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Abstract

Sustainable design of distributed energy supply systems involves multiple

aims. Therefore, multi-objective optimization is the appropriate concept for

sustainable design. However, input parameters are in general uncertain. If

uncertainties are disregarded in the optimization, solutions usually become

infeasible in practice. To incorporate uncertain parameters, we apply the con-

cept of minmax robust multi-objective optimization for designing sustainable

energy supply systems. We propose a mixed-integer linear problem formula-

tion. The proposed formulation allows to identify robust sustainable designs

easily guaranteeing security of energy supply. Energy systems are shown to

typically exhibit objective-wise uncertainties. Thus, a Pareto front can still

be derived.
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In a real-world case study, robust designs are identified with a good trade-

off between economic and ecologic criteria. The robust designs perform re-

markably well in the nominal scenario. The presented problem formulation

transfers the important theoretical concept of minmax robust multi-objective

optimization into engineering practice for the design of sustainable energy

systems.

Keywords: Sustainable energy supply systems, Robust optimization,

Multi-objective optimization, Robust multi-objective optimization,

Mixed-integer linear programming (MILP), Energy system design

1. Introduction

Designing distributed energy supply systems (DESS) that are sustainable

is a complex problem and thus best accomplished using mathematical op-

timization methods. Optimization of sustainable DESS requires objective

functions to quantify sustainability. Sustainability comprises three impor-5

tant dimensions: economy, ecology, and society (Kloepffer, 2008). Thus,

the design of sustainable DESS is intrinsically a multi-objective optimiza-

tion problem. Multi-objective optimization incorporates not only one but

multiple objective functions into the optimization problem (Ehrgott, 2005).

Most concepts of sustainable system design focus on economic and ecological10

sustainability (Grossmann and Guillén-Gosálbez, 2010; Pinto-Varela et al.,

2011). Recently, social criteria also gain increasing attention (Mota et al.,

2015; Ramos et al., 2014).

Designing sustainable energy systems depending on multiple objectives

already leads to challenging optimization problems. In addition, input pa-15
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rameters of DESS design problems are commonly uncertain, e. g., forecasted

values such as energy demands. If these uncertainties are not considered in

the optimization, solutions often become suboptimal or even infeasible (Ben-

Tal and Nemirovski, 2000; Li et al., 2011; Shi and You, 2016). For instance,

if uncertain energy demands are not taken into account during the planning20

of DESS, a lack of energy supply may arise for the designed system. Not

only demands are uncertain when designing sustainable energy systems but

further uncertainties influence the decision, e. g., the future electricity mix,

policy changes, or energy prices. Thus, uncertainties have a significant im-

pact and have to be taken into account in the optimization (Akbari et al.,25

2014).

For single-objective optimization, various concepts have been proposed

to incorporate uncertainties into the optimization problem: Stochastic opti-

mization includes probability distributions for sets of scenarios (for a detailed

introduction see (Birge and Louveaux, 2011)). A scenario represents one com-30

bination of parameters that might occur. However, probability distributions

for the scenarios might not be known or uncertain themselves. Probabil-

ity distributions of scenarios are not needed in the concept of strictly robust

optimization (Ben-Tal and Nemirovski, 1999; Soyster, 1973), also called min-

max robust optimization. Minmax robustness ensures feasibility for every35

considered scenario. The objective is minimized for the worst-case scenario.

Robustness concepts for single-objective optimization are a very active re-

search field with a wide range of approaches (e. g., see (Ben-Tal et al., 2004,

2009; Bertsimas and Sim, 2004; Chassein and Goerigk, 2016; Schöbel, 2014;

Yaman and Pinar, 2001)). Robustness concepts have already successfully40
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been applied to the optimization of distributed energy supply systems, e. g.,

by Akbari et al. (2014); Bertsimas et al. (2013); Dong et al. (2013); Majewski

et al. (2016); Moret et al. (2014); and Yokoyama et al. (2014).

Recently, the idea of robustness has been extended to multi-objective

optimization: Minmax robust multi-objective optimization is based on the45

classical concept of strictly (minmax) robust optimization. Now, multiple

uncertain objectives are minimized while ensuring feasibility of the solution

for every scenario (Bokrantz and Fredriksson, 2014; Ehrgott et al., 2014;

Fliege and Werner, 2014; Goberna et al., 2015; Kuroiwa and Lee, 2012). The

combination of robustness with multi-objective optimization is a young and50

very active research area. Ide and Schöbel (2016) provide a survey and an

analysis of the proposed concepts. First successful applications of minmax

multi-objective robustness have been realized in the fields of internet routing

(Doolittle et al., 2015), portfolio optimization (Fliege and Werner, 2014), and

aircraft routing (Kuhn et al., 2016). Other approaches of robustness have55

also been extended to the multi-objective case, e. g., by Vallerio et al. (2016)

combining a stochastic approach with multi-objective dynamic optimization

for chemical vapor deposition, and by Deb and Gupta (2004) who exclude

uncertain optima by smoothing the objective functions.

In this paper, we employ the concept of minmax robust multi-objective60

optimization to design robust sustainable energy supply systems. We show

how to transfer this complex mathematical concept introduced by Ehrgott

et al. (2014) into practical application for distributed energy supply system

(DESS) optimization. As most typical case in sustainable design of energy

systems, we optimize economic and ecological criteria. Uncertainties are65
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taken into account for energy demands, energy prices, and the specific global

warming impact of the electricity mix. We reformulate the resulting minmax

robust multi-objective optimization problem as mixed-integer linear program

(MILP). Thereby, sustainable design problems can be solved using well estab-

lished methods for multi-objective optimization problems, e. g., ε-constraint70

method (Mavrotas, 2009). In general, robust multi-objective optimization

does no longer lead to a well-defined Pareto front (Ide and Schöbel, 2016).

For this reason, it is usually not possible to visualize generated solutions in

an easy accessible way. However, we highlight the special case of so-called

objective-wise uncertainty leading to an easy way to propose a robust Pareto75

front. Our investigations show that this special case is most common in

the optimization of sustainable DESS. Hence, our work helps to transfer the

general mathematical concept into practical engineering problems.

In our case study, we employ minmax robust multi-objective optimization

of DESS to investigate the trade-off between economic and ecological criteria80

for sustainable energy system design.

The remaining article is structured as follows: Section 2 gives an overview

of typical objective functions employed in sustainable system design and in-

troduces typical characteristics of energy supply systems. The identified typ-

ical characteristics are included in our real-world case study. In Section 3, the85

minmax robust multi-objective problem formulation for DESS optimization

is proposed after a brief introduction of the general mathematical concept.

The proposed formulation is applied to a real-world case study in Section 4.

We conclude with a brief summary in Section 5.
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2. Scope of multi-objective design of energy supply systems90

In the optimization of energy supply systems, often multiple criteria have

to be considered. Typical objective functions for sustainable energy system

design are presented in Section 2.1. In the following Section 2.2, the literature

on sustainable energy system design is briefly reviewed. Based on this review,

we introduce the considered class of distributed energy supply systems and95

present our case study which contains the most common characteristics of

sustainable energy system design. In literature, the term of distributed energy

systems is not well defined (Pepermans et al., 2005). Here, we consider

distributed energy systems to include energy conversion units situated closely

to energy consumers without claiming to be autonomous regarding electricity100

and fuel following the definition by Alanne and Saari (2006).

2.1. Objective functions in sustainable energy system design

In the optimization of energy systems, multi-objective approaches are

often used to identify sustainable solutions. Based on our previous work

(Hennen et al., 2016), we identify the following typical objective functions in105

current literature: Gebreslassie et al. (2012) and Salcedo et al. (2012) consider

the trade-off between total annual costs and global warming impact. Similar

criteria are used by Flores et al. (2015) and Giarola et al. (2011) considering

the net present value and greenhouse gas emissions. Buoro et al. (2013),

Fazlollahi et al. (2012), and Weber (2008) investigate total annual costs and110

CO2 emissions. Fazlollahi et al. (2014) additionally add the efficiency of the

energy system as third objective function. Recently, first articles on social

criteria have been published (Mota et al., 2015; Ramos et al., 2014).

