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Abstract

Many computational difficulties in dealing with chemical process models often result from

spatially distributed states as well as nonlinear correlations (e.g., for transport coefficients or

reaction kinetics). Surrogate models with sufficient accuracy represent one remedy to this prob-

lem. Featuring a lower number of states, model order reduction (MOR) generates considerably

less complex models and leads to faster model evaluations. Especially for nonlinear systems,

snapshot-based MOR techniques are considered to be one of the most promising methods. In

this study, we apply proper orthogonal decomposition together with the discrete empirical in-

terpolation method (POD-DEIM) to a dynamic, two-dimensional reactor model for catalytic

carbon dioxide methanation. Motivated by renewable energy integration, we consider this reac-

tor in two different dynamic scenarios: Disturbed continuous operation and start-up. It can be

shown that the reduced order model (ROM) is accurate and, furthermore, the solution of the

FOM is accelerated at least by one order of magnitude.

Keywords: Nonlinear model reduction; Proper orthogonal decomposition; Empirical interpolation

methods; Catalytic reactor; Methanation



1 Introduction

During the last decades, an increasing usage of highly complex mathematical models, supported

by the rapid development of computational capacities, can be observed. For the identification of

further potential in energy efficiency and cost reduction, these complex models appear to be very

promising, especially in the field of process systems engineering. However, large state-spaces, or

nonlinear correlations for the description of underlying chemical and physical phenomena can cause

a challenging level of complexity. Beyond that, the level of complexity enhanced even more due to

the widespread use of dynamic models. Consequently, the application of these models for simulation,

optimization, and process control is still a challenging task (Biegler et al., 2014).

As an example of current interest, the integration of renewable resources to chemical and energy

conversion systems requires a deeper understanding of various processes and their dynamic behavior.

In this context, Fig. 1 illustrates a promising process route for the conversion of renewable, electrical

energy. Due to their volatile nature, input streams coming from renewable energy are often challeng-

ing to deal with (Güttel, 2013). Hence, start-up, shut-down but also disturbed continuous operations

are gaining more interest (Adams and Barton, 2009; Güttel, 2013). Furthermore, the major process

units are characterized by local diffusion, thermal conduction and multi-step reaction mechanisms.

To capture all these features, dynamic process models with fine spatial resolution are required. Nev-

ertheless, the resulting large state-space dimensions of order O(103) – O(105) still exacerbate the

usage of these models for optimization, control or even simulation. Model order reduction (MOR)

can be considered as an essential tool to mitigate this situation and to allow for fast computation

(Baur et al., 2014; Marquardt, 2002).

As an exemplary unit of an entire process for renewable energy integration, this study is focused

on a catalytic reactor to investigate the potential of MOR. This unit is usually realized by a tubular

reactor either filled with catalyst particles or coated with catalyst at the inner wall. There are many

Figure 1: Exemplary process route for a renewable conversion of electrical energy to methane. (Bre-
mer et al., 2016)
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studies about this kind of reactors available. For instance, to control the hot-spot formation during

start-up, Bremer et al. (2017) developed a rigorous, two-dimensional, packed-bed carbon dioxide

methanation reactor model. They reported run times of several minutes per simulation run. Other

two and one-dimensional reactor models are mentioned with CPU times of several minutes to hours

(Pantoleontos et al., 2012; Adams and Barton, 2009). This computational burden still prevents

detailed investigations on the reactor dynamics for various applications. In our perspective, MOR

shows a vast potential for improvement in computational time for these reactor models and, thus,

reveals new insights for process design and dynamic operation.

In this work, we investigate a catalytic wall carbon dioxide methanator in two different dynamic

scenarios: Disturbed continuous operation and start-up. Since, methanation is a strongly exothermic

reaction, heat management is of major interest Rönsch et al. (2016). Thus, key control variables for

heat management are the cooling temperature at the reactor wall and the inlet gas composition.

The aim is to develop a ROM which is capable of dealing with different cooling and carbon dioxide

feeding policies, coming from a disturbed hydrogen inlet (see Fig. 1).

2 Full-Order Reactor Model

Considering a tubular geometry of the catalytic wall reactor, the full-order model (FOM) is derived

based on mass and energy balances. Instead of taking the momentum balance into account, we assume

a fully-developed laminar velocity profile. Furthermore, pressure drop in the tube is neglected due

to small Reynolds numbers. The further main assumptions are:

• No change in ϕ-direction, due to symmetric geometry.

