η = I − 2, and so forth.

If we instead start with η = 1 and proceed forward to η = I, we will have |D̂s′′,s′′′ | ≤ |D̂s,s′ |.
This means that the cardinalities for the edges in the graph are as small as possible, and these
edges can thus potentially be used in any valid path when we proceed from η = 1 to η = 2, etc. It
is therefore necessary to consider steps 4a and 4b of the algorithm in order of increasing η to avoid
adding unnecessary edges to the graph.

Conceptually, the overall idea here is that we must: (1) attempt to satisfy all scenario-linking
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requirements by first connecting scenarios that differ only in the possible realizations of endoge-
nous parameters associated with a single source of uncertainty, and then (2) gradually relax this
restriction until all required links are generated.

6.6 Conclusions
In this chapter, we have presented an algorithm for non-anticipativity constraint generation in
multistage stochastic programs with both endogenous and exogenous uncertainties. This approach
produces the minimum number of NACs through a hybrid strategy in which the first-period and
exogenous scenario pairs are generated by set definitions based on existing reduction properties,
and the endogenous scenario pairs are generated by a new graph-theory algorithm based on recent
work by Boland et al. (2016) and Hooshmand Khaligh and MirHassani (2016b). We have imposed
no restrictions on the structure of the underlying scenario set. The results of Chapter 5 suggest
that, in this case, the elimination of redundant NACs may also lead to a drastic reduction in
problem size and solution times. For large instances, such techniques may be a necessary step for
model generation, since memory limitations can easily rule out the consideration of fullspace, or
even partially reduced, stochastic programs.
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Chapter 7

Stochastic Programming for
Non-Experts

7.1 Introduction
Whether in the business world or a personal setting, it is often necessary to make the “best”
decisions to satisfy some primary objective, subject to many competing requirements. For example,
a company may wish to minimize operating costs while also ensuring that its production meets strict
quality standards and customer demand. These types of word problems can generally be cast as
mathematical optimization problems that have the following form (Williams, 2013):

min Operating costs

s.t. Quality standards
Customer demand

Here, “min” indicates that we are attempting to minimize the operating costs (our objective
function), and “s.t.” indicates the start of the list of restrictions, or constraints, that our decisions
are subject to. In practice, Operating costs, Quality standards, and Customer demand would each
refer to equations that consist of different variables, although such details are outside the scope of
this chapter.

To those without a background in mathematics, it is probably natural to question why we
are introducing foreign concepts like objective functions and constraints. The simple answer to
this question is that such formulations naturally lend themselves to standard solution methods
that can automatically determine the best, or optimal, decisions for us. In other words, if we (or
a colleague) can correctly formulate the mathematical optimization problem, we may be able to
completely eliminate the guesswork from our decision making. This is especially useful in cases with
thousands of constraints, where it would be nearly impossible for a human being to manually arrive
at the optimal solution. This idea is emphasized at length in Sashihara (2011), which provides a
nontechnical look at optimization and its value to businesses. As the basics of optimization are

77



widely available in the literature, we will skip a more in-depth review of the subject and proceed
with the current discussion.

7.1.1 How Do We Model Uncertainty in Optimization Problems?
Now, what happens if some of the problem data is not known with complete certainty? For example,
what if a company has to plan a production schedule without knowing exactly what the customer
demand will be? It is tempting to simply use our best guess for the uncertain values in such a case.
Unfortunately, this approach can be very risky, since a wrong guess can lead to costly, unforeseen
losses — a situation we will explore further in Section 7.2.

The good news is that it is possible to appropriately model cases like this. The somewhat bad
news is that such problems are not well defined, and multiple approaches exist to hedge against
uncertainty. In fact, there are so many options that Powell (2014) fittingly refers to this as “the
jungle of stochastic optimization.”

We can slightly narrow down our choices, however, depending on the problem type. For plan-
ning and scheduling under uncertainty, at least in our opinion, there are 4 primary approaches:
stochastic programming, robust optimization, chance-constrained optimization, and dynamic pro-
gramming. There are also 2 popular extensions that blur the lines between these approaches:
risk-averse stochastic programming (which makes stochastic programming look a bit more like ro-
bust optimization), and adjustable robust optimization (which makes robust optimization look a
bit more like stochastic programming). This is a total of 6 frameworks. To the non-expert reader,
however, we acknowledge that this is a total of 6 unfamiliar names. The open question is: “Which
approach should we use, and when?”

We propose three qualitative guidelines to answer this question:

1. Is probability data available? (For example, is there information available that describes how
likely it is for the customer demand to take high or low values?)

2. Can corrective action be taken after decisions are implemented? (In other words, can we
react to new information?)

3. Is the level of feasibility critical? (Specifically, does the solution still “work” if the input data
changes? How about in very unlikely circumstances?)

We use these guidelines in a decision chart in Figure 7.1 to indicate when it is appropriate to use
each approach. Notice that as one of the 8 possibilities in the figure, if probability data is available,
corrective action is essential, and the level of feasibility is not a significant concern, we can use
stochastic programming, dynamic programming, or adjustable robust optimization. In cases like
this, where there is more than one reasonable option, the final choice often comes down to whichever
approach provides a more “manageable” problem, as well as the user’s personal preference. It is
important to note that regardless of which option is used in such cases, the results will likely be
much more reliable than if we had instead ignored the uncertainty altogether.

We will focus on stochastic programming for the remainder of this chapter, as it provides a very
general framework for optimization under uncertainty.
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7.1.2 Selecting an Appropriate Example
So far, we have briefly discussed optimization under uncertainty in very general terms. This may
be difficult to conceptualize for many readers. It would be helpful, of course, to consider a concrete
example.

In selecting an appropriate example, there are a couple of subtle points to keep in mind. First,
who is the intended audience? As chemical engineers, it may be convenient for us to talk about
process networks or oilfields. An electrical engineer, however, may not care about either of those
things and might prefer to read about power grids. Or perhaps the reader is a mathematician
(Figure 7.2) who has little appreciation for any type of engineering. In any case, it is important to
select an example that anyone can relate to.

Figure 7.2: A mathematician who cannot fathom why anyone would have trouble understanding
stochastic programming.

A second point is that classic examples in the literature, such as the farmer problem or the news
vendor problem (Birge and Louveaux, 2011), identify optimal quantities of materials for use in the
situation at hand; specifically, the amount of farm land to allocate to different types of crops or
the number of newspapers to purchase from a distributor. In order to solve these problems, some
knowledge of linear optimization is required. While this is a simple task for an expert, someone
without a mathematical background would almost certainly have a difficult time coming to the
conclusion that we need to plant exactly 250 acres of sugar beets.

The motivating example presented in the next section concerns an everyday situation that should
be fairly easy to follow, regardless of background. It also includes only “yes” or “no” decisions,
which we believe is more intuitive since the optimal solution can easily be obtained by checking
each possible combination of decisions. We will frame all further discussions in the context of this
example.
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7.2 The Motivating Example
Meet Quinn (Figure 7.3). She is looking to buy a new car, and there is a limited-time sale going on
at the local dealership. She has narrowed down her choice to 3 different cars, as shown in Figure 7.4.
Each vehicle has a different purchase price and depreciates at a different rate. Specifically, after a 5
year period, she will be able to resell the cheapest car for only $3,000 (a $7,000 loss), the midgrade
car for $10,000 (a $5,000 loss), and the most expensive car for $17,000 (a $3,000 loss). Clearly, the
more expensive the car is, the better it holds its value.

Figure 7.3: Meet Quinn.

Figure 7.4: Quinn’s 3 car choices.

Quinn’s objective is to minimize her total cost of ownership based on purchase price and resale
value. The agreement is that she will sign the paperwork now and then use her bonus from work
to pay for the full price of the car upon delivery. Since she assumes that she will receive a $20,000
bonus, she considers this an easy decision: go with the most expensive car, which will lead to the
lowest overall cost over 5 years. She also loves the color red, so it should be a win-win.

Unfortunately, Quinn’s boss, a greedy hedge-fund manager (Figure 7.5), has other plans. He
has his eye on a second yacht and is cutting bonuses this year to help pay for it. Quinn’s bonus
gets cut by 25% and she receives only $15,000.

Due to the new circumstances, Quinn is forced to settle for the midgrade car. She also discovers
that the fine print in her new-car agreement had specified a 10% change fee in the event of any
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Figure 7.5: Quinn’s boss perusing a yacht catalog.

modifications to the order. She begrudgingly hands over 10% of the original order — a $2,000
penalty (see Figure 7.6) — and drives off the lot with a sick feeling in her stomach.

Figure 7.6: Quinn must pay a $2,000 penalty for changing the terms of her new-car agreement.

So how can we avoid situations like this?

7.3 The Basics of Stochastic Programming
Stochastic programming is a framework for optimization under uncertainty, generally applicable in
cases where probability data is available and corrective action, or recourse, is essential. Feasibility is
not always a significant concern here, due to our ability to take recourse or to re-solve the problem
at a later point in time.

Interestingly enough, this approach was independently introduced by Beale (1955) and Dantzig
(1955) in the same year more than 6 decades ago. It has been used extensively in academia for about
the last 25 years, and has been applied to problems in a wide assortment of areas (Wallace and
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Ziemba, 2005): production planning and scheduling, supply chain optimization, network resource
utilization, electricity generation, lake eutrophication management, climate change mitigation, and
groundwater pollution control, just to name a few.

As we proceed to discuss the basics of stochastic programming, please keep in mind that we
will focus on concepts. In the words of King and Wallace (2012):

“We believe that there is a more serious need for [an article] explaining the underlying
‘whys’ than the technically deeper ‘hows.’ But also, we try to avoid drowning the
conceptual difficulties in technical details. We believe that whenever a student or user
has the basic questions and difficulties in place, she can always walk down the alleys of
detail reflecting her needs and abilities.”

To allow the reader to fully appreciate how stochastic programming works, we will begin with
a discussion on simulation.

7.3.1 Simulation
Consider the case shown in Figure 7.7, where we separately evaluate each of the possible scenarios
for Quinn’s car purchase. This amounts to 3 simulation problems: one where she receives a $10,000
bonus, one where she receives a $15,000 bonus, and another where she receives a $20,000 bonus.
Probability information is available based on office gossip. In particular, it is 30% likely that Quinn
and her colleagues will receive the lowest or highest bonus, and it is 40% likely that they will end
up right in the middle at $15,000.

Figure 7.7: A simulation approach.

The solution to each of the simulation problems is fairly straightforward since the optimal
solution is always for Quinn to purchase the most expensive car that she can afford. If the first
scenario occurs, she will purchase the cheapest car, leaving her with a total cost of ownership of
$7,000 after 5 years. If the second scenario occurs, she will purchase the midgrade car, corresponding
to a total cost of ownership of $5,000 after 5 years. Likewise for the third scenario, she will purchase
the most expensive car for a total cost of $3,000.
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Because we cannot know which scenario will occur before it actually happens, the best we can
do is calculate the total expected cost. This simply means that we will average the costs from each
scenario based on their probabilities (30%, 40%, and 30%, respectively). In other words:

0.30($7, 000) + 0.40($5, 000) + 0.30($3, 000) = $5, 000

Thus, on average, Quinn’s total cost of ownership is $5,000 based on simulation.

7.3.2 2-Stage Stochastic Programming
Let us now make Figure 7.7 slightly more abstract and consider two points in time, A and B. Point
A occurs before we know what the value of the bonus will be, and point B occurs after. This
is shown in Figure 7.8. Based on this representation, it should be clear that in the simulation
approach, the car purchasing decision occurs at point B. We may therefore refer to simulation as
a “wait-and-see” strategy because the decision is purposely delayed until after the uncertainty is
resolved.

Figure 7.8: Simulation can be viewed as a “wait-and-see” strategy.

But there is an obvious problem with this approach: the idea that the decision can wait is
often completely unrealistic, and in this case, Quinn would miss the sale at the dealership. In
actuality, she must purchase a single car at point A, before complete information is available. The
simulation approach does not provide any guidance for making such a decision. In fact, we can see
in Figure 7.8 that it merely indicates the purchase of a different car at point B in each of the 3
cases, which by itself is not particularly helpful.

The main takeaway here is that simulation only provides us with a partial view of the full
decision-making process. Stochastic programming directly addresses these shortcomings, as shown
in Figures 7.9 and 7.10. We will discuss the solution shortly, but we first address the primary
differences from simulation.

Specifically, in Figure 7.9, the car purchasing decision now occurs at point A. An additional
change is that we have introduced horizontal lines that connect point A in each of the three
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scenarios. These lines, known as non-anticipativity constraints, ensure that Quinn makes a single
decision at that time, regardless of scenario, without anticipating any one particular outcome for
her bonus. In other words, her purchasing decision explicitly accounts for the fact that her bonus
may be $10,000, $15,000, or $20,000, instead of separately planning for each possibility like in the
simulation approach in Figure 7.8. (A technically-inclined reader may notice that the simulation
problem is in fact a relaxation of the stochastic programming problem.)

To use the proper terminology, we note that stochastic programming researchers refer to point
A as the “first stage” or “stage 1.” First-stage decisions are also commonly referred to as “here-
and-now” decisions in what is perhaps a more straightforward characterization.

If we formulate and solve the 2-stage stochastic programming problem, the optimal solution in-
dicates that Quinn should take a conservative approach and initially agree to purchase the cheapest
car, as shown in Figure 7.9. This option has the smallest change fee, which allows her the most
flexibility at point B once the true value of her bonus has been realized (Figure 7.10). Specifically,
if her bonus ends up being better than the worst case, she can pay the 10% penalty ($1,000) to
upgrade to a better option. Note that point B, where these recourse decisions are made, is properly
known as the “second stage” or “stage 2.” Second-stage decisions are also commonly referred to as
“wait-and-see” decisions.

If the first scenario occurs, Quinn will stay with the cheapest car, leaving her with a total cost of
ownership of $7,000 after 5 years (i.e., $7,000 + $0 penalty). If the second scenario occurs, she will
switch to the midgrade car, corresponding to a total cost of ownership of $6,000 after 5 years (i.e.,
$5,000 + $1,000 penalty). Similarly for the third scenario, she will switch to the most expensive
car for a total cost of $4,000 (i.e., $3,000 + $1,000 penalty). We encourage the reader to confirm
that this solution is in fact cheaper than starting out with a more expensive car at stage 1 and then
potentially downgrading at stage 2.