This brief review shows that most frequently aggregated economic criteria
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and ecological criteria are considered, e. g., total annualized costs and global115

warming impact. Thus, we focus on the trade-off between costs and ecology

in this work. The brief overview also shows that bi-objective optimization

is the most common case of multi-objective optimization employed in en-

ergy systems design which therefore is also the focus of the presented work.

However, the extension to further criteria is discussed in Section 3.3.120

2.2. Characteristics of distributed energy supply systems and considered case

study

Distributed energy supply system (DESS) often employ combined cool-

ing, heating and power systems in order to maximize their efficiency and

to decrease greenhouse-gas emissions (Chicco and Mancarella, 2009; Weber,125

2008): To cover heating demands, DESS typically include boilers and/or

combined heat and power (CHP) engines both running on fuel. CHP en-

gines, such as gas turbines, also provide electricity beside supplying heat.

The provided heat is usually used on site to cover heating demands. Fur-

thermore, the heating system is often coupled to the cooling grid: Absorption130

chillers transform heating into cooling energy (Minciuc et al., 2003). Such

trigeneration systems are often considered in literature when optimizing en-

ergy systems (Ünal et al., 2015). To cover cooling demands, the trigeneration

system can be extended by installing electrical chillers, such as compression

or turbo chillers (Minciuc et al., 2003; Ziher and Poredos, 2006) which can135

be driven by electricity from the CHP engines or from the electricity grid.

In our comprehensive case study, we consider the typical elements of

DESS. To cover heating, cooling, and electricity demands, boilers, CHP en-

gines, absorption chillers, and compression chillers can be installed. The
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chosen case study is based on a real-world example of an industrial park140

described in detail in our previous work (Voll et al., 2013).

The industrial park is divided into two areas: Site A and Site B. Both

sites share a common heating system, whereas each site has its own cooling

system. The existing energy system on Site A already comprises 2 boilers, 1

combined heat and power (CHP) engine, and 2 compression chillers. How-145

ever, there is a new cooling demand on Site B. Thus, a retrofit of the energy

system is necessary. For this purpose, we allow the installation of new com-

ponents. Besides the already existing technologies on site, we allow to install

absorption chillers. The new energy supply system must cover all demands

for cooling, heating, and electricity. For this purpose, natural gas can be150

purchased as fuel for boilers and CHP engines. Furthermore, there is a con-

nection to the electricity grid from which electricity can be purchased and

fed in at corresponding prices. A detailed description of the model can be

found in Appendix A.

In our previous work, we designed a DESS with maximal net present value155

for the industrial park (Voll et al., 2013). In this paper, we use multi-criteria

optimization to determine a sustainable energy supply system. We consider

two objectives, one economic and one ecological criterion, to reflect the most

studied problem in the design of sustainable systems (see Section 2.1). The

chosen objectives are introduced in Section 3.1.160

In this work, we further include uncertainty in DESS design. In general,

input data of the optimization problem are unknown with perfect foresight.

However, the original single-objective optimization problem by Voll et al.

(2013) neglects uncertainties in the input data. Since neglecting uncertainties
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leads to sub-optimal and even infeasible solutions, we take uncertainties into165

account when designing a sustainable energy system. Here, to illustrate the

concept of minmax robust multi-objective optimization, we select three types

of parameters to be uncertain:

- the energy prices,

- the specific global warming impact of the electricity provided by the170

grid, and

- the energy demands on site.

Any set of values for the uncertain parameters is called a scenario denoted

by ξ. The proposed model (Section 3.3) could be extended in the same

way to include other uncertainties in the input data, e. g., efficiencies of the175

components.

3. Minmax robust multi-objective optimization of distributed en-

ergy supply systems

To incorporate uncertainties in the design problem of sustainable DESS,

we apply the concept of minmax robust multi-objective optimization. In180

particular, we transfer the general mathematical concept to the introduced

case study representing the typical characteristics of DESS (see Section 2.2).

For this purpose, we present the chosen objective functions and discuss the

influence of the considered uncertainties in Section 3.1. A brief introduction

to minmax robust multi-objective optimization theory is given in Section185

3.2. The theoretical introduction is followed by a discussion on simplifica-

tions resulting from the kind of uncertainties which are common for energy

9



system optimization. In Section 3.3, we propose the resulting minmax robust

problem formulation of the sustainable DESS design problem and adapt this

formulation to specific characteristics of DESS to allow for easy solutions. In190

the following, the terms robust and minmax robust are used synonymously.

3.1. Objective functions and their uncertainties

We consider economic and ecological aims in this paper since these criteria

are most common in the optimization of sustainable DESS (see Section 2.1).

Exemplarily, we choose the often employed global warming impact GWI195

as ecological criterion. As economic criteria, investment costs CAPEX and

total annualized costs TAC are discussed. If preferred, any other objective

functions could be selected.

The design of the energy system and the operation of the components

are determined by design variables d and operation variables o, respectively.200

In general, DESS optimization problems comprise three levels: structure,

sizing, and operation (Frangopoulos et al., 2002; Voll et al., 2013). The

design variables d include the selection of components (structure) as well as

their sizing. The operation variables o include all time-dependent variables

which decide how the components should be operated.205

The total investment costs CAPEX (d) depend only on the design vari-

ables d and are given by the sum of the investment costs INVEST k(d) of

each component k:

CAPEX (d) =
∑
k∈K

INVEST k(d). (3.1)

The set of all components k is given by K. The investment costs INVEST k(d)
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of each component k are assumed to be perfectly known for a selected com-

ponent k once the design variables d are specified.

The investment costs of each component are also part of the second con-

sidered economic objective function, i. e., uncertain total annualized costs

TAC ((d, o), ξ):

TAC ((d, o), ξ) =
∑
t∈T

[
∆tt

(
p̃gas · U̇ gas,buy

t (3.2)

+ p̃el,buy · U̇ el,buy
t

− p̃el,sell · V̇ el,sell
t

)]
+
∑
k∈K

(
1

PVF
+ pmk

)
· INVEST k(d).

Here, input and output power flows in time step t ∈ T are referred to as U̇t

and V̇t, respectively, where T is the set of all time steps t. For each time step210

t ∈ T , ∆tt specifies the length of the time step. pgas, pel,buy, and pel,sell denote

the energy prices for gas as well as for purchased and for sold electricity. We

assume the energy prices to be uncertain. Uncertainty is expressed by the

tilde sign above the uncertain parameters. Every uncertain parameter set

represents one scenario ξ. To calculate the uncertain total annualized costs215

TAC ((d, o), ξ), we annualize the investment costs INVEST k(d) using the

present value factor PVF (Broverman, 2010). The maintenance costs of unit

k are expressed as a share of the investment costs by the factor pmk . Both,

the investment costs and the maintenance costs are assumed to be known

with certainty. Overall, the total annualized costs directly depend on the220

uncertain scenario ξ due to the uncertain energy prices.
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As ecological criterion, we consider the global warming impact GWI ((d, o), ξ):

GWI ((d, o), ξ) =
∑
t∈T

∆tt

[
U̇ gas,buy
t ·GWI gas (3.3)

+
(
U̇ el,buy
t − V̇ el,sell

t

)
· G̃WI

el]
.

The specific global warming impact GWI el of electricity purchased from the

grid is considered to be uncertain due to the uncertain future electricity mix

which is expected to change significantly. The specific global warming impact

of gas GWI gas is assumed to be certain. A credit for global warming impact225

of sold electricity V̇ el,sell
t is given, employing the idea of the avoided burden

(Baumann and Tillman, 2004). Here, we neglect the global warming impact

induced by the manufacturing of the components since the global warming

impact of the operation has usually a significantly higher impact (Guillén-

Gosálbez, 2011).230

The considered uncertainties affect the global warming impact

GWI ((d, o), ξ) as well as the total annualized costs TAC ((d, o), ξ). Both

objective functions depend on the uncertain scenario ξ and thus they are

uncertain. In contrast, the investment costs CAPEX (d) are certain for each

design d since they do not depend directly on uncertain input data.235

Besides the uncertainties of the global warming impact GWI and the

energy prices, we consider the energy demands (heating Ėheat, cooling Ėcool,

and electricity Ėel) to be uncertain.

For all uncertain parameters, interval-based uncertainty is considered.

