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Highlights  
 We propose a semantic approach for establishing the interoperability between models and 

data.  

 Introduction of input/output matching as a mean of integration based on the structure of 
domain ontology.  

 The algorithm is implemented as a service.  

 Demonstration of performance is achieved using a real-life biorefining modelling scenario.  
  



 

Abstract  

This paper introduces a new paradigm for establishing a framework that enables interoperability 

between process models and datasets using ontology engineering. Semantics are used to model the 

knowledge in the domain of biorefining including both tacit and explicit knowledge, which supports 

registration and instantiation of the models and datasets. Semantic algorithms allow the formation 

of model integration through input/output matching based on semantic relevance between the 

models and datasets. In addition, partial matching is employed to facilitate flexibility to broaden the 

horizon to find opportunities in identifying an appropriate model and/or dataset. The proposed 

algorithm is implemented as a web service and demonstrated using a case study. 
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1. Introduction 
In computer aided process engineering (CAPE) community, increased availability of mainstream 

commercial and free simulation software, as well as data from laboratory experiments or pilots to 

near commercial scale plants, has facilitated the development of a large number of custom-made 

models. As, historically, most of the models were developed to represent petrochemical processes, 

modelling and simulation for biorefining processes are still facing challenges due to lack of 

biochemical property data, complexity of feedstock characterisation, as well as a constant influx of 

new processes and technologies or adaptation to new environments. To develop an understanding 

of biochemical processes or to provide suitable design, development of a database system to 

support modelling and analysis of biochemical processes is vital. The development of these models, 

as practice has demonstrated, goes along the development of new models, integration and/or 

adaptation of existing models, or most commonly the combination of the two.  

To increase reusability of existing models that are developed in disparate software tools and process 

simulators, CAPE-OPEN was initiated to conceptualise and develop a set of interface specifications as 

a method pertaining interoperability standard (Braunschweig et al. 2004; Morales-Rodríguez et al. 

2008; Pons 2010). As such, CAPE-OPEN is a widely recognised standard which defines the 

interconnection representation of interfaces facilitated by a middleware service as a communication 

hub across heterogeneous software environments (Braunschweig et al. 2000; Bogusch et al. 2000). 

To take full advantage of reusability of existing models, the task of identifying the most sufficient 

model from the libraries is heavily dependent on the user’s intuition and experience and remains as 

a manual process (Braunschweig et al. 2004). Yang et al. (2008) acknowledges that inadequate 

assessment for the suitability of models may lead to potential misuse of the models, which has the 

risk of insufficient or even wrong solution to the engineering problems. To better address the 

shortcoming associated with user intervention in CAPE-OPEN, ontology engineering is recognised as 

a viable solution to reduce the chance of these error occurring and to minimise the impact of any 

errors that do occur. Ontology has an ability to address the problem of automated support for the 

configuration of process models and data in a structured and proactive manner (Yang & Marquardt 

2004; Yang et al. 2008) by accounting for complex relations, such as systematic knowledge of model 

as well as tacit knowledge extracted from user intuition. A large scale ontology, the OntoCAPE, has 



as a result been introduced to support various process engineering applications, mainly addressing 

two aspects: i) characterisation of models stored in the libraries and ii) description of the specific 

requirements of the models to be identified as potential candidates. To address the reconciliation of 

interoperability between process modelling components, COGents was developed to perform the 

registration and integration of the models stored in the libraries. This method was the first attempt 

to integrate process modelling components from heterogeneous sources using ontologies as a tool 

in the field of process engineering. As indicated by Yang et al. (2008), the integration of the models 

they used was based on the full-scale matching. Partial matching which extends the search scope 

was first introduced by the eSymbiosis project to enable and hence to support processing 

technologies participation in Industrial Symbiosis (IS) and concomitant integration (Raafat et al. 

2012; Raafat et al. 2013; Cecelja et al. 2015). The framework employed semantic technologies to 

automate widely used manual procedure of synergy identification of IS by finding the semantic 

relevance of participant’s profile based on practical experience in the form of tacit knowledge and 

explicit knowledge acquired from users. The measure of semantic relevance requires obtaining 

appropriate description of processing technology to further use in the discovery process. To support 

these processes, the process of IS was semantically formulated in an IS domain ontology (Trokanas 

et al. 2012). Recently, a number of ontologies have been developed in the domain of biorefining, 

which focuses on the knowledge representation of biomass and bioprocessing technologies 

(Trokanas, Bussemaker, et al. 2015) and process systems design and optimisation of biorefining 

processes (Siougkrou & Kokossis 2016; Magioglou et al. 2015). These ontologies, however, although 

in the domain of biorefining do not address the process of model and data integration, and, to the 

best of our knowledge, they are not yet available in public domain for reuse.  

Following on previous developments and use of ontology to address challenges of identifying most 

suitable model or data to achieve the best solution for a particular engineering problem, ontology 

engineering is employed to describe them in a comprehensive manner to distinguish between them 

(Koo & Cecelja 2015; Koo et al. 2016). It has been demonstrated that the differences of models and 

data can be addressed by explicit descriptions using defined terms to further improve consistency as 

well as understanding of the heterogeneity and concomitant consequences. The semantically 

enriched and reconciled process models and data are then applicable to facilitate semantic 

interoperability between them. The semantic interoperability is achieved by employing different 

matchmaking algorithms to benefit from partial matching to measure a meaningful similarity 

between models that are not identical. We argue that this approach allows to improve the decision 

making process and broaden the horizon to find opportunities in identifying appropriate models 

and/or datasets whilst increasing awareness of existing models.  

This paper proposes a new paradigm for model and data integration with focus on biorefining and 

which is built around the ontology to i) model tacit knowledge in the domain of biorefining including 

the advances in biorefining process, biomaterial and technologies classifications, and ii) model 

explicit knowledge which includes a complete set of model input, output and auxiliary parameter 

properties, as well as known and otherwise identified potential model and data integration 

solutions. Tacit knowledge is built in the ontology structure (Cecelja et al. 2015), i.e. subsumption 

and object properties with respective and domain dictated restrictions. Explicit knowledge is 

captured during the instantiation process from data collected on model/data entities presented as 

ontology instances and characterised by input, output and auxiliary parameter properties. The 

proposed ontology enables instance matching with the view of model integration, expanding 

knowledge base, generating new knowledge in the process of model integration for biorefining, and 

knowledge sharing. Designed ontology is open to further development in response to advances in 

the domain of biorefining. The proposed matching algorithm is tuned to match models and data 



based on i) tacit knowledge formulation to observe process synthesis logic by employing semantic 

distance measurements between the two or more instances of the ontology, and ii) explicit 

knowledge formulation by employing similarity calculation between input/output parameters of 

candidate models/data identified suitable for integration. In addition, matching process allows for 

recursive matching towards complex model/data integration solutions, matching for integration of 

models developed in heterogeneous software environments to generate a meaningful solution for 

particular engineering tasks, as well as for partial matching to broaden the search domain and to 

find comparable replacement model rather than focusing only on an exact match. This paper 

explicitly formulates theoretical concept of knowledge model and design of ontology and matching 

algorithm, as well as auxiliary conditions used in the process of model/data integration. The 

usefulness and operation of the proposed formalism is demonstrated by a case study to guide the 

user to make an informed decision by taking into consideration of users’ intuition and their 

experience in modelling.  