Note that although the simulation approach also provides “wait-and-see” decisions (which hap-
pen to be identical in this case), they are not in the context of any “here-and-now” decisions and
may be suboptimal or even infeasible in other problems.

The total expected cost is:

0.30($7, 000) + 0.40($6, 000) + 0.30($4, 000) = $5, 700

Thus, on average, Quinn’s total cost of ownership is $5,700 based on 2-stage stochastic program-
ming. We will consider this solution in further detail in the next section.

As a final point, we note that, in general, we are not restricted to only 2 decision stages. A
problem with more than 2 stages is known as a multistage stochastic programming problem.

7.4 Interpreting the Results
The solution of the stochastic programming problem instructs Quinn on what to do now, before all
relevant information is available, and what to do later, after more information has been revealed.
But what exactly does the total expected cost tell us? Clearly, these values are different for the
simulation and 2-stage stochastic programming approaches ($5,000 and $5,700, respectively), and
the simulation approach actually has a more appealing value. We address this source of confusion
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Figure 7.9: First-stage (here-and-now) decisions in stochastic programming.

Figure 7.10: Second-stage (recourse) decisions in stochastic programming.
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in the following two sections.
Before proceeding, we note that there are two primary approaches for evaluating the benefits of

a stochastic programming solution: (1) calculating the value of the stochastic solution, and (2) using
simulation. Both approaches rely on a comparison to a version of the problem where uncertainty
is ignored, which is known as a deterministic problem. The specific deterministic problem used in
these cases is one in which expected values are assumed for all uncertain quantities. This generally
allows for the fairest comparison, since intentionally using the best or worst values can unfairly
skew the results in favor of stochastic programming. In Quinn’s case, the deterministic problem of
choice should then be simulation problem 2 in Figure 7.8, with an expected bonus of $15,000 (i.e.,
0.30($10,000) + 0.40($15,000) + 0.30($20,000) = $15,000), rather than the best case of $20,000
previously assumed in Section 7.2 in the absence of any probability data. We first address the value
of the stochastic solution in this context. Note that for the convenience of any interested readers,
we provide the deterministic and stochastic programming models in Appendix D.

7.4.1 The Value of the Stochastic Solution
The value of the stochastic solution (Birge and Louveaux, 2011), or VSS for short, is the most com-
mon metric for evaluating the benefits of stochastic programming over deterministic optimization.
The general idea here originates in the fact that we simply cannot directly compare the results of the
two approaches. The reason for this can be seen by comparing simulation problem 2 in Figure 7.8
to all three scenarios in Figures 7.9 and 7.10. The deterministic problem has no “here-and-now”
decisions and anticipates one particular outcome for Quinn’s bonus. As previously described in
Section 7.3.2, these are two fairly different frameworks. The challenge here, unfortunately, is that
many people try to compare them anyway.

Consider the total cost of ownership of $5,000 for the deterministic problem and the total
expected cost of ownership of $5,700 for the stochastic programming problem. The difference is
$700, with the stochastic programming problem actually costing more. This can lead to enormous
uphill battles for researchers trying to convince business managers to adopt stochastic programming,
since the raw numbers look bad. The numbers can look so bad, in fact, that Figure 7.11 may be
the most likely outcome of such conversations.

The VSS “corrects” the solution of the deterministic problem so that it can be properly com-
pared to the stochastic solution. It does this by first implementing the deterministic decisions
as “here-and-now” decisions in the 2-stage stochastic framework, and then re-solving the corre-
sponding stochastic programming problem. Recall that Quinn purchases the midgrade car in the
deterministic problem (as previously indicated in simulation problem 2 in Figure 7.8). Thus, in
this context, Quinn would first purchase the midgrade car in Figure 7.9 instead of the cheapest
car, and re-solving the corresponding stochastic programming problem would yield the optimal
recourse decisions, which happen to be the same as those shown in Figure 7.10. It should be no
surprise that this is not a great purchasing strategy. Scenario 1 in Figure 7.10 would have a total
cost of ownership of $8,500 after 5 years (i.e., $7,000 + $1,500 penalty), for scenario 2 this would
be $5,000 (i.e., $5,000 + $0 penalty), and for scenario 3 it would be $4,500 (i.e., $3,000 + $1,500
penalty). The total expected cost of ownership would then be $5,900 — $200 more than the sto-
chastic programming solution. In other words, the deterministic approach would actually lead to

87



Figure 7.11: Convincing business managers to adopt stochastic programming can be an uphill
battle.
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suboptimal decisions, and the use of stochastic programming would lead to a savings of $200 (i.e.,
VSS = $200). The original difference of $700 is thus meaningless and incredibly misleading.

To address the earlier point of the simulation approach providing a “more appealing value” for
the total expected cost of ownership, the explanation follows directly from the previous discussion.
This value is obtained by taking the probability-weighted average of three separate deterministic
problems, and each of those problems underestimates the total cost. Directly comparing this result
to the stochastic programming solution is ill-advised, since it gives the completely false impression
that simulation performs best.

We summarize the primary differences between stochastic programming and a deterministic
approach in Figure 7.12. The overall idea is that deterministic problems are tailored toward one
specific outcome, so solutions will look better at first glance. These solutions are often suboptimal
in practice, however, because they are based on less information and are thus less flexible in the
event of an unexpected outcome. Stochastic programming provides a solution that is far less risky,
and the corresponding decisions are best, on average, for all possible outcomes.

In the next section, we explore the use of simulation to convey this information in a slightly
different manner.

7.4.2 Using Simulation to Measure the Effectiveness of Stochastic Solutions
In some cases, it may be beneficial to illustrate the effectiveness of a stochastic solution by framing
the results as a competition between a stochastic decision maker and a deterministic decision maker
(You et al., 2009). Such techniques are fairly well known in the literature (see, for instance, Shapiro
and Philpott, 2007).

Here, we will assume that we have Stochastic Quinn and Deterministic Quinn. Stochastic
Quinn uses stochastic programming to solve the car-buying problem, and she has available to her
the solution shown in Figures 7.9 and 7.10. This solution accounts for the fact that her bonus may
be $10,000, $15,000, or $20,000. Deterministic Quinn uses a deterministic approach, and has at her
disposal the solution corresponding to simulation problem 2 in Figure 7.8. This solution considers
only the possibility that her bonus will be $15,000.

To begin, the two Quinns must implement their first-stage (“here-and-now”) purchasing de-
cision. This means that Stochastic Quinn will agree to buy the cheapest car, and Deterministic
Quinn will agree to buy the midgrade car. We then evaluate how their decisions perform in each of
three possible realities: one in which the bonus is $10,000, one in which the bonus is $15,000, and
one in which the bonus is $20,000. The total cost of ownership for each case is shown in Figure 7.13.
(Note that this is the same data presented in the previous section.)

We can see in the figure that Stochastic Quinn’s second-stage (recourse/“wait-and-see”) de-
cisions coincide with those of the three scenarios in Figure 7.10. There are no surprises here.
Deterministic Quinn, on the other hand, did not plan to have to change her original purchasing
decision. If the bonus is $15,000, as was the case in Section 7.2, she does very well — $1,000 better
than Stochastic Quinn. But if the bonus is $10,000, she is unprepared and loses $1,500. If the bonus
is $20,000, she loses $500. The overall lesson here is that a deterministic approach is essentially a
gamble: if Quinn correctly predicts the future, she will perform very well; if her prediction is off,
she will generally lose out. Stochastic programming allows Quinn to prepare for more than just a
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Figure 7.12: Primary differences between stochastic programming and a deterministic approach.

Figure 7.13: A competition between a stochastic decision maker and a deterministic decision maker.
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single case.

7.5 Other Non-technical Resources for Stochastic Programming
Hopefully the reader now appreciates that, at least in concept, stochastic programming is fairly
easy to understand. One final question, however, is: “If stochastic programming has been around
for more than 60 years, why is there not already an explanation like this in the literature?”

The answer to this question is mostly based in opinion. However, the truth is that there is
a very limited number of educational resources available to non-expert users. This problem is
certainly not confined to stochastic programming (and is likely an issue in any highly-specialized
research area), but it does appear that the “by mathematicians, for mathematicians” style of most
publications in this area is at least somewhat problematic. Such sentiments can be traced back
almost 25 years to the first textbook on stochastic programming, Kall and Wallace (1994):

“Over the last few years, both of the authors, and also most others in the field of
stochastic programming, have said that what we need more than anything just now is a
basic textbook — a textbook that makes the area available not only to mathematicians,
but also to students and other interested parties who cannot or will not try to approach
the field via the journals.”

Stochastic programming is primarily math based, and Kall and Wallace (1994) certainly lived up
to those standards. This was the appropriate choice for the first textbook in the area (at least in
our opinion).

The problem is that years later, with the technical foundation of stochastic programming firmly
in place, some researchers still seem to resist literature that simplifies the explanation of stochastic
programming, instead viewing such efforts as trivializing the field. In the words of King and Wallace
(2012):

“At one point several attempts to publish the text were made but failed, possibly because
the text was not good enough, certainly because the editors (or their reviewers) did not
appreciate that stochastic programming was more than mathematics and algorithms.”

This textbook is unmatched as far as conceptual explanations are concerned, and we highly re-
commend King and Wallace (2012) to anyone interested in a gentle introduction to stochastic
programming. Other popular “introductory” texts (which are largely math based) include Sen and
Higle (1999), Higle (2005), Shapiro and Philpott (2007), and Birge and Louveaux (2011).

While stochastic programming problems can pose unique modeling and computational challen-
ges, these technical details are generally handled by researchers who are capable of sorting out these
issues. The major barrier remaining in adopting stochastic programming outside of academia is
then how to sell this technique to someone without a math or engineering degree. In other words,
the difficulty in interpretation of the results (Grossmann et al., 2016) can be the difference between
a business manager seeing value in using stochastic programming and being utterly confused with
why “what we have now” needs to be fixed in the first place. We have attempted to address this
concern in the previous section.

91



With these considerations in mind, it is probably no surprise that there are very few (publicly-
disclosed) real-world implementations of stochastic programming. The classic success story is the
Russell-Yasuda Kasai model (Cariño et al., 1994), which is a stochastic-programming-based as-
set/liability management model for determining an optimal investment strategy for a Japanese
insurance company. This strategy led to a $79 million increase in income over only a 2-year period.
Other equally impressive successes may certainly exist; however, we suspect that few companies
would be willing to disclose details about anything that gives them such a major competitive
advantage.

We openly encourage others in the stochastic programming community to share their success
stories, as well as to make their work more accessible to those outside the field. In the latter
case, previous work addressing the analysis of optimal solutions (e.g., Greenberg, 1996) may be of
particular interest.

7.6 Conclusions
Life is uncertain; it is often the case that we must make decisions before all of the relevant infor-
mation is available to us. If we would like to make the best possible decisions in such cases, we
generally look to one of the many techniques for optimization under uncertainty. We have presented
three qualitative guidelines and a corresponding decision chart (Figure 7.1) to help users make this
selection.

Stochastic programming, in particular, provides a very general framework for optimization
under uncertainty, provided that probability data is available. Specifically, it aligns with the way
that we commonly make decisions in real life: we must make a decision “here and now” before
knowing exactly what will happen in the future, and we can then take recourse in the future once
complete (or more complete) information is available to us. The scenario-based form of stochastic
programming can be viewed as a rigorous extension of simulation.

A complicating factor in the interpretation of the results is that stochastic solutions tend to
appear to be worse than their deterministic counterparts. This misleading comparison can be
corrected with the concept of the value of the stochastic solution (VSS), or similarly explained
away with the use of a simulation strategy that puts a stochastic decision maker up against a
deterministic decision maker. The main takeaway here is that deterministic decisions are made with
one expected outcome in mind, and can easily lead to unexpected losses due to the unpredictability
of the future. Stochastic programming considerably lowers this risk by providing decisions that are
best, on average, for all possible outcomes.

Unfortunately, there are currently very few resources for non-experts interested in learning
the basics of stochastic programming, and this framework has found limited adoption outside of
academia. It is our hope that this chapter will be the first step in bridging the gap between these
users and the stochastic programming community.
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Chapter 8

Conclusions

We now critique all previous sections of this thesis in order to summarize the strengths and weak-
nesses, as well as overall contributions, for the presented work.

8.1 Review of Chapter 1
Chapter 1 provides a thorough and unifying review of all major publications in the area of stochastic
programming under endogenous uncertainties (Type 1 and Type 2) and both endogenous and
exogenous uncertainties. As discussed, these areas are still maturing and there is much room for
future research (which we later consider in Section 8.9). Note that we purposely discuss only a few
publications on purely-exogenous uncertainty as this area is fairly well known.

After this point, we focus on the basic concepts behind purely-exogenous uncertainty and purely-
endogenous uncertainty, with a strong emphasis on the flow of the decision-making process and the
structure of the corresponding scenario trees. Perhaps most notably, we formalize the idea of the
decision-dependent endogenous scenario tree by introducing a superstructure representation that
captures all possible outcomes of the tree. We use several figures to point out the differences
between the two types of uncertainty in an effort to convey the information as clearly as possible.
We emphasize that a review of this scope and level of accessibility does not exist anywhere else in
the literature.

8.2 Review of Chapter 2
Here we introduce the basic definitions and notation. The notation is admittedly quite complex and
may be somewhat difficult for even a seasoned researcher. We attempt to base all of our discussions
on the underlying scenario trees introduced in Chapter 1 and include many brief examples to
indicate how the set and parameter definitions may appear in practice.

The most notable contribution of this section is our “composite” scenario tree. Similar to the
endogenous case, this is also a superstructure. Its novelty, however, rests on the fact that it ac-
commodates both endogenous and exogenous realizations by duplicating the exogenous scenario
tree for each possible combination of realizations of the endogenous parameters. The structure of
this tree not only makes the ensuing discussions easier to follow (by providing the reader with so-
mething tangible to refer to), but also serves as the basis for several theoretical reduction properties
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presented in Chapter 4, which we review in Section 8.4.
We also briefly review scenario probabilities in this chapter, which follow along closely with the

previously-mentioned definitions.