Additionally, we restrict demands to positive values. Thus, the uncertainty
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set U ⊆ Rm containing all potentially occurring scenarios ξ is given by:

U =

{(
p̃gas, p̃el,sell, p̃el,buy, G̃WI

el
, ˜̇Eheat

, ˜̇Ecool

, ˜̇Eel
)∣∣∣∣

p̃gas = p̂gas(1 + pg), pg ∈ [−εpg, εpg];

p̃el,sell = p̂el,sell(1 + pe),

p̃el,buy = p̂el,buy(1 + pe), pe ∈ [−εpe, εpe];

G̃WI
el
∈
[
ĜWI

el
− εge, ĜWI

el
+ εge

]
,

˜̇Eheat

t ∈
[
max

{
0, ̂̇Eheat

t − εĖht
}
, ̂̇Eheat

t + εĖht

]
,

˜̇Ecool

t ∈
[
max

{
0, ̂̇Ecool

t − εĖct
}
, ̂̇Ecool

t + εĖct

]
,

˜̇Eel

t ∈
[
max

{
0, ̂̇Eel

t − εĖet
}
, ̂̇Eel

t + εĖet

]
,

εpg, εpe, εge, εge, εĖht , εĖct , ε
Ėe
t ≥ 0, t ∈ T

}
. (3.4)

Here, the set ξ̂ =

{
p̂gas, p̂el,sell, p̂el,buy, ĜWI

el
, ̂̇Eheat

, ̂̇Ecool

, ̂̇Eel
}

defines the

nominal scenario. The maximal deviation from the nominal values is given240

by ε with corresponding indices, e. g., we use εĖht for the maximal deviation of

the heating demand in time step t. ĜWI
el
−εge = GWI el and ĜWI

el
+εge =

GWI
el

denote the lower and upper bound of the uncertain specific global

warming impact G̃WI
el

, respectively. Since all uncertain values can take any

value within an interval, the uncertainty set U comprises an infinite number245

of scenarios.

3.2. Applying minmax robust multi-objective optimization to distributed en-

ergy system design

The concept of (minmax) robust multi-objective optimization incorpo-
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rates uncertainties into multi-objective optimization. The mathematical con-250

cept was developed and analyzed by Ehrgott et al. (2014). They proposed the

robust problem formulation, also called robust counterpart (RC), of a multi-

objective problem (MPRC) which enables to find robust efficient solutions

for uncertain multi-objective optimization problems:

(MPRC) min
x∈Rn

sup
ξ∈U

f(x, ξ)

s. t. F (x, ξ) ≥ 0 ∀ξ ∈ U .

Here, f(x, ξ) = (f1(x, ξ), . . . , fl(x, ξ))
T comprises l objective functions fi :255

R
n × U → R with i ∈ {1, . . . , l}. The superscript T is used to denote

the transpose. Each robust efficient solution x∗ minimizes its worst objective

function values over all scenarios by minimizing the supremum supξ∈U f(x, ξ).

The inner optimization problem supξ∈U f(x, ξ) is a multi-objective optimiza-

tion problem over all scenarios ξ ∈ U . Hence, the subproblem supξ∈U f(x, ξ)260

has no unique, well-defined worst-case scenario but a whole Pareto front of

worst-case scenarios (Ide and Schöbel, 2016). As a result, for uncertain multi-

objective optimization problems, it is in general not possible to show robust

objective function values in an illustrative Pareto front.

However, in optimization of sustainable DESS, a special type of optimiza-265

tion problem enables to still present a robust Pareto front: Most frequently

in DESS optimization, the considered objective functions rely on uncertain

parameters which are independent, i. e., one uncertain parameter affects at

most one objective function. The uncertainty is thus called objective-wise

uncertainty according to Ehrgott et al. (2014). In our representative case270

study, uncertainties in the economic objective function have no influence on
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the global warming impact and vice versa: Uncertain energy prices do not af-

fect the global warming impact and the economic costs do not depend on the

uncertain specific global warming impact of purchased energy. The uncertain

energy demands influence the objective functions only indirectly. Thus, the275

uncertainty is objective-wise. This is typical for multi-objective optimization

of DESS as reviewed in Section 2.1.

Objective-wise uncertainty is the key feature to enable easy visualization

of a robust Pareto front since the complex mathematical concept of robust

multi-objective optimization can be simplified: The worst case can be identi-

fied for each objective function separately. The resulting robust counterpart

for objective-wise (OW) uncertain objective functions is given by Ehrgott

et al. (2014):

(
MPOWRC

)
min
x∈Rn

(
sup
ξ∈U

f1(x, ξ), . . . , sup
ξ∈U

fl(x, ξ)

)T
s. t. F (x, ξ) ≥ 0 ∀ξ ∈ U .

The problem formulation with objective-wise uncertainty leads to a signif-

icant advantage: A robust Pareto front can be determined (Ehrgott et al.,

2014). For the inner subproblem supξ∈U f(x, ξ), the worst-case scenario ξwc280

leads to one single solution instead of a Pareto front, since for each objective

function the worst set of parameters can be chosen separately, as shown in

the following Example 1.

Example 1. In Fig. 1, a bi-objective minimization problem regarding un-

certain total annualized costs TAC ((d, o), ξ) and uncertain global warm-285

ing impact GWI ((d, o), ξ) is presented. The set of robust feasible solutions

15



XU = {(d1, o1), (d2, o2), (d3, o3), (d4, o4)} is a discrete set including 4 elements.

TAC ((d, o), ξ)

GWI ((d, o), ξ)
(
d1, o1

)

(
d2, o2

)
(
d3, o3

)

(
d4, o4

)

Figure 1: The range of objective function values of the global warming impact
GWI ((d, o), ξ) and the total annualized costs TAC ((d, o), ξ) are presented for the 4 robust
feasible solutions (d, o) ∈ XU . The possible objective function values lie inside large rectan-

gles; small squares highlight the worst-case values (TAC ((d, o), ξwc), GWI ((d, o), ξwc))
T

for each (d, o) ∈ XU . The solutions (d2, o2), (d3, o3), and (d4, o4) are robust efficient.

Fig. 1 shows the ranges of all possible objective function values for each ro-

bust feasible solution (d, o) ∈ XU depending on the uncertain scenarios ξ ∈ U .

Each range is a rectangle since each uncertain parameter affects at most one290

objective function value. Furthermore, prices and the specific global warming

impact of electricity can take any value within the fixed intervals given by the

uncertainty set U (see Eq. (3.4)) leading to continuous ranges. As a result, the

Pareto front of the inner subproblem
(
supξ∈U TAC ((d, o), ξ), supξ∈U GWI ((d, o), ξ)

)T
consists of exactly one pair of values (TAC ((d, o), ξwc), GWI ((d, o), ξwc))T295

for each robust feasible solution (d, o) ∈ XU . Thus, for the problem
(
MPOWRC

)
,

a robust Pareto front is obtained which contains the robust efficient solutions

(d2, o2), (d3, o3), and (d4, o4) (Fig. 1). The feasible solution (d1, o1) is dom-

inated by (d2, o2) and (d3, o3), since all possible values for (d2, o2) and for

(d3, o3) are better than the worst possible objective function value for (d1, o1)300

considering both objective functions.

16



The problem further simplifies if only one objective function contains un-

certain parameters. E. g., when we consider the investment costs CAPEX (d)

as economic criterion, we assume all parameters influencing the investment

costs CAPEX (d) to be known with perfect foresight. Thus, there is no depen-305

dence on the scenario ξ. As a result, the range of possible objective function

values forms only a vertical line (see Fig. 2).

CAPEX (d)

GWI ((d, o), ξ)

(
d2, o2

)
(
d3, o3

)

(
d1, o1

)

(
d4, o4

)

Figure 2: The range of objective function values of the global warming impact
GWI ((d, o), ξ) and the investment costs CAPEX (d) are presented for the 4 robust feasible
solutions (d, o) ∈ XU . Possible objective function values form vertical lines. The worst-

case values (CAPEX (d), GWI ((d, o), ξwc))
T

for (d, o) ∈ XU are highlighted with small
squares. The solutions (d2, o2), (d3, o3), and (d4, o4) are robust efficient.

The inner subproblem
(
CAPEX (d) , supξ∈U GWI ((d, o), ξ)

)T
also results

here in one pair of values (CAPEX (d), GWI ((d, o), ξwc))T for each robust

feasible solution (d, o) ∈ XU since the occurrence of uncertainties in only310

one objective function is a special case of the presented objective-wise un-

certainty. Bi-objective problems with only one uncertain objective function

have been analyzed in detail by Kuhn et al. (2016).