• Axial diffusion is neglected, due to small Reynolds numbers (< 2300).

• Incompressible gas flow with ideal gas behavior.

• CH4,CO,CO2,H2O,H2 and N2 are the considered species.

• CO2 methanation described by rate expressions proposed by Xu and Froment (1989), see Fig. 2.

• The mass transport into the thin catalytic layer at the wall is significantly faster than to the

catalytic reaction.

• The catalytic reaction is, furthermore, assumed to be in quasi-steady state.
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Figure 2: Left: An illustration of the reactor model (Bremer et al., 2016); Right: The considered
reaction network proposed by Xu and Froment (1989).

Accordingly, we obtain a two-dimensional, heterogeneous, dynamic reactor model as illustrated in

Fig. 2. The dynamics of the reactor is governed by the following set of PDEs:
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where ρα relates to the mass concentration of each component α, Dr,α corresponds to the radial gas

diffusion coefficient of each component; T represents the gas temperature, λr is the radial thermal gas

conductivity; ρ is the gas mixture mass density; cp stands for the heat capacity of the gas mixture,

and vz relates to a given laminar velocity profile. In order to fully determine the above system of

PDEs, boundary conditions, with respect to the reactor’s symmetry and the catalytic reaction at the

inner wall, are given by
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where να,j is the stoichiometric coefficient of species α and reaction j, Θcat stands for the volume

to surface area ratio of the catalyst layer; Mα is the molar mass of component α, and Tcool stands

for the cooling temperature at the outer reactor wall. Since Tcool is a function of time and the axial

coordinate, the respective control domain would be needlessly large. Instead, we only focus on the

cooling temperature at the inlet and outlet sides of the reactor. In between, the cooling temperature
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Table 1: Reactor specifications.

reactor radius R = 0.01 m
reactor length L = 15 m
wall thickness δ = 0.02 m
catalyst layer thickness δcat = 0.002 m
catalyst density ρcat = 2355.2 kg/m3

catalyst volume-surface ratio Θcat = 0.44 m
heat transfer coefficient kw = 120 W/(m2 K)

is assumed to obey a linear relationship, given by:

Tcool(t, z) =
(

1− z

L

)
Tcool,in(t) +

z

L
Tcool,out(t).

The reaction heat ∆RHj is obtained by the component enthalpies weighted over the respective

stoichiometric coefficients. The rate equation r̃j is adapted from Xu and Froment (1989), which

requires the conversion from kmol/(kgcat h) to mol/(m3
cat s) done by

r̃j = rj · ρcat ·
1000

3600
,

where rj is explained more detailed in Appendix A. The wall heat transfer coefficient kw and the

remaining specifications are listed in Tab. 1. For an accurate description of the radial heat and

mass transport coefficients, several correlations are taken from the literature. Using binary diffusion

coefficients, Kee et al. (2005) provide the correlation for radial gas diffusion coefficients Dr,α. The

gas heat capacity cp relies on polynomial correlations for component heat capacities presented in

VDI (2010), and the thermal gas conductivity λr follows the mixing rule explained in Poling et al.

(2001). The dynamic component viscosities and the thermal component conductivities, which are

needed for the mixing rule, are again extracted from VDI (2010). More details on the used physical

correlations, but explained for a different reactor type, are comprehensively stated in Bremer et al.

(2017).

Operation scenarios

Referring to our exemplary process route for renewable energy conversion, two major scenarios are

selected to investigate the properties and performance of the reduced-order models: A disturbed

steady-state operation (scenario 1) and the reactor start-up (scenario 2). Both scenarios are charac-
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Table 2: Reactor operation parameters

superficial gas velocity vz = 0.5 m/s
inlet gas temperature Tin = 500 K
inlet pressure pin = 5 · 105 Pa
H2 inlet mole fraction range xH2,in ∈ [0.7 0.9]
CO2 inlet mole fraction range xCO2,in ∈ [0.1 0.3]
remaining components inlet mole fraction xα,in = 10−5

inlet cooling temperature range Tcool,in ∈ [600 650] K
outlet cooling temperature range Tcool,out ∈ [650 700] K
start-up time horizon tf = 100 s

terized by operation parameters highlighted in Tab. 2.

