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ABSTRACT 

This work considers the numerical optimization of constrained batch and semi-batch processes, 

for which direct as well as indirect methods exist. Direct methods are often the methods of 

choice, but they exhibit certain limitations related to the compromise between feasibility and 

computational burden. Indirect methods, such as Pontryagin’s Minimum Principle (PMP), 

reformulate the optimization problem. The main solution technique is the shooting method, 

which however often leads to convergence problems and instabilities caused by the integration of 

the co-state equations forward in time.  

This study presents an alternative indirect solution technique. Instead of integrating the states and 

co-states simultaneously forward in time, the proposed algorithm parameterizes the inputs, and 

integrates the state equations forward in time and the co-state equations backward in time, 



 
 

thereby leading to a gradient-based optimization approach. Constraints are handled by indirect 

adjoining to the Hamiltonian function, which allows meeting the active constraints explicitly at 

every iteration step. The performance of the solution strategy is compared to direct methods 

through three different case studies. The results show that the proposed PMP-based quasi-Newton 

strategy is effective in dealing with complicated constraints and is quite competitive 

computationally. 

 

Keywords: Constrained dynamic optimization, Pontryagin’s Minimum Principle, indirect 

optimization methods, quasi-Newton algorithm, semi-batch processes 
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1. INTRODUCTION 

      The optimization of batch and semi-batch processes is becoming more and more popular due 

to industrial competitiveness and strict environmental regulations. If a reliable dynamic process 

model is available, dynamic optimization is considered as a promising method for reducing 

production costs, improving product quality and meeting safety as well as environmental 

regulations.  

      The dynamic optimization problem (also called optimal control) for batch processes is often 

stated as follows (Srinivasan et al., 2003):  

  min
𝑡𝑓,𝑢(𝑡)

𝐽 = 𝜙(𝑥(𝑡𝑓)) 

s.t.       𝑥̇ = 𝐹(𝑥, 𝑢),    𝑥(0) = 𝑥0 

𝑆(𝑥, 𝑢) ≤ 0,       𝑇(𝑥(𝑡𝑓)) ≤ 0 (1) 

 

where J is a scalar performance index that depends on the values of the states at the final time tf, 

is the objective function, x is the nx-dimensional state vector with the corresponding initial 

conditions 𝑥0, u is the nu-dimensional input vector, S is the nS-dimensional vector of inequality 

path constraints that include input bounds, and T is the nT-dimensional vector of inequality 

terminal constraints  

      The nonlinear differential equations describing the system dynamics are included in the 

formulation as equality constraints. The solution methods that are available in the literature for 

this dynamic optimization problem can be classified in two major categories, namely, the direct 

and indirect (or PMP) approaches (Srinivasan et al., 2003).  
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      In direct optimization approaches, the solution methodology is applied directly to the original 

optimization problem, Eq. (1), by using either sequential or simultaneous numerical techniques. 

In the class of direct sequential methods, the input vector is parameterized using polynomial 

functions, the state equations are integrated from the given initial conditions up to the final time, 

where the states are needed for evaluating the objective function. The optimal input parameters 

are computed by a NLP solver (Vassiliadis et al., 1994); (Schlegel & Marquardt, 2006b). The use 

of time integration is the reason for also naming sequential techniques “feasible-path methods”. 

However, depending on the type of problem and the NLP solver available, a sequential method 

can be slow and thus computationally expensive, in particular when dealing with path constraints 

(Srinivasan et al., 2003). Furthermore, in direct sequential methods, the input profiles are often 

represented using a coarse discretization grid to ensure computational efficiency (Schlegel & 

Marquardt, 2004). Note, however, that a fine input discretization may be necessary to accurately 

detect switching times.  

      In contrast, in the class of direct simultaneous methods, the entire optimization problem 

(system equations, input profiles, objective function and constraints) is discretized w.r.t. time, 

using for example collocation techniques, thus resulting in a large system of algebraic equations. 

Then, an NLP solver simultaneously solves the  governing dynamic system equations and 

optimizes the cost (Cervantes & Biegler, 1998), (Biegler et al., 2002), (Biegler, 2007). Because 

the system equations are not integrated in time, but approximated at discrete time instants, this 

approach is called “infeasible-path method”. Although simultaneous techniques allow the 

efficient solution of large-scale optimization problems, the trade-off between approximation and 

optimization must be considered carefully (Srinivasan et al., 2003).  
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      In indirect optimization approaches, the original optimization task, Eq.(1), is reformulated as 

the minimization of a Hamiltonian function. The reformulated problem is then solved to satisfy 

the necessary conditions of optimality that are expressed via Pontryagin’s Minimum Principle 

(PMP) (Bryson, 1975). For simple problems, the optimal solution can sometimes be expressed 

and computed analytically. More complex and, in particular, constrained problems, require a 

numerical solution, which is often computed using the shooting method.  The main problem of 

this method is that the integration of the co-state equations forward in time may introduce 

instabilities that prevent fast convergence unless a good initial guess is available. However, 

instead of integrating the states and co-states simultaneously forward in time, the inputs can be 

parameterized and then, sequentially, the state equations are integrated forward in time and the 

co-states backward in time. Optimization is performed using a gradient-based algorithm, for 

which a good initial guess is beneficial but not required for convergence (Bryson, 1975), 

(Srinivasan et al., 2003), (Hartl et al., 1995), (Chachuat, 2007). For a comprehensive overview of 

the dynamic optimization literature until 2003, the reader is referred to (Srinivasan et al., 2003). 

More recent publications are given in Table 1. 
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Table 1. Selection of recent publications. 