3.3. Problem formulation for robust multi-objective optimization of distributed

energy supply systems315

For the typical objective functions in the optimization of sustainable
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DESS, it is possible to visualize robust efficient solutions in a robust Pareto

front (see Section 3.2). However, to find robust efficient solutions, the gen-

eral robust multi-objective problem formulation needs to be adapted to the

optimization of sustainable DESS. In particular, a straightforward applica-320

tion of the mathematical concept of robust multi-objective optimization to

DESS optimization cannot be solved directly using common available solvers.

We are confronted with two challenges when formulating the robust multi-

objective optimization problem: First, the problem is intrinsically infeasible

because of the energy balances: There is no setting of the operation variables325

o such that all possible energy demands can be fulfilled exactly at the same

time. Second, the inner subproblem supξ∈U f(x, ξ) induces a minmax opti-

mization problem which cannot be solved directly. Hence, a reformulation of

the optimization problem is necessary to solve the problem.

First, we need to adapt the energy balances due to the problem of consid-330

ering an intrinsically infeasible problem. In practice, the operation is fixed

once the occurring demands are known. However, here, we need to fix the

operation already during the optimization of the design level, since the op-

eration influences the optimization of the design (Frangopoulos et al., 2002).

To be able to adapt the operation to any demands which might occur, it335

is necessary to introduce operation variables for each scenario which might

occur. Since we consider interval-based uncertainty, adapting the operation

to every scenario would involve an infinite number of variables. This results

from the infinite number of demand scenarios which might occur within the

given intervals. Thus, it is not viable to allow the exact adaptation of the340

operation to every scenario.
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To formulate a feasible optimization problem, we replace equalities in the

energy balances by inequalities as proposed in our earlier work on single-

objective robust design (Majewski et al., 2016):

∑
k∈B∪CHP

V̇kt(d, o)−
∑
k∈AC

U̇kt(d, o) ≥ ˜̇Eheat

t ∀t ∈ T,∀ξ ∈ U∑
k∈AC∪CC

V̇kt(d, o) ≥ ˜̇Ecool

t ∀t ∈ T,∀ξ ∈ U∑
k∈CHP

V̇ el
kt (d, o)−

∑
k∈CC

U̇ el
kt(d, o)

+ U̇ el,buy
t (d, o)− V̇ el,sell

t (d, o) ≥ ˜̇Eel

t ∀t ∈ T,∀ξ ∈ U .

(3.5)

Here, boilers and CHP engines provide heating energy
∑

k∈B∪CHP V̇kt(d, o)345

to cover the demand ˜̇Eheat

t . Furthermore, boilers and CHP engines supply

the absorption chillers
∑

k∈AC U̇kt(d, o). The output of the absorption chillers

and compression chillers
∑

k∈AC∪CC V̇kt(d, o) is used to cover the cooling de-

mand ˜̇Ecool

t . To cover the electricity demand ˜̇Eel

t and to supply the com-

pression chillers
∑

k∈CC U̇
el
kt(d, o), electricity provided by the CHP engines350 ∑

k∈CHP V̇
el
kt (d, o) and the electricity grid U̇ el,buy

t (d, o) is used. Electricity

can also be fed into the grid V̇ el,sell
t (d, o). Relaxing the energy balances to

inequalities ensures that at least the required energy is provided.

However, the problem is still not solvable since it comprises an infinite

number of constraints since the uncertainty set U has an infinite number of355

elements. However, it is sufficient to consider only the upper bound of the

uncertain demands. For all types of demands, ̂̇Et + εĖt ≥
˜̇Et holds for all

scenarios ξ ∈ U . As a result, all demands below the upper bound can be
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covered when the upper bound can be covered. Thus, only the upper bound

is decisive and any other constraints can be eliminated as redundant:360

∑
k∈B∪CHP

V̇kt(d, o)−
∑
k∈AC

U̇kt(d, o) ≥ ̂̇Eheat

t + εĖht ∀t ∈ T∑
k∈AC∪CC

V̇kt(d, o) ≥ ̂̇Ecool

t + εĖct ∀t ∈ T∑
k∈CHP

V̇ el
kt (d, o)−

∑
k∈CC

U̇ el
kt(d, o)

+ U̇ el,buy
t (d, o)− V̇ el,sell

t (d, o) ≥ ̂̇Eel

t + εĖet ∀t ∈ T .

(3.6)

The performed relaxation might lead to overproduction due to the in-

equality in the balance equations. Thus, we reduce overproduction by mak-

ing use of the two-stage nature of the problem: The first stage includes the

design variables d. First-stage variables are fixed once the energy system is

implemented. The second-stage variables, i. e., the operation variables, can

be adapted later when the scenario is known. Since it is not possible to ensure

exactly fulfilled energy balances for all considered scenarios (as described in

the beginning of this section), we only enforce that the energy balances hold

exactly for the nominal demands and for the lower bounds of the demands.

As a result, the energy system is designed to cover small demands exactly

leading to a design with reduced overproduction. To include the nominal

demands and the lower bounds of the demands, we introduce two additional

constraints for each energy balance and new operation variables. As an ex-
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ample, the additional constraints for heating supply are:

∑
k∈B∪CHP

V̇kt(d, ô)−
∑
k∈AC

U̇kt(d, ô) = ̂̇Eheat

t ∀t ∈ T∑
k∈B∪CHP

V̇kt(d, o)−
∑
k∈AC

U̇kt(d, o) = ̂̇Eheat

t − εĖht ∀t ∈ T.
(3.7)

Here, ô and o are additional operation variables to adapt the operation to

the nominal demands and to the lower bounds of the demands. However,

the new variables ô and o do not have a direct influence on the objective

functions.

The second challenge of the reformulation is to eliminate the minmax

formulation originating from the supremum over ξ ∈ U . The supremum

over all scenarios needs to be considered when choosing uncertain objective

functions, i. e., uncertain total annualized costs TAC ((d, o), ξ) or uncertain

global warming impact GWI ((d, o), ξ). In order to formulate a mixed in-

teger linear problem, we replace the supremum of the uncertain objective

functions by auxiliary variables τ (for single-objective problems see (Ben-Tal

and Nemirovski, 2000)). The continuous variables τ are upper bounds of

the uncertain objective functions for all scenarios ξ ∈ U . By minimizing the

upper bounds τ , we receive the smallest upper bounds of the uncertain ob-

jective functions, i. e., the corresponding supremum. Still, the problem is not

solvable because limiting the uncertain objective functions by the auxiliary

variables τ for every scenario ξ ∈ U induces an infinite number of constraints.

However, here, it is also sufficient to consider only bounds of the uncertainty

set U : For gas prices p̃gas, only the upper limit has to be taken into account.

Considering the uncertain electricity prices p̃el,sell and p̃el,buy, the upper and
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the lower bound need to be considered since we purchase electricity but also

feed in electricity into the grid. Based on the same reasoning, the uncertain

specific global warming impact G̃WI
el

can be replaced by its upper and lower

bound as well. Thus, all redundant constraints can be eliminated and only

four constraints remain to reformulate the objective functions:

min
d,o,τTAC ,τGWI

τTAC

τGWI


s. t.

∑
t∈T

[
∆tt

(
(p̂gas + εpg) · U̇ gas,buy

t (d, o)

+(p̂el,buy + pe) · U̇ el,buy
t (d, o)

−(p̂el,sell + pe) · V̇ el,sell
t (d, o)

)]
+
∑
k∈K

(
1

PVF
+ pmk

)
· INVEST k(d) ≤ τTAC

pe ∈ {−εpe, εpe}∑
t∈T

∆tt

[
U̇ gas,buy
t (d, o) ·GWI gas

+
(
U̇ el,buy
t (d, o)

−V̇ el,sell
t (d, o)

)
·
(

ĜWI
el

+ ge
)]
≤ τGWI

ge ∈ {−εge, εge}.

(3.8)

No further reformulations are required when investment costs CAPEX (d)365

are used as cost function instead of the uncertain total annualized costs

TAC ((d, o), ξ). The full problem formulation is presented in Appendix A.