Scenario 1 initially deals with a reactor operating at steady-state, which is characterized by

xH2,in = 0.8, xCO2,in = 0.2 and Tcool,in = Tcool,out = 650K. This steady-state scenario is then disturbed

by step changes of hydrogen and carbon dioxide inlet mole fractions, as well as cooling temperatures

(see ranges in Tab. 2). In contrast, for scenario 2 the reactor bulk gas phase is considered to be

equal to the inlet gas condition. Thus, initially the reactor is neither heated up nor any conversion

occurred. In order to fulfill the above mentioned assumption of a fully developed fluid profile, we

consider the reactor to be initially perfused with non-reactive gas as best practice, to ensure a safe

and fast startup of the entire process system (including axillary units, e.g., compressors and heat

exchangers). During the start-up, the four parameters are again disturbed by step changes within

the same range as used for scenario 1. Furthermore, the parameter ranges of both scenarios are

especially important to bound training and test sets for ROM generation and evaluation, which is

explained later in more detail.

Nonlinear State-Space Representation

We discretize the governing PDEs, using the finite volume method (FVM), such that the resulting

ODEs approximate the essential dynamic information of the system. Therefore, we use a piecewise

constant axial approximation of the convective terms, following the upwind scheme, and a piecewise

linear radial approximation for the conductive transport terms with central differences. However,

within one finite volume (FV), all physical coefficients (e.g., diffusion coefficient Dr,α, thermal con-

ductivity λr) are assumed to be constant. We choose nz = 25 axial and nr = 25 radial equally

distributed FVs. Consequently, the FVM discretization yields to the following nonlinear system of
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order n = 25 · 25 · 7 = 4375:

ẋ(t) = A1(x(t))x(t) + A2 x(t) + B1(x(t))u1(t) + B2 u2(t) + f(x(t)),

x(t0) = x0,

(5)

where x(t) ∈ Rn is the state vector, containing all six component concentrations and temperatures

at all finite volumes. The input vector u1(t) ∈ R2 contains the cooling temperatures Tcool,in and

Tcool,out; the input vector u2(t) ∈ R7nr relates to the inlet mole fractions at all inlet nodes. The

nonlinear function A1 : Rn → Rn×n originates from the radial gas diffusion, thermal gas conductivity

and heat capacity; B1 : Rn → Rn×2 appears due to thermal gas conductivity at the wall boundary,

and f : Rn → Rn mainly contains the reaction rate expressions. The linear parts A2 ∈ Rn×n and

B2 ∈ Rn×7nr mainly relate to the predefined gas velocity and geometric parameters. This partitioning

into nonlinear and linear parts is essential for the MOR, as described in the next section.

3 Model Order Reduction

Our main goal is to compute a low-dimensional models for the catalytic reactor, described in the

previous section. The governing equations of the considered catalytic reactor are strongly nonlinear

due to the above mentioned physical correlations (e.g., for transport coefficients and rate expressions).

For better understanding of the underlying reactor dynamics, we need to discretize the governing

PDEs very fine over the spatial domain. This leads to a large-scale nonlinear system of ODEs, whose

optimization and control studies impose a huge computational burden. Thus, we seek to determine

a ROM describing the dynamics of the FOM with an acceptable accuracy.

Snapshot-based techniques are widely applied for nonlinear systems to determine ROMs and

other surrogate models. Without any claim to completeness, many recent publications propose

Artificial Neuronal Networks (ANNs), Kriging Models (KM), Gaussian Processes (GP), and Radial

Basis Functions (RBFs) for efficient surrogate model construction. However, for dynamic systems

based on discretized PDEs, these techniques often suffer from the curse of dimensionality. To address

such systems, Proper Orthogonal Decomposition (POD) is efficient (see, e.g., Astrid et al. (2004);

Bui-Thanh et al. (2004); Kunisch and Volkwein (2008); Agarwal and Biegler (2013); Li et al. (2014))

and well-established for PDE-constrained optimization problems (see the recent survey Benner et al.