Publication 

Method of 

Choice 

Subject 

 (Schlegel et al., 2005) 
Direct 

Sequential 

Reducing the problem size using adaptive 

control vector 

(Schlegel & Marquardt, 2006a) 

 (Schlegel & Marquardt, 2004) 

Direct 

Sequential 

Reducing the problem size using adaptive 

switching times and structures 

 (Srinivasan & Bonvin, 2007) 
NCO 

Tracking 
Real-Time-Optimization using NCO tracking 

 (Kadam et al., 2007) 
NCO 

Tracking 

Robust optimization using measurements and 

solution models 

 (Srinivasan et al., 2008) 
NCO 

Tracking 

NCO Tracking using barrier-functions for active 

constraints 

(Biegler, 2007) 

 (Kameswaran & Biegler, 2006) 

Direct 

Simultaneous 

Overview of recent direct simultaneous 

strategies 

(Logist et al., 2011) 

Direct 

Multiple 

Shooting 

Robust, multi-objective dynamic optimization 

(Assassa & Marquardt, 2014) 

Direct 

Multiple 

Shooting 

Adaptive multiple shooting 

 

      The PMP approach has been applied to various engineering optimization problems since the 

70’s. (Jaspan & Coull, 1971) suggested a boundary condition iteration (BCI) solution scheme for 

unconstrained chemical reactor optimization problems. For input-affine systems, (Visser et al., 

2000) proposed an online optimizing structure that uses a switching function along with the 

PMP-based optimality conditions; then, a cascade optimization scheme that tracks the necessary 

conditions of optimality was designed and tested on a fed-batch penicillin fermentation process. 

(Cannon et al., 2008) designed a model predictive control strategy for input-constrained linear 

systems using PMP. In this approach, the inputs can be represented in terms of co-states, and the 

problem can then be solved using active-set methods. (Kim & Rousseau, 2012) used Pontryagin’s 
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principle for the optimal control of hybrid electric vehicles. (Palanki & Vemuri, 2005) proposed 

an end-point dynamic optimization scheme using PMP for semi-batch processes with a single 

reaction. (Roubos et al., 1997) studied the use of PMP with an unconstrained gradient-based 

solution technique for the optimization of fed-batch biological problems. In order to account for 

path constraints, they penalized the value of the objective function in case of a constraint 

violation. (Ali & Wardi, 2015) implemented a shooting method, where the inputs are expressed 

analytically in terms of the states and co-states. (Hannemann-Tamás & Marquardt, 2012) used 

PMP to verify the inputs computed by a direct sequential method. For a given optimal control 

problem, they obtained what they called “the true solution” using a PMP-based multiple shooting 

algorithm for the purpose of verifying the results of the direct sequential optimization algorithm. 

      Solving dynamic optimization problems that include nonlinear path constraints is a 

challenging task for PMP-based approaches. Unfortunately, there exists no fast-convergent 

solution strategy for constrained problems besides the shooting method, whose convergence is 

dependent on many conditions (Chachuat, 2007), (Hartl et al., 1995). This is the motivation for 

the present work that proposes a PMP-type gradient-based solution method for optimization 

problems of semi-batch processes that include nonlinear path and terminal constraints. For this 

purpose, indirect adjoining is used which augments the Hamiltonian function with mixed state-

input constraints.  This allows computing certain inputs explicitly so as to satisfy the active path 

constraints.         

      The paper is organized as follows. Section 2 presents the solution methodology using the 

indirect PMP-based approach. The three case studies investigated in Section 3 illustrate the PMP-

based quasi-Newton approach developed in this work, and compares it to the direct simultaneous 

strategy, while Section 4 concludes our study. 
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2. SOLUTION METHODOLOGY 

      The dynamic optimization problem given in Eq. 1 can be reformulated using PMP as follows 

(Srinivasan et al., 2003): 

min
𝑡𝑓,𝑢(𝑡)

𝐻(𝑡) = 𝜆𝑇𝐹(𝑥, 𝑢) + 𝜇𝑇𝑆(𝑥, 𝑢) 

s.t.       𝑥̇ = 𝐹(𝑥, 𝑢);    𝑥(0) = 𝑥0; 

𝜆̇𝑇 = −
𝜕𝐻

𝜕𝑥
,    𝜆𝑇(𝑡𝑓) =

𝜕𝜙

𝜕𝑥
|

𝑡𝑓

+ 𝜐𝑇 𝜕𝑇

𝜕𝑥
|

𝑡𝑓

;                                                       

                                                                𝜇𝑇𝑆 = 0; 𝜐𝑇𝑇 = 0                                                 (2) 

where H is the Hamiltonian function,  is the nx-dimensional vector of Lagrange multipliers 

(also called co-states or adjoints) for the system equations,  is the nS-dimensional vector of 

Lagrange multipliers for the path constraints, and 𝜐 is the nT-dimensional vector of Lagrange 

multipliers for the terminal constraints. 𝜇𝑇𝑆 = 0 and 𝜐𝑇𝑇 = 0 are the complementary slackness 

conditions that will be satisfied at the optimum. Moreover, the following necessary conditions 

must hold at any optimum of H: 

                                             
𝜕𝐻(𝑡)

𝜕𝑢
= 𝜆𝑇 𝜕𝐹

𝜕𝑢
+ 𝜇𝑇 𝜕𝑆

𝜕𝑢
= 0                                                         (3)                                 

                                                  𝐻(𝑡𝑓) = (𝜆𝑇𝐹 + 𝜇𝑇𝑆)|𝑡𝑓
= 0                                               (4) 

      Eq. 3 indicates that the partial derivatives of the Hamiltonian function with respect to the 

inputs must all be equal to zero at an optimum. If the final time of the dynamic optimization 

problem is fixed, then Eq. 4 (called transversality condition) is not required (Biegler, 2010). Note 

that, for each input 𝑢𝑖, the first term on the right-hand side of Eq. 3 is the switching function, 

𝑠𝑢𝑖
: = 𝜆𝑇 𝜕𝐹

𝜕𝑢𝑖
 , which can be used to determine whether a given arc of the input 𝑢𝑖(𝑡) is constraint-

seeking (𝑠𝑢𝑖
≠ 0) or sensitivity-seeking (𝑠𝑢𝑖

= 0). 
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      Assuming that the system and adjoint equations are differentiable, the proposed solution 

strategy is as follows: 

1) Cast the problem into the solution of differential equations for both the states and the co-

states. The latter are obtained by differentiation of the Hamiltonian function with respect 

to the states as given in Eq. 2. The Matlab Symbolic Toolbox can be used for this 

purpose. This is only necessary for the initialization of the problem.  