 

2. Theoretical Concepts of Model and Data Integration 

2.1. Model and Data Representation  
A process model represents a part of the actual system in which physical and chemical processes are 

taking place and describes the behaviour of a process system within well-defined boundaries 

together with inputs and outputs and under certain environmental conditions as a requirement 

(Hangos & Cameron 2001). The process models used to address process modelling, simulation and 

optimisation problems are arguably classified into two distinct types i) sequential modular models, 

and ii) equation based models. Sequential modular models represent individual units as a pre-

configured block model where modelling equations are grouped to represent a particular process 

equipment. The sequence of calculation is initiated from one unit to the next in the process 

flowsheet through the process streams that connect the units using thermodynamics and physical 

property calculations. Equation based models are considered as custom modelling packages which 

have a set of equations from the various units in the process into a single large set to be solved.  

Each model is semantically described by its type, i.e. its functionality in terms of the process and/or 

unit it represents. In addition, each model is (semantically) described by requirements and other 

characteristics that form a comprehensive knowledge model (Koo et al. (2016)) which includes 

model input(s), output(s), precondition(s), and the environment in which each process model 

operates (Trokanas et al. 2014; Trokanas, Cecelja, et al. 2015). The inputs and outputs are not 

limited to physical properties and can be extended to additional data or other properties. The 

number of output variables can be purposely adjusted or extended to include additional data or 

parameters to consider the dynamic nature of models. Contrary to the models, data is semantically 

annotated with regards to output(s), functionality, and precondition(s) required to process data (Koo 

et al. 2016). 

2.2. Concept of Model Integration 
The integration of model and data is a process of assembling heterogeneous tools and methods to 

generate new knowledge that is meaningful and useful for particular engineering tasks. The CAPE-

OPEN interface specification (Belaud & Pons 2002) is developed as a standard requirement for the 

unit operation components (such as process unit operation, thermodynamics, and numerical solvers 

packages) to be compliant with any simulator without modification, compiling, or linking. The 



standard mainly provides the details for the interface specifications of sequential modular simulators 

and the granularity of the interface design was restricted to the unit operation level (CAPE-OPEN 

Project team 2000; van Baten & Pons 2014). 

The structure of unit is configured by a coupling through the different inlet and outlet ports where a 

unit can be connected to another unit, which is separated from the functional behaviour of the unit 

model (Figure 1). To achieve consistency across simulation platforms, the unit operation 

components are represented as a template that allows access to the stream and provides unit 

operation data of a flowsheet in a conceptual manner. A set of data to be exchanged from one unit 

to another is distinguished by three different types: material, energy, and information streams. In 

addition, the stream properties are characterised by thermodynamics and physical properties, e.g. 

composition, temperature, pressure, flow, etc., with associated variables describing quantitative 

properties, e.g. physical dimension, value, unit, etc. 

 

Figure 1 Conceptual representation of unit configuration via ports and internal connection of 

material stream 

The internal connection between unit operations is further characterised by the association of 

physical and/or thermodynamic properties with streams. The CAPE-OPEN has established the 

specification for the thermodynamic and physical properties of materials that are processed in a unit 

operation to encapsulate interchangeable concepts. The physical objects are represented as abstract 

material properties for both mixture and pure components, together with state of the physical 

object, e.g. temperature, pressure, enthalpy, volume, vapour fraction etc., and phase for which the 

property calculation is required. The CAPE-OPEN additionally provides lists for constant and non-

constant properties and lists of single and multi-phase properties including units and its conversion 

factor to SI units. 

We argue that model interoperability could be assessed and established in more flexible manner and 

hence propose the conceptual representation of model interoperability established by CAPE-OPEN 

to be translated into ontology. In turn and with the focus on biorefining, such an approach enables 

the development of a knowledge based platform for model and data integration through 

input/output matching. A higher degree of flexibility is achieved by introduction of a partial 

matching technique where the ‘equality requirements’ between input/output set of exchanged data 

is replaced by the ‘similarity requirements’. In consequence, we propose a framework where models 

are considered at a superstructure level and hence assumed to be a piece of software representing a 

(biorefining) unit or a process and which, using mathematical or otherwise algorithms, converts its 

input parameter(s) into one or more output parameters, all within certain environment. The inputs 
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to the model are not necessarily limited to physical parameters associated with the inputs to the 

process or unit they represent; the number and type of inputs to the model is normally extended to 

additional data and/or parameters the model needs to perform properly. By the same token, the 

number and type of model outputs could be deliberately or accidently extended to additional data 

or parameters the model provides and which could be useful to other models or purposes. Models 

are normally described and identified by their functionality of the processes or units they represent, 

but also further provide the association to respective synthesis problem.  Also, to run a model, it 

requires certain preconditions, i.e. particular application such as MatLab, GAMS, MS Excel, or 

synchronisation with other models. Both of these two aspects form the environment in which a 

model runs and by which it is also distinguished from other models (Figure 2a). 

 

a) Models                                                        b) Data 

Figure 2 Representation of models and data 

In contrast to models, data are contained in datasets external to models, and in relation to the 

execution of a model represent static values of process or unit parameters, characterised again as 

outputs. Dynamic aspects of data associated with its generation, modification and/or deletion will 

not be considered here. Data are also described by their ‘functionality’ and normally stored in 

datasets (databases) for which certain conditions should be provided to access and retrieve hence 

forming environmental conditions (Figure 2b). 