The reformulated robust bi-objective optimization problem for robust sus-

tainable design of DESS is a mixed-integer linear optimization problem and
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thus can be solved easily. It is possible to add further uncertain objective370

functions, e. g., social criteria (Mota et al., 2015; Ramos et al., 2014). For

each additional objective function, another auxiliary variable τi can be intro-

duced. The additional variable τi is minimized while representing the upper

bound of the added uncertain objective function for all scenarios ξ ∈ U , as

presented above. If the uncertainty set U comprises an infinite number of el-375

ements, all redundant constraints need to be eliminated, leading to a solvable

MILP. The number of newly introduced constraints depends on the number

of scenarios which need to be considered, e. g., only two additional constraints

need to be added when only the upper and lower bound of one set of parame-

ters need to be taken into account at once. Hence, the optimization problems380

have similar sizes no matter how many objective functions are considered.

However, there is a significant increase of computational time to be expected

caused by the need of more time to generate the anchor points of the Pareto

front. This increase depends on the number of objective functions and not

primarily on the uncertainties. Thus, the expected time increase is related385

to the time increase for solving a deterministic multi-objective optimization

problem with an additional objective function.

The proposed extension using auxiliary variables is also applicable to

multiple criteria with uncertainties which are not objective-wise. However,

the introduction of the auxiliary variables might exclude solutions. A detailed390

discussion on solving strategies is given by Ehrgott et al. (2014).

4. Case study

The proposed method for robust multi-objective optimization enables the

sustainable design of energy supply systems while coping with inherent un-
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certainties. To present the application of the method to DESS, we analyze395

the case study presented in Section 2.2. More details are specified in the fol-

lowing Section 4.1. In Section 4.2, we consider perfectly known investment

costs CAPEX (d) and uncertain global warming impact GWI ((d, o), ξ) as ob-

jective functions. In Section 4.3, we analyze the trade-off between uncertain

total annualized costs TAC ((d, o), ξ) and uncertain global warming impact400

GWI ((d, o), ξ).

All solutions presented in the following sections are computed using the

augmented ε-constraint method (Mavrotas, 2009) to guarantee that only effi-

cient solutions are detected. We generate 100 solutions for each Pareto front

with GAMS 24.3.3 (McCarl, 2014) using CPLEX 12.6.0.1 (IBM Corpora-405

tion, 2015) to solve the resulting optimization problems with a gap of 0 %

to machine accuracy. For calculations, no starting solutions are given. We

use a computer with 3.24 GHz and 20 MB cache employing 4 threads. In the

following, the listed running times for calculations are indicative values.

4.1. Description of the real-world industrial energy system410

We consider an industrial park with heating, cooling, and electricity de-

mands. These demands shall be covered simultaneously using the synergy

of trigeneration systems. The real-world example includes typical character-

istics of DESS and incorporates boilers, CHP engines, absorption chillers,

and compression chillers (see Section 2.2). In the retrofit of the system, we415

assume all energy demands to be uncertain (Fig. 3). The uncertainties are

deduced from real data of previous years. Additionally, uncertain peak loads

are included to ensure sufficient energy supply capacities.
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Figure 3: Heating and cooling demands on Site A and Site B of the industrial park in the
case study with uncertainties indicated by error bars.

The total deviation between minimal and maximal uncertain cooling de-

mand is 19.4 % of the nominal value which corresponds to 5.2 GWh/a. For420

the heating demands, the deviation is 16.2 % corresponding to 4.6 GWh/a.

The electricity demands range from 34.6 GWh/a to 64.9 GWh/a. In the nom-

inal scenario, gas can be purchased at a price of pgas = 5 ct/kWh. Electricity

can be purchased and fed into the grid at prices of pel,buy = 16 ct/kWh and

pel,sell = 10 ct/kWh, respectively. The prices are uncertain lying inside a425

40 % range for gas and a 46 % range for electricity of the nominal values.

The uncertainties are deduced from historical data of the EEX spot market.

We consider a cash flow time of 4 years and an interest rate of 8 %.

Since the future electricity mix is uncertain, the specific global warming

impact of the electricity GWI el provided by the grid is uncertain. When plan-430

ning sustainable energy supply systems, future trends have to be considered.

In the case study, we use values for the year 2020. There are various forecasts

for the electricity mix of the German market. Here, we employ 3 forecasts
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representing a nominal scenario (i. e., the expected scenario) as well as a

minimal and a maximal scenario. From the electricity mix, we derive corre-435

sponding values for the specific global warming impact of the electricity mix

GWI el purchased from the grid using the software GaBi (thinkstep, 2016).

The minimal value corresponds to a scenario aspiring an 80 % decrease of CO2

emissions until 2050 (Nitsch et al., 2012). The aim of decreasing the CO2

emissions by 80 % is ambitious. Hence, we choose this scenario as lower bound440

of the specific global warming impact with GWI el = 430 ktCO2-eq./kWh for

2020. The nominal specific global warming impact of the electricity mix

ĜWI
el

= 561 ktCO2-eq./kWh is deduced from a forecast of the German En-

ergy Agency (dena) (Kohler et al., 2010). The current value corresponds to

610 ktCO2-eq./kWh (thinkstep, 2016). Since the trend of the specific global445

warming impact is decreasing based on current international policies (Birol

et al., 2015), we select GWI
el

= 610 ktCO2-eq./kWh as upper bound of the

uncertain specific global warming impact G̃WI
el

.

4.2. Global warming impact versus investment costs

In this section, we investigate the bi-objective problem for the investment450

costs CAPEX (d) and the global warming impact GWI ((d, o), ξ) to determine

a sustainable DESS.

4.2.1. Efficient design options with perfect foresight

In this section, we analyze the efficient solutions of the deterministic bi-

objective optimization problem of designing a sustainable energy supply sys-455

tem of an industrial park. For this purpose, perfect foresight is assumed

employing only the nominal scenario. The nominal efficient solutions help to

evaluate the robust efficient solutions in the following Section 4.2.2. The de-
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terministic optimization problem comprises up to 41 609 continuous variables

and up to 2 596 binary variables. The number of variables depends on the460

size of the underlying superstructure from which the components are selected.

We use a successive superstructure-expansion solution strategy proposed by

Voll et al. (2013). For a larger superstructure with more components, more

variables are needed. The number of constraints is about 45 700. Generating

the whole Pareto front with 100 solutions needs about 14.4 minutes.465

Fig. 4 shows the Pareto front of the deterministic problem with invest-

ment costs CAPEX (d) (Eq. 3.1) and global warming impact GWI ((d, o), ξ̂)

(Eq. 3.3) as objective functions.
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Figure 4: Pareto front of the deterministic bi-objective optimization problem regarding

investment costs CAPEX (d) and global warming impact GWI
(

(d, o, ), ξ̂
)

.

The maximal global warming impact on the Pareto front is GWImax =

36.7 ktCO2-eq./a resulting from the design with minimal investment costs of470

CAPEXmin = 0.4 Mio.e. Minimizing the global warming impact yields

GWImin = 24.3 ktCO2-eq./a with investment costs of CAPEXmax = 6.2 Mio.e.
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The Pareto front in Fig. 4 shows that 70 % of the maximal global warming

impact reduction is already achieved at investment costs of about 1.5 Mio.e.

In the Pareto front, small kinks can be observed where the slope changes.475

The steep parts mark parts of the Pareto front where one objective func-

tion improves significantly while the second objective function only worsen

marginally. In the flat parts, small improvement of the first objective func-

tion would lead to a significant worsening of the second objective function.

E. g., at 0.9 Mio.e and 1.7 Mio.e, the investments increase without a no-480

table benefit in the global warming impact. These flat parts are caused by

an additionally installed CHP engine (see Fig. 5). CHP engines are more

expensive than other equipment, i. e., boilers, absorption chillers, and com-

pression chillers. Thus, at low investments, few CHP engines are installed.

All newly installed components are shown in Fig. 5.485
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Figure 5: Structure and sizing (design) of newly installed components in the deterministic
efficient solutions: B boilers, CHP combined heat and power engines, CC compression
chillers, and AC absorption chillers.