2) Use indirect adjoining to deal with pure-state path constraints of the form S(x) ≤ 0. In this 

method, the state constraints are differentiated with respect to time until at least one of the 

inputs appears explicitly (Hartl et al., 1995). The resulting expression is S{n}(x,u) ≤ 0, 

where n represents the relative degree of a constraint with respect to an input, that is, the 

number of differentiations required for an input to appear explicitly (Srinivasan & 

Bonvin, 2007). Then, instead of the original state constraints S(x) ≤ 0, the differentiated 

version S{n}(x,u) ≤ 0 is used to construct the Hamiltonian. The method helps dealing with 

path constraints when they become active (Onori et al., 2016). Consequently, the 

Hamiltonian function reads 𝐻(𝑡) = 𝜆𝑇𝐹(𝑥, 𝑢) +  𝜇𝑇𝑆{𝑛}(𝑥, 𝑢). Because of the 

complementary slackness 𝜇𝑇𝑆{𝑛}(𝑥, 𝑢) = 0, the penalty term 𝜇𝑇𝑆{𝑛}(𝑥, 𝑢) vanishes when 

all the constraints are satisfied. However, if some of the constraints are not satisfied 

during the course of optimization, the penalty term 𝜇𝑇𝑆{𝑛}(𝑥, 𝑢) will be positive, thereby 

forcing convergence to occur through the feasible region.  

Remark 1. Input saturation can also be implemented such that 

 𝑢(𝑡) = {
𝑢𝑚𝑖𝑛, if a lower constraint is violated
𝑢𝑚𝑎𝑥 , if an upper constraint is violated

 . 

3) Discretize the input profiles as u(t) = U(U)where U is a (nu x N) matrix that contains N 

discrete input values for the nu inputs. For example, the input profiles can be 
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approximated by piecewise-constant functions. The choice of N will depend on the nature 

of the problem.  

4) Initialize U corresponding to the initial input profiles, and first integrate the state equation 

forward in time. Then, integrate the co-state equations backward in time. 

5) Discretize the Lagrange multiplier vectors as tMMwhere M is a (nS x N) 

matrix. If the condition 𝑆𝑗
{𝑛}(𝑥, 𝑈(. , 𝑘)) = 0 is satisfied at the discrete time instant k, set 

(j,k)=K > 0, and compute the value of U(.,k) that makes 𝑆𝑗
{𝑛}(𝑥, 𝑈(. , 𝑘)) =

0Otherwise, set (j,k)=  (Harvey Jr et al., 2012).  

Remark 2. Here, the choice of the value of K is arbitrary. Yet, (Onori et al., 2016) 

suggested to choose K as large as possible to guarantee the feasibility of the path 

constraints.  

6) Update the input values U via optimization until a pre-defined optimality criterion is 

satisfied, such as the threshold value  for 𝑛𝑜𝑟𝑚(
𝜕𝐻

𝜕𝑈
). A quasi-Newton algorithm is 

proposed for optimization. Adjoining the inequality path constraints into the Hamiltonian 

enables the original constrained optimization problem to be solved as an unconstrained 

problem. Furthermore, the penalty terms 𝜇𝑇𝑆{𝑛}(𝑥, 𝑢) ensure that the update direction 

goes through the feasible region. Because the use of a Hessian might be problematic and 

result in singularities, a robust BFGS update algorithm that ensures the positive-

definiteness of the Hessian matrix is used (Biegler, 2010). Furthermore, the Hessian 

matrix is updated if the iteration is inside the feasible region. Otherwise, the Hessian 

matrix remains the same, and the optimization direction is set as 𝛼 (
𝜕𝐻

𝜕𝑈
), that is, a 

steepest-descent algorithm is used.  
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The optimization algorithm can be formulated as follows: 

PMP-based Quasi-Newton Optimization Algorithm  

Initialize the iteration counter ℎ = 0 and the corresponding input elements 𝑈0  and the 

Hessian matrix 𝐵0 ∶= 𝑰. 

      for h = 1    ∞  

I. Solve the state equations by forward integration and the co-state equations by 

backward integration. If the j-th constraint is satisfied at the discrete time instant k, 

set 𝑀ℎ (j,k) ∶=Otherwise, set 𝑀ℎ(j,k)∶= K > 0, for k=1,..,N. 

II. Compute the value of the first-order gradients (
𝜕𝐻

𝜕𝑈
)ℎ by using pre-computed 

analytical expressions. 

III. If all constraints are satisfied, set 𝑈ℎ+1 ∶= 𝑈ℎ − 𝛼(𝐵ℎ
−1 𝜕𝐻

𝜕𝑈
)ℎand update the 

Hessian matrix Bh as follows:

𝑦 ∶= ∇𝐻( 𝑈ℎ+1) − ∇𝐻( 𝑈ℎ),  𝑠 ∶= 𝑈ℎ+1 −  𝑈ℎ , 

if  𝑠𝑇𝑦 ≥ 𝛽‖𝑠‖2, set 𝐵ℎ+1 ∶= 𝐵ℎ +
𝑦𝑦𝑇

𝑠𝑇𝑦
−

𝐵ℎ𝑠𝑠𝑇𝐵ℎ

𝑠𝑇𝐵ℎ𝑠
 ,  

else set 𝐵ℎ+1 ∶= 𝐵ℎ  

end if 

else set 𝑈ℎ+1 ∶=  𝑈ℎ − 𝛼(
𝜕𝐻

𝜕𝑈
)ℎ and 𝐵ℎ+1 ∶= 𝐵ℎ, and compute the value of U(.,k) 

that makes the violated path constraint 𝑆𝑗
{𝑛}(𝑥, 𝑈(. , 𝑘)) = 0 at the discrete time 

instant k.  

end if

IV. If 𝑛𝑜𝑟𝑚(
𝜕𝐻

𝜕𝑈
)h <and  ℎset 𝑈𝑜𝑝𝑡 ∶=  𝑈ℎ , stop
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         end for 

Remark 3. Since the choice of K is arbitrary, the computed gradients might be ill 

conditioned. To avoid this, the gradients used in the optimization are scaled. 