8.3 Review of Chapter 3
The notation and definitions introduced in Chapter 2 are then used to define our models in Chap-
ter 3. Our first step in presenting the stochastic programming models is to introduce a simple
deterministic planning model. We gently extend this case to account for exogenous uncertainty,
which allows the reader to clearly see what simple changes are required to convert the model. We
follow a similar procedure to illustrate how the deterministic model is extended to the purely endo-
genous case, and then finally to the case of both endogenous and exogenous uncertainties. The idea
here is to follow a logical progression of increasing complexity so as to help the reader understand
the basic concepts, instead of immediately presenting a monolithic model with no prior context.

The three stochastic programming models are based on the assumption that the underlying
scenarios are the result of a Cartesian product over all possible combinations of realizations of the
uncertain parameters. We do not relax this assumption until Chapter 6, which we review shortly
in Section 8.6.

Due to the Cartesian-product assumption, some readers may perceive the models as too “aca-
demic,” with little applicability in the real world. However, we feel that this is not an accurate
assessment. First, general models can be derived from an “academic” special case, and this task
is often much easier (or may only be possible) after gaining invaluable insights from studying such
special cases. Our Cartesian-product-based models may be viewed from the same perspective, as
they allow us to explain concepts with well-behaved math in the context of predictably-structured
scenario trees before proceeding to a more general, and less intuitive, case. Furthermore, a second
point is that Cartesian products are perfectly acceptable in the preliminary phases of a planning
project, simply to gauge whether or not stochastic programming may be the right fit.

An additional weakness of these models is that they do not directly account for gradual resolu-
tion of uncertainty (see Section 8.9.3 for details on future work in this area).

8.4 Review of Chapter 4
This chapter is likely the most difficult section in the thesis. We suspect that it will be read in its
entirety only by researchers interested in expanding upon this work. In fact, our general philosophy
is that it is not meant to be carefully read by everyone working in this area. We will return to this
point below.

In this chapter, we present theoretical reduction properties for first-period scenario pairs, exo-
genous scenario pairs, and finally endogenous scenario pairs. The motivation for this endeavor is
that naively-generated stochastic programs can easily contain several thousand (or more) linking
constraints. Aside from the fact that the presence of such constraints can make the model extre-
mely difficult or even impossible to solve, it is often the case that many of these constraints are
not even necessary. Specifically, they may be implied by other constraints in the model and can be
safely removed. Doing this in a systematic way, however, is very challenging.

The discussions in this chapter are rooted in the structure of the underlying composite scenario
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tree as well as in rigorous mathematical proofs. Figures are provided for all reduction properties in
an attempt to ground these abstract concepts in reality. By the end of the chapter, we show that
we have eliminated all redundant scenario pairs, which is synonymous with removing all redundant
non-anticipativity constraints. This is a major achievement, since our model (MSSP) is consi-
derably more general than that of the purely-endogenous case for which Gupta and Grossmann
(2011) previously eliminated all redundant NACs. This of course also lends itself to significant
improvements in model size and solution times, as we discuss in the review of Chapter 5. Gene-
rally speaking, the reduction properties can enable us to study problems that would otherwise be
impossible to even load into memory.

The reason why we previously stated that it is unnecessary for all researchers to fully understand
these concepts is that they are defined in a very general way that can be applied to almost any
stochastic programming problem. This means that, in principle, a user may supply a deterministic
model with additional data characterizing the uncertainty, and we can, in turn, automatically
generate the stochastic programming model. This capability can be made available in a framework
such as PySP (Watson et al., 2012). The overall idea here is that researchers should be able
to use our ideas for their own purposes instead of being expected to independently reinvent our
formulations. We explore this idea further in Section 8.9.1 on future work.

The primary weakness of these properties is that three of them require that the scenario set be
generated by Cartesian products over all endogenous realizations. As mentioned at the end of the
previous section, we address this issue in Chapter 6, which we review in Section 8.6.

8.5 Review of Chapter 5
Given that our reduced multistage stochastic programming models are often still too large to
solve directly with commercial MILP solvers, we propose two special solution methods for this
class of problems. The first is a newly-developed heuristic that we refer to as sequential scenario
decomposition; the second is Lagrangean decomposition.

The general idea behind our heuristic is that we sequentially solve purely-endogenous MILP
subproblems that consist of only a small fraction of the total number of scenarios. After solving
each subproblem, we: (1) extract the binary investment decisions from the solution, and (2) fix
these values in scenarios of the original problem in order to satisfy the corresponding first-period
and exogenous NACs. Once we have exhausted all subproblems, all binary investment decisions
are fixed. We then solve the resulting model to obtain a feasible solution to the original problem.

For Lagrangean decomposition, we provide a brief review of the basics, primarily based on
previous work by Goel and Grossmann (2006) and Gupta and Grossmann (2011, 2014a). Although
we do explicitly show the decomposed form of our model, we do not offer any fundamentally new
information here.

We test our reduction properties and solution methods on two (modified) example problems
from the literature: the capacity expansion of a process network (Goel and Grossmann, 2006)
and oilfield development planning (Gupta and Grossmann, 2014a). We begin with a very small
instance of the process network problem as a motivating example. This allows us to provide a
physical interpretation of the solution along with the optimal structure of the composite scenario
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tree.
We next consider a much larger instance of this problem with more than 176 million constraints

and approximately 4.8 million binary variables in its fullspace form. This instance cannot be
loaded into memory. After applying our reduction properties, we are able to reduce the number
of constraints to about 838,000 (a 99.5% reduction) and the number of binary variables to about
61,000 (a 98.7% reduction). The problem can then be solved directly with CPLEX to a 0.99%
optimality gap in about 1 hour. Our heuristic is able to find the same feasible solution in just
61 seconds. While Lagrangean decomposition provides us with acceptable bounds on the optimal
solution in much less time than solving the reduced model directly, the consequence of relaxing all
conditional endogenous NACs for this approach is apparent in the fact that we cannot reduce the
optimality gap below 1.41%.

Finally, we solve a medium-sized instance of the oilfield development planning problem. This
is a very challenging task, even with only 64 scenarios, as the instance contains approximately
304,000 constraints and 9,000 binary variables. Attempting to solve the reduced model directly
(consisting of about 123,000 constraints and 8,900 binary variables) yields an optimality gap of
about 50% after more than 11 hours of CPU time. The SSD heuristic, on the other hand, obtains
a high-quality feasible solution in just 41 seconds. Lagrangean decomposition also performs very
well in this case and, within 14 seconds, provides bounds that confirm that the heuristic solution
is within 0.20% of the optimum.

8.6 Review of Chapter 6
As previously mentioned, the models presented in Chapter 3 assume that the set of scenarios has
been generated by a Cartesian product over all sets of uncertain-parameter realizations. Here we
relax this assumption in order to account for arbitrary scenario sets.

We begin by proposing a more general form of model (MSSP) and discuss how the reduction
properties change in the absence of Cartesian products. The primary impact is that one fundamen-
tal property no longer applies. Because this is a necessary condition for two of our other reduction
properties, we lose those as well. In order to still be able to remove redundant non-anticipativity
constraints in such cases, we make use of recent work by Boland et al. (2016) and Hooshmand Kha-
ligh and MirHassani (2016b) and introduce the concept of a non-anticipativity graph for endogenous
scenario pairs. We then use this idea to propose a hybrid strategy for minimum-cardinality non-
anticipativity constraint generation in which: (1) the first-period and exogenous scenario pairs are
generated by set definitions based on existing reduction properties, and (2) the endogenous scenario
pairs are generated by an extended form of the polynomial-time algorithm developed by Hoosh-
mand Khaligh and MirHassani (2016b). Although this work remains theoretical and has not been
implemented in practice, we believe that eliminating the leftover, redundant NACs that cannot be
removed by our existing reduction properties can lead to a drastic reduction in problem size and
solution times. Additionally, in very large problem instances, such techniques may be essential.

8.7 Review of Chapter 7
A significant problem that we have noticed in the field of stochastic programming is that there are
very few educational resources available to non-expert users. This of course makes it considerably
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more difficult for researchers to promote these techniques among business managers and others
outside the field. The rather frustrating point here, however, is that it does not have to be this
way; the basic concepts behind stochastic programming are actually quite natural and can be
explained without the use of complex mathematics. With some effort, we believe that it is possible
to even make the discussion easy to understand.

We present the first attempt (of which we are aware) to convey the ideas of stochastic pro-
gramming to a non-technical audience. We begin by discussing optimization and then optimization
under uncertainty in very general terms, and we propose 3 qualitative guidelines for model selection.
These guidelines are also very general and do not require any advanced knowledge of optimization
or even mathematics.

Due to our belief that stochastic programming provides a more general framework for optimi-
zation under uncertainty than the other modeling options, we adopt a narrow view and focus on
only this one approach. Our conceptual explanation revolves around the relationship to simula-
tion, as well as the use of simulation to illustrate the advantages of stochastic programming over
a deterministic approach. We frame most of the chapter in the context of a motivating example
related to a car purchase, which almost anyone can relate to.

The discussions in this chapter are specifically tailored to 2-stage stochastic programs with
exogenous uncertainty, and the figures include cartoons (which, admittedly, may not be appealing
to some readers). As for the first point, we may prepare similar types of papers in the future to
explain multistage stochastic programming and endogenous uncertainty. To the latter point, we
strongly believe that visualization is critical for a clear, conceptual explanation.

It is difficult to predict the long-term impact of this work as it is still a new area of research.
Of course, we hope that it will be well received and perhaps even influence companies and other
researchers to begin using stochastic programming.

8.8 Contributions of Thesis
In summary, the following are the major contributions that have emerged from the research work
for this thesis:

1. A thorough and accessible review of exogenous uncertainty and endogenous uncertainty in
multistage stochastic programming.

2. A superstructure form for endogenous scenario trees.

3. A “composite” scenario tree for both endogenous and exogenous realizations.

4. General multistage stochastic programming models with endogenous and exogenous uncer-
tainties that can easily be generated from a deterministic model.

5. New theoretical reduction properties to eliminate all redundant non-anticipativity constraints
in multistage stochastic programs with endogenous and exogenous uncertainties.

6. A “sequential scenario decomposition” heuristic, which provides near-optimal solutions in
very little CPU time.
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7. Orders-of-magnitude reduction in the number of variables and constraints, as well as in so-
lution times, through the use of our reduction properties and heuristic, as demonstrated in
process network and oilfield development planning problems.

8. A graph-theory approach for generating the minimum number of non-anticipativity con-
straints in problems with arbitrary scenario sets.

9. The first stochastic programming paper designed specifically for the qualitative interpretation
of results by non-expert users.

8.9 Future Work
Given that the study of stochastic programming under endogenous and exogenous uncertainties
is still in its very early stages, the possibilities for future work appear to be almost endless. It is
hard to predict where the field may be in 20 years. With the advent of quantum computing, for
example, it may be possible to one day instantaneously solve problems 10 times the size of the ones
we struggle with today.

We propose several directions for future work. These include both extensions of chapters in this
thesis as well as other areas that we did not have a chance to touch upon. We again emphasize
that this list likely does not even begin to scratch the surface of all future possibilities.

8.9.1 Software Implementation
As previously stated in Section 8.4, it is possible to automatically generate the multistage sto-
chastic programming models presented in this thesis given a deterministic model and data on the
uncertainty. Similar capabilities for exogenous uncertainty already exist in software such as PySP
(Watson et al., 2012), JuMP, GAMS (through EMP or DECIS), AIMMS (Roelofs and Bisschop,
2017), and FortSP (Zverovich et al., 2014). (Note that the last 3 options are proprietary software.)
Although our work has been implemented in a fairly general sense in GAMS, we believe that one
of the most important future steps is to build on top of the powerful open-source platform already
offered by PySP. This will allow other users to easily experiment with our models and solution
methods without spending months of valuable research time re-implementing all of our work. If we
reduce the number of barriers here, we may also reach a wider audience. It is important to keep in
mind that given the complexity of our theoretical reduction properties, and even the graph-theory
algorithm, it is otherwise unlikely that very many researchers will make use of our work.

It is also worth noting that, as far as we are aware, current software implementations require
user-supplied scenario data. It is possible to further automate this process by automatically genera-
ting scenario trees from raw data supplied by the user. Works of interest in this area include Calfa
et al. (2014) for exogenous scenario-tree generation and Tarhan (2009) for endogenous scenario-tree
generation.

8.9.2 Risk Aversion
An unfortunate side effect of naively optimizing for expected values is that the overall weighted
average may be acceptable, but some of the individual components may not be. For example, in the
case of minimizing total expected cost, a standard stochastic programming formulation can provide
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an optimal, and even excellent, objective function value while still containing some scenarios with
very high costs. On average, the solution may be fine; but what happens if one of those undesirable
scenarios becomes reality?

In many real-world applications, such risk-neutral approaches may carry far too much risk,
even if the high-cost scenarios happen to have low probability. It is often desirable to instead
compromise on the quality of the objective function value in exchange for a cost distribution with
more desirable properties. This can be accomplished by including risk measures directly in the
stochastic programming formulation. Some of the commonly used risk measures are variance,
shortfall probability, expected shortage, value-at-risk, and conditional value-at-risk (see Oliveira
et al., 2013, and the references therein). An excellent review of risk measures can also be found in
Rockafellar (2007).

It is likely that such considerations will be necessary before our models can be used in any
real-world setting. We are unaware of any works that explore risk measures in the context of mul-
tistage stochastic programming under exogenous and Type 2 endogenous uncertainties; however,
risk management has been explored in Colvin and Maravelias (2011) for the case of Type 2 endo-
genous uncertainty, as well as in works by Escudero et al. for purely exogenous uncertainty and
even exogenous and Type 1 endogenous uncertainties (see, for instance, Escudero et al., 2017, and
Escudero et al., 2016a, respectively).

8.9.3 Gradual Resolution of Uncertainty
Throughout this thesis, we have assumed that endogenous uncertainties are resolved instantane-
ously, either right after an investment decision is made or after a pre-specified lead time. This is
not always an accurate characterization, however. In oilfield development planning, for instance,
production from a particular field may last several decades. It is likely unrealistic to assume that
the recoverable oil volume becomes known as soon as production begins, or all at once after produ-
cing from the field for a few years. Instead, the uncertain recoverable oil volume gradually becomes
more and more certain over time, and new decisions can be made as new information becomes
available.