At low investment costs, absorption chillers are the first choice to cover

the new cooling demand since their investment costs are lower than the in-

vestments for compression chillers. For slightly increasing investments, a
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boiler supplies heating until the first CHP engine is large enough to supply

sufficient heating. Compression chillers support the absorption chillers until490

the second CHP engine is implemented. For further increasing investment

costs, the cooling demands are mostly covered by absorption chillers using

heat from the CHP engines. The same effect of switching from compres-

sion chillers to absorption chillers can be observed when installing the third

and fourth CHP engine. The characteristics of the solutions reflect the fact495

that the specific global warming impact of trigeneration systems is lower

than covering the demands separately with boilers, compression chillers, and

the electricity grid. However, CHP engines are more expensive in terms of

investment costs.

4.2.2. Robust efficient design options500

Minmax robust multi-objective optimization is employed to determine

a robust sustainable design regarding investment costs CAPEX (d) and the

uncertain global warming impact GWI ((d, o), ξ). We consider uncertainties

in the energy demands Ėt and in the specific global warming impact of the

electricity mix GWI el of the grid (see Section 4.1). Thereby, we enable505

designing cost-reasonable DESS with low worst-case global warming impacts.

The robust multi-objective problem formulation contains around 32 300

continuous variables and about 2 100 binary variables for each optimization

problem. The number of constraints varies around 36 000. The computa-

tional time for all 100 solutions lies with about 14.2 minutes in a similar510

range as the computational time for the deterministic optimization problem.

Fig. 6 illustrates the effect of the uncertainties on the Pareto front. The

nominal Pareto front is analyzed in the previous Section 4.2.1 and presented
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in Fig. 6 only for comparison.
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Figure 6: Pareto fronts regarding investment costs CAPEX (d) and global warming im-
pact GWI ((d, o), ξ) with certain and uncertain parameters: The nominal Pareto front is
presented here only for comparison (orange dots; see also Fig. 4); the Pareto front consid-

ering an uncertain specific global warming impact of the electricity mix G̃WI
el

is shown
by filled triangles; if demands are also uncertain, the robust Pareto front is marked by
dark green crosses; for open symbols, uncertainties in the demands are not taken into
account: the unfilled triangle marks the optimal solution for the nominal scenario employ-
ing the robust optimal design

(
drob
GWI el

)∗
from minimizing the robust global warming im-

pact GWI
(
(d, o), ξwc

GWI el

)
; vice versa, the unfilled circle marks the nominal optimal design

(dnom)∗ employed for minimizing the uncertain global warming impact GWI
(
(d, o), ξ̃

)
.

Considering only uncertainties in the specific global warming impact of515

the electricity mix GWI el deforms the Pareto front (see Fig. 6): The mini-

mal global warming impact is about 26.2 ktCO2-eq./a. For investments above

2.1 Mio.e, the robust Pareto front shows only a marginal decrease of the

global warming impact GWI ((d, o), ξwc
GWI el

).

As discussed in Section 4.2.1, the minimal global warming impact in the520

nominal scenario is GWImin = 24.3 ktCO2-eq./a (see Fig. 6, filled dots, right

anchor point). Taking the corresponding nominal optimal design (dnom)∗ and

allowing for uncertainties in the specific global warming impact GWI el leads
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to 27.1 ktCO2-eq./a in the worst-case scenario ξwc
GWI el

(see Fig. 6, unfilled dot).

In contrast, the robust optimal global warming impact corresponds only to525

26.2 ktCO2-eq./a (see Fig. 6, right anchor point of filled triangles). Thus, the

nominal optimal solution for the minimal global warming impact becomes

suboptimal in the worst-case scenario ξwc
GWI el

. This occurs even though the

investment costs are 31 % lower for the robust optimal solution. In contrast,

employing the robust optimal design
(
drob
GWI el

)∗
for nominal operation leads to530

a global warming impact of 25.2 ktCO2-eq./a. Compared to the minimal global

warming impact GWImin of the best nominal design (dnom)∗, the increase

corresponds to only 3.9 %.

Taking also uncertain demands into account shifts the Pareto front to a

higher level of global warming impact. The global warming impact increases535

because the energy supply system must cover higher demands in the worst

case for which the objective function is evaluated. The shift of the Pareto

front corresponds to about 9 ktCO2-eq./a. The nominal design options would

become infeasible if allowing for uncertain demands.

The robust Pareto front (Fig. 6, dark green crosses) shows that invest-540

ments below 2.4 Mio.e improve the global warming impact significantly: At

low investments, a small increase in the investment costs CAPEX (d) strongly

reduces the robust global warming impact GWI ((d, o), ξwc), e. g., investing

1.1 Mio.e instead of 0.9 Mio.e leads to savings of 3.8 ktCO2-eq./a. However,

investments above 2.4 Mio.e again provide very little additional improve-545

ment of the robust global warming impact GWI ((d, o), ξwc). Here, the small

improvement of the robust global warming impact GWI ((d, o), ξwc) is related

to the employed robustness method: Strictly robust optimization inherently
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considers the worst case. Here, the worst case depends on whether electric-

ity is purchased from the grid or fed in. When electricity is purchased, the550

worst case is the upper bound of the specific global warming impact G̃WI
el

.

As a result, the system tends to purchase less electricity since this would

increase the global warming impact significantly. In contrast, when feeding

in electricity, the lower bound of the specific global warming impact G̃WI
el

is decisive since it leads to a smaller avoided burden. Thus, the system favors555

on-site generated electricity by CHP engines without feeding in electricity.

As a result, the system does not use the connection to the electricity grid

to purchase or to feed in electricity. Hence, the energy system tends to be

electricity-autonomous for high investments. However, for small investment

costs, the system purchases electricity from the grid since the existing CHP560

engine has a poor efficiency. Thus, electricity from the grid is favored even

though the upper bound of the specific global warming impact G̃WI
el

needs

to be taken into account.

Similar to the nominal Pareto front, the robust Pareto front also con-

tains kinks. Here, the kinks occur due to the same reason as explained in565

Section 4.2.1: While reducing the global warming impact slightly, the invest-

ment costs increase notably along the robust Pareto front when an additional

CHP engine is installed (see Fig. 7). The kinks on the robust Pareto front

help the decision maker to find solutions representing a good trade-off be-

tween investment costs CAPEX (d) and the robust global warming impact570

GWI ((d, o), ξwc) of the energy system. However, to find a well-balanced solu-

tion, not only the kinks are decisive but also the identification of the region of

interest. The region of interests represents the part of the Pareto front which
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includes solutions with practical relevance. To limit the region of interest,

approaches from existing literature can be applied: Vallerio et al. (2015) pro-575

pose an interactive decision-support system for multi-objective optimization

of nonlinear dynamic processes with uncertainty. Another interactive tool

is introduced by Bortz et al. (2014) allowing the decision maker to navigate

along the Pareto front for focusing on the region of interest. Hennen et al.

(2016) limit the solution space using an aggregated cost measure in order to580

identify only promising solutions. The approaches aim to minimize the effort

for the generation of the Pareto front by only evaluating a part of the front.

However, we are interested in the effect that robust optimization of DESS

has on the result of multi-objective optimization. A partial evaluation of the

front might be misleading and is thus not used here. For practical appli-585

cations, it is reasonable to reduce the computational effort by applying the

mentioned methods. In general, it is also possible to reduce the set of deci-

sion alternatives a posteriori, e. g., by applying Pareto filters after calculating

the Pareto front (Antipova et al., 2015).
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Figure 7: Robust efficient structure and sizing (design) of newly installed components: B
boilers, CHP combined heat and power engines, CC compression chiller, and AC absorp-
tion chillers.
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The robust efficient solutions (see Fig. 7) show similar characteristics as590

the nominal efficient solutions: CHP engines and absorption chillers replace

boilers and compression chillers when the investment costs increase. However,

the uncertain specific global warming impact of the electricity mix G̃WI
el

leads to significant differences for the robust efficient solutions: In total, the

robust efficient solutions contain less thermal capacity of CHP engines than595

the nominal efficient solutions (compare Fig. 7 with Fig. 5). The reason is

that for investment costs above 2.4 Mio.e the connection to the electricity

grid is not advantageous when regarding an uncertain specific global warming

impact G̃WI
el

, and thus, a positive effect on the global warming impact by

selling electricity cannot be guaranteed. As a result, the electricity provided600

by the CHP engines is only used on site to supply compression chillers and

electricity demands, and is not fed into the electricity grid.