For the reason of consistency and uniformity, the model inputs and the model and data outputs and 

preconditions are characterised by respective input properties     
 , output properties     

 , as well as 

precondition or environment properties     
 , as shown in Figure 2. For the reason of clarity and the 

demonstration of the framework, the structure of the properties     
 ,     

  and     
  is assumed to be 

in the form of a single numerical or descriptive property. Later in this paper, this will be extended to 

composite format(s) with properties forming property-subproperty subsumption relation, as 

explained in Section 2.4. 

The key to model (and data) integration is the model/data semantic annotation, discovery of 

candidate models and data which fully or partially satisfy matching conditions and ranking them by 

the level of match. To this end, the model and data matching process refers to the process of 

comparing requesting model inputs with other model or data outputs. Practice suggests that a full 

matching between models is rare and hence some adaptations and/or compromises are needed, a 

process we term as partial matching process.  In addition to matching the model and data 

functionality, which will be explained in details in Section 2.3, the model/data matching entails 

matching between input properties     
  of requesting model    and output properties     

  of 

candidate model(s) or dataset(s)   , which we term as the input/output matching, as shown for a 

single matching between only two models in Figure 3. The input/output matching is performed for 

each of    input properties     
  separately and in turn as matched properties might be from different 



models/datasets. Also, it is assumed that requesting model is the last in the chain, hence backward 

matching applies. The properties used in matching are either descriptive, i.e. material type, 

numerical, i.e. flow rate, or even composite, i.e. range of flow rate with minimum and maximum 

values. Still, the level of match is expected to be quantified by a single value for easier 

comprehension by humans and further processing merely by decision support agents. 

 

Figure 3 Principle of single model input/output matching 

For more complex integration which involves more than two models and/or datasets, complex 

chains are formed by recursively repeating the single matching process with each of the candidate 

models,    in Figure 3 switching the role to the requesting model, which would be replaced as    in 

Figure 4, and which is then seeking for new matches. More complex chains, such as many-to-many 

chains, are also possible; this process involves either i) matching different input parameters of 

requesting model with outputs of different models or datasets, or ii) property decomposition, both 

of which is the subject of an on-going work and further publications. The combination of the two is 

also possible. 

 

Figure 4 Principle of chained model matching 

2.3. Definitions and Mathematical Formulations 
Let the set   *(   )|       +=*  |        + be a set of all    models and datasets     

available in the repository, where   {           } is the set of    models,   {           } 

is the set of    datasets, and hence         . Also, let   
   be a set of    properties 

characterising inputs to the models    
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To provide more logical arrangements, let   
  be an ordered subset of finite number of elements in   

as 

  
  {  }   

  
                 (5) 

where    is the total number of instances sharing common properties. If   
  observes (5) with all 

instances having intentionally equal1 properties         and   
   , then   

  is a class of instances 

{  }   
  

             characterised by set of    properties   
   {    |        }   

  
. As all 

instances of a class   
  share common properties, then   

   semantically describes the class   
 . For 

     in eq. (5),   
    is an empty class and still having properties   . Again, out of all considered 

   properties, the set of    properties for inputs is normally different from the set of    properties 

for outputs. 

Let   
  be a distinct name of the class   

 , then intension   
  of the class   

  is defined as  3-tuple (Junli 

et al. 2006); 

  
   〈  

    
     

 〉  (6) 

Also, let   
  be a superset of    

  such that 

  
    

   ,      
     

          (7) 

In ontological sense, the set   
   is the superclass of   

 , if   
  observes (7) by following subsumption 

condition   
    

  and inheritance condition   
     

  . 

Let     be a superset of   
  such that 

   ⋃   
 

  (8) 

If    observes eq. (8) and, if   
  follows subsumption and inheritance conditions given by eq. (7), 

then    could be considered as a graph    (  
      ) forming a subsumption hierarchy in 

ontology sense, called the subsumption, were      indicates the edge between the nodes of the 

graph representing classes, and hence representing class-subclass participation. In the subsumption, 

a superclass contains all the instances of all its subclasses, but it can also have instances on its own. 

Also, all the properties   
   characterising superclass are inherited by all subclasses.  

Two non-empty subclasses   
  and   

  are disjoint classes if   
    

        . In practical terms, 

disjoint classes cannot share instances. 

Let      be a relationship between instances other than by class-subclass participation between 

domain instance      and range instance     , then the class relationship   
  is a set of bijective 

relationships between all elements of domain class   
  and range class   

  defined as 

  
  {    (  

    
 )| ((  

    
 )       )} (9) 

Note in eq. (9) that the term     (  
    

 ) refers to a predicate calculus form. The relationships can 

also be organised in a   -dimensional subsumption    as 

                                                            
1 Two instances are intentionally equal if they have the same structure of the properties, not necessarily the 
same property values. 
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Although the inclusion mapping     in eq. (9) and (10) is generally possible, we exclude such a 

reflexive relationship for the purpose of simplifying the process without limiting practical aspect of 

the application in mind. For     
   being inverse instant relationship of     , then   

    

( {     
  (  

    
 )| ((  

    
 )       )}) is the inverse class relationship of   

 . 

Extension of a class   
  is defined by the relationship   

  which profiles the structural properties of 

the class by its relations with other classes (Junli et al. 2006). 

Let   
  be a subset of relationship domain   

  and   
  be a subset of relationship range   

 , then the 

restriction of   
     (  

 ) to   
  is a partial function         

 |  
  providing inclusion map 

 
  
→   as 

       
 
  
→   

  (11) 

and the restriction of   
      (  

 ) to   
  is a partial function          

 |  
  providing inclusion 

map  
  
→   as 

       
 
  
→   

  (12) 

In consequence,    (and   ) establishes the binary relationship between: 

   
  and   

  based on universal and existential quantifiers over properties   
  of   

 , 

   
  and  ,      ,  based on cardinality quantifiers over properties   

   of   
 , 

   
  and  ,        , based on equality quantifiers over properties   

   of   
 . 

Let   
        

  be the extensions of classes   
  and   

  respectively, then   
  and   

  are equivalent 

classes, if   
    

 and if   
    

    
    

 . 

A set of classes   , subsumption hierarchy   , set of relationships   
 , relationship hierarchy    and 

the set of instances   
  form an ontology   expressed as 5-tuple 

  〈        
       

 〉 (13)  

If the ontology given by eq. (13) is used to provide hierarchically structured set of causes and effects 

for understanding the (knowledge) domain, which is an effective means to explicitly describe 

knowledge in knowledge base, then eq. (13) refers to the domain ontology. In practical terms, 

domain ontology refers to a collection of interlinked concepts, or names   
  as suggested by eq. (6), 

the concept attributes or properties   
  and functions or logical statements   

  expressing the 

constraints existing in the domain and restricting the interpretation of vocabulary (Qi et al. 2009), all 

arranged in respective hierarchies    and    and supplemented by class-attached instances   
 . The 

terms class and concept are then interchangeable. 