Gradual resolution has been considered in stochastic programs with endogenous uncertainty in
Tarhan and Grossmann (2008), Tarhan et al. (2009), Solak et al. (2010), and Tarhan et al. (2013).
Extending our work to accommodate gradual resolution will allow our models to be used for a
more general class of problems. The downside of this extension, however, is that it will further
complicate the structure of the scenario tree and make the model more complex (due to the need
for additional disjunctive constraints to indicate which phase of the uncertainty resolution we are
in at any given time).

8.9.4 Extension of Heuristic
Although the sequential scenario decomposition heuristic is capable of providing both upper and
lower bounds, it is not an exact solution method that can be used in an iterative procedure to
converge to the optimal solution. We believe that it is possible to extend this approach such that
we can in fact obtain an exact, iterative algorithm.

The first modification for such an approach is to “fix” variables through explicit equality con-
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straints rather than treating them as constants. Furthermore, we must consider all severed linking
constraints, not only those for binary investment decisions. This step ensures that we have dual
variables for all of the respective NACs. We can then execute the SSD algorithm iteratively in for-
ward and backward passes, where we use these multipliers to generate cuts in each backward pass.
The cuts accumulate as the iterations proceed. This general idea is based on recent work by Zou
et al. (2016) and Lara et al. (2017), and is a variation of nested Benders decomposition/stochastic
dual dynamic programming.

We note that this framework entails decomposing the original multistage stochastic program
into purely-endogenous subproblems, and a separate decomposition algorithm is required to solve
them. One possible avenue here is the endogenous scenario grouping Lagrangean decomposition
approach proposed by Gupta and Grossmann (2014a). It may also be worthwhile to explore a
new solution method altogether, since Lagrangean decomposition is often the default choice, and
its suitability for large-scale problems of this class is questionable. Specifically, as the number of
dualized constraints increases, we can easily end up with an unmanageable number of multipliers.
(This particular criticism has been voiced by Mercier and Van Hentenryck, 2011.) Other options
include revisiting the branch-and-cut strategy proposed by Colvin and Maravelias (2010), although
we caution that this particular approach would be intended for the purely-endogenous subproblems
only, and may not work well for the original problem due to the fact that there will be a very large
number of exogenous NACs that likely cannot be relaxed. Clearly, the development of effective
solution methods is still an open area of research.

An additional consideration for extending the heuristic is that we may adopt more rigorous
criteria for selecting scenarios from the exogenous scenario groups in each time period. Specifically,
in addition to the requirements specified in Section 4.3 (see the discussion following the statement
of Property 5), it may be beneficial to select scenarios with the highest probability. It is also worth
noting that it may be necessary to implement feasibility cuts to ensure that fixing binary decisions
for time period t does not lead to infeasible subproblems in later time periods.

8.9.5 Other Possible Directions
We also propose the following possible directions, which are less developed but may hold future
value. We include relevant references wherever possible.

• A compact representation (or implicit formulation) for first-period and exogenous NACs
within scenario groups in Lagrangean decomposition (see Escudero et al., 2016b).

• Multistage stochastic programming under exogenous, Type 1 endogenous, and Type 2 en-
dogenous uncertainties. (Note that using the terminology of Hellemo, 2016, this can be
equivalently expressed as: “Multistage stochastic programming under exogenous and Type 3
endogenous uncertainties.”)

• Strategically eliminating redundant non-anticipativity constraints to obtain the best possible
structure. (Since scenario pairs are generally non-unique, we often have a choice as to which
non-anticipativity constraints to remove. Some choices may lead to problem structures that
are more favorable to MILP solvers. In some cases, it may even be preferable to leave some
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redundant constraints in the model. For example, in Goel and Grossmann, 2006, the authors
recommend the use of redundant indistinguishability constraints in Lagrangean decomposition
in order to obtain tighter lower bounds.)

• Exploiting matrix structure in multistage stochastic programs based on the location of un-
certain parameters in the model (i.e., uncertainty in the objective function, constraint coeffi-
cients, or right-hand side).

• Endogenous uncertainty with continuous distributions. (In the words of Vayanos et al., 2011:
“To the best of our knowledge, all existing algorithms rely on the assumption that the uncer-
tain parameters follow a discrete distribution.”)

• Time-varying endogenous uncertainty. (This addresses the case where the realization of an
endogenous parameter changes over time. For example, due to shifting geological conditions,
the recovery from a given oilfield may depend on when we decide to drill. If we drill next
year, the recovery may be 5,000 bbl/day, 2,000 bbl/day, or 1,000 bbl/day. If we instead wait
5 years, the possible recovery values may have decreased to 2,500 bbl/day, 1,000 bbl/day,
or 500 bbl/day, respectively. This can be interpreted as a problem with Type 1 and Type
2 endogenous uncertainties, since the decision to not invest changes the underlying probabi-
lity distribution such that the 3 original realizations have been replaced by 3 less-desirable
possibilities. Similar situations can arise in any case where the value of the endogenous in-
formation diminishes over time. In other words, in such cases, there is an added incentive to
make investments early in the planning horizon. The example described here can be modeled
easily with stochastic programming, since we can simply multiply the respective endogenous
parameter by a time-dependent scaling factor directly in the model.)

• Resolving endogenous uncertainties with continuous decisions rather than binary investment
decisions. (As stated by Woodruff, 2003: “Although extension to real variables is possible, all
work to date has focused on integer decisions that [affect] discovery timing.” This extension
can be accomplished fairly easily in our models through a custom uncertainty-resolution rule.
Specifically, rather than checking the value of a binary decision variable, we can instead check
the value of a separate binary variable that will only transition from 0 to 1 if a continuous
variable has reached a certain threshold.)
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Appendices

Appendix A Supplementary Material for Chapter 2
A.1 Correlated Parameters
In Chapter 2, we state that uncertain parameters ξj,t and θi,h are assumed to be independent. Simple
correlations between the parameters do not preclude the use of a Cartesian product, however. This
is for the simple reason that if we have an exogenous-uncertain parameter ψt that is correlated with
ξ̂,t, we can use the known correlation to explicitly express ψt as a function of the other uncertain
parameter; i.e., ψst = f(ξs̂,t) ∀ s ∈ S. This means that relative to parameter ξ̂,t, the value of ψt
is known. Furthermore, by using a function to express the value of ψt for each scenario, we can
exclude this parameter from the scenario-generation process. The same argument applies for an
endogenous-uncertain parameter φ that is correlated with θı̂,ĥ, as we can state φs = f(θs

ı̂,ĥ
) ∀ s ∈ S.

If, however, there are many uncertain parameters with complex correlations that the modeler
may not even be aware of, then the Cartesian-product approach should not be used. Using the
exogenous case as an example, recall that there is only one corresponding realization of ψt for each
realization of ξ̂,t (since the two parameters are correlated). If we were to generate all possible
combinations of realizations for ξ̂,t and ψt, we would end up with many scenarios that reflect
impossible outcomes. In fact, even the realistic scenarios would be improperly weighted because
the calculated probabilities would be incorrect. It is for these reasons that we restrict the scenario-
generation process to independent parameters.

A.2 Alternate Composite Scenario Tree
When we generate the composite scenario tree by the Cartesian product RX × RN , instead of
RN ×RX , we produce the scenario tree shown in Figure A.1.

Figure A.1: Alternate composite scenario tree.

Notice that this tree lacks a unique structure that we can easily exploit.
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A.3 Proof of ‘Scenario Probabilities Must Sum to 1’
Starting with Equation (2.10) and taking the product of all elements in each tuple, then summing
over all of these products, we can factor out like-terms to arrive at the following expression:

∑
s∈S

ps = ω̂1
1,1

[
ω̂1
I,HI

(
υ̂1

1,1

[
υ̂1
J,T + · · ·+ υ̂

RJ,T

J,T

]
+ · · ·+ υ̂

R1,1
1,1

[
υ̂1
J,T + · · ·+ υ̂

RJ,T

J,T

] )
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MI,HI
I,HI

(
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RJ,T

J,T

]
+ · · ·+ υ̂

R1,1
1,1

[
υ̂1
J,T + · · ·+ υ̂
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J,T

] )]
+ · · ·+
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J,T + · · ·+ υ̂
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+ · · ·+ υ̂
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J,T + · · ·+ υ̂
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+ · · ·+ υ̂
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(A.1)

For ease of exposition, we consider only the realization probabilities associated with the first
and last endogenous parameters (θ1,1 and θI,HI

, respectively) and the first and last exogenous
parameters (ξ1,1 and ξJ,T , respectively). Since

∑Rj,t

r=1 υ̂
r
j,t = 1 ∀ j ∈ J , t ∈ T , we have υ̂1

J,T + · · ·+
υ̂
RJ,T

J,T = 1, which reduces this expression to:

∑
s∈S

ps = ω̂1
1,1
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I,HI

(
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)] (A.2)

By the same reasoning, υ̂1
1,1 + · · ·+ υ̂

R1,1
1,1 = 1, which gives:

∑
s∈S

ps = ω̂1
1,1

[
ω̂1
I,HI

+ · · ·+ ω̂
MI,HI
I,HI

]
+ · · ·+ ω̂

M1,1
1,1
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+ · · ·+ ω̂
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]
(A.3)

Now, since
∑Mi,h

m=1 ω̂
m
i,h = 1 ∀ i ∈ I, h ∈ Hi, we have ω̂1

I,HI
+ · · ·+ ω̂

MI,HI
I,HI

= 1, which leaves:

∑
s∈S

ps = ω̂1
1,1 + · · ·+ ω̂

M1,1
1,1 = 1 � (A.4)

Appendix B Supplementary Material for Chapter 4
B.1 Proof of Property 1
Consider two indistinguishable scenarios ŝ, ŝ′ ∈ S in time period τ , where ŝ < ŝ′. For simplicity,
consider only variables yŝτ and yŝ′τ . By Equation (4.1), we generate two scenario pairs: (ŝ, ŝ′) and
(ŝ′, ŝ). Scenario pair (ŝ, ŝ′) corresponds to non-anticipativity constraint yŝτ = yŝ

′
τ . Scenario pair

(ŝ′, ŝ) corresponds to non-anticipativity constraint yŝ′τ = yŝτ , which is the same equality constraint.
By symmetry, we may replace the condition s 6= s′ in Equation (4.1) with s < s′. In this case, we
only generate the first pair, and we avoid the second, redundant constraint. �
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B.2 Proof of Property 2a
Because all scenarios are indistinguishable at the beginning of the first time period, adjacent scena-
rios must also be indistinguishable at that time. Thus, we can enforce non-anticipativity between
all scenarios by linking consecutive nodes; e.g., y1

1 = y2
1, y

2
1 = y3

1, . . . , y
S−1
1 = yS1 . �

B.3 Proof of Proposition 1
We generate set SPF by pairing off all S scenarios in consecutive order. This gives S−1 independent
links (i.e., scenario pairs), which is the minimum number of links required to connect S elements.
�

B.4 Proof of Property 2b
As previously stated, exogenous NACs apply only between scenarios s and s′ in the same subtree.
Because each subtree represents an exogenous scenario tree, non-anticipativity constraints within
that tree apply as if the uncertainty were purely exogenous. (Note that in the case of purely-
exogenous uncertainty, the adjacent-scenario approach to non-anticipativity is well known (see, for
example, Colvin and Maravelias, 2011). However, we provide the rest of the proof for completeness.)

Accordingly, consider an exogenous scenario tree in its standard form, as shown in Figure 1.2a.
For each time period t ∈ T , t < T , each scenario passes through a node that is shared among
one or more scenarios. All scenarios that pass through one such node at time t must be indexed
consecutively, since they all refer to the same path up until this time (i.e., they have the same
history). When we duplicate this node to give each scenario its own respective copy, we create
consecutive, indistinguishable nodes that refer to the same state and must be linked together with
non-anticipativity constraints (see Figure 1.2b). One natural approach to enforce non-anticipativity
between these indistinguishable scenarios in time period t is to link them together in consecutive
order. �

B.5 Proof of Proposition 2
In each time period, excluding t = T , we partition the set of scenarios into exogenous scenario-
group subsets XGkt ∀ k ∈ Kt. Since each scenario must be assigned to one group (scenario 1 to
group 1, and all others by Equation (4.5)), the union of all such groups in each time period must
give the complete set of scenarios; i.e.,

⋃
k∈Kt

XGkt = S ∀ t ∈ T \ {T} (B.1)

Thus, we are considering all scenarios in each time period where exogenous NACs apply.
We enforce non-anticipativity between consecutive scenarios in each of the exogenous scenario

groups. By Equation (3.11), the corresponding scenario pairs for t ∈ T \ {T} must be in set SPX
because they are adjacent (i.e., (s, s′) ∈ A), in the same subtree (i.e., Sub(s) = Sub(s′)), and
indistinguishable (i.e., Qs,s

′

t = True). Since each group has different realizations for the exogenous
parameters and/or different possible realizations for the endogenous parameters, no links between
the groups are possible, and such pairs cannot be in set SPX . Thus, the pairs in each group are
the only possible exogenous scenario pairs in each time period. It follows that the union of these
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sets of tuples must be equivalent to set SPX :

⋃
t∈T \{T}

 ⋃
k∈Kt

{
(t, s, s′) : s, s′ ∈ XGkt , (s, s′) ∈ A

} = SPX (B.2)

Now, consider the scenario pairs in each exogenous scenario group in time period t ∈ T \ {T}.
Because we link consecutive scenarios, this gives |XGkt | − 1 scenario pairs in each group, which is
the minimum number of links required to connect |XGkt | elements. These pairs cannot be implied
through the use of any endogenous scenario pairs, since we generate the exogenous pairs first. Thus,
we have the minimum number of scenario pairs in each group. We have shown that these are the
only possible exogenous scenario pairs in each time period, and the union of these sets of tuples
is equivalent to set SPX . Hence, set SPX contains the minimum number of exogenous scenario
pairs. �

B.6 Proof of Property 4
By Property 3, endogenous NACs are expressed between scenarios s and s′ that differ in the
possible realization of a single endogenous parameter θi′,h and are identical in the realizations of
all exogenous parameters in all time periods. Accordingly, for each i′ ∈ I and h ∈ Hi′ , we seek to
identify the minimum number of scenario pairs (s, s′) that satisfy these conditions.