(2014)). It relies on the Galerkin projection (see, e.g.,Kunisch and Volkwein (2002)), aiming at
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approximating the state vector x(t) ∈ Rn by V xr(t), where xr(t) ∈ Rr is the state vector of the

ROM and V is a semi-orthogonal matrix. For simplicity, in the remaining paper we skip the time

dependency in vectors or matrices (e.g., we denote x(t) just by x). In the following, we outline the

basic steps of constructing the ROM for a given nonlinear system via the projection P = V V T :

ẋ = Ax + Bu + g(x,u) (6)

⇓

Galerkin projection s.t. x ≈ V xr

⇓

ẋr = Arxr + Bru + gr(xr,u), (7)

where the reduced matrices Ar, Br and gr are V TAV , V TB and V Tg(V xr,u), respectively. POD

determines the matrix V using the most dominant modes of the dynamical systems. That is, the so-

lution of the FOM (6) at a sequence of time instances (snapshots), corresponding to different possible

inputs and scenarios are collected into a snapshot matrix X ; then the singular value decomposition

(SVD) of X is performed, i.e., X = UxΣxV
T
x , where the first r vectors of Ux are the dominant

modes, which are called the POD basis modes of X . Then, V of rank r is constructed by the first

r POD vectors, i.e., V := Ux(:, 1 : r).

Clearly, the dynamics of the ROM (7) lies in an r-dimensional subspace, where r � n with n

being the dimension of the full order ODE system (FOM). Furthermore, the reduced matrices Ar and

Br in (7) are constant and need to be computed only once which can be done in the off-line phase.

Although, the nonlinear term gr also lies in the r-dimensional subspace, the related computational

cost is not reduced. This is due to the fact that we first need to compute the function g in (6) on

the full spatial grid, and then prolongate back to the r-dimensional subspace. This process limits

the efficiency of MOR.

To overcome the aforementioned issue of computing the nonlinear function in the ROM (7), the

discrete empirical interpolation method (DEIM) is proposed by Chaturantabut and Sorensen (2010).

This method avoids the computation of the nonlinear function on the full grid; instead, the nonlinear

function needs to be evaluated at only a few selected grid points.

According to DEIM, we first collect the snapshots of the nonlinear function at different time-
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Algorithm 1 Steps to obtain ROM via POD-DEIM.

1: Run full simulation and collect i snapshots of the state and the nonlinear function into two
snapshot matrices:

X = [x1,x2, . . . ,xi], G = [g(x1,u), g(x2,u), . . . , g(xi,u)].
2: Perform SVD of snapshot matrix X so as to obtain POD basis V of the system.
3: Compute the POD basis U of the nonlinear part by performing SVD of G.
4: Determine an index matrix P and approximate the nonlinear term via Eq. (8).
5: Construct ROM (7)-(8), consisting of linear and nonlinear parts.

instances corresponding to different possible inputs and scenarios. Then, we perform SVD on the

collected snapshot matrix G to extract the POD basis vectors of G, i.e., G = UgΣgV
T
g . Analo-

gous to the SVD of X , the m POD basis vectors of G can be constructed as U = Ug(:, 1 : m).

The DEIM method uses a linear combination of the POD basis vectors in U to approximate the

nonlinear function g (i.e., g ≈ Uc). The coefficient vector c is computed via interpolation. The

interpolation condition relating g and Uc is that these two quantities are equal to each other at

the specially selected spatial grid points, which are called interpolation points. Next, we specify the

above discussions on the DEIM method into mathematical formulas.

The DEIM method applied to g(V xr,u) in (7) can be mathematically formulated as finding an

index matrix P ∈ Rn×m such that P Tg(V xr,u) = P TUc. Assume that P TU is invertible, so that

we obtain c = (P TU)−1P Tg(V xr,u). Finally, we achieve the following approximation of g(V xr,u)

via DEIM:

V Tg(V xr,u) ≈ V TU(P TU)−1︸ ︷︷ ︸
=:Q∈Rr×m

P Tg(V xr,u). (8)

The columns of the index matrix P are unit vectors selecting the interpolation indices. This

implicates that P Tg(V xr,u) gives a shortened vector extracted from g, whose components are just

the components of g at the m� n spatial grid points selected by P .