Let a h-metric    be defined over set of properties    
  characterising model inputs as well as model 

and data outputs as 

     
 
 
→  (14) 



then the object (  
    ) forms a metric space over   . By observing numerical properties   

  (which 

includes    numerical properties of inputs and    of outputs) as  -dimensional vector    

(                ), objects (  
    ) form the vector space2    of   vectors.  

For metric    observing eq. (14) and respective metric and vector spaces, every pair of vectors 

(     ) can be mapped as   
 → :  

  :      
 
→  (     )         (15) 

Let a h-metric   
  be defined over the vector space    as mapping from   →   so that 

  
    

 
→  ((     )) (16) 

then we can define similarity measure of the object (   (     )) as 

  
  {

     

‖  ‖‖  ‖
}
     

 

            (17) 

representing the measure known as the vector similarity. 

Equivalently, for metric    observing eq. (14) and respective metric and vector spaces, every pair of 

classes (  
    

 ) can also be mapped as   → : 

        
 
→  (     )         (18) 

Let a h-metric   
  be defined over    as mapping from   →   so that 

  
    

 
→  ((  

    
 )) (19) 

then we can define similarity measure of the object (   (  
    

 )) as 

  
       

    [ (  
    

 )   (  
    

 )] (20) 

where  (  
    

 ) ( (  
    

 )) is the distance between classes   
  (  

 ) and another class   
  measured in 

number of intermediate edges3 in graph sense along subsumption    and   
  relationships.  

Let the aggregated similarity measure between two instances in respective classes   
  and   

  be 

   
   

     
 

   
 (21) 

where   and   are weighting factors deepening the semantics of the ontology similarity and their 

values are dictated by the application. 

2.4. Implementation of Ontology for Model Integration of Biorefining  
Ontologies are used to represent knowledge, as described in Section 2.3, in terms of classes   

  with 

unique names   
  employing subsumption hierarchies   , so called taxonomy, which are merely 

used as classification schemes. The instances   
  are organised by common properties     , which 

                                                            
2 In linear algebra, a vector space is a set   of vectors together with the operations of addition and scalar 
multiplication (and also with some natural constraints such as closure, associativity, and so on). 

3 The term edge represents the links or relationships between the two classes.  



characterise classes through the relationships   
  to specify how they are related. The ontology in 

the domain of biorefining reflects the knowledge of a conceptual representation of the models and 

data representing biorefining processes and its inputs and outputs in order to facilitate i) the 

consistent and explicit description of models and data through common vocabulary for biorefining 

domain, ii) registration process by parsing the taxonomy of the ontology and instantiation of model 

in the web-based repository, iii) input/output matching for automated search of models and data 

based on the request for input of the model, and iv) integration of such models or data. The top level 

of the ontology developed to evaluate the proposed concept consists of a concept Model. 

2.4.1. Semantic Description of Models in Biorefining 

The Model concept provides a common reference of existential process models that represent 

biorefining technologies. The Model is classified using the following five main classifications i) 

ModelByFunctionality, ii) ModelByBiorefiningPlatform, iii) 

ModelByCharacteristics, iv) ModelByInputType, and v) ModelByOutputType. The 

name of each classification represents the name of respective concepts in ontology and the names 

are self-explanatory. The ModelByFunctionality classification describes the functionality of 

the process models at four different scales, which include individual operating unit level, functional 

process unit level, process plant level, and supply chain level. Each model that performs a specific 

functionality is further specified in the domain of biorefining. For example, the model for reaction 

that represents the biorefining technology applied to convert biomass feedstock into 

intermediate/final products is categorised into three subgroups of processes: biochemical-, 

chemical-, and thermochemical processes. This classification is closely linked with intrinsic properties 

of feedstock as process has certain feedstock requirements as well as process requirements based 

on biomass characteristics. The ModelByBiorefiningPlatform classification represents the 

intermediates that link between biomass feedstocks and final products where feedstock is 

fractionated into a number of intermediates that are further processed into final material and 

energy products. The main intermediates are known as sugar, oil, lignin, gas, syngas, hydrogen, 

organic juice, pyrolytic liquid, and electricity and heat. The last two classifications reflect the level of 

detail considered in a model, which are also known as granularity of the model. The 

ModelByCharacteristics classification characterises process models by key aspects, such as 

scope, complexity, nature, equation form, scale, and type of model. The ModelByInputType and 

ModelByOutputType classifications are the structured knowledge representation of internal 

connection between models, which is mainly used for calculation of semantic similarity measure by 

input/output matching. The ModelByInputType and ModelByOutputType classifications 

describe different types of flows that were identified by the CAPE-OPEN and follows two different 

categorisations: i) Material and ii) Energy. The Material category typically represents the physical 

flow from one process unit to the other through inlets and outlets, and defines the chemical 

compositions of biomass feedstock and intermediate/final products. It is the most frequently 

occurring stream type, yet most complex streams to model. Similarly, the Energy category is used to 

represent energy flows, such as heat transfer. This classification is developed such that it considers 

the inheritance and the common features of concepts represented through the structure of ontology 

to evaluate concept in order to obtain a more accurate similarity. Top three levels of classifications 

are listed in Table 1 where indentation indicates the respective level in the ontology.  



Table 1 Classification of the biorefining related process models 

ModelByFunctionality ModelByBiorefiningPlatform ModelByCharacteristics ModelByInputType ModelByOutputType 

  FunctionalityForEquipmentLevel   SugarPlatform   ModellingScope   MaterialInput   MaterialOutput 

      Reaction       C5SugarPlatform       ModellingAndSimulation       FeedstockByType       ProductType 

           BiochemicalReaction       C6SugarPlatform       ProcessSynthesisAndDesign            VirginResource            BiochemicalProduct 

           ThermochemicalReaction   Bio-OilPlatform       PlanningAndScheduling            WasteResource            Biofuel 

           ChemicalReaction   BiogasPlatform       ProcessMonitoringAndControl       FeedstockBySource            Biomaterial 

      HeatExchange   SyngasPlatform       IntegratedApproach            EnergyCrop       ProductByIndustrySector 

           Heating   HydrogenlPlatform   ComplexityOfModel            PrimaryResidue            CommunicationSector 