4.3. Global warming impact versus total annualized costs

In the second part of the case study, we consider the uncertain total annu-

alized costs TAC ((d, o), ξ) instead of the certain investment costs CAPEX (d)605

as economic criterion. As ecological criterion, we keep the uncertain global

warming impact GWI ((d, o), ξ). Thus, we consider both objective functions

to be uncertain in the following.

For generation of the robust Pareto front, we need to consider about

32 300 continuous variables for each solution on the front. The number of610

binary variables is around 2 100. Each problem comprises about 36 00 con-

straints. To generate 100 solutions, 20 minutes of computational time are

needed. The nominal and robust efficient design options can be found in

Appendix B.
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Similar to Section 4.2.2, we investigate the impact of the uncertainties on615

the robust Pareto front consecutively.
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Figure 8: Pareto fronts regarding total annualized costs TAC ((d, o), ξ) and global warm-
ing impact GWI ((d, o), ξ) with certain and uncertain parameters: Nominal Pareto front
for the deterministic problem is presented by orange dots; uncertain prices and addition-

ally uncertain specific global warming impact G̃WI
el

are considered for the filled violet
rhombuses and for the filled light blue triangles, respectively; adding uncertain demands
results in the robust Pareto front (dark green crosses); unfilled circles mark solutions for

the nominal scenario ξ̂ employing the robust optimal design (drob)∗ from robust opti-
mal total annualized costs TAC ((d, o), ξwc) and robust optimal global warming impact
GWI ((d, o), ξwc), respectively.

Fig. 8 shows the nominal and three robust Pareto fronts with uncertain-

ties of parameters added consecutively. The uncertain parameters affect the

shape of the nominal Pareto front: Uncertain prices stretch the nominal

curve along the axis of the total annualized costs and shifts the curve to620

higher costs. Taking also uncertainties in the specific global warming impact

of the electricity grid G̃WI
el

into account compresses the former Pareto front

obtained with uncertain prices. As a result, no significant trade-off can be

observed anymore. Considering all sets of parameters to be uncertain, i. e.,
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also the demands, a similar effect can be observed as in Section 4.2.2: The625

uncertain demands shift the Pareto front to a higher global warming impact

and to higher total annualized costs. The increase is caused by the higher

energy demands which are taken into account.

The shapes of the calculated Pareto fronts differ significantly: For the

Pareto front based on perfect foresight, a trade-off between the global warm-630

ing impact and total annualized costs can be observed. In contrast, there

is hardly any trade-off for the robust Pareto front taking all uncertainties

into account since the robust global warming impact GWI ((d, o), ξwc) =

34.7 ktCO2-eq./a varies only by 0.008 %. The lack of a significant trade-off

can be explained by comparing the investment costs with the investment635

costs for solutions of Section 4.2.2: For the robust design regarding uncer-

tain total annualized costs TAC ((d, o), ξ) and uncertain global warming im-

pact GWI ((d, o), ξ), investment costs lie between 2.8 Mio.e and 4.9 Mio.e.

A comparison with solutions of Section 4.2.2 shows that minimizing total

annualized costs TAC ((d, o), ξ) leads to investment costs corresponding to640

the flat part of the Pareto front regarding investment costs CAPEX (d) and

uncertain global warming impact GWI ((d, o), ξ) (see Fig 6). Minimizing un-

certain total annualized costs TAC ((d, o), ξ) thus prevents solutions with low

investment cost due to high operational costs. As a result, only a marginal

trade-off can be observed.645

The robust design options (drob)
∗

of the anchor points from the robust

Pareto front perform well for the nominal case: The calculated objective

function values (6.4 Mio.e, 24.5 ktCO2-eq./a) and (7.1 Mio.e, 24.3 ktCO2-eq./a),

respectively, are close to the nominal Pareto front (see Fig 8, unfilled cir-
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cles). Thus, robust design options are able to cover all possible demands at650

small additional costs and small additional ecological impact compared to

the nominal case.

5. Conclusions

Sustainable design of energy systems inherently involves multiple objec-

tives. Hence, the design of sustainable energy systems is best addressed by655

multi-objective optimization. Our brief literature review shows that eco-

nomic and ecological criteria are typical for designing sustainable energy sys-

tem. However, the input parameters of the optimization problem are usually

uncertain in real life. This uncertainty needs to be taken into account. For

this reason, we transfer the mathematical concept of minmax robust multi-660

objective optimization as introduced by Ehrgott et al. (2014) to the problem

of designing a sustainable energy supply system. We propose a minmax ro-

bust multi-objective problem formulation to determine a robust sustainable

design coping with uncertainties. Reformulations lead to a mixed-integer

linear program allowing to apply established solvers and methods for multi-665

objective optimization, e. g., the ε-constraint method.

In a case study of a real-world industrial park, we consider two typical

pairs of criteria: first, investment costs and global warming impact, and

second, total annualized costs and global warming impact. Here, we assume

uncertainties for the demands, energy prices and the specific global warming670

impact of the future electricity mix. Thus, the uncertainties directly affect the

total annualized costs and the global warming impact but not the investment

costs.

Our analysis shows that a small cost increase at low investment costs
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can lead to significant savings in the global warming impact. However, with675

rising investment costs, the worst-case global warming impact does not im-

prove significantly. This effect results from the uncertainty in the specific

global warming of the grid: In minmax robustness, the worst case is always

considered. Here, the worst case depends on the fact whether electricity is

purchased from the grid or fed in. This switch in the worst case leads to a680

robust system which is autonomous from the electricity grid.

The second part of the case study shows that there is not always a strong

trade-off between economics and ecology. Here, only marginal changes in the

global warming impact can be observed along the robust Pareto front. The

robust efficient design options also perform remarkably well for the nominal685

scenario assuming parameters to be known with perfect foresight.

Applying the proposed formulation for minmax robust multi-objective

optimization enables the decision maker to find promising solutions for engi-

neering practice to design robust sustainable distributed energy supply sys-

tems.690
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Appendix A. Problem formulation of the minmax robust multi-695

objective optimization problem for sustainable dis-

tributed energy supply systems

In the following, we present the minmax robust bi-objective optimiza-

tion problem to determine robust sustainable energy supply systems. The

problem is based on a deterministic single-objective optimization problem700

introduced in our previous work (Voll et al., 2013).

The design variables d include binary variables for the existence and for

the installed nominal thermal capacity V̇ N
k of all components k ∈ K. The

design variables d inherently do not depend on time step t ∈ T in contrast to

the operation variables. The operation variables o include input and output705

energy flows for each time step t: Thermal and electrical input energy flows

are denoted by U̇kt and U̇ el
kt for a component k, respectively. The variables

U̇ gas,buy
t describe the energy flow of purchased gas, and U̇ el,buy

t the purchased

electricity. Output energy flows are defined by V̇kt and V̇ el
kt for a component

k and by V̇ el,sell
t for sold electricity fed into the grid. All variables depend710

on scenarios ξ of the uncertainty set U . The dependence on ξ is not shown

explicitly to improve legibility.

Appendix A.1. Objective functions

To design a sustainable energy supply system, we minimize a cost function

c((d, o), ξ) and the auxiliary variable τGWI ∈ R:715

min
d,o,o,o,τTAC ,τGWI

c((d, o), ξ)
τGWI

 .

39



The auxiliary variable τGWI is the upper bound of the uncertain global warm-

ing impact GWI ((d, o), ξ) which induces two additional constraints, as pre-

sented in Section 3.3:

∑
t∈T

∆tt

[
U̇ gas,buy
t ·GWI gas

+
(
U̇ el,buy
t − V̇ el,sell

t

)
·
(

ĜWI
el
− εge

)]
≤ τGWI∑

t∈T
∆tt

[
U̇ gas,buy
t ·GWI gas

+
(
U̇ el,buy
t − V̇ el,sell

t

)
·
(

ĜWI
el

+ εge
)]
≤ τGWI .