The matrix Q in the above formulation is constant and can be computed in advance. Hence, the

approximation of the term V Tg(V xr,u) can be computed cheaply. However, the next question is

how to select these grid points (i.e., P ) for the given nonlinear function. For this, a greedy procedure

is proposed by Barrault et al. (2004), minimizing the function ‖g − Uc‖ at each iteration. For a

detailed discussion, we refer to Chaturantabut and Sorensen (2010). In the end, we summarize a

brief procedure to compute the ROM of (6) via POD-DEIM in Alg. 1.

Remark 1 We have shown the procedure to determine the ROM of (6) by using a single nonlinear

function g. However, following similar steps, the nonlinear terms A1,B1 and f in (5) can be treated
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in the exact same manner.

4 Results

Starting with the first step in Alg. 1, we perform 50 different simulations for the continuous operation

and start-up scenario, separately. These simulations are based on the training sets of the parameters

which are randomly distributed in the parameter ranges of xH2,in, xCO2,in, Tcool,in, Tcool,out in Tab. 2.

For the model implementation and simulation, MATLABR© in combination with the ode15s solver is

used (Shampine and Reichelt, 1997). For an efficient computation, we provide exact Jacobians of the

ODE system, reducing the CPU time for the simulations of FOM by factors in O(10) – O(102). These

Jacobians are obtained from ADiGator, which is a source transformation via operator overloading

toolbox for the automatic differentiation of mathematical functions written in MATLABR©, developed

by Patterson et al. (2013). Once all 50 simulations are available for each scenario, we collect the

state vectors and the respective nonlinear vectors at all time instances of each simulation, chosen by

the integrators adaptive stepsize controller, into their corresponding snapshot matrices (e.g., X and

G in Alg. 1):

X = [x1, . . . ,xi] ∈ Rn×i, A = [A1(x1)x1, . . . ,A1(xi)xi] ∈ Rn×i, (9)

B = [B1(x1)u1,1, . . . ,B1(xi)u1,i] ∈ Rn×i, F = [f(x1), . . . ,f(xi)] ∈ Rn×i, (10)

where i represents the i -th time instance or snapshot associated with one of the operation scenarios.

Considering approximately 200 integration steps for the entire time horizon of each simulation,

the snapshot matrices consist of 200 × 50 = 10’000 snapshots. Due to our relatively simple random

sampling method, we investigated that this large set of snapshots is necessary to capture the most

relevant dynamics. Adding further snapshots (via more simulations or more time instances) does

not feature a better ROM performance. There are certainly many better sampling strategies (e.g.,

adaptive or low-discrepancy sampling methods) that could reduce the offline time, and this will be

explored for our application in the future. Nevertheless, we do not expect this to have a significant

impact on the online performance.
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Figure 3: Normalized singular value decay for scenario 1 (continuous operation - r = 34, mA = 23,
mB = 9, mf = 27) and scenario 2 (start-up - r = 36, mA = 29, mB = 9, mf = 27).

Following Alg. 1, we perform the SVD to obtain the relevant bases and index matrices:

svd(X )
POD−→ V ∈ Rn×r, svd(A)

DEIM−→ QA ∈ Rr×mA ,PA ∈ Rn×mA ,

svd(B)
DEIM−→ QB ∈ Rr×mB ,PB ∈ Rnz×mB , svd(F)

DEIM−→ Qf ∈ Rr×mf ,Pf ∈ Rn×mf ,

(11)

where V is the POD basis, and PA, PB, and Pf are the index matrices obtained by applying DEIM

to the nonlinearities A1, B1, and f , respectively. QA, QB, and Qf correspond to Q in Eq. (8).

Furthermore, we plot the singular values for the collected state vectors and nonlinear functions in

Fig. 3.

We see that the singular value decay differs significantly between both scenarios. The decay of

scenario 2 is much slower than in sceanrio 1, which means that the solution of the FOM corresponding

to scenario 2 stays in a subspace with larger dimension than the solution corresponding to scenario 1.