To this end, in an arbitrary time period t = τ , we partition the set of scenarios into endogenous
scenario-group subsets. These subsets are given by NGli′,h and are indexed by l ∈ Li′,h for each
i′ ∈ I and h ∈ Hi′ . By the endogenous scenario-group algorithm, each scenario must be assigned
to one such group for each i′ ∈ I and h ∈ Hi′ . In other words, the union of all of these groups
must give the complete set of scenarios; i.e.,

⋃
l∈Li′,h

NGli′,h = S ∀ i′ ∈ I, h ∈ Hi′ (B.3)

Thus, we are considering all scenarios in each case where endogenous NACs may apply.
We enforce non-anticipativity between consecutive scenarios in each of the endogenous scenario

groups, as indicated by Equation (4.15). This gives |NGli′,h| − 1 scenario pairs in each group, which
is the minimum number of links required to connect |NGli′,h| elements. Other connections between
the scenarios are implied by transitivity.

Furthermore, by Property 3, it is sufficient to consider only the pairs formed in each endogenous
scenario group. This is because there are no links between groups, other than those that already
exist in another group. We can prove this by contradiction.

First, suppose that we have a link between two scenarios, ŝ and ŝ′. By Property 3, these
scenarios must differ only in the possible realization of a single endogenous parameter θı̂,ĥ. Second,
assume that this link cannot be formed by pairing two scenarios in the same endogenous scenario
group. In other words, these scenarios belong to two separate groups corresponding to parameter
θı̂,ĥ, and by the endogenous scenario-group algorithm, we have GN (̂ı, ĥ, ŝ) = l̂ and GN (̂ı, ĥ, ŝ′) = l̃.
It follows that the respective groups from Equation (4.14) are NG l̂

ı̂,ĥ
and NG l̃

ı̂,ĥ
. Note that the

scenarios in one group must differ from the scenarios in the other group in terms of the possible
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realization of at least one uncertain parameter other than θı̂,ĥ. (If this were not the case, then
NG l̂

ı̂,ĥ
and NG l̃

ı̂,ĥ
would be a single group.) Since ŝ and ŝ′ differ in the possible realization of θı̂,ĥ and

belong to two separate groups, these scenarios must differ in the possible realizations of at least
two uncertain parameters. This violates Property 3. Thus, the original assumption is false and any
endogenous scenario pair must be formed between two scenarios in the same endogenous scenario
group.

At this point, we have shown that if we consider only scenario pairs (s, s′) for which s and s′ are
consecutive scenarios in an endogenous scenario group: (1) we are able to link all scenarios in each
group; and (2) from this linking, we are able to produce all endogenous scenario pairs generated by
Property 3 (either explicitly, or implicitly through the use of some explicitly-generated pairs). Note
that since the endogenous scenario groups are defined in terms of Property 3, Property 4 must also
be at least as restrictive as Property 3. In other words, SPN4 ⊆ SPN3 , and this approach cannot
produce any additional scenario pairs that cannot be obtained from Property 3. It follows that
Property 4 is a sufficient condition for endogenous scenario-pair generation. �

B.7 Proof of Proposition 3
This is the case described in Gupta and Grossmann (2011). We approach this proof from a different
angle and continue from the proof of Property 4.

So far, we have shown that Property 4 gives the minimum number of pairs among the scenarios
in each endogenous scenario group, and that it is sufficient to consider only these pairs. Recall
that by Equation (4.15), we generate one such set of pairs for each group. The complete set of
endogenous scenario pairs is given by the union of these sets, as defined in Equation (4.16). To
prove that this resulting set contains the minimum number of pairs, it is only necessary for us to
show that the pairs in each group cannot be implied by any other pairs.

First, in the general case, we cannot guarantee that any uncertain parameters will be realized
at the same time, since we have assumed that each parameter is associated with a different source.
Second, we cannot guarantee that any of the parameters will be unrealized in certain time periods,
either, since we have also assumed that there are no initial ‘equality’ periods. And third, we have
assumed that there is no exogenous uncertainty, so there are no exogenous NACs. Thus, all of the
endogenous NACs must be applied conditionally, and we cannot use any one to imply any of the
others. This case can be seen clearly in Figure 1.5. It follows that, under these strict assumpti-
ons, the complete set of endogenous scenario pairs generated by Property 4, SPN4 , contains the
minimum number of pairs. �

B.8 Proof of Property 5
Consider exogenous scenario group k̂ in time period t = τ , where τ < T , which corresponds to a set
of scenarios given by XGk̂τ . These scenarios are adjacent, so we may express this set in the general
form XGk̂τ = {s : s = n, n+ 1, . . . , N}. It follows that the exogenous non-anticipativity constraints
between the scenarios in group XGk̂τ are:

ynτ = yn+1
τ , yn+1

τ = yn+2
τ , . . . , yN−1

τ = yNτ (B.4)

where, for simplicity, we consider only variables ysτ . Note that these scenarios are in the same
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subtree. Let XGk̃τ be the corresponding group of scenarios in a different subtree; i.e., all scenarios in
the same position in XGk̂τ and XGk̃τ are identical in the realizations of all exogenous parameters but
differ in the possible realization of at least one endogenous parameter. Without loss of generality,
we assume that the respective scenarios differ in the possible realization of exactly one endogenous
parameter. We may express this set in the general form XGk̃τ = {s : s = n∗, n∗+ 1, . . . , N∗}, where
Pos(n) = Pos(n∗), Pos(n+ 1) = Pos(n∗+ 1), . . . , Pos(N) = Pos(N∗). Exogenous NACs between
the scenarios in group XGk̃τ can be written in the same form as for XGk̂τ :

yn
∗
τ = yn

∗+1
τ , yn

∗+1
τ = yn

∗+2
τ , . . . , yN

∗−1
τ = yN

∗
τ (B.5)

Endogenous non-anticipativity constraints apply only between scenarios s and s′ in different
subtrees, and by Property 3, it is sufficient to consider only s and s′ that are identical in all
exogenous realizations (i.e., Pos(s) = Pos(s′), where s < s′). Thus, the endogenous NACs between
scenarios s ∈ XGk̂τ and s′ ∈ XGk̃τ are then:

ynτ = yn
∗
τ , yn+1

τ = yn
∗+1
τ , . . . , yNτ = yN

∗
τ (B.6)

provided that the scenarios are indistinguishable (i.e., τ ∈ T i′E , or τ ∈ T i′C and Zs,s
′

τ = True,
where {i′} = D̂s,s′). Recall that s and s′ differ in the possible realization of the same endogenous
parameter, and only this one parameter, so the corresponding NACs between these scenarios are
all active at the same time or are all ignored at the same time. Furthermore, if Zs,s′τ = False, these
non-anticipativity constraints do not apply, so it is only necessary to consider the case where these
constraints are active.

Since ynτ = yn+1
τ by Equation (B.4), and yn

∗
τ = yn

∗+1
τ by Equation (B.5), it follows that the

first endogenous constraint in Equation (B.6), ynτ = yn
∗
τ , can be restated as yn+1

τ = yn
∗+1
τ . Notice

that this is the second endogenous constraint in Equation (B.6). This procedure can be continued
to produce all of the remaining endogenous constraints in Equation (B.6). This shows that the
exogenous NACs for two groups, along with one endogenous NAC linking one scenario from each
group, imply all of the other endogenous NACs linking the two groups. Thus, only one endogenous
NAC between the groups is sufficient. �

B.9 Proof of Proposition 4
Starting from Proposition 3, notice that we have relaxed only one assumption; namely, that the
problem is purely endogenous. To prove that we have the minimum number of endogenous scenario
pairs, it is merely necessary for us to show that after the introduction of exogenous uncertainty,
and the application of Property 5, the pairs in each endogenous scenario group cannot be implied
by any other pairs.

First, recall that when both endogenous and exogenous uncertain parameters are present in
the model, some of the endogenous scenario pairs can be implied by exogenous pairs. All such
redundant pairs are eliminated by Property 5.

We may then rely on the remaining arguments in the proof of Proposition 3 to conclude that
all endogenous NACs must be applied conditionally, and we cannot use any one to imply any of
the others. It follows that, under the stated assumptions, the complete set of endogenous scenario
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pairs generated by Property 4 and Property 5, SPN5 , contains the minimum number of pairs. �

B.10 Unique Scenarios Algorithm
For convenience in the algorithm, we partition the set of sources I into ordered sets ItE and ItC
based on the given time period (not to be confused with set Ist , which was introduced for illustrative
purposes in Chapter 1). Specifically, in the initial ‘equality’ time periods t ∈ T i′E , the endogenous
uncertainty cannot yet be resolved for sources i′ ∈ ItE , where ItE := {i′ : i′ ∈ I, t ∈ T i′E } ∀ t ∈ T .
These sets of sources are associated with fixed endogenous NACs (since all uncertain parameters
associated with these sources are guaranteed to be unresolved at time t, and thus all scenarios that
differ only in the possible realizations of any of these parameters must be indistinguishable at that
time). Note that we will always have ITE := ∅, as the initial ’equality’ periods should never span
the entire time horizon. We do not restrict the definition of ItE to t ∈ T \ {T}, however, as this
would require us to treat t < T and t = T as two separate cases in the algorithm.

In the remaining ’conditional’ time periods t ∈ T i′C , the endogenous uncertainty may be resolved
for sources i′ ∈ ItC , where ItC := {i′ : i′ ∈ I, t ∈ T i′C } ∀ t ∈ T . These sets of sources are associated
with conditional endogenous NACs (since the uncertain parameters associated with these sources
are no longer guaranteed to be unresolved at time t, and thus we can only say that the scenarios
that differ in the possible realizations of any of these parameters may be indistinguishable at that
time).

We now present the unique scenarios algorithm, in which we define sets U i
′,h
t corresponding to

each endogenous parameter θi′,h, for all i′ ∈ I and h ∈ Hi′ , in each time period t ∈ T .

Unique Scenarios Algorithm
Step 1 For each time period t ∈ T :

Step 1a First, consider the sources that are associated with fixed endogenous NACs in this
time period. In other words, for each source i′ ∈ ItE (where the sources are considered
in ascending numerical order):

(i) If i′ is the first source in this set (i.e., i′ = minı̂′ (̂ı′ ∈ ItE)), initialize the set of unique
scenarios to that obtained from Property 5 (e.g., Equation (4.17)) in order to take
advantage of the reductions associated with exogenous scenario grouping:

U i
′,1
t := Ũt i′ = min

ı̂′

(
ı̂′ ∈ ItE

)
(B.7)

(ii) If there is more than one endogenous parameter associated with source i′, define
the corresponding set of unique scenarios that can be considered for each of these
parameters, as indicated in Equation (B.8):

U i
′,h+1
t := U i

′,h
t ∩

 ⋃
l∈Li′,h

{
min
ŝ

(
ŝ ∈ NGli′,h

)} h = 1, . . . ,Hi′ − 1 (B.8)

(iii) If i′ < maxı̂′ (̂ı′ ∈ ItE), there is at least one additional source to consider. Accordingly,
define the set of unique scenarios for the first endogenous parameter of the next source,
i′′, as indicated in Equation (B.9):
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U i
′′,1
t := U i

′,Hi′
t ∩

 ⋃
l∈Li′,Hi′

{
min
ŝ

(
ŝ ∈ NGli′,Hi′

)} i′′ = min
ı̂′′

(
ı̂′′ ∈ ItE , ı̂′′ > i′

)
(B.9)

(iv) If i′ = maxı̂′ (̂ı′ ∈ ItE), this is the last source. Store the current set of unique scenarios
in a separate, temporary set, UniqueSet, but in the same manner as Equation (B.9):

UniqueSet := U i
′,Hi′
t ∩

 ⋃
l∈Li′,Hi′

{
min
ŝ

(
ŝ ∈ NGli′,Hi′

)} (B.10)

Step 1b Next, consider the sources that are associated with conditional endogenous NACs
in this time period. In other words, for each source i′ ∈ ItC (where the sources are
considered in ascending numerical order):

(i) If i′ is the first source in this set (i.e., i′ = minı̂′ (̂ı′ ∈ ItC)), initialize the set of unique
scenarios based on the following two conditions:
(1) If ItE 6= ∅, then t is an initial ’equality’ time period for at least one of the sources.

Accordingly, initialize the set of unique scenarios to the last-known value, stored
in Equation (B.10), in order to take advantage of the reductions associated with
the fixed endogenous NACs:

U i
′,1
t := UniqueSet i′ = min

ı̂′

(
ı̂′ ∈ ItC

)
(B.11)

(2) If, however, ItE = ∅, then there are no fixed endogenous NACs in time period t.
Similar to sub-step (i) of Step 1a, initialize the set of unique scenarios to that
obtained from Property 5:

U i
′,1
t := Ũt i′ = min

ı̂′

(
ı̂′ ∈ ItC

)
(B.12)

In the case where t = T , recall that ŨT := S.
(ii) Execute sub-step (ii) of Step 1a.
(iii) If i′ < maxı̂′ (̂ı′ ∈ ItC), define the set of unique scenarios for the first endogenous

parameter of the next source, i′′, as indicated in Equation (B.13):

U i
′′,1
t := U i

′,1
t i′′ = min

ı̂′′

(
ı̂′′ ∈ ItC , ı̂′′ > i′

)
(B.13)

Notice that Step 1a will automatically be skipped for t = T , since ITE = ∅.
Because this algorithm is fairly complex, we next discuss some of the respective expressions in

further detail.
Equation (B.8) addresses the case in which we have multiple endogenous parameters associated

with some of the sources of uncertainty. Therefore, this expression updates the set of unique
scenarios in time period t when advancing from one endogenous parameter h to the next, h + 1,
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for a given source i′. The assumption here is that all endogenous parameters associated with the
same source must be realized at the same time. This is because an investment in the source itself
determines the time at which the associated technical information can be realized. For example,
once we drill an oilfield and begin producing from it, we assume that we can determine both the
size and initial deliverability of the reserves.

Accordingly, for any scenarios s and s′ that differ only in the possible realization of an endo-
genous parameter associated with source i′, the corresponding non-anticipativity constraints will
all apply at the same time or will all be ignored at the same time. This was previously shown in
the discussion surrounding Figure 4.8. Because it is then sufficient to consider only the case where
these constraints are active, when we proceed from the first endogenous parameter of source i′ to
the second (i.e., h = 1 to h = 2), we begin to pair off scenarios between the groups of θi′,1 (we
prove this point in Appendix B.11), and the scenarios in each of those respective groups must be
indistinguishable. It is therefore unnecessary to have more than one link between any such groups.
The reasoning here is justified in Appendix B.11.