Remark 4. Regarding the choice of the step size , values between 0.01 and 0.1 are 

usually effective for scaled problems. 

Remark 5. The optimal solution often contains active constraints. However, if the 

proposed algorithm computes 𝑀1 = 0 at the first iteration, it is likely that the iterative 

scheme converges to a sub-optimal solution with all the constraints satisfied but inactive. 

To prevent this, a threshold on the number of iterations (e.g., ℎ) is used, which 

would enable the algorithm to search for active constraints. With the examples given in 

this paper, it is observed that 35 iterations suffice; however, for difficult problems, larger 

values might be necessary. 

Remark 6. A line-search algorithm can also be used as opposed to a fixed step size. 

Furthermore, constraint softening is highly recommended, because errors due to 

numerical integration or round off might contribute to larger convergence times. 

 

 

3. CASE STUDIES 

      For illustrating the application of the proposed methodology to the dynamic optimization of 

constrained fed-batch processes, three case studies are presented in this section. The first problem 

is a dynamic reactor optimization taken from (Srinivasan et al., 2003). The second problem is the 

dynamic optimization of a batch binary distillation column with terminal purity constraints. The 
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third problem involves the dynamic optimization of a complex fed-batch chemical process taken 

from (Hentschel et al., 2015).  

All problems were solved using both a direct simultaneous method and the indirect PMP-based 

quasi-Newton proposed in this work. The CasADi toolbox (Andersson & Diehl, 2012) was 

applied for the implementation of the direct simultaneous method, along with the nonlinear 

programming solver IPOPT (Wächter & Biegler, 2006). All computational results, including the 

initialization of the problems, were obtained with an Intel i-3-2100 machine (CPU 3.10 GHz 4 

GB RAM). 

3.1. PROBLEM - 1: Non-isothermal semi-batch reactor with a heat-removal constraint  

      Consider a fed-batch reactor in which the following series reactions take place:       

𝐴 + 𝐵
𝑘1
→ 𝐶

𝑘2
→ 𝐷 (5) 

The objective is to maximize the molar content of the desired product 𝐶 at a specified final time 

(Srinivasan et al., 2003). The two inputs are the feedrate of 𝐵, 𝑢(𝑡), and the reactor temperature, 

𝑇(𝑡). The path constraints include input bounds as well as upper limits on the heat generated by 

the chemical reactions, qrx, and the reactor volume, V. Note that an energy balance is not 

considered explicitly, but the temperature effect is included in qrx as proposed by (Srinivasan et 

al., 2003). The final time 𝑡𝑓 is fixed at 0.5 h. Accordingly, the optimization problem can be 

formulated as follows: 

                                                               max
𝑢(𝑡),𝑇(𝑡)

𝐽 = 𝑐𝑐(𝑡𝑓)𝑉(𝑡𝑓) 

                               s.t. 

𝑐𝐴̇ = −𝑘1𝑐𝐴𝑐𝐵 −
𝑢

𝑉
𝑐𝐴;         𝑐𝐴(0) = 𝑐𝐴0 ; 
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𝑐𝐵̇ = −𝑘1𝑐𝐴𝑐𝐵 +
𝑢

𝑉
(𝑐𝐵,𝑖𝑛 − 𝑐𝐵);       𝑐𝐵(0) = 𝑐𝐵0 ; 

𝑐𝐶̇ = 𝑘1𝑐𝐴𝑐𝐵 − 𝑘2𝑐𝐶 −
𝑢

𝑉
𝑐𝐶  ;       𝑐𝐶(0) = 𝑐𝐶0 ; 

𝑉̇ = 𝑢 ;     𝑉(0) = 𝑉0 ; 

𝑘1 = 𝑘10𝑒
−𝐸1
𝑅𝑇  ;            𝑘2 = 𝑘20𝑒

−𝐸2
𝑅𝑇  ; 

𝑇𝑚𝑖𝑛 ≤ 𝑇(𝑡) ≤ 𝑇𝑚𝑎𝑥 ; 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 ; 

(−∆𝐻1)𝑘1𝑐𝐴(𝑡)𝑐𝐵(𝑡)𝑉(𝑡) + (−∆𝐻2)𝑘2 𝑐𝐶(𝑡)𝑉(𝑡) ≤ 𝑞𝑟𝑥,𝑚𝑎𝑥 ; 

                                                                  𝑉(𝑡) ≤ 𝑉𝑚𝑎𝑥                                                               (6) 

 

      The model parameters, initial conditions and constraints are given in Table 2. 

Table 2. Model parameters, initial conditions and constraints for Problem 1. 

𝑘10 4    l/(mol h) 𝑇𝑚𝑖𝑛 293.15  K 

𝑘20 800    l/h 𝑇𝑚𝑎𝑥 323.15 K 

𝐸1 6×10
3
    J/mol 𝑉𝑚𝑎𝑥 1.1    L 

𝐸2 20×10
3
    J/mol 𝑞𝑟𝑥,𝑚𝑎𝑥 1.5×10

5
    J/h 

𝑅 8.314 J/(mol K) 𝑐𝐴0 10    mol/L 

∆𝐻1 -3×10
4
    J/mol     𝑐𝐵0 1.1685    mol/L 

∆𝐻2 -10
4
    J/mol     𝑐𝐶0 0    mol/L 

𝑢𝑚𝑖𝑛 0    L/h 𝑉0 1    L 

𝑢𝑚𝑎𝑥 1    L/h 𝑐𝐵,𝑖𝑛 20    mol/L 
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Computed optimal solutions 

 There are several local solutions, three of which are given analytically by (Binette et al., 2016). 