           Cooling   OrganicJuicePlatform       Rigorous            Wastes            EnvironmentSector 

      PressureChanger   PyrolyticLiquidPlatform       Shortcut       ChemicalComponent            HealthAndHygieneSector 

           IncreaseInPressure   LigninPlatform       Conceptual   EnergyInput            HousingSector 

           DecreaseInPressure   ElectricityAndHeatPlatform   NatureOfModel       Steam            IndustrialSector 

      Mixing        Mechanistic       Heat            RecreationSector 

      Splitting        Empirical       Electricity            SafeFoodSupplySector 

      Separation    EquationFormOfModel             TextileSector 

           HomogeneousSeparation        Dynamic             TransportationSector 

           HeterogeneousSeparation        SteadyState        ChemicalComponent 

  FunctionalityForProcessLevel    ScaleOfModel    EnergyOutput 

      PretreatmentProcess        IndividualOperatingUnit        Steam 

           SizeReduction        FunctionalProcess        Heat 

           Densification        ProcessPlant        Electricity 

           Physico-chemicalProcess        SupplyChain   

           ChemicalProcess    ModellingType   

           BiologicalProcess        SequentialModularApproach   

           Densification        EquationOrientedApproach   

      ConversionProcess        StatisticalModelling   

           BiochemicalConversion        BlockDiagramOriented (ForControl)   

           ThermochemicalConversion        ComputationalFluidDynamics   

           ChemicalConversion     

      SeparationProcess     

           EquilibriumSeparation     

           AffinityBasedSeparation     

           MembraneBasedSeparation     

           HybridReaction-Separation     



2.4.2. Relation and Attributes using Properties 
In order to support integration of the models in biorefining domain, the properties are used to 

characterise inputs and outputs of the Model concept. Each property represents a connection 

between models as part of an internal representation as CAPE-OPEN defined streams that connect 

flowsheet blocks in sequential modular simulation. The properties are developed to follow the 

process of developing a process flow diagram, which consists of the flowsheet blocks and streams 

that connect the blocks. The construction of the semantic model representing process system begins 

with identifying the direction of flow of each stream using the properties hasInput and 

hasOutput, the feed streams are denoted as inputs to the model and the outlet streams are 

denoted as outputs to the model. The properties are organised in property subsumption    

(eq.(10)) and hence super-properties hasInput and hasOutput, have two sub-properties to 

further specify number of input and output streams to the model and parameters that are 

associated with inputs and outputs of the model, as shown in Table 2.  The relevant parameters for 

physical characterisation and chemical composition of materials in process streams, in addition to 

operating conditions for the model representing a particular biorefining process are classified by 

hasInputParameter and hasOutputParameter property. The set of properties that 

characterise each input and output stream is denoted as a vector and the values of each properties 

in numerical format are used to calculate the similarity. This classification is adopted for consistency 

to enable strong encapsulation of any models representing biorefining processes. Again, indentation 

shown in Table 2 indicates the property level in the property subsumption, as implemented in the 

domain ontology. 

Table 2 Relationships reflecting process of developing a process flow diagram 

Input Output Description 

  HasInput   hasOutput Define direction of flow 

      hasNumberofInputs       hasNumberofOutputs Define number of ports 

required for the model by 

type of inputs and outputs 

           hasNumberofMaterialInputs            hasNumberofMaterialOutputs 

           hasNumberofEnergyInputs            hasNumberofEnergyOutputs 

      hasMaterialInputs       hasMaterialOutputs Define value of material 

composition for each stream            hasMaterialInput1            hasMaterialOutput1 

           hasMaterialInput2            hasMaterialOutput2 

           hasMaterialInput3            hasMaterialOutput3 

                          :                                    :          

      hasEnergyInputs       hasEnergyOutputs Define value of energy 

composition for each stream            hasEnergyInput1            hasEnergyOutput1 

           hasEnergyInput2            hasEnergyOutput2 

           hasEnergyInput3            hasEnergyOutput3 

                          :                                    :          

      hasInputParameters       hasOutputParameters Define parameters of 

input/output and set values 

for each parameter in SI units 

           hasInputFlowrate            hasOutputFlowrate 

                hasMassFlowrate                 hasMassFlowrate 

                hasMolarFlowrate                 hasMolarFlowrate 

                hasVolumetricFlowrate                 hasVolumetricFlowrate 

           hasPhaseFraction            hasPhaseFraction 

           hasTemperature            hasTemperature 

           hasPressure            hasPressure 



                          :                                    :          

In addition, properties are further used to describe the attributes characterising sub-concepts of the 

Model concept and to enhance inference. There are two main aspects that support semantic 

matching for the purpose of model integration based on technical compatibility and functional 

feasibility. The technical compatibility aspect assesses how well models can work together with 

given conditions without having to be altered properties, such as maximum capacity, main 

compositions, key parameters etc. The functional feasibility aspect considers the ability of a process 

that model present to remain operable and satisfy output specifications through functionality of the 

model, modelling methods, modelling type etc. All properties mentioned in this paper, in order to 

characterise the attributes and relationship between concepts, are in format of datatype property 

for simplification. 

2.4.3. Property Restrictions 
The restrictions    and    on properties, or axioms, as defined by eq. (11) and (12), are introduced to 

further enrich the knowledge in the domain of biorefining. Value restriction on properties allows to 

support ontology reclassification using inference engine. As an example, restriction on property 

hasSugarInput and hasEthanolOutput, which are subproperties of hasMaterialInput 

and hasMaterialOutput, respectively, relates to the concepts representing the model 

Fermentation and its quantity. The Fermentation concept is defined using the equivalent 

class stating necessary and sufficient conditions, as illustrated in Figure 5, which semantically 

interprets as every model that represents fermentation process has quantity of sugar input and 

ethanol output that are greater than zero. In this particular example, a datatype property links the 

Fermentation concept to the data literal ‘0.0’, which has a type of an xsd:float in order to collect 

information. 

 

  

Figure 5 Restriction Example 

The composition of inputs and outputs, as well as other characteristics of the process models are 

defined by restrictions and axioms, which can be used in virtue of input and output validation that 

enables input/output matching for the model integration process. Along the same line, Figure 6 

illustrates an example of reclassification for leveraging the semantic content of ontologies to 

discover a new form of knowledge.The model Fermentation is reclassified as model that has 

SugarInputType and SugarPlatform, which is inferred by the restriction 

“SugarPlatform hasSugarInput allValuesFrom greater than zero.” The SugarPlatform 

model is defined as an equivalent class by restriction relating the quantity of sugar through either 

hasSugarInput or hasSugarOutput Properties. As a result, the Fermentation model is 

automatically inferred as a sub-concept of SugarInputType and SugarPlatform, which is a 

new form of knowledge generated by inference engine. 