Thus, in time period t, when advancing from endogenous parameter θi′,h to the next para-
meter of the same source, θi′,h+1, we require at most only a single ‘representative’ scenario from
each endogenous scenario group corresponding to θi′,h; i.e.,

⋃
l∈Li′,h

{
minŝ

(
ŝ ∈ NGli′,h

)}
. Notice

the similarity of this case to our treatment of the exogenous scenario groups in Property 5 (see
Equation (4.17)). We say “at most” since some of these representative scenarios may be non-unique
based on Property 5 and/or the consideration of other endogenous parameters before this point in
the unique scenarios algorithm. We successively remove non-unique scenarios in time period t by
taking the intersection of the current set of unique scenarios, U i

′,h
t , and the set of representative

scenarios,
⋃
l∈Li′,h

{
minŝ

(
ŝ ∈ NGli′,h

)}
. The result, as shown in Equation (B.8), is an updated set

of unique scenarios that can be considered for the next parameter in the algorithm (i.e., θi′,h+1).
It is important to note that this case is evaluated in the same way in all time periods and appears
in sub-step (ii) of Step 1a and Step 1b of the algorithm.

Equation (B.9) addresses the case in which there are endogenous parameters that cannot be
realized in some of the initial time periods. Rather than defining an updated set of unique scenarios
in time period t for each endogenous parameter of the same source i′, as in Equation (B.8), this
expression considers the case of advancing from the last endogenous parameter, Hi′ , of source
i′, to the first endogenous parameter of the next source, i′′. The reasoning here is that if the
uncertainty in source i′ cannot yet be revealed as of time period t (i.e., i′ ∈ ItE), then we will
have equality constraints corresponding to all scenario pairs (s, s′) for which s and s′ differ in the
possible realization of a parameter associated with i′. This implies that there will then be redundant
constraints associated with the parameters of the next source, i′′, as illustrated in Figure 4.7. We
can thus perform further reduction via the same strategy used in Equation (B.8) for the case
of multiple parameters associated with the same source. Notice, in particular, that the form of
Equation (B.9) is nearly identical to Equation (B.8).

One subtle difference here is that the sources in set ItE may be nonconsecutively indexed, which
means that we cannot use index i′+ 1 to access the next element in the set (as we do with h+ 1 to
access the next parameter in Equation (B.8)). Instead, we use a strategy similar to that previously

117



introduced in Equation (4.15) and state i′′ = minı̂′′ (̂ı′′ ∈ ItE , ı̂′′ > i′). This expression simply allows
us to advance from one source, i′, to the next-lowest-indexed source, i′′, in an ordered manner.

Equation (B.10) is a special case of Equation (B.9) that is evaluated only for the last source in
set ItE . The corresponding set of unique scenarios is stored in a temporary set, UniqueSet, which
may be used for initialization in sub-step (i) of Step 1b.

In Step 1b, notice that time period t is not an initial ‘equality’ period for source i′. Here we
consider sources i′ ∈ ItC , and we can no longer guarantee that we will have equality constraints
corresponding to the scenario pairs (s, s′) for which s and s′ differ in the possible realization of
a parameter associated with i′. It follows that since all of these constraints are conditional, the
only reduction that we can perform is for multiple parameters associated with the same source i′

(via sub-step (ii)); we cannot make any further assumptions to eliminate constraints corresponding
to the next source, i′′. We thus use Equation (B.13) in which the definition of the set of unique
scenarios is unchanged from one source to the next. We state U i

′′,1
t := U i

′,1
t in this equation, rather

than U i
′′,1
t := U i

′,Hi′
t , because the reduction from sub-step (ii) cannot be carried over to the next

source as it does in Step 1a. Also, note that the sources in set ItC may be nonconsecutively indexed,
so like the treatment of set ItE in Equation (B.9), we use i′′ = minı̂′′ (̂ı′′ ∈ ItC , ı̂′′ > i′) to access the
next-lowest-indexed source.

As a brief example of how this algorithm is applied, consider Figure 4.7 and assume that only
these 4 scenarios are under consideration. We start at t = 1. Since there is a single endogenous
parameter associated with each of the two sources, we will drop the h index to simplify the notation.

It is clear that we are starting with unique scenarios Ũ1 = {1, 5, 9, 13} from Property 5. It is
also clear that we have endogenous scenario groups NG1

1 = {1, 9} and NG2
1 = {5, 13} corresponding

to θ1, and NG1
2 = {1, 5} and NG2

2 = {9, 13} corresponding to θ2. Notice that t = 1 is an initial
‘equality’ period only for θ2 (i.e., T 1

E = ∅ and T 2
E = {1}), so I1

E = {2} and I1
C = {1}.

We start with Step 1a for the sources associated with fixed endogenous NACs in the first time
period and must consider i′ ∈ {2}. We first initialize the corresponding set of unique scenarios (i.e.,
U2

1 ) in sub-step (i), as indicated in Equation (B.7): U2
1 := Ũ1 = {1, 5, 9, 13}.

Notice that because there is only one endogenous parameter associated with source 2, we skip
sub-step (ii). Since i′ = maxı̂′ (̂ı′ ∈ {2}) = 2, we also skip sub-step (iii) and proceed to (iv). This
yields the following, by Equation (B.10):

UniqueSet := U2
1 ∩

 ⋃
l∈L2

{
min
ŝ

(
ŝ ∈ NGl2

)}
= {1, 5, 9, 13} ∩

[{
min
ŝ

(ŝ ∈ {1, 5})
}
∪
{

min
ŝ

(ŝ ∈ {9, 13})
}]

which simplifies to UniqueSet := {1, 5, 9, 13} ∩ {1, 9} = {1, 9}.
We then continue to Step 1b for the sources associated with conditional endogenous NACs

in the first time period. Here, we must consider i′ ∈ {1}. We first initialize the set of unique
scenarios to the last-known value, given by the temporary set UniqueSet, in sub-step (i), condition
(1). Specifically, by Equation (B.11), U1

1 := {1, 9}.
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Because there is only one endogenous parameter associated with source 1, we skip sub-step (ii).
We also skip sub-step (iii) since i′ = maxı̂′ (̂ı′ ∈ {1}) = 1. In practice, we would then continue to
t = 2. To summarize, U1

1 := {1, 9} and U2
1 := {1, 5, 9, 13}.

Equation (3.22) requires us to form pairs among consecutive scenarios in sets NG1
1 ∩U1

1 ,
NG2

1 ∩
U1

1 ,
NGl2∩U2

1 , and NG2
2∩U2

1 for t = 1. These sets are given by {1, 9}∩{1, 9}, {5, 13}∩{1, 9}, {1, 5}∩
{1, 5, 9, 13}, and {9, 13} ∩ {1, 5, 9, 13}, respectively, which reduce to {1, 9}, ∅, {1, 5}, and {9, 13},
respectively. Pairing off consecutive scenarios in these sets yields pairs (1, 9), (1, 5), and (9, 13), as
shown in Figure 4.7. Notice that none of the remaining pairs can be implied by any of the others.

It is worth noting that repeating this procedure for a case such as Figure 4.8 will lead to slightly
different scenario pairs than pictured. This is due to the order in which we consider the endogenous
parameters. Specifically, by considering pairs among scenarios that differ in the possible realization
of θı̂,2 first, and then those for θı̂,1, we obtain scenario pairs (ŝ, ŝ′), (ŝ, ŝ′′), and (ŝ′′, ŝ′′′) in Figure 4.8.
By the unique scenarios algorithm, however, we consider the parameters in numerical order (i.e.,
θı̂,1, followed by θı̂,2) and instead obtain (ŝ, ŝ′), (ŝ, ŝ′′), and (ŝ′, ŝ′′′). Although the first set may
appear to be more “natural” based on the appearance of Figure 4.8, both sets are equally valid
since only 3 pairs are required to link the 4 scenarios.

B.11 Proof of Property 6
Consider the endogenous scenario groups l = 1, 2, . . . , |Lı̂,ĥ| corresponding to endogenous parameter
θı̂,ĥ. The scenarios in each of these respective group differ only in the possible realization of θı̂,ĥ.
Given that there are Mı̂,ĥ (or |Θı̂,ĥ|) possible realizations for θı̂,ĥ, and in each respective group,
each scenario must have a different possible realization for this endogenous parameter, it follows
that there can only be Mı̂,ĥ scenarios in each of these groups (i.e., one for each possible realization
of θı̂,ĥ).

Furthermore, the lowest-indexed scenario in each of these groups must have the lowest realization
for θı̂,ĥ. This is simply a consequence of the ordering on the set of realizations Θı̂,ĥ (i.e., θ̂1

ı̂,ĥ
<

θ̂2
ı̂,ĥ
< · · · < θ̂

Mı̂,ĥ

ı̂,ĥ
) and the lexicographical ordering on the Cartesian products used in the scenario-

generation process (see Chapter 2). Specifically, as can be seen in Equation (2.5) and even more
clearly in Figure 2.1c, we must exhaust all possible combinations of realizations for the uncertain
parameters that occur after θı̂,ĥ in the Cartesian product before the realization of θı̂,ĥ can be
incremented to the next possible value. This means that a scenario ŝ defined with a low realization
for θı̂,ĥ will come before a scenario ŝ′ with a high realization for θı̂,ĥ and all of the same possible
realizations for the other uncertain parameters. Accordingly, in an endogenous scenario group,
it follows that the lowest-indexed scenario must have the lowest realization for θı̂,ĥ, the next-
lowest-indexed scenario must have the next-lowest realization for θı̂,ĥ, and so forth, until we reach
the highest-indexed scenario in the group, which must have the highest realization for θı̂,ĥ. For
example, if θı̂,ĥ were defined with 3 possible realizations (low (L), medium (M ), or high (H )),
there would be 3 scenarios in each of the corresponding (ordered) endogenous scenario groups, with
realizations of the following form: (. . . , θ̂L

ı̂,ĥ
, . . .), (. . . , θ̂M

ı̂,ĥ
, . . .), (. . . , θ̂H

ı̂,ĥ
, . . .). Note that this is the

case depicted in Figure 4.4 for Property 4.
Consider two scenarios ŝ and ŝ′ from one arbitrary group l̂ corresponding to θı̂,ĥ (i.e., NG l̂

ı̂,ĥ
).
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Recall that this means that ŝ and ŝ′ must have the same possible realizations for all uncertain
parameters except θı̂,ĥ. Because all scenarios must be placed in an endogenous scenario group
corresponding to each endogenous parameter (by the endogenous scenario-group algorithm), both
of these scenarios will also be placed into groups for a different endogenous parameter, θı̃,h̃. The
two scenarios cannot be placed in the same endogenous scenario group in this case, however, since
they have different possible realizations for θı̂,ĥ and thus would differ in the possible realizations of
both θı̂,ĥ and θı̃,h̃ (i.e., 2 parameters). This would violate Property 3. It follows, then, that two
scenarios in the same endogenous scenario group cannot appear together in any other endogenous
scenario group, for any endogenous parameter. This is a fairly obvious conclusion since ŝ and
ŝ′ differ in the possible realization of only one endogenous parameter, and in any arbitrary time
period, we would expect scenario pair (ŝ, ŝ′) to appear only once.

The endogenous scenario groups corresponding to θı̂,ĥ will have the following form: NG l̂
ı̂,ĥ

:=
{
s :

s = α1, α2, . . . , αMı̂,ĥ

}
, NG l̂′

ı̂,ĥ
:=
{
s : s = β1, β2, . . . , βMı̂,ĥ

}
, NG l̂′′

ı̂,ĥ
:=
{
s : s = η1, η2, . . . , ηMı̂,ĥ

}
,

etc. By Property 4, we pair off consecutive scenarios in each of these groups. Note that these
scenarios may be nonconsecutively indexed, and this necessitates the use of a different naming
convention than used previously in the proof of Property 5. The associated endogenous NACs for
an arbitrary time period t = τ are then:

yα1
τ = yα2

τ , . . . , y
αM

ı̂,ĥ
−1

τ = y
αM

ı̂,ĥ
τ (B.14)

yβ1
τ = yβ2

τ , . . . , y
βM

ı̂,ĥ
−1

τ = y
βM

ı̂,ĥ
τ (B.15)

yη1
τ = yη2

τ , . . . , y
ηM

ı̂,ĥ
−1

τ = y
ηM

ı̂,ĥ
τ (B.16)

provided that θı̂,ĥ has not yet been realized (i.e., the scenarios are indistinguishable). If θı̂,ĥ has
been realized, then the scenarios are distinguishable and the NACs do not apply, so it is only
necessary for us to consider the former case where these constraints are active.

At this point, recall that for any endogenous parameter, every scenario in S can be accounted
for as a member of one of the endogenous scenario groups corresponding to that parameter. Further
recall that none of the scenarios in those respective groups can appear together in any other group.
This means that all other endogenous scenario groups can be produced, respectively, by selecting
one scenario from different groups defined for θı̂,ĥ. Accordingly, we will continue to use the same
naming convention in the definitions of other endogenous scenario groups in this proof (i.e., we will
use αm, βm, ηm, etc. for scenarios, where m = 1, 2, . . . ,Mı̂,ĥ).

Now, consider two scenarios ŝ and ŝ′′ from two separate groups l̂ and l̂′ corresponding to θı̂,ĥ (i.e.,
NG l̂

ı̂,ĥ
and NG l̂′

ı̂,ĥ
). In this case, the scenarios may differ in the possible realization of θı̂,ĥ (depending

on their respective positions in the two groups), and must differ in the possible realization of at least
one endogenous parameter other than θı̂,ĥ (since they belong to two separate groups corresponding
to θı̂,ĥ). Notice that the only way for scenarios ŝ and ŝ′′ to have the same possible realization for
θı̂,ĥ is if they have the same position in both groups (not to be confused with parameter Pos(s)).
For example, if they both have the lowest realization for θı̂,ĥ, they must be the lowest-indexed
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scenarios in their respective groups; if they both have the highest realization for θı̂,ĥ, they must be
the highest-indexed scenarios in their respective groups. If, then, ŝ and ŝ′′ have the same possible
realization for θı̂,ĥ (i.e., the same position in both of their groups) and differ only in the possible
realization of endogenous parameter θı̃,h̃, they will be placed in the same group corresponding to
θı̃,h̃ by the endogenous scenario-group algorithm. (Note that if ŝ and ŝ′′ instead differ in other
possible parameter realizations, they will be placed in different groups, and the discussion that
follows would apply for the specific endogenous parameter for which this condition does apply.)