Most likely, this behavior is directly connected to the extent of transient state changes within one

scenario. Especially during start-up (scenario 2), the system states undergo considerable changes

(e.g., due to gas flow heat up and conversion progress). This observation is often associated to

transport-dominated systems, which also include our reactive flow problem. Usually these systems

are challenging to deal with in POD applications, since their dynamical behavior cannot be captured

accurately by a few dominant modes (Reiss et al., 2015). Nevertheless, scenario 1 initially starts with

a gas phase fully developed in temperature and concentration, such that the dominance of transport
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Figure 4: Selected finite volumes (FVs) of the 25 × 25 spatial grid for the evaluation of nonlinearities.
Top: Scenario 1; Bottom: Scenario 2.

effects in Eqs. 1 and 2 is mitigated. As a result, the selection of appropriate dimensions for the

projection bases also differs in both scenarios. As illustrated by the red dashed horizontal lines in

Fig. 3, we select our bases via a normalized singular value threshold, compromising ROM complexity

and accuracy: 10−4 (scenario 1) and 2 · 10−4 (scenario 2).

Beside the orders of the ROMs, both scenarios also vary in their index matrices computed by

the DEIM. Since we are dealing with several nonlinear parts, we get different index matrices P for

each part. However, our nonlinear equations are often not sufficiently describable by the selected

nonlinear indexes. For instance, the heat capacity in one FV can only be evaluated considering all

its chemical species and its temperature, which might not all have been fully selected by the index

matrices. As a consequence, we merge and extend the index matrices PA, PB and Pf , corresponding

to each scenario, to allow for a sufficient evaluation of all relevant nonlinearities. The finally chosen

indexes for both scenarios are highlighted in Fig. 4.

We observe that only ∼ 5 % (32 of 625 - scenario 1, 30 of 625 - scenario 2) of all FVs are relevant

for evaluating all nonlinearities. Considering that the computational costs for nonlinearities are the

most relevant in case of the FOM evaluation (∼ 80 %), the reduction due to the DEIM proves to be

of great significance.
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Finally, we obtain the following ROM of order r = 36 (scenario 1) and r = 34 (scenario 2):

ẋr = QAP
T
AA1(V xr)V xr + A2rxr + QBP

T
BB1(V xr)u1 + B2r u2 + QfP

T
f f(V xr),

xr(t0) = V Tx0.

(12)

Thus, the size of the ROM state vectors xr(t) ∈ R34−36 are significantly smaller compared to the

FOM state vector x(t) ∈ R4375. In order to validate the obtained ROMs (12), error bounds are often

used for linear or weakly nonlinear systems. Defining an error bound for strongly nonlinear systems

is rather difficult and not focus of this study. Nevertheless, there are some studies available (e.g.,

Zhang et al. (2015); Chaturantabut and Sorensen (2012)), which will be considered in our context

in the future. In this study, we validate the obtained ROMs (12) via a numerical study as outlined

in the following.

ROM Validation

For validation purposes, we perform further simulations again based on random samples of the

parameters xH2,in, xCO2,in, Tcool,in, Tcool,out in Tab. 2, but different from the training sets, that are used

to generate the snapshot matrices. Each simulation is done with the FOM and ROM, respectively.

After collecting 20 simulations for each scenario, we compare the results with respect to an absolute

transient state error e(t) ∈ Rn and a relative time averaged error εi of the i-th state

e = x− V xr,

εi =
1

tf

∫ tf

0

‖ei‖
‖xi‖

dt, i = 1, . . . , n.

Based on the relative time averaged error εi, we define the best and the worst case within each scenario

and compare the FOM and ROM simulation with respect to temperature, methane concentration and

carbon dioxide concentration. Therefore, we select nodes closest to the catalytic wall at z/L= 0.3

and z/L= 1.

The results for the best and the worst case of scenario 1 are illustrated in Figs. 5 and 6, respectively.

As we see from both cases, the transient behavior is accurately reproduced by the ROM from the

initiation of the disturbance (at t= 0) until steady state. Furthermore, for all ROM simulations, no
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instabilities are observed, such that the following condition holds:

lim
t→∞

de

dt
≈ 0. (13)

This condition turned out to be very sensitive with respect to our selected singular value threshold.

It is observed that choosing lower thresholds leads to violations of the condition (13). However,

higher thresholds inevitably involve a loss of ROM precision. Besides, we see that as more severe

the disturbance is, the less accurate the ROM becomes. Indeed, these low-dimensional models are

restricted to the given parameter ranges in Tab. 2, such that using the ROM for other parameter

ranges might lead to inaccurate solutions. CPU times for both cases reveal the major advantage of

our derived ROMs. We achieve an acceleration of at least one order of magnitude, thanks to the
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Figure 6: Worst test case for FOM and ROM comparison of scenario 1; xH2,in = 0.85, xCO2,in = 0.102,
Tcool,in = 623 K (a), Tcool,out = 659 K (b), FOM CPU time = 23.5 s, ROM CPU time = 1.5 s.