 

 

Figure 6 Reclassified Fermentation Concept 

 

3. Implementation of Semantic Integration of Process Models in Biorefining 

3.1. Model Registration 
The process of model registration is guided and presented to the user in the form of a questionnaire 

generated on-the-fly by parsing the domain ontology. The direction of parsing is formulated by 

previous answers and hence exploits the full potential of the ontology towards providing the best 

description of the model.  The datatype properties associated with most recently parsed concept are 

then enumerated, the process known as acquisition of explicit knowledge and by which the model 

becomes an instance of the domain ontology. An example of the registration path of fermentation 

model is shown in Figure 7. The user initiates the process by selecting the model using one of the 

classification ModelByFunctionality, ModelByBiorefiningPlatform, 

ModelByCharacteristics, ModelByInputType, and ModelByOutputType. The user 

selects the ModelByFunctionality classification and then identifies the scale of the model as a 

“Process Unit Level” and continues to navigate through the path until the Fermentation model is 

selected. The semantic profile of the model is then created by collecting explicit knowledge of the 

model and data that are required during the matching process. At the ontology instantiation process 

as shown in Figure 8, the information contains characteristics of the model as well as its inputs and 

outputs. The inputs and outputs matching supports the model discovery process based on the 

semantic relevance between the profile of the models and data, which further facilitates the model 

integration process.  

 

 



Figure 7 Example of Fermentation Model Registration 

 

Figure 8 Instantiation of Fermentation Model 

3.2. Semantic Integration by Input/Output Matching 
The formation of semantic integration is performed by the process of matching, which is supported 

by a domain ontology representing process system models and datasets. The input/output matching 

facilitates interoperability between models and allows for the automated discovery of candidate 

models and datasets and hence support model integration (Raafat et al. 2013; Koo et al. 2016). The 

semantic relevance between the models is measured by the similarity measure   , as defined by eq. 

(21) using tacit knowledge of the model (modelling scope, complexity in modelling methods, nature 

of model, equation form of model, scale of model, modelling type, etc.), as well as explicit 

knowledge of its inputs and outputs (number of inputs and outputs, type, associated properties, 

etc.). The tacit knowledge is embedded in the ontology structure which includes subsumption   , 

relationships   
  and respective relationship subsumptions    and restrictions    and   , as defined 

by eq. (8), (9), (10), (11) and (12), respectively.  Similarly, explicit knowledge is quantified by 

enumerated properties   
  ,   

   and   
  , as defined by eq. (1), (2) and (3), respectively, and 

formulated in the form of vectors used for input/output matching. The input/output matching is 

capable to incorporate not only full matching but also considers partial matching to facilitate a wider 

search capability. Semantic partial matching is considered to suggest alternative options for the 

model that partially satisfies the matching criteria.  

The process of matching undergoes three phases: i) elimination, ii) semantic matching by calculating 

similarity measures   
  and   

 , and iii) performance ranking. The process of elimination is used to 

reduce redundant matching without changing the functionality of search and hence to avoid 

performance deficiency. As at present, the key components required for the input of the requesting 

model is considered as elimination criterion in the process of elimination. The instances that do not 



belong to the requested categories are eliminated from matching. The model profiles which are not 

eliminated from the process of elimination are qualified for the second phase of semantic matching.  

Semantic matching is a process of quantifying the semantic relevance between the requesting model 

and models residing within the repository to determine candidate models and which is based on two 

methods: i) distance measure (eq. 20) between respective concepts representing tacit knowledge 

which is measured along the hierarchical relationships and object relationship in the domain 

ontology; and ii) property similarity (eq. 17) that calculates values of properties that characterise 

explicit knowledge in the form of vectors and measure by a mean average of cosine and Euclidean 

similarity (Cecelja et al. 2015). 

 The distance measure   
  is a graph based method for matching, which is a process of calculating 

similarity between the concepts (Conte et al. 2004) to exploit tacit knowledge embedded in the 

ontology. Graphs are made of vertices and edges, where the vertices represent the concepts and the 

edges represent relationships such as subsumption    and relationship hierarchy   . The similarity 

measure calculates the shortest distance  (  
    

 ) between two classes where stronger links in 

ontology graphs are given lower weights. The maximum similarity is given to the class itself, which is 

defined as an equivalent class with the distance zero. The subsumption relationship, is-a, is 

calculated by counting the number of vertices in a graph model with a weight of 1. The knowledge 

about the simultaneous processes where two processes occur at the same time in order to increase 

yield and efficiency was considered on the matching process using object property 

hasSimultaneousProcess and its inverse property isSimultaneousProcessOf has the weight of 2. These 

values are selected to represent experiential side of model integration in practice. The similarity is 

then normalized by the longest logical path between the vertices in the ontology graph. 

In property similarity   
 , each property that characterises the concept representing explicit 

knowledge is presented as a vector, which has direction and magnitude. The magnitude of each 

vector is determined by property value with an assumption that the vectors that are close in space 

are similar. In the current implementation, four datatype properties are used as criteria of 

calculating property similarity, which are converted into a four-dimensional vector {Total flowrate, 

Temperature, Pressure, Fraction of main component}, and which are prepared to expand to more 

dimensions, as required by practice. Cosine similarity   
    approach calculates the degree of 

similarity of two vectors expressed as the cosine of the angle between them and Euclidean similarity 

  
    is considered as it is the most  commonly used distance function (Wilson & Martinez 1997). As 

the Euclidean distance is dealing with parameters of different scales, the normalization, which scales 

all numeric variables in the range [0,1], is required in order to have the same scale for a fair 

comparison between two vectors. The shortcoming of cosine similarity in dealing with magnitude of 

vectors is addressed with the inclusion of Euclidean distance. As a result, the property similarity is a 

mean average between cosine similarity and normalized Euclidean distance, which is converted into 

similarity (mentioned hereafter as Euclidean similarity).   

To better capture intuition of relevance between the requesting model and existing models in the 

library, weighting factors   and   (eq. (21)) are introduced to allow users to determine the level of 

interoperability. In the current implementation, the weight of the individual property as well as fuzzy 

weight,   and  , for the aggregated similarity are treated as equal, unless user defines otherwise. 