As cost function c((d, o), ξ), the certain investment costs CAPEX (d) =∑
k∈K INVEST k(d) are considered as well as the uncertain total annualized

costs TAC ((d, o), ξ). If the uncertain total annualized costs are chosen as eco-

nomic objective function c((d, o), ξ), an auxiliary variable τTAC ∈ R needs to

be minimized representing the upper bound of the uncertain total annualized
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costs TAC ((d, o), ξ):

∑
t∈T

[
∆tt

(
(p̂gas + εpg) · U̇ gas,buy

t

+(p̂el,buy + εpe) · U̇ el,buy
t

−(p̂el,sell + εpe) · V̇ el,sell
t

)]
+
∑
k∈K

(
1

PVF
+ pmk

)
· INVEST k(d) ≤ τTAC∑

t∈T

[
∆tt

(
(p̂gas + εpg) · U̇ gas,buy

t

+(p̂el,buy − εpe) · U̇ el,buy
t

−(p̂el,sell − εpe) · V̇ el,sell
t

)]
+
∑
k∈K

(
1

PVF
+ pmk

)
· INVEST k(d) ≤ τTAC .

720

Appendix A.2. Linearized investment costs

For the set of already existing components KE, no investment costs arise

and INVEST k(d) = 0 with k ∈ KE holds. For the newly installed compo-

nents k ∈ K\KE, the investment costs INVEST k(d) depend on the nominal

capacity. The economy of scale of investment costs leads to a nonlinear

dependence which is linearized in the model. For the performed piecewise

linearization, further variables have to be introduced (see Fig. A.1): To de-

scribe the piecewise linear investment costs, we refer to mkh as the gradient

for each line segment h ∈ {1, . . . , n}. Binary variables γkh represent active

line segments and parameters κkh denote the corresponding intercepts at the

lower supporting points. Since the selected nominal capacity of an installed
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component is placed on one line segment only, the constraint

n∑
h=1

γkh ≤ 1 (A.1)

must hold for all components k ∈ K\KE. If the sum is equal to zero, com-

ponent k is not included in the determined structure, and thus, no capacity

is provided and no investment costs arise.

The nominal capacity V̇ N
kh of the components k ∈ K\KE for each line

segment h is bounded by the nominal capacities of the adjoining supporting

points, i. e., V̇ N,lb
kh and V̇ N,lb

kh+1, respectively:

γkhV̇
N,lb
kh ≤ V̇ N

kh ≤ γkhV̇
N,lb
kh+1 h ∈ {1, . . . , n}.

If a line segment is not active, i. e., γkh = 0, the corresponding nominal

capacity V̇ N
kh is set to zero. The sum over all values for the nominal capacity

along one segmentation results in the installed capacity for component k,

since there is always only one non-zero element due to Eq. (A.1):

n∑
h=1

V̇ N
kh = V̇ N

k .

725
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Figure A.1: Piecewise linearization of the investment costs INVEST k(d) of a newly in-
stalled component k ∈ K\KE is presented. Here, h is the active line segment, thus, γkh
is equal to one.

To calculate the gradient mkh of a line segment h, the difference of the

specific investment costs of two supporting points is divided by the difference

of the corresponding nominal capacities, i. e., V̇ N,lb
kh+1 and V̇ N,lb

kh , respectively:

mkh =
κkh+1 − κkh
V̇ N,lb
kh+1 − V̇

N,lb
kh

∀ k ∈ K,h ∈ {1, . . . , n}.

Here, the parameters κkh and κkh+1 represent the investment costs at the

lower and upper supporting point of line segment h (see Fig. A.1).

The investment costs INVEST k(d) of a newly installed component k ∈

K\KE are thus given by:

INVEST k(d) =
∑
h

γkh κkh +mkh

(
V̇ N
kh − γkhV̇

N,lb
kh

)
.
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Appendix A.3. Energy balances

The energy balances of the robust multi-objective problem are based on

the reformulations given in Section 3.3. For all t ∈ T , maximal energy

demands have to be covered at least:

∑
k∈B∪CHP

V̇kt −
∑
k∈AC

U̇kt ≥ ̂̇Eheat

t + εĖht∑
k∈AC∪CC

V̇kt ≥ ̂̇Ecool

t + εĖct∑
k∈CHP

V̇ el
kt −

∑
k∈CC

U̇ el
kt + U̇ el,buy

t − V̇ el,sell
t ≥ ̂̇Eel

t + εĖet .

The output energy flow V̇kt of a component is limited by the installed capacity

V̇ N
k and by the minimal part-load given as fraction of the installed capacity

using the factor ρmin:

ρmin · V̇ N
k ≤ V̇kt ≤ V̇ N

k ∀k ∈ K ∀t ∈ T.

For all time steps t ∈ T , the input and output energy flows are coupled by the

thermal efficiency ηk, the electrical efficiency ηelk , and the total (i. e. thermal

and electrical) efficiency ηtotk = ηk + ηelk of each component k:

V̇kt = ηkU̇kt

V̇ el
kt = ηtotk U̇kt − V̇kt

V̇ el
kt = ηelk U̇

el
kt .
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These equalities can be introduced directly in the energy balances. Here,730

these dependencies are presented separately for an improved clearness.

In order to reduce overproduction, nominal and minimal demands have

to be covered exactly for all time steps t ∈ T (Section 3.3). The additional

operation variables ô and o allow to adapt the operation to the nominal

and minimal demands without having any further influence on the objective

functions:

∑
k∈B∪CHP

ˆ̇Vkt −
∑
k∈AC

ˆ̇Ukt = ̂̇Eheat

t∑
k∈AC∪CC

ˆ̇Vkt = ̂̇Ecool

t∑
k∈CHP

ˆ̇V el
kt −

∑
k∈CC

ˆ̇U el
kt + ˆ̇U el,buy

t − ˆ̇V el,sell
t = ̂̇Eel

t∑
k∈B∪CHP

V̇ kt −
∑
k∈AC

U̇kt = ̂̇Eheat

t − εĖht∑
k∈AC∪CC

V̇ kt = ̂̇Ecool

t − εĖct∑
k∈CHP

V̇
el

kt −
∑
k∈CC

U̇
el

kt + U̇
el,buy

t − V̇ el,sell

t = ̂̇Eel

t − εĖet .

Appendix B. Robust efficient design options regarding uncertain

total annualized costs and uncertain global warming

impact735

In this section, the robust efficient design options regarding uncertain

total annualized costs TAC ((d, o), ξ) and uncertain global warming impact
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GWI ((d, o), ξ) are presented. The corresponding Pareto fronts are discussed

in Section 4.3.
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(a) Efficient structure and sizing (design) of installed components.
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(b) Robust efficient structure and sizing (design) of installed components.

Figure B.2: B boilers, CHP combined heat and power engines, CC compression chiller,
and AC absorption chillers. Components shown in light colors remain from the already
existing components.
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Jiménez, L. (2015). On the use of filters to facilitate the post-optimal

analysis of the Pareto solutions in multi-objective optimization. Comput.

Chem. Eng., 74:48–58.

Baumann, H. and Tillman, A.-M. (2004). The Hitch Hiker’s Guide to LCA.

Studentlitteratur AB, Lund.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust Optimization.

Princeton University Press, Woodstock.

Ben-Tal, A., Goryashko, A., Guslitzer, E., and Nemirovski, A. (2004). Ad-

justable robust solutions of uncertain linear programs. Math. Program.,

99(2):351–376.

Ben-Tal, A. and Nemirovski, A. (1999). Robust solutions of uncertain linear

programs. Oper. Res. Lett., 25(1):1–13.

Ben-Tal, A. and Nemirovski, A. (2000). Robust solutions of linear pro-

gramming problems contaminated with uncertain data. Math. Program.,

88(3):411–424.

Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., and Zheng, T. (2013).

Adaptive robust optimization for the security constrained unit commit-

ment problem. IEEE Trans. Power Syst., 28(1):52–63.

47



Bertsimas, D. and Sim, M. (2004). The price of robustness. Oper. Res.,

52(1):35–53.

Birge, J. R. and Louveaux, F. (2011). Introduction to Stochastic Program-

ming. Springer Series in Operations Research and Financial Engineering.

Springer New York, 2nd edition.

Birol, F., Cozzi, L., Gould, T., Bromhead, A., and et al. (2015). World

Energy Outlook 2015. International Energy Agency.

Bokrantz, R. and Fredriksson, A. (2014). Necessary and sufficient conditions

for Pareto efficiency in robust multiobjective optimization. ArXiv e-prints,

arXiv:1308.4616v3.

Bortz, M., Burger, J., Asprion, N., Blagov, S., Böttcher, R., Nowak, U.,
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