In fact, any feasible combination of the arcs (umin, upath, umax) and (Tmin, Tpath, Tsens, Tmax) 

described in that paper can be a local solution to the problem.  

      The optimal input and state profiles computed with different numerical techniques are given 

in Figs 1 and 2. Fig. 1 shows the PMP-based solutions for the discretization levels N=50 and 

N=500, along with the analytical solution 2 (Binette et al., 2016). The parameter values = 

0.025,  = 50 and = 0.05 are used in the PMP-based approach. Similarly, Fig. 2 shows the 

direct simultaneous solution for N=50 and N=500 along with the analytical solution 3 (Binette et 

al., 2016). A few remarks are given at this point: 

1. Although all strategies converge to a solution with nearly the same cost (between 2.050 

and 2.053 moles of reactant B, as seen in Table 3), there are significant differences in the 

computed optimal profiles, which is an indication that the two numerical strategies 

converge to different local solutions.  

2. The heat-removal constraint is active during the first part of the run. The volume 

constraint is active in the second part of the run (batch mode with zero feed). 

3. With the PMP-based solution strategy, the input profiles are not too close to the analytical 

solution 2 in the second arc characterized by 𝑇𝑠𝑒𝑛𝑠. This is due to the lack of sensitivity of 

the objective function with respect to the inputs. 

4. In the direct simultaneous solution for N=50, the heat-removal constraint is not active 

initially because the time discretization is too coarse. However, the constraint becomes 

active when N is increased.  
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Figure 1. Optimal input and state profiles computed via the PMP-based method and the 

analytical solution 2 for Problem 1. 
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Figure 2. Optimal input and state profiles computed via the direct simultaneous method and the 

analytical solution 3 for Problem 1. 
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      The switching functions 𝑠𝑢 and 𝑠𝑇 computed at the optimal solution are given in Figs 3 and 4 

for the PMP-based solution and the direct simultaneous solution, respectively. One can see that 

𝑠𝑢 is never zero, which means that the feed rate u is never sensitivity seeking. In contrast, 𝑠𝑇 = 0 

in certain intervals, which are therefore sensitivity seeking.  

  

Figure 3a. Switching function su for the PMP-

based solution and the analytical solution 2. 

 

Figure 3b. Switching function sT for the PMP-

based solution and the analytical solution 2.  

 

 

  

 

Figure 4a. Switching function su for the direct 

simultaneous solution and the analytical 

solution 3.  

 

Figure 4b. Switching function sT for the direct 

simultaneous solution and the analytical 

solution 3.  
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Table 3. Comparison of the indirect PMP-based, direct simultaneous and analytical solution 

strategies for Problem 1.  

Optimization 

Strategy 

       Solution Structure 

Arc 1 Arc 2 Arc 3 Arc 4 Arc 5 

Indirect PMP-based 

N=50, J=2.050 

N=500, J=2.051 

 

Analytical Solution 2 

J=2.050 

upath 

Tmax 

upath 

Tsens  

umin 

Tpath 

umin 

Tmax 

umin 

Tsens 

Direct simultaneous 

N=50, J=2.051 

N=500, J=2.053 

 

Analytical Solution 3 

J=2.053 

umax 

Tpath 

upath 

Tmin 

umin 

Tpath 

umin 

Tmax 

umin 

Tsens 

 

      The comparison of the cost values and solution structures obtained with the various strategies 

are given in Table 3. The two numerical schemes converge to different solutions, which happen 

to be the analytical solution 2 and 3 given in Binette et al. (2016). The PMP-based solution 

suggests that the reactor temperature profile starts at its upper bound, with the feed rate u(t) 

adjusted to satisfy the heat-removal constraint. Then, the temperature follows Tsens(t) to find a 

compromise between producing much of the desired C and not too much of the undesired by-

product D. Once the reactor is completely filled, the feed rate is set to zero and the temperature 

adjusted to still keep the path constraint active. Once Tmax is reached, the temperature is kept 

there until there is some advantage in reducing it and following Tsens(t) again. Although the input 

profiles of the PMP-based solution and the analytical solution 2 (Binette et al., 2016) are 

different, the arc types and sequence are exactly the same.  



18 

 

On the other hand, the direct simultaneous solution comes fairly close to the analytical solution 3. 

Optimal operation starts with maximal feeding of reactant B, with the temperature being used to 

meet the heat-removal constraint. When the minimal temperature is reached, it is kept there, and 

the feed rate is adjusted to keep the path constraint active. Once the reactor is filled, the feed rate 

is set to zero and the temperature is increased to still keep the path constraint active. From that 

point on, the sequence of arcs is the same as for the PMP-based solution. 

 

Figure 5. Computational times for different discretization levels N of Problem 1. 

      Fig. 5 shows the computational time required to obtain the solution with the PMP-based and 

direct simultaneous methods. It is clearly seen that the PMP-based method requires significantly 

less computational time when the grid gets finer. 

3.2. PROBLEM - 2: Binary batch distillation column with terminal purity constraints 

      The optimization of batch distillation columns using PMP is well documented in the 

literature. For example, (Coward, 1967) solved a time-optimal problem for a binary batch 

distillation column using PMP. The solution was based on an adaptive shooting strategy that 

requires good initial guesses for the adjoints and therefore is difficult to implement. (Mayur & 
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Jackson, 1971) studied PMP for binary and multicomponent batch distillation problems with 

adaptive solution techniques. (Welz et al., 2005) used the PMP-based necessary conditions of 

optimality to design an implicit optimization scheme for a binary batch distillation column. In the 

present paper, we propose to compare the PMP-based quasi-Newton method with a direct 

simultaneous approach to optimize the operation of a binary batch distillation column. 