3.3. Experimental Verification 
A real-life biorefining modelling scenario is used to demonstrate the performance of the proposed 

approach to coordinate model interoperability with regards to technical compatibility and functional 



feasibility. Here, a reduced number of properties are used to simplify yet purposely illustrate the 

performance of the designed ontology and matching algorithm, which are the scale, scope, 

functionality, equation form, modelling type, complexity of models, flowrate, temperature, pressure, 

and the fraction of main component. As previously mentioned in Section 2, properties used in 

characterising inputs and outputs of the model are employed during the matching process. In 

practice, the number and type of matching criteria are determined based on the input requirements 

of the requesting model in order for the particular model to run. The matching results are then 

presented to the user(s) to assist in decision making process hence to fully reflect respective 

synthesis aspect, which is supported by their expertise in modelling. 

The input/output matching as a mean of establishing interoperability between the model(s) and/or 

dataset(s) is demonstrated by investigating the scenario of discovering models from the repository 

that potentially satisfies the requirement of the requesting model. MODEL 1 is an Excel-based model 

registered by the user as a functional process unit representing separation process which purifies 

bioethanol as a product at 80%. This unit consists of two individual pieces of equipment, which are a 

flash separator and a distillation column. Water and ethanol are separated from gas and other 

impurities by flash separator and go through to the distillation column, which further separates 

water from ethanol. During the process of registration, the user has registered the MODEL 1 as an 

instance in the repository and identified it as a requesting model, as illustrated in Figure 9. In turn, 

the requesting model then searches for a potential candidate model(s) that matches according to 

the requirement in S3. The full set of input requirements of MODEL 1 are given in Table 3, which was 

provided by the owner of the model during the registration process and, concomitantly, used for 

matching based on the functionality of the model. As a result of the matching process, the process 

and simulation model(s) and/or dataset(s) at functional process unit level representing conversion 

process that produce ethanol as an output are expected to be discovered. The established 

interoperability, shown in Figure 9, does not aim to create a new pathway, is nevertheless possible 

to form a biorefining pathway as a result of matching process. Based on the information that user 

provided, the requesting model, MODEL 1, initiates backward matching process as it becomes the 

last in the chain. A list of 10 models, residing in the repository, is presented in Table 4  for the 

demonstration purposes. 

 

Figure 9 Illustration of Demonstration Scenario 

The process of matching undergoes the three matching phases i) elimination, ii) semantic matching 

by calculating similarity measures   
  and   

 , and iii) performance ranking (Section 3.2). To reduce 

redundant matching, the key components required for the input of the requesting model is defined 



as a critical criterion in the process of elimination. As at present, the key component that MODEL 1 

requires in input/output matching for the purpose of model integration is identified as ethanol. All 

the individuals, models and data, registered as an instance in the repository which do not satisfy the 

requirements are eliminated during this phase. As a result, MODEL 4 and MODEL 10 (Table 4), which 

do not have ethanol presence in their output, are eliminated. 

In the second phase of matching, quantification of semantic relevance is performed by distance 

measurement in the ontology, accounting for tacit knowledge. The tacit knowledge about the 

model, such as semantic descriptions of the models including model functionality, equation form of 

the model, modelling type, as well as complexity of modelling methods are referred by the classes in 

the ontology where the instances are attached to. The distance measure   
  is used to calculate 

semantic similarity between the instance of requesting model with other instances of candidate 

models using graph methods, and which reflect synthesis problem and hence helps the user to make 

even more informed decision to choose the most appropriate model. To demonstrate the process of 

matching, Figure 10 illustrates a part of ontology that represents the model by functionality at 

process level, which is used to calculate semantic relevance between MODEL 1 and MODEL 3. The 

distance between the two concepts, Co-Fermentation and SSF (Simultaneous Saccharification 

Fermentation) are measured along the is-a subsumption relationship, as well as an object property 

isSimultaneousProcessOf. As mentioned in Section 3.2, the weights on each property, is-a and 

isSimultaneousProcessOf, are 1 and 2 respectively. Therefore, the values of the shortest distance 

between the concepts Co-Fermentation and SSF are 3. The similarity is then normalized by the 

longest logical path that exists between any two concepts in the ontology graph. For the purpose of 

demonstration, the part of ontology in Figure 10 is the only part that was taken into account in 

measuring longest path. Note that the concept of MODEL 10 IndirectGasification has the 

maximum distance in terms of number of edges to the concept Co-Fermentation and therefore 

these two concepts are used to determine the longest path in the graph, which is 10 as illustrated in 

Figure 11. As a result, the similarity for this particular criteria is 0.700. The distance measurement to 

calculate the semantic relevance based on equation form, modelling type, and complexity of the 

model is repeated and gives a vector of {0.700, 0.800, 0.800, 0.800}. Finally, similarity measure of 

MODEL 1 and MODEL 3 for the functional feasibility is calculated to be 0.775, which means the 

match between requesting model, co-fermentation model, and comparing model, SSF model have 

the similarity of 77.5%. 

 

 1 3 10 



Figure 10 Domain Ontology used for Semantic Matching 

 

 

Figure 11 Demonstration of Longest Logical Path 

 

is-a isSimultaneousProcessOf hasSimultaneousProcess is-a

is-a is-a is-a is-a



Table 3 Requirement of Requesting Model 

  Distance Matching Requirements Requirements of Input Parameter* 

 

Model 

Scale 

Model Scope Model 

Functionality 

Model Functionality for 

Process 

Equation 

Form 

Modelling 

Type 

Complexity Total 

Flow 

(kg/hr) 

Temp. 

(C) 

Pressure 

(kPa) 

Ethanol 

Fraction 

MODEL 1 Process 

Unit 

Modelling & 

Simulation 

Conversion 

Process 

Co Fermentation Dynamic Equation 

Oriented 

Detailed 50,000 20-35 100-200 0.075 

* Input parameters to the model 

 

Table 4 List of Model Profile in Repository 

 Elimination Criteria Distance Matching Requirements Requirements of Input Parameter*   

Criteria Ethanol Model Functionality 

for Process 

Equation 

Form 

Modelling Type Complexity Total Flow 

(kg/hr) 

Temp. 

(C) 

Pressure 

(kPa) 

Ethanol 

Fraction 

Software Reference 

MODEL 2 Yes C6 Fermentation Dynamic Equation 

Oriented 

Detailed 

 

117,233 34 101 0.116 gProms (Siougkrou et al. 

2016) 

MODEL 3 Yes 

 

SSF* Steady 

State 

Sequential 

Modular 

Shortcut 449,353 40 91 0.055 AspenPlus (Humbird et al. 