The endogenous scenario groups corresponding to θı̃,h̃ will then have the following form: NG l̃
ı̃,h̃

:={
s : s = α1, β1, η1, . . .

}
, NG l̃′

ı̃,h̃
:=
{
s : s = α2, β2, η2, . . .

}
, . . . , NG l̃′′

ı̃,h̃
:=
{
s : s = αMı̂,ĥ

, βMı̂,ĥ
, ηMı̂,ĥ

, . . .
}
,

etc.
Notice that in NG l̃

ı̃,h̃
, the lowest-indexed scenario from group NG l̂

ı̂,ĥ
has been grouped with the

lowest-indexed scenarios from groups NG l̂′
ı̂,ĥ

and NG l̂′′
ı̂,ĥ
, the second-lowest-indexed scenarios have

been grouped in NG l̃′
ı̃,h̃
, and so forth. In general, the remaining groups corresponding to θı̃,h̃ would

be generated from all other groups corresponding to θı̂,ĥ, in the same manner, and would consist
of scenarios other than αm, βm, and ηm. Note that the same general approach also applies for
the endogenous scenario groups of all other endogenous parameters, with the respective scenarios
selected from different groups corresponding to θı̂,ĥ. As before, the associated NACs for time period
t = τ are:

yα1
τ = yβ1

τ , y
β1
τ = yη1

τ , . . . (B.17)
yα2
τ = yβ2

τ , y
β2
τ = yη2

τ , . . . (B.18)

y
αM

ı̂,ĥ
τ = y

βM
ı̂,ĥ

τ , y
βM

ı̂,ĥ
τ = y

ηM
ı̂,ĥ

τ , . . . (B.19)

provided that θı̃,h̃ has not yet been realized.
Notice that because yα1

τ = yα2
τ by Equation (B.14), and yβ1

τ = yβ2
τ by Equation (B.15), we can

rewrite the first endogenous constraint in Equation (B.17), yα1
τ = yβ1

τ , as yα2
τ = yβ2

τ . Notice that
this is the first endogenous constraint in Equation (B.18).

Since yη1
τ = yη2

τ by Equation (B.16), we can use this constraint with Equation (B.15) to rewrite
the second endogenous constraint in Equation (B.17), yβ1

τ = yη1
τ , as yβ2

τ = yη2
τ . Notice that this is

the second endogenous constraint in Equation (B.18).
Given any remaining scenarios that differ from α2, β2, and η2 in the possible realization of

only θı̃,h̃, this process can be continued to produce all of the remaining NACs corresponding to
group NG l̃′

ı̃,h̃
in Equation (B.18). In fact, if we consider only scenarios αm, βm, and ηm (where

m = 1, 2, . . . ,Mı̂,ĥ), it is not difficult to see that by using the first, second, third, etc. NACs from
Equations (B.14)–(B.16), along with Equation (B.17), we can imply all of the NACs corresponding
to the groups for θı̃,h̃ that involve these scenarios. This includes the NACs for NG l̃′′

ı̃,h̃
, as shown in

Equation (B.19).
To summarize the results in a general sense, first recall that we begin with the endogenous

scenario groups corresponding to an arbitrary parameter θı̂,ĥ. We will refer to these groups as our
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“base” groups. We assume that the corresponding NACs apply as equality constraints (i.e., fixed
endogenous NACs).

Further recall that the groups for all other endogenous parameters can be produced by selecting
scenarios from different base groups, where in each case, the scenarios have the same position in
their respective base groups (e.g., the lowest indexed, the second-lowest indexed, etc.). However,
for an arbitrary parameter θı̃,h̃, we have just shown that the groups produced from the second-
lowest-indexed scenarios, the third-lowest-indexed scenarios, etc. result in redundant NACs. This
is the case regardless of whether these constraints are conditional or fixed.

The reasoning here, in general, is that all NACs associated with an arbitrary endogenous
parameter θı̃,h̃ can be implied by the base-group NACs and the NACs derived from pairing off the
lowest-indexed scenarios from those base groups. (Note that our choice to use the lowest-indexed
scenarios (rather than, for example, the highest) is arbitrary, and we have made this selection for
convenience.)

It then follows that, for generating endogenous scenario pairs, it is sufficient to consider only
scenarios s and s′ that are in the first position of their respective base groups (i.e., the lowest-
indexed scenarios from these groups), excluding all scenarios eliminated by Property 5. We refer to
these scenarios as “unique.” We may then proceed to another endogenous parameter for which the
associated NACs apply as equality constraints, and consider new base groups, where we allow only
the new lowest-indexed scenarios that were members of the previous set of unique scenarios. Because
the introduction of new equality constraints may allow us to imply other existing endogenous
constraints, we may be able to remove additional scenarios from the pairing process each time we
update our set of unique scenarios. In time periods where we do not have fixed endogenous NACs,
a similar strategy can still be used for the case of multiple parameters associated with the same
source, although the set of unique scenarios can only be updated in the context of that particular
source.

The strategy outlined here is the basis for the unique scenarios algorithm. �

B.12 Proof of Proposition 5
Starting from Proposition 4, notice that we have relaxed the two remaining assumptions; specifi-
cally, that there are no initial ‘equality’ periods and that there is only one endogenous parameter
associated with each source of uncertainty. To prove that we have the minimum number of endo-
genous scenario pairs in this general case, it is only necessary for us to show that after relaxing the
two assumptions, and then introducing Property 6, the pairs in each endogenous scenario group
cannot be implied by any other pairs.

As previously discussed, there will be redundant scenario pairs in the model when we consider
initial ‘equality’ periods and multiple endogenous parameters associated with some of the sources
of uncertainty. These redundant pairs are eliminated by Property 6.

It follows that although there are both fixed endogenous NACs and conditional endogenous
NACs, none of the remaining pairs can be used to imply any of the others. Thus, the complete set
of endogenous scenario pairs, SPN , generated by Property 4, Property 5, and Property 6 contains
the minimum number of pairs. �
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B.13 Alternative Approach to Property 4
An alternative approach to Property 4 for the case where we have no initial ‘equality’ time periods
and only one endogenous parameter associated with each source of uncertainty can be stated as
follows:

For endogenous NACs, it is sufficient to consider only scenario pairs (s, s′) for which s and s′

are separated by a particular distance, Dist(i′, h), defined as:

Dist(i′, h) := SX

 ∏
h′∈Hi′
h′>h

Mi′,h′ ·
∏
i′′∈I
i′′>i′

∏
h′∈Hi′′

Mi′′,h′

 ∀ i′ ∈ I, h ∈ Hi′ (B.20)

where the indices i′ and h are given by {(i′, h)} = Ds,s′ and indicate the specific endogenous
parameter θi′,h for which scenarios s and s′ differ in possible realizations. The corresponding set of
endogenous scenario pairs would then be defined as:

{
(t, s, s′) : t ∈ T , s, s′ ∈ S, s < s′, Pos(s) = Pos(s′), s′ − s = Dist(i′, h), {(i′, h)} = Ds,s′

}
The general idea behind Equation (B.20) is that we can use a parameter’s position in the

scenario-generation Cartesian product to calculate how ‘often’ its realization will change (e.g., every
4 scenarios). This distance between scenarios is a direct result of our lexicographical ordering on the
Cartesian product, which enforces that we must exhaust all possible combinations of realizations
for the uncertain parameters that occur after θi′,h in the Cartesian product before we can move on
to the next possible realization for this parameter (see the beginning of Appendix B.11 for slightly
more details). Accordingly, Equation (B.20) is expressed as the product of the number of possible
realizations for all parameters that occur after θi′,h in the Cartesian product.

This approach is inspired by an unpublished result from Gupta and Grossmann (2011) for the
specific case of purely-endogenous multistage stochastic programs with no initial ‘equality’ time
periods and only one endogenous parameter associated with each source of uncertainty. A similar
conclusion regarding a “distance” between scenarios was also recently stated by Boland et al.
(2016) for this class of problems. Note that for this specific case, the alternative approach — like
Property 4 — provides the minimum number of endogenous scenario pairs. In fact, the resulting
pairs are equivalent to those obtained by pairing off consecutive scenarios in each endogenous
scenario group, and the use of these groups is entirely avoided. We cannot rely on this approach in
general, however, as it does not extend well to the general case where these assumptions may not
hold.

It is also worth noting that other methods exist for generating the minimum number of en-
dogenous NACs in purely-endogenous MSSP problems with no initial ‘equality’ periods and only
one endogenous parameter associated with each source. Specifically, the idea of using arbitrary
scenario sets (rather than those generated by Cartesian products) was proposed by Boland et al.
(2008) and has been the focus of two recent works, Boland et al. (2016) and Hooshmand Khaligh
and MirHassani (2016b), as discussed in Chapter 6.
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Appendix C Supplementary Material for Chapter 5
C.1 Reformulation of Penalty Terms in Lagrangean Relaxation
In its original form, model (MSSPS-LR) does not correspond to independent scenario subproblems
since the objective function, Equation (5.11), contains penalty terms that involve both yst and ys′t .
For example:

∑
(s,s′)∈SPF

Fλs,s
′

1 (ys1 − ys
′

1 ) =
∑

(s,s′)∈SPF

(
Fλs,s

′

1 ys1 − Fλs,s
′

1 ys
′

1

)
=

∑
(s,s′)∈SPF

Fλs,s
′

1 ys1 −
∑

(s,s′)∈SPF

Fλs,s
′

1 ys
′

1
(C.1)

where, for illustrative purposes, we consider only the penalty terms associated with the first-period
NACs. Because we have s ∈ S and s′ ∈ S, we can swap indices s and s′ in any of the previ-
ous summations without changing the meaning of the respective summation. We use this simple
observation to rewrite the last summation as follows:

∑
(s,s′)∈SPF

Fλs,s
′

1 ys
′

1 =
∑

(s′,s)∈SPF

Fλs
′,s

1 ys1 (C.2)

Making this substitution, we have:

∑
(s,s′)∈SPF

Fλs,s
′

1 (ys1 − ys
′

1 ) =
∑

(s,s′)∈SPF

Fλs,s
′

1 ys1 −
∑

(s′,s)∈SPF

Fλs
′,s

1 ys1

=
∑
s∈S

ys1

 ∑
(s,s′)∈SPF

Fλs,s
′

1 −
∑

(s′,s)∈SPF

Fλs
′,s

1

 (C.3)

where index s is fixed in (s, s′) ∈ SPF and (s′, s) ∈ SPF based on the value of s ∈ S in the
outer summation. Also note that

∑
(s,s′)∈SPF

Fλs,s
′

1 −
∑

(s′,s)∈SPF

Fλs
′,s

1 represents the difference
between the sum of multipliers for all outgoing arcs from scenario s and the sum of multipliers
for all incoming arcs to scenario s at the beginning of the first time period (where arcs refer to
non-anticipativity constraints involving scenario s).

We follow the same general procedure to reformulate the penalty terms corresponding to the
exogenous and fixed endogenous NACs (while being mindful of the time index). The objective
function can then be expressed as Equation (5.12), which allows us to easily decompose the problem
into independent scenario subproblems that can be solved in parallel.

C.2 Heuristic for Lagrangean Decomposition
In Lagrangean decomposition, a heuristic is needed in order to determine an upper bound (i.e.,
feasible solution). For the heuristic implemented here, we accomplish this by selectively fixing
decisions from the Lagrangean subproblems in the original problem and then solving the resulting
model. This heuristic consists of three main parts: (1) fixing the integer first-stage decisions in all
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scenarios to satisfy the first-period non-anticipativity constraints; (2) fixing the integer decisions for
all other time periods in some scenarios to satisfy the endogenous NACs; and (3) fixing the integer
decisions for all other time periods in all remaining scenarios to satisfy the exogenous NACs. We
next discuss each step in detail.

To satisfy the first-period NACs, we first identify from the solution of the Lagrangean sub-
problems the scenario with an unweighted total cost that is closest to the total expected cost
(neglecting all penalty terms). We then extract the integer first-stage decisions from that scenario,
and fix these decisions in all scenarios.

To satisfy the endogenous NACs, we first select one representative scenario from each exogenous
scenario group in time periods t ∈ T \ {T}. For convenience, we select the lowest-indexed scenario
(i.e., the first scenario) from each group. For the final time period, we select all scenarios. We
then begin at t = 1 and check for indistinguishability among these scenarios at the end of the first
period, based on the first-stage decisions previously fixed and whether or not the uncertainty in
the endogenous parameters can be resolved at that point in time. For each representative scenario,
we use this information to define the set of all representative scenarios from which this scenario is
indistinguishable (including itself).

We assign the same integer recourse decisions for the end of this period, and all integer here-
and-now decisions for the beginning of the next time period, to all scenarios in each of these sets,
respectively, based on the decisions of one scenario in the set. This scenario will be one for which
decisions have already been fixed, or if decisions have not been fixed for any of the scenarios, it
will be the scenario with an unweighted total cost closest to the total expected cost of all of the
scenarios in the set (neglecting all penalty terms). Note that when calculating the total expected
cost among these scenarios, we proportionally scale the respective scenario probabilities such that
they sum to 1. This step is performed in a serial fashion.

After this procedure, any of the scenarios for which decisions have not yet been fixed can be
deemed distinguishable from the other representative scenarios. Accordingly, we fix their respective
integer recourse decisions for the end of this period, and their integer here-and-now decisions for
the beginning of the next time period, based on the decisions from the corresponding Lagrangean
subproblems without making any further modifications. We then proceed to the next time period
and check for indistinguishability among the representative scenarios, taking into consideration the
decisions fixed in the previous step, whether or not the scenarios were distinguishable at the end of
the previous time period, and whether or not the uncertainty in the endogenous parameters can be
resolved at this point in time. As before, we use this indistinguishability information to successively
fix decisions. We repeat this process until we have reached the end of the final time period.

Similar to the sequential scenario decomposition heuristic, for each exogenous scenario group, we
extract the integer decisions from one representative scenario and fix these decisions in all scenarios
of that respective group in order to satisfy the corresponding exogenous NACs. This representative
scenario will be the same one chosen during the previous step for the endogenous NACs (and thus
we use the fixed integer decisions from this scenario rather than the original decisions from the
Lagrangean subproblem).