DEIM.

For scenario 2, the best and worst case are illustrated in Figs. 7 and 8. Again, the CPU time

needed for simulating the ROM is at least one order of magnitude lower. Furthermore, the ROM

also reflects the FOM solution very well, though less accurate. Still no instabilities are observed for

any test case, and thus, the condition (13) holds. Similar to scenario 1, more severe disturbances

lead to less accurate ROM solutions. However, the absolute error should be treated with caution,

since small time delays of steep transient fronts (as seen in Fig. 7) easily cause a larger absolute error

at a specific time point, even if the general trend is preserved. Especially in our start-up scenario

(scenario 2), these fronts occur very often, due to the fast reaction kinetics evoked by the elevated

reactor jacket temperatures. For this reason, the relative time averaged error ε is more relevant, and

thus, part of our discussions below.
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Figure 7: Best test case for FOM and ROM comparison of scenario 2; xH2,in = 0.72, xCO2,in = 0.25,
Tcool,in = 637 K (a), Tcool,out = 694 K (b), FOM CPU time = 49.6 s, ROM CPU time = 2.7 s.

To summarize the validation of the ROMs for both scenarios, Fig. 9 contains a statistical survey

of all considered test cases. This figure clearly reflects our expectations relating to the singular

value decay. Thus, the ROM for scenario 1 is more accurate and more precise. Nevertheless, we

see that on average both ROMs perform with an error of less than 4 %. Compared to the FOM

uncertainties due to our modeling assumptions, such an error already represents a sufficient ROM

reliability. Especially the ROM temperature predictions are highly accurate with error bounds of less

than 0.2 %. In contrast, the carbon monoxide concentration reveals the highest errors combined with

outliers of above 15 %. However, it is worthwhile mentioning that the reactor is very selective w.r.t

methane production due to our operation conditions. Consequently, the by-product carbon monoxide

only appears in small quantities, such that the absolute prediction error remains negligible.

Summarizing the discussions from above, Tab. 3 lists the explicit error values together with CPU
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Table 3: Results of ROM validation considering 20 test cases in scenario 1 (S1) and scenario 2 (S2).

model
no. avg. median of ε / %

states CPU-time ε̄CH4 ε̄CO ε̄CO2 ε̄H2O ε̄H2 ε̄N2 ε̄T

FOM-S1 4375 19.5 s - - - - - - -
ROM-S1 34 1.3 s 1.16 2.06 0.84 1.12 0.88 0.22 0.02
FOM-S2 4375 39.8 s - - - - - - -
ROM-S2 36 2.4 s 1.77 3.27 1.13 1.74 1.29 0.56 0.18

times and system orders. Beside the already mentioned ROM accuracy, we also see that the order

of the FOM as well as the average CPU time are significantly reduced. As shown above, the biggest

contribution to the acceleration goes to the DEIM and the reduced order of the ROM is not the

major impact for the computational speed-up. As a matter of fact, without DEIM, the projection of

the FOM fully destroys its sparse nature which slightly mitigates the advantage of having a lower-

dimensional system, and leads to a ROM which might be even slower than the FOM. Furthermore,

a diligent treatment of the nonlinear parts saves the most computational burden. Therefore, our

proposed decomposition in several nonlinear parts with separate bases generation appears to be a

promising strategy, leading to ROMs 15 to 16 times faster than their original FOMs.

For further improvement, a more sophisticated strategy for snapshot selection during the ROM

construction could be very effective to capture the major system dynamics with less sampling effort.

Although our random selection for training cases includes already a large number of snapshots, it

might still miss important cases. Benner et al. (2015) proposed such an adaptive selection strategy

applied to batch chromatography, where they especially report a reduction in offline computation.

More relevant in terms of the online computation might be a better balancing of the POD and DEIM

bases. Instead of using only one singular value threshold for all bases, a separate treatment for each

basis may lead to faster and more accurate ROMs.