2011) 

MODEL 4 No Transesterification Steady 

State 

Sequential 

Modular 

Detailed 1,004 60 395 0 AspenPlus (Zhang et al. 

2003) 

MODEL 5 Yes Gasification Steady 

State 

Equation 

Oriented 

Conceptual 3,967 700-

1000 

n/a 0.066 Data (Wei et al. 2009) 

MODEL 6 Yes 

 

C6 Fermentation Steady 

State 

Sequential 

Modular 

Detailed 74,256 32 111 0.121 AspenPlus (AspenPlus 2007) 

MODEL 7 Yes Gasification Steady 

State 

Equation 

Oriented 

Conceptual 1,653 200-

350 

6000-

7000 

0.114 Data (Wei et al. 2009) 

MODEL 8 Yes 

 

SSF* Steady 

State 

Equation 

Oriented 

Conceptual 10,722 30 101 0.016 Data (Wei et al. 2009) 

MODEL 9 Yes C6 Fermentation Steady 

State 

Sequential 

Modular 

Conceptual 47,191 25 101 0.075 AspenPlus (Siougkrou et al. 

2016) 

MODEL 10 No Indirect Gasification Steady 

State 

Sequential 

Modular 

Detailed 6,507 870 158 0 AspenPlus (Spath et al. 

2005) 

* Simultaneous Saccharification and Fermentation 



Four criteria are considered to calculate input/output matching using property similarities and are 

based on the set of physical properties characterising the inputs of the model they required for the 

property matching. Table 3 identifies the requirements of input parameter of the requesting model, 

including total flowrate, temperature, pressure, and fraction of input components. The properties 

are represented in the form of 4-dimentional vector, 

  
  (                                                               ). Total flowrate is 

used as a measure of capacity in the system that requesting model represents, temperature and 

pressure are operating condition that provides upper and lower limit to set boundaries of the 

operating condition based on the type of biological strain employed in modelling, and the required 

input component of the requesting model is ethanol, hence, fraction of the main component is 

incorporated to ensure the presence of this component. The value of total flow of the requesting 

model is 50,000 kg/hr, the ranges of temperature and pressure are represented to reflect optimal 

operating condition for employing Saccharomyces cerevisiae (Galanakis et al. 2012; Deesuth et al. 

2016) for the fermentation process, which are 20-35 degree C and 100-200 kPa respectively, and the 

fraction of ethanol component that is processed by the requesting model is 0.075. To accommodate 

the range in values of input parameters (temperature and pressure) that the requesting model 

provided, the closest values of the parameter of MODEL 1 to MODEL 3 are selected. The values of 

these properties are then converted into a vector and subsequently compared using cosine and 

Euclidean similarity. MODEL 1 and MODEL 3 are presented in the form of vectors 

   (                  ) and    (                  ). Cosine similarity   
    and 

Euclidean similarity   
    are 1.000 and 0.000, respectively, which then combined together as a 

semantic similarity   
  using the mean average gives a result of 0.637. In the case of missing values of 

temperature and pressure, the default values are atmospheric temperature, 25 degrees C, and 

atmospheric pressure 100kPa. The final summary of the matches with other models are shown in 

Table 5. 

Table 5 Similarity Results 

 Semantic 

Similarity 

  
  

Cosine 

Similarity 

  
    

Euclidean 

Similarity 

  
    

Property 

Similarity  

  
  

Aggregated 

Similarity 

   

MODEL 2 0.917 1.000 0.832 0.916 0.916 

MODEL 3 0.775 1.000 0.000 0.500 0.637 

MODEL 5 0.775 0.978 0.885 0.931 0.853 

MODEL 6 0.850 1.000 0.939 0.970 0.910 

MODEL 7 0.775 0.250 0.878 0.564 0.670 

MODEL 8 0.825 1.000 0.902 0.951 0.888 

MODEL 9 0.800 1.000 0.993 0.996 0.898 

 

Based on the results the suggested models to establish interoperability with the requesting models 

have been ranked in Table 6. Following models, MODEL 2, MODEL 6, MODEL 8 and MODEL 9, are 

suggested to the user as potential candidates, where MODEL 2 being most suitable model. In 

addition, the MODEL 3, MODEL 5, and MODEL 7 will be flagged to inform the user with their 

similarity measure that the operating conditions of these models did not meet the requirement 

range of input parameters and model characteristics that requesting model initially provided. In this 



stage, the system allows user intervention for the user to make informed decision in choosing a 

model for user’s particular needs. 

Table 6 Suggested Models  

 Semantic 

Similarity 

  
  

Cosine 

Similarity 

  
    

Euclidean 

Similarity 

  
    

Property 

Similarity  

  
  

Aggregated 

Similarity 

   

MODEL 2 0.917 1.000 0.832 0.916 0.916 

MODEL 6 0.850 1.000 0.939 0.970 0.910 

MODEL 9 0.800 1.000 0.993 0.996 0.898 

MODEL 8 0.825 1.000 0.902 0.951 0.888 

 

In the case of selected model requiring further information for it to run, role of the model becomes a 

requesting model and the process of matching is then repeated. As previously mentioned, there is a 

potential to form biorefining pathways as a result of chain matching process, however, it is not a 

goal of the proposed approach. 

 

4. Conclusion And Future Work 
The concept of using ontology in model and data integration was introduced to improve upon 

previous research with particular focus on flexibility (partial matching) and reusability (reuse of 

existing models and data). The semantic algorithm for establishing interoperability between the 

models and data is presented to reflect the knowledge based on technical compatibility and 

functional feasibility. The domain ontology with a particular view to coordinate model integration 

embeds both tacit and explicit knowledge in the domain of biorefining modelling. Process models 

and data are semantically annotated in terms of input(s), output(s), precondition(s), the software 

environment in which they operate, as well as the functionality they perform. It demonstrates the 

process of registration and instantiation of the model to form model profile, which further supports 

the input/output matching process. Semantic relevance is measured in terms of semantic similarity 

by employing a graph matching method and vector similarity; in addition, the semantic partial 

matching is performed to facilitate the flexibility of model integration. To this end, the suitability of 

using ontology for model and data integration in process modelling in the domain of biorefining has 

been successfully verified. Following upon our current implementation, another extension of the 

framework that we wish to explore is to generalise the concept for all processes in the domain of 

chemical process systems engineering. Therefore, the results of this paper can be considered as a 

fundamental step towards the challenging task of defining and implementing extended framework. 
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