      Consider a batch distillation column with only three equilibrium plates, in which the 

components A and B (more volatile) are separated from each other. The objective is to maximize 

the molar amount of B in the distillate for a given batch time, while satisfying the terminal purity 

constraints of at least 80 mol.% of B in the distillate and at most 20 mol% of B in the bottom 

product. The final time 𝑡𝑓 is fixed at 3.0 h. The only path constraints are input bounds on the 

reflux ratio. 

       A schematic of the column is given in Fig. 6, with the molar amounts 𝐵 and 𝐷 in the bottoms 

and in the distillate tank, respectively, the vapor flow rate 𝑉 and the liquid flow rate 𝐿 in the 

column. The internal reflux ratio 𝑟 =
𝐿

𝑉
 is the input variable. Assuming perfect mixing on all 

stages, negligible vapor hold-up, constant vapor flow through the column, total condensation in 

the condenser of negligible hold-up, constant liquid hold-up on all trays and constant relative 

volatility, the optimization problem can be stated as follows: 

  max
𝑟(𝑡)

   𝐽 = 𝐷(𝑡𝑓) 

                       s.t. 

𝐷̇ = 𝑉(1 − 𝑟);     𝐷(0) = 0; 

𝐵̇ = 𝑉(𝑟 − 1 );     𝐵(0) = 𝐵0; 

𝑥̇𝐵 =
𝑉

𝐵
(𝑥𝐵 − 𝑦𝐵 + 𝑟(𝑥1 − 𝑥𝐵));     𝑥𝐵(0) = 𝑥𝐵0

; 
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𝑥̇𝑘 =
𝑉

𝑀
(𝑦𝑘−1 − 𝑦𝑘 + 𝑟(𝑥𝑘+1 − 𝑥𝑘));     𝑥𝑘(0) = 𝑥𝐵0

;   𝑘 = 1, . . . ,3; 

𝑥̇𝐷 =
𝑉(1−𝑟)

𝐷
(𝑦3 − 𝑥𝐷);     𝑥𝐷(0) = 𝑥𝐵0

; 

𝑦0 = 𝑦𝐵;       𝑥4 = 𝑦3;     𝑦𝑘 =
𝛼𝑥𝑘

1+(𝛼−1)𝑥𝑘
;    𝑘 = 𝐵, 1, . . . ,3; 

𝑥𝐷(𝑡𝑓) ≥ 0.8; 

𝑥𝐵(𝑡𝑓) ≤ 0.2; 

                                                         0 ≤ 𝑟(𝑡) ≤ 1                                                 (7) 

where 𝐵0 is the initial charge, 𝑥𝐵0
 the mole fraction of B in the initial charge, 𝑥𝑘 the mole 

fraction of B in the liquid phase of the 𝑘-th tray, 𝑦𝑘 the mole fraction of B in the vapor phase 

leaving the k-th tray, 𝑥𝐷 the mole fraction of B in the distillate tank, 𝑥𝐵 the mole fraction of B in 

the bottoms, 𝑦𝐵 the mole fraction of B in the vapor leaving the bottoms, 𝛼 the relative volatility, 

and 𝑀 the liquid hold-up on each tray. The material balances are written in terms of the more 

volatile component B. The trays are numbered from the bottom to the top of the column. Because 

of total condensation, the composition of the refluxed liquid is equal to the vapor composition 

leaving the upper plate. It is also assumed that all plates are initially charged with the same liquid 

mixture as the reboiler and thus the initial concentration of B on each tray is 𝑥𝐵0
. The dynamic 

column model has 7 state variables and a single input. The model parameters and initial 

conditions are given in Table 4.  
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Figure 6. Schematic of the batch distillation column.  

Table 4. Model parameters and initial conditions for Problem 2. 

Vapor flow rate, 𝑉 50 kmol/h 

Relative volatility, 𝛼 2.25 

Initial charge, 𝐵0 115 kmol 

Concentration of B in the charge, 𝑥𝐵0
 0.4 

Molar hold-up per plate, 𝑀 5 kmol 

 

Computed optimal solutions 

      The input vector is parameterized using N equidistant piecewise-constant elements. The 

terminal constraints are enforced in the PMP-based solution by setting the final values of the 

adjoints as stated in Eq. 2. The parameter values = 0.1,  = 100 and = 0.05 are used in the 

PMP-based approach. 

Fig. 7 shows the optimal input and state profiles computed with the two strategies for the 

discretization level N=500. One sees that both the PMP-based and the direct simultaneous 
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solutions converge to a 3-arc solution. Both solutions suggest total reflux in the beginning to 

increase the composition at the top of the column. Then, they both follow a sensitivity-seeking 

arc to produce as much distillate as possible with the required purity. Finally, a short third arc 

with zero reflux is used to recover the high-purity material that is still in the column.  

The corresponding switching functions are shown in Fig. 8. The following remarks can be made: 

1. Since there are no path constraints besides the input bounds, the only possible arcs are 

𝑟𝑚𝑎𝑥, 𝑟𝑚𝑖𝑛 and 𝑟𝑠𝑒𝑛𝑠. 

2. Although the two numerical schemes lead to the same sequences and types of arcs, 

namely 𝑟𝑚𝑎𝑥, followed by 𝑟𝑠𝑒𝑛𝑠 and 𝑟𝑚𝑖𝑛, and nearly the same optimal cost 𝐽 (cf. Table 5), 

the computed input profiles are noticeably different. This is due to the lack of sensitivity 

of the objective function with respect to the input 𝑟𝑠𝑒𝑛𝑠(𝑡). This is a common feature of 

sensitivity-seeking arcs, which significantly complicates the numerical computation of 

optimal solutions. 
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Figure 7. Optimal input and state profiles computed via the PMP-based method and the direct 

simultaneous strategy for Problem 2. 

 

 

Figure 8. Switching function sr for Problem 2. 
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Table 5. Comparison of the indirect PMP-based and direct simultaneous strategies for Problem 2.  