5 Conclusion

We have shown that POD-DEIM is a powerful tool to reduce the complexities of highly nonlinear,

spatially distributed models for catalytic reactors. The reduced computational time of more than

one order of magnitude opens a broad range of new applications for detailed reactor models (e.g.,

nonlinear model predictive control). Furthermore, we have seen that the performance of POD-DEIM

does not exclusively depend on the model itself, but also on the operational conditions (scenarios).
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Although our ROMs are capable of capturing the essential system dynamics in pre-defined parameter

ranges, they are of different accuracy for different scenarios. Consequently, more expensive and

less accurate ROM predictions or even instabilities could arise for certain scenarios. By using our

approach for separate consideration of the leading nonlinearities, this tendency could be mitigated.

To further address this matter and to improve the efficiency of the ROM, methods using local

reduced bases and more sophisticated approaches for snapshot and bases selection will be studied in

the future.
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johr, 2016. Review on methanation - From fundamentals to current projects. Fuel 166, 276 –

296.

L. F. Shampine, M. W. Reichelt, 1997. The MATLAB ODE suite. SIAM Journal on Scientific

Computing 18 (1), 1–22.

VDI, 2010. VDI Heat Atlas. VDI-Buch. Springer Berlin Heidelberg.

21



J. Xu, G. F. Froment, 1989. Methane steam reforming, methanation and water-gas shift: I. intrinsic

kinetics. AIChE Journal 35 (1), 88–96.

Y. Zhang, L. Feng, S. Li, P. Benner, 2015. An efficient output error estimation for model order

reduction of parametrized evolution equations. SIAM Journal on Scientific Computing 37 (6),

B910–B936.

Appendix A

The reaction mechanism for carbon dioxide methanation used in this works follows the Langmuir-

Hinshelwood rate equations developed by Xu and Froment (1989) for a nickel-alumina catalyst.

These rate equations have been widely used for simulation models (Li et al., 2013; El-Sibai et al.,

2015; Rönsch et al., 2016). Accordingly, the rate equations in Eqs. (3) and (4) originate from

r1(T, pα) =
b1(T )

p 2.5
H2

(
p
CH4

p
H2O
−
p 3
H2
p
CO

K1(T )

)/
(DEN(T ))2, (14)

r2(T, pα) =
b2(T )

p
H2

(
p
CO
p
H2O
−
p
H2
p
CO2

K2(T )

)/
(DEN(T ))2, (15)

r3(T, pα) =
b3(T )

p 3.5
H2

(
p
CH4

p 2
H2O
−
p 4
H2
p
CO2

K3(T )

)/
(DEN(T ))2, (16)

where pα is the partial pressure of the respective component in bar, evaluated by

pα =
ρα
ρ

M

Mα

p.

DEN is a dimensionless parameter defined as

DEN(T ) = 1 +B
CO

(T ) p
CO

+B
H2

(T ) p
H2

+B
CH4

(T ) p
CH4

+
B

H2O
(T ) p

H2O

p
H2

,

where Bα is the respective adsorption constant for CH4, CO, H2O and H2 and bβ are rate coefficients

following the Arrhenius equation

Bα(T ) = Aα exp

(
−∆Hα

RT

)
,

bβ(T ) = Aβ exp

(
− Eβ
RT

)
.
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Table 4: Kinetic parameters to calculate reaction rates; each pre-exponential factor contains a mul-
tiplier of 1.225 (see Xu and Froment (1989))

α Formula Aα [Aα] ∆Hα [∆Hα] β Aβ [Aβ] Eβ [Eβ]

1 CH4 8.15×10−4 bar−1 -38.28 kJ
mol

1 5.176×1015 kmol bar0.5

kgcat h
240.10 kJ

mol

2 CO 10.08×10−5 bar−1 -70.65 kJ
mol

2 2.395×10 6 kmol
kgcat hbar

67.13 kJ
mol

4 H2O 2.17×10 5 88.68 kJ
mol

3 1.250×1015 kmol bar0.5

kgcat h
243.90 kJ

mol

5 H2 7.50×10−9 bar−1 -82.90 kJ
mol

Aβ, Eβ, Aα, ∆Hα are constant kinetic parameters stated in Tab. 4. The temperature dependent

equilibrium constants K1, K2 and K3 are based on Gibbs energy minimization and the law of mass

action as shown in Poling et al. (2001).
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