At this point, all integer decisions are fixed, and we solve the resulting LP to obtain a valid
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upper bound. Note that this heuristic is executed in the first iteration only in cases where an initial
upper bound has not been specified. In all subsequent iterations, the heuristic is evaluated only
if the best lower bound has improved from the previous iteration by an appreciable amount (e.g.,
0.1%). These restrictions are effective in reducing the overall running time of the algorithm, since it
is often unnecessary (and computationally intensive) to update the upper bound in every iteration.

C.3 Number of Scenarios Considered in the SSD Heuristic
Due to the fact that no binary decisions have been fixed in the first subproblem of the SSD heuristic,
there is always an ‘offset’ observed in the number of scenarios in the second subproblem. The
number of scenarios in the two will not always be equal, however. For instance, in Example 1, if
we were to consider 3 exogenous realizations in each time period, we would have 27 scenarios in
the first subproblem and 54 in the second.

We further observe in this example that in each subsequent subproblem, the number of scenarios
doubles. This is because we are past the offset observed in the second subproblem, and there are
2 realizations for the exogenous parameter in each time period. If there were 3 realizations for the
exogenous parameter in each period, we would see the number of scenarios in each subproblem
begin to triple at this point.

We next generalize these observations (for the particular class of problems considered in this
thesis) in order to easily calculate the number of scenarios considered in the SSD heuristic.

First, we note that Equation (5.1) may be equivalently expressed as:

S1
SSD :=

{
s : s ∈ Ũ1

}
(C.4)

for t̂ = 1, and:

S t̂SSD :=

s : s ∈ Ũt̂ \
t̂−1⋃
τ̂=1
S τ̂SSD

 ∀ t̂ ∈ T , 1 < t̂ < T (C.5)

for t̂ = 2, . . . , T−1. Before proceeding, we can further simplify Equation (C.5) by reformulating the
term

⋃t̂−1
τ̂=1 S τ̂SSD. Notice that for t̂ = 2, we have

⋃1
τ̂=1 S τ̂SSD = Ũ1; for t̂ = 3, we have

⋃2
τ̂=1 S τ̂SSD =

Ũ1 ∪ (Ũ2 \ Ũ1) = Ũ2; for t̂ = 4, we have
⋃3
τ̂=1 S τ̂SSD = Ũ1 ∪ (Ũ2 \ Ũ1) ∪ (Ũ3 \ (Ũ2 ∪ Ũ1)) = Ũ1 ∪ (Ũ2 \

Ũ1) ∪ (Ũ3 \ Ũ2) = Ũ3; and so forth. The ability to simplify the expressions for t̂ ≥ 3 relies on the
fact that the set of unique scenarios in time period t̂ includes all unique scenarios from the previous
time periods (i.e., Ũτ̂ ⊆ Ũt̂ ∀ τ̂ < t̂), as can easily be seen by selecting the first scenario from each
exogenous scenario group at t = 1 and t = 2 in Figure 5.1a. It follows that:

t̂−1⋃
τ̂=1
S τ̂SSD = Ũt̂−1 ∀ t̂ ∈ T , 1 < t̂ < T (C.6)

We can then make this replacement in Equation (C.5) to obtain:

S t̂SSD :=
{
s : s ∈ Ũt̂ \ Ũt̂−1

}
∀ t̂ ∈ T , 1 < t̂ < T (C.7)

By Equation (C.4), the number of scenarios considered in the first subproblem can be expressed
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as:

|S1
SSD| = |K1| (C.8)

Similarly, by Equation (C.7), the number of scenarios considered in subsequent subproblems
can be expressed as:

|S t̂SSD| = |Kt̂| − |Kt̂−1| ∀ t̂ ∈ T , 1 < t̂ < T (C.9)

The total number of scenarios considered by the SSD heuristic is then:

∑
t̂∈T \{T}

|S t̂SSD| = |K1|+ (|K2| − |K1|) + (|K3| − |K2|) + · · ·

+ (|KT−1| − |KT−2|)
(C.10)

which reduces to:

∑
t̂∈T \{T}

|S t̂SSD| = |KT−1| (C.11)

This is equivalent to the number of groups in the second-to-last time period. The explanation here
is that we select one scenario from each exogenous scenario group, and the maximum number of
groups for t̂ ∈ T \ {T} occurs at t̂ = T − 1.

Appendix D Quinn’s Car Buying Problem
D.1 Deterministic Model
The deterministic model for Quinn’s car-buying problem can be formulated as follows. We attempt
to use straightforward nomenclature to keep the discussion as simple as possible, and for this
reason, we purposely allow the notation to conflict with earlier chapters in this thesis. Here, Z
is the objective function value, which is equal to the total cost of ownership over a 5-year period.
Indices i and j are used to refer to the first, second, or third car, and pi is the purchase price of car
i, whereas di is the depreciation of car i after 5 years. Note that j is an alias of i, and pi and di are
input parameters. As far as decision variables are concerned, we have bi, which is a binary variable
that indicates whether or not to buy car i now, as well as yj , which is another binary variable that
indicates whether or not to switch to car j later.

min
b,y

Z = Cost (D.1)

s.t. Cost =

1−
3∑
j=1

yj

 3∑
i=1

bidi +
3∑
j=1

yj (dj + Penalty) (D.2)

3∑
i=1

bi = 1 (D.3)
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3∑
j=1

yj ≤ 1 (D.4)

bi + yi ≤ 1 i = 1, 2, 3 (D.5)

Bonus ≥

1−
3∑
j=1

yj

 3∑
i=1

bipi (D.6)

Bonus ≥
3∑
j=1

yjpj (D.7)

Penalty =
3∑
i=1

bi · 0.10pi (D.8)

bi, yj ∈ {0, 1} i, j = 1, 2, 3 (D.9)

The objective function, Equation (D.1), attempts to minimize the total cost of ownership. This
is subject to the restrictions described in constraints (D.2)–(D.9). We next describe each of these
equations in detail.

Equation (D.2) defines the total cost of ownership, which is equal to the purchase price of the
originally-chosen car if Quinn does not switch to a different car later on (i.e., yj = 0 for all j). If
Quinn does change to a different car (i.e., yj = 1 for one j), the cost will instead be equal to the
cost of this new car plus applicable penalties (defined in Equation (D.8) as 10% of the purchase
price of the originally-selected car).

Equation (D.3) simply states that Quinn must purchase exactly one car, and Equation (D.4)
states that she can switch to only one car, at most. Equation (D.5) is slightly more abstract and
ensures that Quinn cannot switch to the same car that she originally agreed to purchase (in other
words, bi and yi cannot simultaneously be equal to 1).

Equation (D.6) states that if Quinn has agreed to purchase car i, and she has not switched
cars, her bonus amount must be greater than or equal to the corresponding purchase price. This
constraint is ignored if she does in fact switch to a different car. In such a case, Equation (D.7)
then specifies that her bonus amount must be greater than or equal to the purchase price of the
newly-selected car.

Finally, Equation (D.9) defines bi and yj as binary variables.

D.2 Stochastic Programming Model
The stochastic programming model is a fairly straightforward extension of the deterministic model.
Specifically, we replace the objective function with the total expected cost of ownership using the
probability of each scenario, Probs, and we index all variables for each scenario s. (Note that
superscripts here denote indices and not exponents.) The only other change to the model is the
addition of the non-anticipativity constraints, shown in Equation (D.18). These constraints link
the 3 scenarios such that the same car purchasing decision, bsi , must be made at the beginning of
each scenario. Note that, here, decision variables bi and yj refer specifically to here-and-now and
recourse decisions, respectively.
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min
b,y

Z̃ =
3∑
s=1

(Probs · Costs) (D.10)

s.t. Costs =

1−
3∑
j=1

ysj

 3∑
i=1

bsidi +
3∑
j=1

ysj (dj + Penaltys) s = 1, 2, 3 (D.11)

3∑
i=1

bsi = 1 s = 1, 2, 3 (D.12)

3∑
j=1

ysj ≤ 1 s = 1, 2, 3 (D.13)

bsi + ysi ≤ 1 i = 1, 2, 3, s = 1, 2, 3 (D.14)

Bonuss ≥

1−
3∑
j=1

ysj

 3∑
i=1

bsipi s = 1, 2, 3 (D.15)

Bonuss ≥
3∑
j=1

ysjpj s = 1, 2, 3 (D.16)

Penaltys =
3∑
i=1

bsi · 0.10pi s = 1, 2, 3 (D.17)

bsi = bs+1
i i = 1, 2, 3, s = 1, 2 (D.18)

bsi , y
s
j ∈ {0, 1} i, j = 1, 2, 3, s = 1, 2, 3 (D.19)

D.3 Reformulation
One complicating aspect regarding the original model is that it is a mixed-integer nonlinear pro-
gramming problem in its current form. This is due to bilinear terms in Equations (D.2) and (D.6).
Although we can solve the problem with a global optimization solver such as BARON, it is possible
to instead reformulate it as a mixed-integer linear programming problem due to the fact that the
bilinear terms involve only binary variables.

To do so, we first let Y =
∑3
j=1 yj . Note that Y , which is a sum of binary variables, is also

binary because only one yj can be active at any one time (see Equation (D.4)). We also remove
Equation (D.8) and substitute it directly into the objective function. Equations (D.2) and (D.6)
then become:

Cost =
3∑
i=1

bidi −
3∑
i=1

biY di +
3∑
j=1

yjdj + 0.10
3∑
j=1

( 3∑
i=1

biyjpi

)
(D.20)

Bonus ≥
3∑
i=1

bipi −
3∑
i=1

biY pi (D.21)

Notice that we now have bilinear terms biY and biyj . Let gi = biY and hi,j = biyj replace these
bilinear terms. Since bi, Y , and yj are all binary, we have bi ∧ Y ⇔ gi and bi ∧ yj ⇔ hi,j . Making
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these replacements and reformulating the logic expressions yields the following:

Cost =
3∑
i=1

bidi −
3∑
i=1

gidi +
3∑
j=1

yjdj + 0.10
3∑
j=1

( 3∑
i=1

hi,jpi

)
(D.22)

Bonus ≥
3∑
i=1

bipi −
3∑
i=1

gipi (D.23)

gi ≥ bi + Y − 1 i = 1, 2, 3 (D.24)
gi ≤ bi i = 1, 2, 3 (D.25)
gi ≤ Y i = 1, 2, 3 (D.26)
hi,j ≥ bi + yj − 1 i, j = 1, 2, 3 (D.27)
hi,j ≤ bi i, j = 1, 2, 3 (D.28)
hi,j ≤ yj i, j = 1, 2, 3 (D.29)
0 ≤ gi ≤ 1 i = 1, 2, 3 (D.30)
0 ≤ hi,j ≤ 1 i, j = 1, 2, 3 (D.31)

At this point, we may return Y to its original form,
∑3
j=1 yj . We also simplify Equations (D.22)

and (D.23). (Note that, for clarity, we do not renumber these equations.) The reformulated
deterministic model in its complete form is as follows:

min
b,y

Z = Cost (D.1)

s.t. Cost =
3∑
i=1

(bi − gi)di +
3∑
j=1

yjdj + 0.10
3∑
j=1

( 3∑
i=1

hi,jpi

)
(D.22)

3∑
i=1

bi = 1 (D.3)

3∑
j=1

yj ≤ 1 (D.4)

bi + yi ≤ 1 i = 1, 2, 3 (D.5)

Bonus ≥
3∑
i=1

(bi − gi)pi (D.23)

Bonus ≥
3∑
j=1

yjpj (D.7)

gi ≥ bi +
3∑
j=1

yj − 1 i = 1, 2, 3 (D.24)

gi ≤ bi i = 1, 2, 3 (D.25)
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gi ≤
3∑
j=1

yj i = 1, 2, 3 (D.26)

hi,j ≥ bi + yj − 1 i, j = 1, 2, 3 (D.27)
hi,j ≤ bi i, j = 1, 2, 3 (D.28)
hi,j ≤ yj i, j = 1, 2, 3 (D.29)
bi, yj ∈ {0, 1} i, j = 1, 2, 3 (D.9)
0 ≤ gi ≤ 1 i = 1, 2, 3 (D.30)
0 ≤ hi,j ≤ 1 i, j = 1, 2, 3 (D.31)

The corresponding stochastic programming formulation is then:

min
b,y

Z̃ =
3∑
s=1

(Probs · Costs) (D.10)

s.t. Costs =
3∑
i=1

(bsi − gsi )di +
3∑
j=1

ysjdj + 0.10
3∑
j=1

( 3∑
i=1

hsi,jpi

)
s = 1, 2, 3 (D.32)

3∑
i=1

bsi = 1 s = 1, 2, 3 (D.12)

3∑
j=1

ysj ≤ 1 s = 1, 2, 3 (D.13)

bsi + ysi ≤ 1 i = 1, 2, 3, s = 1, 2, 3 (D.14)

Bonuss ≥
3∑
i=1

(bsi − gsi )pi s = 1, 2, 3 (D.33)

Bonuss ≥
3∑
j=1

ysjpj s = 1, 2, 3 (D.16)

gsi ≥ bsi +
3∑
j=1

ysj − 1 i = 1, 2, 3, s = 1, 2, 3 (D.34)

gsi ≤ bsi i = 1, 2, 3, s = 1, 2, 3 (D.35)

gsi ≤
3∑
j=1

ysj i = 1, 2, 3, s = 1, 2, 3 (D.36)

hsi,j ≥ bsi + ysj − 1 i, j = 1, 2, 3, s = 1, 2, 3 (D.37)
hsi,j ≤ bsi i, j = 1, 2, 3, s = 1, 2, 3 (D.38)
hsi,j ≤ ysj i, j = 1, 2, 3, s = 1, 2, 3 (D.39)
bsi = bs+1

i i = 1, 2, 3, s = 1, 2 (D.18)
bsi , y

s
j ∈ {0, 1} i, j = 1, 2, 3, s = 1, 2, 3 (D.19)

0 ≤ gsi ≤ 1 i = 1, 2, 3, s = 1, 2, 3 (D.40)
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0 ≤ hsi,j ≤ 1 i, j = 1, 2, 3, s = 1, 2, 3 (D.41)
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