Optimization Strategy 

Solution Structure 

Arc 1 Arc 2 Arc 3 

Indirect PMP-based  

N=50, J=40.01 kmol 

N=500, J=40.02 kmol 

rmax rsens rmin 

Direct simultaneous 

N=50, J=40.02 kmol 

N=500  J=40.03 kmol 

rmax rsens rmin 

 

      Finally, Fig. 9 compares the computational times needed for the two numerical schemes as 

functions of the discretization level. One sees that the indirect PMP-based method has a clear 

advantage when finer grids are applied. 

 

Figure 9. Computational times for different discretization levels of Problem 2. 
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3.3. PROBLEM - 3: Fed-batch hydro-formylation reactor with path constraints  

      Consider the optimization of a fed-batch reactor to maximize the production of n-tridecanal 

(nC13al) from 1-dodecene (nC12en) that reacts with syngas (𝐻2 + 𝐶𝑂). The reaction network is 

illustrated in Fig. 10 (Hentschel et al., 2015).  

    

Figure 10. Hydroformulation reaction network. 

A stirred tank reactor with gas feeding is used in semi-batch mode of operation. The input 

variables are the reactor temperature 𝑇(𝑡) and the feedrate 𝑢(𝑡) of syngas (𝐻2 + 𝐶𝑂.) The gas 

and liquid phases are modeled as ideally mixed phases. The model parameters have been trained 

and validated using experimental data (Hentschel et al., 2015). The aim is to maximize the 

concentration of n-tridecanal (nC13al) at a specified final time. In addition to the bounds on the 

input variables, the total pressure of the gas phase must be kept within specified limits. The 

dynamic optimization problem is formulated as follows: 
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max
𝑢(𝑡),𝑇(𝑡)

𝐽 = 𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓) 

                   s.t. 

𝑐̇𝑙𝑖𝑞,𝑖 = 𝑗𝑖
𝐺𝐿 + 𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡 ∑ 𝑣𝑗,𝑖𝑟𝑗𝑗∈R  ;       𝑐𝑙𝑖𝑞,𝑖(0) = 𝑐𝑙𝑖𝑞,𝑖0;    i=1, 2,…,7; 

𝑝̇𝑖 =
𝑅𝑇

𝑉𝑔𝑎𝑠
(𝑢 𝑥𝑖 − 𝑉𝑙𝑖𝑞 𝑗𝑖

𝐺𝐿)   (𝑖 ∈ 𝑔𝑎𝑠) ;    𝑝𝑖(0) = 𝑝𝑖0 ;   𝑥𝑖  =  0.5 (
mol

mol
) ;    i = 1, 2; 

𝑗𝑖
𝐺𝐿 = {

(𝑘𝐿𝑎)𝑖(𝑐𝑖
∗ − 𝑐𝑙𝑖𝑞,𝑖), (𝑖𝑓 𝑖 ∈ 𝑔𝑎𝑠);    i = 1, 2

0,            (𝑒𝑙𝑠𝑒);    i = 3,4, … ,7
 ;      

𝑟1 =
𝑘1,0(𝑇)𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2

𝑐𝐶𝑂

1 + 𝐾1,1𝑐𝑛𝐶12𝑒𝑛 + 𝐾1,2𝑐𝑛𝐶13𝑎𝑙 + 𝐾1,3𝑐𝐻2

 ; 

𝑟2 =

𝑘2,0(𝑇)(𝑐𝑛𝐶12𝑒𝑛 −
𝑐𝑖𝐶12𝑒𝑛

𝐾𝑝,2
)

1 + 𝐾2,1𝑐𝑛𝐶12𝑒𝑛 + 𝐾2,2𝑐𝑖𝐶12𝑒𝑛
 ; 

𝑟3 =

𝑘3,0(𝑇)(𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2
−

𝑐𝑛𝐶12𝑎𝑛

𝐾𝑝,3
)

1 + 𝐾3,1𝑐𝑛𝐶12𝑒𝑛 + 𝐾3,2𝑐𝑛𝐶13𝑎𝑛 + 𝐾3,3𝑐𝐻2

 ; 

𝑟4 = 𝑘4,0(𝑇)𝑐𝑖𝐶12𝑒𝑛𝑐𝐻2
 ; 

𝑟5 = 𝑘5,0(𝑇)𝑐𝑖𝐶12𝑒𝑛𝑐𝐻2
𝑐𝐶𝑂 ; 

𝑟6 = 𝑘6,0(𝑇)𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2
𝑐𝐶𝑂 ; 

 𝑘𝑗(𝑇) = 𝑘0,𝑗 exp (−
𝐸𝐴,𝑗

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) ;  

𝐾𝑝,𝑗 = exp (
−Δ𝐺𝑗

𝑅𝑇
) ; 

−Δ𝐺𝑗 = 𝑎0,𝑗 + 𝑎1,𝑗𝑇 + 𝑎2,𝑗𝑇2 ; 

𝑐𝑐𝑎𝑡 =
𝑐𝑐𝑎𝑡,𝑡𝑜𝑡

1 + 𝐾𝑐𝑎𝑡,1𝑐𝐶𝑂
𝐾𝑐𝑎𝑡,3 + 𝐾𝑐𝑎𝑡,2

𝑐𝐶𝑂
𝐾𝑐𝑎𝑡,3

𝑐𝐻2

 ; 

𝑐𝑖
∗ =

𝑝𝑖

𝐻𝑖
 ; 
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𝐻𝑖 = 𝐻𝑖
0 exp (

−𝐸𝐴,𝐻,𝑖

𝑅𝑇
) ; 

𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑝𝐻2
(𝑡) + 𝑝𝐶𝑂(𝑡) ; 

1 𝑏𝑎𝑟 ≤ 𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) ≤ 20 𝑏𝑎𝑟 ; 

0 ≤ 𝑢(𝑡) ; 

                                                     368.15 K  ≤ 𝑇(𝑡) ≤ 388.15 K                                                (8) 

 

where i represents the component index (i=1,2,…,7 for the liquid phase and i=1,2 for the gas 

phase), j stands for the reaction index and R is the reaction set. The final time 𝑡𝑓 is fixed at 80 

min. All related parameters are given in Table 6. Equal molar content of CO and H2 in the syngas 

is assumed. The liquid volume 𝑉𝑙𝑖𝑞 and the gas volume 𝑉𝑔𝑎𝑠 inside the reactor are assumed 

constant, namely 900 mL each. The initial molar amount of the main reactant 1-dodecene is 0.85 

mol, while all other initial conditions for the chemical species in the liquid phase are set to zero. 

The initial partial pressures of the CO and H2 in the gas phase are 10 bar.  
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Table 6. Model parameters for Problem 3. 

Reaction Kinetics 

component 

𝐸𝐴 

(kJ/mol) 

𝑘0 Unit 

𝐾1 

(mL/mol) 

𝐾2 

(mL/mol) 

𝐾3 

(mL/mol) 

𝑟1 113.08 4.904×10
16 

mL
3
/(g.min.mol

2
) 574876 3020413 11732838 

𝑟2 136.89 4.878×10
16

 mL/(g.min) 38632 226214  

𝑟3 76.11 5.411×10
8
 mL

2
/(g.min.mol) 2661.2 7100 1280 

𝑟4 102.26 2.958×10
4
 mL

2
/(g.min.mol)    

𝑟5 120.84 7.619×10
10

 mL
3
/(g.min.mol

2
)    

𝑟6 113.08 3.951×10
10

 mL
3
/(g.min.mol

2
)    

𝑐𝑐𝑎𝑡    3.041×10
4
 0 0.644 

Equilibrium Constants 

component 𝑎0 (kJ/mol) 𝑎1 (kJ/mol/K) 𝑎2 (kJ/mol/K
2
) 

Δ𝐺2 -11.0034 0 0 

Δ𝐺3 -126.275 0.1266 6.803×10
-6

 

Solubility 

component 𝐻0 (bar.mL/mol) 𝐸𝐴,𝐻(kJ/mol) 𝑘𝐿𝑎 (min
-1

) 

H2 66400 -3.06 9.57 

CO 73900 -0.84 7.08 
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Computed optimal solutions 

            The parameter values = 0.02,  = 100 and = 0.05 are used in the PMP-based 

approach. Due to the lack of sensitivity of the cost function with respect to the fine shape of the 

input profiles in some of the arcs, a relatively fine input discretization (N ≥ 100) is necessary for 

accurate results. The optimal input trajectories and the corresponding concentration of the desired 

product and total pressure are given in Fig. 11 for N=500. The temperature is initially at the 

lower bound to favor the desired reaction. With the effect of gas feeding, the concentration of the 

desired product increases and approaches its maximal value after about 50 min. Then, the 

temperature is set to its upper limit to suppress the undesired side reactions. This results in a 

relatively small increase in the concentration of n-tridecanal in the last part of the batch run.  

The switching functions 𝑠𝑢 and 𝑠𝑇 are illustrated in Fig. 12. The solution structure and the 

performance of both numerical schemes for two discretization levels are given in Table 7. 
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Figure 11. Optimal input and state profiles computed via the PMP-based method and the direct 

simultaneous strategy for Problem 3. 
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Table 7. Comparison of the indirect PMP-based and direct simultaneous strategies for Problem 3. 

Algorithm 

Solution Structure 

Arc 1 Arc 2 Arc 3 

Indirect PMP-based 

N=100, J=0.593 mol/L 

N=500, J=0.595 mol/L 

upath 

Tmin 

upath 

Tsens 

upath 

Tmax 

Direct simultaneous 

N=100, J=0.595 mol/L 

N=500, J=0.596 mol/L 

upath 

Tmin 

upath 

Tsens 

upath 

Tmax 

     

    A few remarks can be made at this point: 

1. Both numerical schemes exhibit a 3-arc solution for different discretization levels as 

shown in Table 7. 

2. The pressure upper bound is active throughout the batch run. This is enforced by adjusting 

the gas feed rate u(t), which is therefore constraint seeking throughout. Toward the end of 

the batch, the feed rate is very close, but not exactly equal, to zero. 

3. There is a significant difference in the two sensitivity-seeking temperature profiles. 

Again, this is due to the lack of sensitivity of the objective function with respect to the 

temperature 𝑇𝑠𝑒𝑛𝑠(𝑡). 
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Figure 12. Switching functions 𝑠𝑢 and  𝑠𝑇 obtained for Problem 3.    

 

Figure 13. Computational times for different discretization levels of Problem 3.  
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      Fig. 13 shows that the computational time of the PMP-based strategy is significantly shorter 

than that of the direct simultaneous method. 

4. CONCLUSIONS 

      A PMP-based quasi-Newton algorithm has been proposed for solving constrained dynamic 

optimization of semi-batch chemical processes. This algorithm constructs the Hamiltonian 

function by indirectly adjoining the inequality path constraints via their time derivatives so that 

the inputs u can be easily enforced to fulfill the active path constraints at each iteration step. 

Symbolic differentiation of the Hamiltonian function with respect to the states is only necessary 

at the initialization step. The results show that the proposed PMP-based quasi-Newton algorithm 

can solve the investigated constrained optimization problems significantly faster than direct 

simultaneous methods as the discretization grid gets finer. Our study also shows that, although 

there are only negligible differences between the optimal costs determined with various 

strategies, the actual input profiles can differ significantly and even correspond to different local 

solutions. The main reason for this observation is the lack of sensitivity of the objective function 

with respect to the sensitivity-seeking parts of certain inputs. Hence, it may be useful to 

parameterize these input profiles in a so-called parsimonious way, for example by using 

switching times and low-order polynomial approximations rather than piecewise-constant or 

piecewise-linear approximations. 
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